M

-
PrL SPRING

Computer Security (COM-301)
Authentication
Basics and passwords

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Tuomas Aura, Yoshi Kohno, Trent Jaeger

What is authentication?

AUTHENTICATION
The process of verifying a claimed identity

Oh Jeez, is this
the real Rick?

Listen Morty,
I am the real Rick,

Morty
’;J)

9

Authentication is the process that entities use to verify that other entities are who
they claim to be.

What is authentication?

AUTHENTICATION
The process of verifying a claimed identity

Oh Jeez, is this
the real Rick?

Listen Morty,
I am the real Rick,

Morty
?

9

1= IMESSAGE AUTHENTICATION
The message comes from the designated A
sender, and has not been modified

Authentication must not to be confused with Message authentication in which we
verify:

message provenance (the message is sent by whom we believe has sent it)

message integrity (the message that we receive is the message that the sender sent)

Where does Authentication fit?

Write on
file foo.txt?

o

%

Authentication

The system needs to bind the actor The system needs to decide whether
to a principal before authorization the principal is authorized
abstract entity that is authorized to act Access control

(USErS, connections, processes)

Recall that access control establishes whether a principal is authorized to operate on
an asset. Before the access control mechanism can make this decision,
Authentication needs to happen to ensure that the principal is who he says he is.

We will mostly cover authentication of users, and a bit of machine authentication.

Ways to Prove Who You Are

MODERN
TRADITIONAL Where you are
What you know location, IP address

—
password, secret key m—

How you act

behavioural authentication }@

Who you know
social ties

What you are
biometrics

What you have

Smart card, secure tokens

@ @ Many others...

Traditionally, we considered three ways of proving your identity:

- What you know: a secret that only you can know, and therefore proving knowledge
of the secret ensures that it is you

- What you are: a trait that is inherent to you and no-one else has, and therefore
proving this trait ensures that it is you

- What you have: an object that only you can have, and therefore proving
possession ensures that it is you

In modern life, the traditional means are augmented by other traits are often unique
(some times called soft biometrics):

- where you are: applications detect your common locations and trigger alarms if you
are far

- how you act: how you type, how you move the mouse, how you pressure the
keyboard

- who are your friends: social networks tend to be unique

Ways to Prove Who You Are

TRADITIONAL MODERN

Whatyouknow

\ToTP Radio Signal

pas,

Location @

What you a © e e
bIOfT' Proximity :i 4,3
What you ha u know

Smart-cara;, secure tokens social ties

ART Capp . < AR
C @z ‘
6

In fact Bank applications already use all of that, and more!

What you know: Passwords

PASSWORD
Secret shared between user and system

User has a secret password - System checks it to authenticate the user

The most typical “what you know” are passwords.

What you know: Passwords

PASSWORD
Secret shared between user and system

User has a secret password - System checks it to authenticate the user

PROBLEMS TO BE SOLVED

Secure transfer: the password may be eavesdropped when communicated

When using passwords: one must take into account 4 aspects

1) We will need to send the password, and we cannot guarantee the transfer will be
done via a secure channel. We need to transfer it securely to maintain it secret

What you know: Passwords

PASSWORD
Secret shared between user and system

User has a secret password - System checks it to authenticate the user

PROBLEMS TO BE SOLVED

Secure transfer: the password may be eavesdropped when communicated

Secure check: naive checks may leak information about the password

2) We need to make sure that when trying an erroneous password, the answer does
not reveal anything about the actual password

What you know: Passwords

PASSWORD
Secret shared between user and system

User has a secret password - System checks it to authenticate the user

PROBLEMS TO BE SOLVED

Secure transfer: the password may be eavesdropped when communicated
Secure check: naive checks may leak information about the password

Secure storage: if stolen the full system is compromised!

3) To keep passwords secret, they should also be securely stored

What you know: Passwords

PASSWORD
Secret shared between user and system

User has a secret password - System checks it to authenticate the user

PROBLEMS TO BE SOLVED

Secure transfer: the password may be eavesdropped when communicated
Secure check: naive checks may leak information about the password
Secure storage: if stolen the full system is compromised!

Secure passwords: easy-to-remember passwords tend to be easy to guess

4) The secrecy of the password depends on how easy it is to predict. If the password
can be guessed, it does not matter all the above is secured. The password is still not
secret.

