= = A %
=PrL SPRING

Computer Security and Privacy
(COM-301)
Applied cryptography Il
Carmela Troncoso

SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

—pre D 4
=PrL SPRING

Computer Security (COM-301)
Applied cryptography Il
Hash functions

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

Hash functions

Any length message (m) Fixed short-length output (h)
N HasH Funcrion

(H)

A cryptographic hash function is an unkeyed cryptographic primitive. It takes as
input a message, and outputs a short fixed-length string of bits.

The correspondence between input and output is deterministic. Given a message
m, a hash function H will always output the same string h=H(m)

Hash functions

Any length message (m) Fixed short-length output (h)

HasH Funcrion

(H)

THREE SECURITY PROPERTIES
PRE-IMAGE RESISTANCE
Given H(m), difficult to find m
SECOND PRE-IMAGE RESISTANCE
Given m, difficult to find an m'l=m such that H(m') = H(m)
COLLISION RESISTANCE
Difficult to find any m, m' such that H(m) = H(m')

Cryptographic hash functions are designed to be fast and efficient to compute, and
they have several important properties that make them valuable in various
applications:

Pre-image resistance: given a hash of a message H(m) it is hard to recover the
original message m. This property says that hash functions are not invertible.

Second pre-image resistance: given a message m and its hash H(m), it is hard to
find another message m’ (different from the original message) with the same
hash (H(m’) = H(m)).

Collision resistance: it is hard to find two messages m, m’ (m !=m’) thet have the
same hash (H(m) = H(m’))

Hash functions

Any length message (m)
—p

HASH FUNCTION
(H)

Fixed short-length output (h)

e

THREE SECURITY PROPERTIES
PRE-IMAGE RESISTANCE
Given H(m), difficult to find m
SECOND PRE-IMAGE RESISTANCE

MDS5 (1991): 128 bit hash - insecure
SHAO, SHA1: 160 bits — insecure
SHA-2 (224/256 /384/512) - OK but slow
SHA-3 (224/256 /384/512)

Given m, difficult to find an m'!=m such that H(m') = H(m) Don’t design

COLLISION RESISTANCE

your own A

Difficult to find any m, m' such that H(m) = H(m')

As with any other primitive, designing good hash functions that fulfil these
properties is hard. There are many standardized functions, use those.

Hash functions

Any length message (m) Fixed short-length output (h)
N HasH Funcrion

THREE SECURITY PROPERTIES
PRE-IMAGE RESISTANCE
Given H(m), difficult to find m
SECOND PRE-IMAGE RESISTANCE
Given m, difficult to find an m'l=m such that H(m') = H(m)
COLLISION RESISTANCE
Difficult to find any m, m' such that H(m) = H(m')

USES

Support digital signatures, build HMAC, password storage, file integrity, secure
commitments, secure logging, blockchains, ...

Cryptographic hash functions are designed to be fast and efficient to compute, and
they have several important properties that make them valuable in various
applications:

Hash functions

Any length message (m)
N HasH Funcrion

(H)

Fixed short-length output (h)

—

THREE SECURITY PROPERTIES
PRE-IMAGE RESISTANCE
Given H(m), difficult to get m
SECOND PRE-IMAGE RESISTANCE
Given m, difficult to get an m‘l=m such that H(m') = H(m)
COLLISION RESISTANCE

DI04} Don’t design
yourown 4

HMAC != H(x| |m))
UsEs

Support digital sig es, build HMAC, password storage, file integrity, secure commitments,
secure logging, blockchain,...

An HMAC is a MAC built using hashes. They are hard to build

Even though it appears in the Computer Networks book, H(K| | m) is not a good
HMAG, this is because for some hash functions (those based on the so-called Merkle-

Damgard structure) one can do length extension attacks similar to those in CBC-MAC
-- see extra slides at the bottom).

~—pre A
m— SPRING

Computer Security (COM-301)
Applied cryptography
Asymmetric cryptography

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

Symmetric Cryptography

Block ciphers, Stream Ciphers, MACs
Gru and Bob need to share a secret key

Secure key distribution is a problem!