Secure transfer

Listen Morty,
here is my password,

INTERNET

(Rick, ‘Wubbalubba’) ~

~~—_~ N

‘Wubbalubba’ !!
It is the real Rick

To achieve authentication, we would send the password together with the “login”

Secure transfer

Listen Morty,
here is my password,

‘Wubbalubba’ !!
It is the real Rick

INTERNET

(Rick, ‘Wubbalubba’)

But if the password is sent in the clear together with the login, anyone eavesdropping

on the link can learn this tuple

Secure transfer

‘Wubbalubba’ !!
It is the real Rick

INTERNET @

=

Once they learn the tuple they can use it to impersonate the entity at any point in

time!

Secure transfer

Encrypt the channel!!

Listen Morty,
here is my password,
Morty

TLS / HTTPS (HTTP-over-TLS)

Week 9/10 !!

Roughly... combine:

Diffie Hellmann
Digital signatures
Hybrid encryption

INTERNET

(Rick, Enc(’WubbaIubbaQ‘ /L>
~m
Read ¥

) 2@

‘Wubbalubba’ !!
It is the real Rick

We have already seen in the class the means to secure the transfer: encrypt the tuple
login password in transit so that it cannot be eavesdropped.

Typically one does not just encrypt this information, one also encrypts the channel
using a standard protocol (like TLS or HTTPS, which combine the concepts we have

seen in a safe way — DO NOT build your own protocol)

Secure transfer — Beware of replay attacks

g One of the most difficult
aspects in authentication

INTERNET o)
O

Listen Morty,
here is my password,

‘Wubbalubba’ !!
It is the real Rick

But encrypting the password may not completely solve the problem (e.g., if we don’t
use a standard protocol to encrypt the channel, but we only encrypt the password; or
if the eavesdropper)

Even if the password is encrypted, one can copy the content

Secure transfer — Beware of replay attacks

g One of the most difficult
aspects in authentication

‘Wubbalubba’ !!
It is the real Rick

INTERNET

(Rick, Enc(‘Wubbalubba”

./

And then reply the encrypted content...

Challenge-Response protocols
Solution to replay attacks

f‘%%&

=

Challenge-Response protocols
Solution to replay attacks

Draw a new
random
number R from
a large space

Listen Morty,
| want to login, Morty

| want to Login

v

R

‘Wubbalubba’ !!
It is the real Rick
(delete R)

Listen Morty,

here is my password,

Morty
(Rick, Enc(‘Wubbalubba’, R))
7
W\ .

Do NOT design your own
A authentication protocol

v

Replying login
will not work!

19

To avoid reply attacks (for passwords and in general) one uses Challenge-Response
protocols.

In these protocols :

1) The principal that wants to authenticate first declares their intention to login.

2) The party authenticating the principal sends a challenge, a random number (from
a large space, to ensure that there are no repetitions and cannot be predicted)

3) The principal encrypts the password together with the challenge. This ensures
that i) the password is never encrypted to the same value, and ii) the encryption
is fresh (i.e., corresponds to the declaration in step 1).

After checking the password, the authenticating party must delete the challenge so
that the message cannot be replied.

Secure storage

Listen Morty,
here is my password,

‘Wubbalubba’ !!
Itis the -eal Rick

INTERNET

(Rick, Enc(’WubbaIubba’{)

(Rick, ‘Wubbalubba’)
(Summer, ‘lloveEthan’)
(Jerry, ‘IhateRick’)

When Morty receives the tuple, in order to be sure that this tuple indeed
authenticates Rick, Morty needs to know what is the correspondence between Rick
and his password. This is typically stored in some sort of database.

Secure storage

Listen Morty,
here is my password,

(Rick, Enc(’WubbaIubba’{)

‘Wubbalubba’ !!
Itis the -eal Rick

(Rick, ‘Wubbalubba’)
(Summer, ‘lloveEthan’)
(Jerry, ‘IhateRick’)

But if passwords are stored in the clear, an adversary can read them (e.g., in UNIX the
password file is readable by anyone!) and then use them to impersonate the users.

Secure storage

Listen Morty,

here is my password,

‘Wubbalubba’ !!
Morty

Itis the -eal Rick

INTERNET

(Rick, Enc(’WubbaIubba’{)

@ catronco@IC-SPRING-LPCO1: ~

v

Steal file (Rick, ‘Wubbalubba’)
. ick, ‘Wubbalubba
Leak file @ (Summer, ‘lloveEthan’)
hared resource Read./

(Jerry, ‘IhateRick’)

These can be read if the file is leaked, stolen, or if people have access to the same
machine

Password database compromises

year # stolen

rOCkgou 2012 32.6 million
Linked m 2012 117 million

"‘ Adobe® 2013 36 million
YAHOO’ 2014 ~500 million

ASHLEY
MADIS# N° 2015 36 million

Life is short. Have an affair.®

Source: Tom Ristenpart

Also, remember the asymmetry of the adversary vs. the defender. We do not need all
the adversaries to be able to read the passwords or breach into the database. It
suffices that one attacker gets access and leaks the passwords of millions of people

(fortunately most of these databases are not in the clear, although that does not
mean they are safe, see below).