Even though symmetric keys are small, the fact that Gru and Bob need to share a key
is problematic:

1) how to send it?
2) how many keys do we need to ensure that everyone can talk with everyone?

Asymmetric cryptography

Each participant has two keys:
One secret key that only they know
One public key that they can reveal

Pairs of (secret, public) keys are created with specific algorithms

Gy

"
Secret Key: SKg,, Secret Key: SKg,,
Public Key: PKg,, Public Key: PKg,,

In asymmetric cryptography every user has two keys:

One secret key that the user keeps to himself
One public key that does not need to be secret

Asymmetric cryptography

Public keys can be stored in a Public Key
public repository Infrastructure
Public Key s Public Key
PKBob

PKGru

FOO

#

Secret Key: SKg,p Secret Key:
SKGru

The public keys can be uploaded to public servers that form the backbone of so-
called Public Key Infrastructure.

Asymmetric cryptography: confidentiality

Public Key

{\ Infrastructure :
Public Key = s
: Dec(PK,Enc(PK,m))= [

PKGru

| want to talk to
Gru

E/nc(PKGru ; m)

FOO
Examples: — Secret Key: SKg,,
ign
RSA-OAEP yourown 4 Dec(SKg,, ,Enc(PKg,,,m))=m

When Bob wants to write to Gru:

- Finds Gru’s public key in the repository.

- Encrypts the message with Gru’s public key

- This message can only be decrypted with Gru’s secret key (decrypting a message
with the public key returns garbage)

Asymmetric cryptography: integrity

Public Key

{\ Infrastructure
: Public Key

PKBob

.@Q' r}1, Sign(SKgop,m)
% /

Secret Key: SKg,p

Verify(PKg.,, m, Sign(SKg,,,m))= Yes or No

Examples: T
lesign
NIST DSA yourown g
RSA-PSS

To verify a signature, Gru gets Bob’s public key from the repository.

Asymmetric cryptography: integrity

Public Key

Cannot “forge” a signature Infrastructure
(m, s, PK) that verifies =
without knowing sk .)
e . Public Key

PKBob

;@' r}‘: Sign(SKBobrm)
% /

Secret Key: SKg,p

Verify(PKgop, M, Sign(SKg,,,m))= Yes or No

Examples: T
lesign
NIST DSA yourown g
RSA-PSS

This enables Gru to not only know the message has not been modified, but also that
he is talking to Bob: only Bob, that knows the secret key, could have created the
signature

Digital Signatures

Properties:
Integrity of message
Authenticity sender
Non-repudiation (why are they different from MACs?)

Application: Public Key Infrastructure: Certificates

(1) Authority signs a mapping between names, or names and
encryption public keys.

(2) Authority signs mapping between names and verification keys.

Digital signatures provide:

Integrity of the message: since no party than the sender can create a valid
signature for a message, no adversary can modify the message without being
detected (if they modify the message, the signature would not be valid)
Authenticity of the sender: since no party than the sender can create a valid
signature for a message, the server can verify that the identity of the sender. No
adversary can produce a valid signature to the public key of the sender and
therefore cannot impersonate the sender.

Non-repudiation: since no party than the sender can create a valid signature for a
message, if a message has a valid signature, the sender cannot claim they did not
sign it (no-one else can produce such signature). This is different than symmetric
key MAC mechanisms, where both sender and receiver of a message can produce
the MAC(k,m) and both can claim that the message was sent by the other party.

While typically the signature is sent along with the message, and thus confidentiality
is not a consideration, signatures do generally provide message confidentiality.
Given a signature, it is generally not possible to recover the message.

Digital signatures are used in the Internet Public Key infrastructure to sign

Certificates that authenticate the web servers / domain names we use in the
internet.

15

Digital Signatures

Properties:
Integrity of message
Authenticity sender
Non-repudiation (why are they different from MACs?)