23

Secure storage - Do not store in the clear!

OrTION 1
Store password encrypted

Listen Morty,
here is my
password, Morty

W%%

‘Wubbalubba’ !!
It is the real Rick

INTERNET

. e’ = Enc(k,'Wubbalubba’)
(Rick, Enc(’WubbaIubba',R))\

e’'=e?

N

(Rick, e=Enc(k,'Wubbalubba’))
(Summer, e=Enc(k, lloveEthan’))
(Jerry, e=Enc(k,IhateRick’))

v

Encryption Key = k

A first idea can be to encrypt the passwords under storage.

When Morty receives the password, decrypts it, and checks the challenge.
If the challenge is fresh, then to check if it corresponds to the encryption stored in
the database he can:

1) encrypt the received password and compare it to the stored value (this is shown
in the slide)

2) decrypt the stored password and compare it to the encrypted value

Secure storage - Do not store in the clear!

OrTION 1
Store password encrypted

Listen Morty,
here is my
password, Morty

A

‘Wubbalubba’ !!
It is the real Rick

INTERNET
e’ = Enc(k,'Wubbalubba’)

(Rick, Enc(’WubbaIubba',R))\
e’ =e?

(Rick, e=Enc(k,'Wubbalubba’))
(Summer, e=Enc(k, lloveEthan’))
(Jerry, e=Enc(k,IhateRick’))

Steal file + key!

Encryption Key = k

But note that encryption is as secure as the security of the key. To encrypt/decrypt
the passwords the key needs to be on the same machine, so if the adversary can

access the database, can also steal the key.

Secure storage - Do not store in the clear!

OPTION 2
Store password as a “hash” of its value

Listen Morty,
here is my
password, Morty

Wﬁ%ﬁ

‘Wubbalubba’ !!
It is the real Rick

INTERNET

h’ = H(‘Wubbalubba’)

(Rick, Enc(’WubbaIubba',R))\
h’=h?

(Rick, h=H(‘Wubbalubba’))
(Summer, h=H(‘lloveEthan’))
(Jerry, h=H(‘lhateRick’))

A primitive that does not require a key and allows for checking is a hash function.

When Morty receives the password, decrypts it, and checks the challenge.
If the challenge is fresh, Morty hashes the received password and compares it to the
stored value.

Secure storage - Do not store in the clear!

OPTION 2
Store password as a “hash” of its value

Listen Morty,
here is my
password, Morty

%ﬁ%ﬁ

PRE-IMAGE RESISTANCE Refresher
Given H(m), difficult to get m

‘Wubbalubba’ !!
It is the real Rick

INTERNET
h’ = H(‘Wubbalubba’)

(Rick, Enc(‘Wubbalubba’,R)) N
h’=h?

(Rick, h=H(‘Wubbalubba’))
(Summer, h=H(‘lloveEthan’))
(Jerry, h=H(‘lhateRick’))

In this case, what is important is that if the adversary gets access to the database
cannot recover the password from the hashes: i.e., the hash function must be pre-
image resistant.

Secure storage - Do not store in the clear!

OPTION 2
Store password as a “hash” of its value
OFFLINE ATTACKS — DICTIONARY ATTACK
Anyone can compute a hash
Passwords not truly random
- 52 upper- and lower-case letters, 10 digits and 32 punctuation symbols,

- 948 eight-character passwords (around 2°2) possibilities
Users use a limited set of passwords (reduced search space)

(Rick, h=H(‘Wubbalubba’))
(Summer, h=H(‘lloveEthan’))
(Jerry, h=H(‘lhateRick’))

But again this still does not solve the problem.

Combine the following:
- Ahash does not require a key, anyone can compute a hash.
- Passwords are not truly random: we use mostly letters (upper and lower) and

punctuation symbols. The space is not inexplorable
- And also, among those, not every password is equally likely!

Secure storage - Do not store in the clear!

OPTION 2
Store password as a “hash” of its value

OFFLINE ATTACKS — DICTIONARY ATTACK
Anyone can compute a hash

Passwords not truly random
- 52 upper- and lower-case letters, 10 digits and 32 punctuation symbols,
- 948 eight-character passwords (around 2°2) possibilities

Users use a limited set of passwords (reduced search space)

(Rick, h=H(‘Wubbalubba’))
(Summer, h=H(‘lloveEthan’))
(Jerry, h=H(‘lhateRick’))

Attacker can compute H(word) for every word in the
dictionary and see if the result is in the password file!
Can reuse the dictionary
Parallel cracking with GPU accelerates search
Other tricks: rainbow tables, pre-computation,...

29

One can compute the hash of the most typical passwords and start trying them.

More tricks are available to speed up: use parallel computing, rainbow tables, etc.

Secure storage — Do this! wes ey e

OpTION 3
Store password as a “hash”+ “salt”

Listen Morty,
here is my
password, Morty

‘?}%&

‘Wubbalubba’ !!

It is the real Rick

INTERNET

h’ = H(‘Wubbalubba’,saltX)

(Rick, Enc(‘Wubbalubba’,R)) N W =h?

(Rick, h=H(‘Wubbalubba’| | salt1), salt1)

(Summer, h=H(‘lloveEthan’| | salt2) , salt2)
(Jerry, h=H(‘IhateRick’| |salt3), salt3)
(Beth, h=H(‘IhateRick’| | salt4) , salt4)

How we solve this is with so-called salts.

When using salts, one:

- chooses a salt for every password

- hashes the password concatenated with the corresponding hash -> Note that this
means that a password will look different when salted with different values

- stores the hash together with the salt (the salt is in the clear)

When verifying a password Morty receives the password, decrypts it, and checks the
challenge.

If the challenge is fresh, Morty finds the corresponding salt (the one in Rick’s entry) in
the database, concatenates it with the received password and computes the hash.
Then compares the result to the stored value.

Note that breaking one password is still possible. As the salt is in the clear one can try
to compute the hash of all possible passwords with that hash. So one targeted attack
is equally cheap than before, but retrieving the passwords for all entries in the
database is very expensive.

Secure storage — Do this! wes ey e

OpTION 3
Store password as a “hash”+ “salt”

Listen Morty,
here is my
password, Morty

‘Wubbalubba’ !!

Itis the real Rick

INTERNET
h’ = H(‘Wubbalubba’,saltX)

(Rick, Enc(‘Wubbalubba’,R)) N b= h?

(Rick, h=H(‘Wubbalubba’| | salt1), salt1)
Same password (Summer, h=Hl‘lloveFthan’l Isalt2) , salt2)
looks different! werry, h=H(‘lhateRick’| |salt3), salt3)

(Beth, h=H(‘IhateRick’| | salt4) , salt4)

- hashes the password concatenated with the corresponding hash -> Note that this
means that a password will look different when salted with different values

Secure storage — Do this! wes ey e

OpTION 3
Store password as a “hash”+ “salt”

Listen Morty,
here is my
password, Morty

‘Wubbalubba’ !!

Itis the real Rick

INTERNET
h’ = H(‘Wubbalubba’,saltX)

(Rick, Enc(‘Wubbalubba’,R)) N b= h?

v

(Rick, h=H(‘Wubbalubba’| | salt1), salt1)
Dictionary attack still possible! Same password (Summer, h=H(‘lloveFthan’| Isalt2) , salt2)
but needs to repeat for every salt! looks different! {serry, h=H(‘IhateRick’| | salt3) , salt3)

(Beth, h=H(‘IhateRick’| | salt4) , salt4)

Breaking one password is still possible! As the salt is in the clear one can compute the
hash of all possible passwords with that hash. So one targeted attack as cheap as
before, but retrieving the passwords for all entries in the database is very expensive.

Secure storage — Do this!

OpTION 3
Store password as a “hash”+ “salt”

COMPLEMENTARY DEFENSES
Use of hash functions designed to be slow (bcrypt, scrypt, argon2)
Repeat several times (e.g., 1000)

Require specific elements in passwords
Increase entropy

-
F - tom, passwora " -}
WL | ppm— .)
o Z F=HMACIKh) oo

Split check, require a second server —]
Invalidate offline attacks

h = He(password1| | salt) aypto
Storesalt,f e

Access control! (/etc/shadow in UNIX only accessible by root)

Actually, people do even more things:

- Instead of using one normal hash function designed to be fast, use one that is
slow, so as to slow down the adversary that tries to compute the dictionary. Then
repeat several times, not because it is more secure, but because it slows the attack
even more. Important: slow down means that if one needs to compute this for
many passwords the difference is noticeable, but for every login check there is
virtually no different.