Encryption key pair |= Signature key pair 4\
Application: Public Key Infrastucture:

(1) Authority signs-a-mapping between names, or names and
encryption public keys.
(2) Authority signs mapping between names and verification keys.

All together

ASYMMETRIC CRYPTOGRAPHY
Users have two pairs of keys (secret key SK, public key PK)
Confidentiality Dec(SK,Enc(PK,m))=m
Integrity/Authentication Sig(SK,m) =s; Verify(PK,Sig(SK,m)) = YES/NO

Encryption Public Key

PKY

Verification Public Key
PK;;

&

By Enc(PKq ;m), Slgn(SKg,m)
Secret Encryption Key: SK 4, Secret Encryption Key: S
Secret Signing Key: SK@. Secret Signing Key: SK, %

| want to talk to

./

want to make sure
| am talking to &

Asymmetric cryptography limitations

Computationally costly compared with most symmetric key algorithms of
equivalent security

In practice
Signing and encrypting is slow Sign hash of messages

Hybrid encryption
(only encrypt small symmetric key)

Not suitable to encrypt large amounts of data
There are not good “cipher modes”

The commodity of not having to pre-share a key comes at a cost. Asymmetric
cryptography is much more expensive than symmetric counterparts with the same
security level (both for encryption and signing).

Also, there are not good cipher modes to encrypt large messages: we can only do
one block.

To overcome these shortcomings instead of signing long messages we sign a hash,
and to encrypt we use hybrid encryption (see next slides)

18

Digital signatures on hash functions

Public Key

{\ Infrastructure
: Public Key
PKBob

. m, Sign(SKgop,m) ?

Secret Key: SKg,p

Signing is a slow property.

Digital signatures on hash functions

Public Key

(\ Infrastructure

: Public Key
PKBob

% m, Sign(SKBobrm)

Secret Key: SKg,p

If we sign long messages, both signing and verification will take a very long time and
will be not practical

Digital signatures on hash functions

Public Key
Infrastructure

e Refresher

veni{m),difficult to.got

SECOND PRE-IMAGE RESISTANCE
Given m, difficult to get an m‘l=m such that H(m') = H(m) -
(COLLISION RESISTANCE o

Difficult to find any m, m' such that H(m) = H(m') Public Key /Iia‘l"lt to makek
PKgob | am talking to &

J@Q, m, Sign(SKgop,h)
h=H(m) %
Secret Key: SK;,, h =H(m)

Verify(PKgop, h, Sign(SKgo,,h))= Yes or No

Preimage resistance is not needed, as the message m is already sent in public

Second pre-image resistance says that, given a signature on h(m), the hash of
message m; it is hard to find a second message that leads to the same hash and
therefore to the same signature. In other words, given a signature on a hash, you
cannot have an alternative message to the true one.

Collision resistance says that you cannot produce two messages that lead to the same
hash. That means that you cannot have someone sign a message m, and then claim
that they signed anoter message m’

Hybrid encryption

Asymmetric encryption is slow, but symmetric is fast! Don'tdesign g |50 9798-3

SigR.Lgstpbien 8 shared pymvelric ke usivaJley nepert, — =

@ For authentication,

add signatures!!

Public Key
PKGW

A Enc(PKg;,; k) ?
23

Enc(k, m1)

@’ Enc(k, m2)
'i7 Enc(k, m3)

In Hybrid encryption the idea is to get the best of the both worlds.

To avoid sharing keys we use public keys, but as we cannot encrypt a lot with them,
we use to send a symmetric key

And then we use this symmetric key to encrypt the rest of the communication

This process is repeated every time Bob wants to talk to
Gru

Enc(PKg,,; k1)
Foo) Enc(k1, m1)
Monday i' Enc(k1, m2)
2 Enc(k1, m3)
Enc(PKg,; k2) Each of these
exchanges with a
Tuesday Gty Enc(k2, m4) ? new key is called
— Enc(k2, m5) “session”
Enc(k2, m6)

The keys k1,k2,... are
called “Session keys”

Enc(PKg,,; k3)

@ Enc(k3, m7)
Thursday ¢ Enclkd, m8)
Enc(k3, m9)

Every time Bob communicates with Gru, he can create a new key. These are called
session keys.