- Ensure that people do not choose typical passwords, and require specific elements
so that they are random and it is harder to guess them

- Require a server to do a computation. This means that the adversary cannot
compute an offline dictionary.

- And of course, hinder as much as possible access to the passwords database!
Access control is your friend.

Facebook password onion

Scur = ‘password’ n

Seur = mds(scur) Why this onion?
Ssalt = randbytes(20)

Scur = hmac_shal(Scur, Ssalt)

Scur = remote_hmac_sha256(Scur, Ssecret)
Scur = scrypt(Scur, Ssalt)

Scur = hmac_sha256(Scur, Ssalt)

Source: Tom Ristenpart

Coping with legacy!

34

Password database compromises

year

rockyou ==
Linked 2012

F\\Adobe" -
YA_HOO’ 2014

ASHLEY
MADIS&N®| %

Life is short. Have an affair.®

Source: Tom Ristenpart

stolen

32.6 million

117 million

36 million

~500 million

36 million

% recovered

100%

90%

??

?

33%

format

plaintext (!)

Unsalted SHA-1

ECB encryption

berypt + ??

Salted bcrypt
+MD5

Also, there are leaks...

35

Secure checking

OpTION 1
Check letter by letter

Listen Morty, ‘Wu8balubba’? It is

here is my password,

the real Rick?

INTERNET
(Rick, ‘Wu8balubba’) @

»‘ (Rick, ‘Wubgalubba’) \j /'\\ Real pass = ‘Wubbalubba’
N\ (Rick, ‘Wubbalubbg) _J
\J\./

vvyy

[=N

Secure checking

OpTION 1
Check letter by letter

Listen Morty,
here is my password,

‘Wu8balubba’? It is
the real Rick?

Morty
INTERNET
(Rick, ‘Wu8balubba’) R ‘
>
»_ (Rick, ‘Wubgalubba’) \J > /'\\ Real pass = ‘Wubbalubba’
>
N\ (Rick, ‘Wubbalubbg) _J -
w i 4
w=w? W=W? W=w?
u=u? u=u? u=u?
- =b? - =b? ject!
Timing channel leaks = [0 . b=b? X Reject
.) b=b? 8=b? X Reject!
information about a=a?
the password
b=b?
a=a? v Accept! 37

When checking passwords or PINs, the time taken to check and reject may leak
information on the password.

If you check letter by letter, when the check ends reveals how many letters are
correct.

Secure checking

OPTION 2
Always check everything

Listen Morty, ‘Wu8balubba’? It is
here is my password,

Morty

the real Rick?

INTERNET

(Rick, ‘Wu8balubba’)

@)

>
>
»~ (Rick, “Wub8alubba’) \j _ /'\\ Real pass = ‘Wubbalubba’
>
N\ (Rick, ‘Wubbalubbg) _J -
w 4 S
w=w? W=W? w=w?
u=u? u=u? u=u?
b=b? b=b? 8=b?
- - =b?
Hashing will take care of equal operations! :_:3 szz :_:.:,
Require same operations for accept and reject!! h aa ‘
b=b? b=b? b=b?

a=a?v Accept! a=a? X Reject! a=a? }: Reject!

So you should always try to take the same time regardless of when it fails.

(Note that with hashing this happens by default!)

Dedicated security frameworks.

Authentication library
Don’t design
"/:\Hc\f) HE your own A
@ SHIRO -
4

django

Embedded authentication libraries in web frameworks.

Cross-platform authentication libraries. 7" Firebase

OAuth: performs the authentication in a third-party. ’

Do not program your own password checker, there are many authentication libraries
out there!

(Oauth is very convenient, but implies to leak information to third parties about
which users log into your service and when)

39

Problems with passwords

Strong passwords are difficult to remember
Written passwords
Reuse across systems

Problems with passwords

Strong passwords are difficult to remember
Written passwords
Reuse across systems

Can be stolen
Keylogger
Shoulder surfing
Phishing
Social engineering

Problems with passwords

Strong passwords are difficult to remember

Written passwords

Reuse across systems

Can be stolen
Keylogger
Shoulder surfing
Phishing
Social engineering

suls,

Hel,

1010

p! Hackers Stole My

Password Just By Listening To
Me Type On Skype!

For many, everyday life involves sitting in front of a computer typing
endless emails, presentation documents and reports. Then there's the
frequent typing of passwords just to get access to those files. But
beware: researchers have hacked together a tool that can

harvest what's being typed simply by listening to the sounds of the
keys.

They've created the Skype&Type program for snooping on Skype

Ways to Prove Who You Are

TRADITIONAL

What you know
—

password, secret key m—

What you are
biometrics

What you have
Smart card, secure tokens

Traditionally, we considered three ways of proving your identity:

- What you know: a secret that only you can know, and therefore proving knowledge
of the secret ensures that it is you

- What you are: a trait that is inherent to you and no-one else has, and therefore
proving this trait ensures that it is you

- What you have: an object that only you can have, and therefore proving
possession ensures that it is you

In modern life, the traditional means are augmented by other traits are often unique
(some times called soft biometrics):

- where you are: applications detect your common locations and trigger alarms if you
are far

- how you act: how you type, how you move the mouse, how you pressure the
keyboard

- who are your friends: social networks tend to be unique

What you are: Biometrics

BIOMETRICS

is the measurement and statistical analysis of people's
unique physical characteristics (modern: also behavioral)

Popular biometrics
Fingerprint, face recognition, retina, voice, handwritten signature, DNA

To avoid having to remember, another authentication mean is Biometrics. These are
unique physical characteristics that can be extracted and measured such that they
can be used as a “secret” for authentication.

Many of them do not require users to act, they can be checked passively

They are also very difficult to delegate, as they are physical.

What you are: Biometrics

BIOMETRICS

is the measurement and statistical analysis of people's
unique physical characteristics (modern: also behavioral)

Popular biometrics
Fingerprint, face recognition, retina, voice, handwritten signature, DNA

Advantages
Nothing to remember
Passive
Difficult to delegate
If the algorithm is very accurate, they are unique

To avoid having to remember, another authentication mean is Biometrics. These are
unique physical characteristics that can be extracted and measured such that they
can be used as a “secret” for authentication.

Many of them do not require users to act, they can be checked passively

They are also very difficult to delegate, as they are physical.

Biometrics authentication: 1) Enrollment

Enrollment

~ 4
Present
. e -
Biometric

The biometric authentication process has two phases. The first one is Enroliment,
which is when the biometric of the user is introduced in the system and associated to
their login.

The biometric is captured by a sensor (fingerprint reader, camera, etc), and processed
to convert it into a stream of bits. This stream is called biometric template.

Biometrics authentication: 1) Enrollment

Enrollment

~ 4
Present
. e -
Biometric

4

The biometric authentication process has two phases. The first one is Enroliment,
which is when the biometric of the user is introduced in the system and associated to
their login.

The biometric is captured by a sensor (fingerprint reader, camera, etc), and processed
to convert it into a stream of bits. This stream is called biometric template.

Biometrics authentication: 1) Enrollment

Enrollment

~ 4
Present
. e -
Biometric

The biometric authentication process has two phases. The first one is Enroliment,
which is when the biometric of the user is introduced in the system and associated to
their login.

The biometric is captured by a sensor (fingerprint reader, camera, etc), and processed
to convert it into a stream of bits. This stream is called biometric template.

Biometrics authentication: 1) Enroliment

Enrollment
Present
—
Biometric

Biometric
template

The biometric authentication process has two phases. The first one is Enroliment,
which is when the biometric of the user is introduced in the system and associated to
their login.

The biometric is captured by a sensor (fingerprint reader, camera, etc), and processed
to convert it into a stream of bits. This stream is called biometric template.

Biometrics authentication: 2) Verification

/Enrollmenl)

Present

= - -
Biometric /
Verification

Present |

—_— | Process

Biometric Match

(. J

The second phase is Verification. Here the biometric is captured and processed as
before, and the template obtained is compared to the stored one.

Depending on which the following three phases happen we different security and
privacy trade-offs

Capture: the sensor captures the biometric
Process: the captured biometric is converted on the template
Store: the template is stored

- Local: in the device where the assets that the biometrics protect are stored
- Remote: on a server remote from the assets being protected

Storing/processing locally is more privacy-preserving, but harder to secure and
difficult to update.

Storing/processing remotely is less privacy-friendly (the server sees the biometrics),
but is easy to secure and update.

Biometrics authentication: 2) Verification

/Enrollmenl)

—~
Present m - m No Match WHERE DO THESE PROCESSES HAPPEN?
— e Process =
Biometric
‘ CAPTURE PROCESS STORE

Local Local Local
Verification Local Local Remote
Present _]
Present, | .

Biometric Match Local Remote Remote

(. J

The second phase is Verification. Here the biometric is captured and processed as
before, and the template obtained is compared to the stored one.

Depending on which the following three phases happen we different security and
privacy trade-offs

Capture: the sensor captures the biometric
Process: the captured biometric is converted on the template
Store: the template is stored

- Local: in the device where the assets that the biometrics protect are stored
- Remote: on a server remote from the assets being protected

Storing/processing locally is more privacy-preserving, but harder to secure and
difficult to update.

Storing/processing remotely is less privacy-friendly (the server sees the biometrics),
but is easy to secure and update.

What you are: Biometrics

/Enrollmenl '))
Present

. - -
Biometric

compare

Verification

Present ‘

ool Capture Eod Process [

Biometric Match

\ S 7 J

/

Parameters determine
false positives,and false negatives
T T

Wrong authentications True authentications
accepted rejected

Decreasing false negatives increases
false positives!!

Configuration depends on applications

Bank: low false positive even if
legitimate users need to repeat

Gym: low false negative even
if some non-users get in

As opposed to the hash in passwords, this comparison is not exact. Because the
capture may contain differences (e.g. dirt of fingers, light when taking photos, etc),
one has to decide a threshold to define what a match means.

When deciding this threshold one has to make a balance between false positives
(how many times a biometrics that is not from the user is considered a match) and
false negatives (how many times the user provides her biometrics, but these are
rejected). What balance depends on the assets you are securing and what is more
important, to keep them safe or to keep users happy.

M

-
PrL SPRING

Computer Security (COM-301)
Authentication
Tokens

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Tuomas Aura, Yoshi Kohno, Trent Jaeger

53

Ways to Prove Who You Are

TRADITIONAL

What you know
—

password, secret key m—

What you are
biometrics

What you have
Smart card, secure tokens

Traditionally, we considered three ways of proving your identity:

- What you know: a secret that only you can know, and therefore proving knowledge
of the secret ensures that it is you

- What you are: a trait that is inherent to you and no-one else has, and therefore
proving this trait ensures that it is you

- What you have: an object that only you can have, and therefore proving
possession ensures that it is you

In modern life, the traditional means are augmented by other traits are often unique
(some times called soft biometrics):

- where you are: applications detect your common locations and trigger alarms if you
are far

- how you act: how you type, how you move the mouse, how you pressure the
keyboard

- who are your friends: social networks tend to be unique

Problems with Biometrics

Hard to keep secret

Signature on ID card
Fingerprint left on glasses, door handle, ... Liveness detection
Photos (nowadays, everywhere!)

Revocation is difficult (impossible?)
Sorry, your iris has been compromised, please create a new one... !

Identifiable and unique £
Linking across systems | f = learned estimate of f,
May reveal private information w% ‘“’ﬁ
Bob —» e
Iris > disease A E
Face - identity Model

inversion

. . S : T Rist: t
Not always universal or immutable ource: Tom Histenpar

Fingerprints disappear, iris changes with lenses,...

Liveness detection are measures in the capture/processing steps in which the users
are required to do actions to demonstrate they are actually alive.

Uniqueness is problematic, as if the biometric is stolen, it may be used elsewhere.
Also, once stolen the templates may reveal attributes.

Itis a lie that they do not change.

What you have: Tokens

yi

C@ oz |

-

Finally, we also have authentication by proving ownership of a token.

This proof can come by having a chip running a protocol on a secret. For instance, a
smart card signs a challenge sent by the ATM to prove knowledge of a key.

Or from a device that contains a secret shared with the server. These devices output a
number based on this secret and time (require synchronization). The device is
authenticated when it outputs the same number as the server.

What you have: Tokens

“seed” = common random number

What you have: Tokens

{}@ o) | 1. 1'am Rick .

2. Prove it

I 3

Consider discrete time intervals: 1,2,3,4,.....n-1,n,n+1,.....
When Rick wants to prove identity

The server asks to prove, the token computes which interval it is with repect to the
time it was synchronized with the server.

Then applies a keyed cryptographic function using as key the secret shared with the
server n times on the seed, and sends the result to the server. Notice that from this

value an adversary cannot recover the seed or the key (properties of encryption), and
cannot compute future values because she does not have the key.

The server does the same operation and checkes

What you have: Tokens

(}@) | 1. 1'am Rick .
2. Prove it

3. The token first computes n, g
using the synchronized clock

V) = _now-start
interval

4. The token applies a keyed

cryptographic function () 6. The server computes n
n times on seed 5. The token sends the resuilt and realizes the same
V= f"(seed) of the operation to the server operation as the token
v R v’ = fn(seed)
n=1 - v=f(seed); The adversary only sees an 7. The server compares the
n=2 - v=f(f(seed)); encrypted value. computed_ value v’ with the
n=3 > v=f(f(f(seed))); Cannot know recover the seed, reCeI:Ied value v
. nor compute future values v ==vy?
Consider discrete time intervals: 1,2,3,4,.....n-1,n,n+1,.....

When Rick wants to prove identity

The server asks to prove, the token computes which interval it is with repect to the
time it was synchronized with the server.

Then applies a keyed cryptographic function using as key the secret shared with the
server n times on the seed, and sends the result to the server. Notice that from this
value an adversary cannot recover the seed or the key (properties of encryption), and
cannot compute future values because she does not have the key.

The server does the same operation and checkes

Why the cryptographic function cannot be a hash
@ iz |

| am Rick

v

V= hn(SEEd) < Prove it

Vn

Why a keyed function and not a hash?

Recall that everyone can compute a hash! If we use a hash instead of a keyed
function given v | can produce any future v by hashing the value!

Why the cryptographic function cannot be a hash
@ iz | :

| am Rick

v

V= hn(seed) Prove it

r' 3

Vn

| am Rick

P Prove it

Why a keyed function and not a hash?

Recall that everyone can compute a hash! If we use a hash instead of a keyed
function given v | can produce any future v by hashing the value!

Why the cryptographic function cannot be a hash

@ mm)

| am Rick

v

Prove it

v, =h"(seed) <
N .

An adversary observing v, can produce v, !!!
The hash does not need a key! Anyone can
| dm Rick compute it
Vv = hn+1(seed) < /Prove it I
n+l « /
= h() s R
= 63

>
—

Why a keyed function and not a hash?

Recall that everyone can compute a hash! If we use a hash instead of a keyed
function given v | can produce any future v by hashing the value!

What you have: 2FA — Two factor authentication

Combine two out of the three factors:
(What you know, what you have, what you are)

C@ = -

what you have
what you know

what you have
what you have what you know
what you know

what you have
what you know

What you have: 2FA — Two factor authentication

Combine two out of the three factors:
(What you know, what you have, what you are)

C @ TTER)|)t:
=

Token = what you have
Identification number = what you know

Token = what you have
Card = what you have (+ Card = what you have)
+ PIN = what you know + identification number = what you know

Modern approaches: mobile phone = what you have
The phone cannot hold a key (is not secure). Prove via SMS or showing a QR code

What machines have: Secret key

Use secret keys to produce Digital signatures to authenticate parties
e.g., used in internet protocols HTTPS/TLS to authenticate the server
(and can be used also to authenticate the client)

Finally, when we authenticate machines and not users, this is done using public key
cryptography (e.g., to authenticate web servers). The authenticating party signs with
their secret key.

What machines have: Secret key

Use secret keys to produce Digital signatures to authenticate parties
e.g., used in internet protocols HTTPS/TLS to authenticate the server
(and can be used also to authenticate the client)

Building authentication protocols is hard!
defending from man in the middle — Use signatures
defending from replay attacks — Use challenges / nonces

Finally, when we authenticate machines and not users, this is done using public key
cryptography (e.g., to authenticate web servers). The authenticating party signs with
their secret key.

What machines have: Secret key

Use secret keys to produce Digital signatures to authenticate parties
e.g., used in internet protocols HTTPS/TLS to authenticate the server
(and can be used also to authenticate the client)

Building authentication protocols is hard!
defending from man in the middle — Use signatures
defending from replay attacks — Use challenges / nonces

Still difficult to get right! Don’t design
Use well established protocols!! (TLS 1.3, ISO 9798-3) yourown 44

Finally, when we authenticate machines and not users, this is done using public key
cryptography (e.g., to authenticate web servers). The authenticating party signs with
their secret key.

Summary of the lecture

Authentication is the process by which an entity proves its identity

Three flavours:

What you know: passwords — hard to handle!
What you are: biometrics — difficult to revoke and not infallible
What you have: tokens — usability issues (you need to have the device

Machines authenticate using keys