23

What happens if the adversary gets access to Gru’s

asymmetric key on Thursday?

Enc(PKGm@\

Fool Enc(k1, m1) -
Monday = Enc(k1, m2)
¥ Enc(k1, m3)
Enc(PKG,uW
Tuesday CLry Enc(k2, m4) o
= Enc(k2, m5)
.‘ Enc(k2, m6)
Enc(PKg/|
Thursday Cry

5 Enc(k3, m7) ”
=2 Enc(k3, m8)
i Enc(k3, m9)

Access to Gru'’s secret
key gives access to the
present/past session’s
messages!

But there is a problem in this scheme: If the adversary gets hold of Gru’s secret key,

the secrecy of all past sessions is compromised

24

What happens if the adversary gets access to Gru’s
asymmetric key on Thursday?

Enc(PKGN@\
o Enc(k1, m1) e
Monday -7 r Enc(k1, m2)
j Enclkl m3)

Pccess to Gru’s secret

DESIRABLE PROPERTY ey gives access to the
FORWARD SECRECY: the secrecy of the messages in a session is present/past session’s
. . !
Tuesday kept even if long term keys are compromised nessages

If the adversary learns the key of Thursday’s session, Monday and Tuesday should
still be safe

o Enc(k3, m7) ”
Thursday oo\ Enclk3, m8)

Enc(k3, m9)

We want to avoid this. A key compromise at time t should not compromise the
secrecy of any past conversation.

25

Key agreement for forward secrecy — The Math

Arithmetic modulo a number: clock arithmetic
6 (mod 12) = 6 (mod 12)
12 (mod 12) =0 (mod 12)
14 (mod 12) = 2 (mod 12)

Arithmetic modulo a large prime p (>1024 bits)
Addition and multiplication (mod p) can be computed
Exponentiation can be computed [Given (a, x) = a* mod p?]
Discrete logarithms are HARD! [Given (a, a* mod p) = x?]

The main math that we use to be able to build a shared secret is modular discrete
arithmetic

Concretely modular discrete arithmetic in which the modulo is a large prime.

When the modulo is a large prime, addition, multiplication, and exponentiation, are
easy to compute.

However, computing a discrete logarithm is hard. This means that, if the modulo p is
well chosen, given a*mod p, it is not computationally feasible to compute x

Basic Diffie-Hellman key exchange
Every time Bob wants to talk to Gru...

Shared public parametersp, g

Because of the discrete logarithm hardness, an
adversary observing these values cannot
recover x and y, therefore cannot compute k

-

3 Py
CLry
.
Secret Key: x (random!) Shared secret!! Secret Key: y (random!)
(P,)=g~ (mod p) k=g* (mod p) (Pb)y= g9 (mod p)

To encrypt messages for the session

A Diffie-Hellman key exchange exploits the hardness of the discrete logarithm
problem to enable a sender and a receiver to obtain a shared key without an
eavesdropper being able to compute this key.

How it works is that Bob sends to Gru g* mod p, where x is Bob’s secret

key; and Gru sends to Bob gmod p, whereyis Gru’s secret key.
With these values, both Gru and Bob can compute the same secret key g*.

Yet, an adversary eavesdropping on the channel cannot compute the same key
because they do not know x or y. And, due to the hardness of the discrete logarithm
problem they cannot recover these values from what is observed on the wire (i.e., x
cannot be recovered from P,=g*mod p).

BaSi C DI After the session has ended, delete the secrets xand y.
. The key can never be recovered.
Every timi Forward secrecy is achieved!!

Shared public parametersp, g

Because of the discrete logarithm hardness, an
adversary observing these values cannot
recover x and y, therefore cannot compute k

3 Py
Clry
.
Secret Key: x (random!) Shared secret!! Secret Key: y (random!)
(P,)=g~ (mod p) k=g (mod p) (Pb)y= g9 (mod p)

To encrypt messages for the session

Once a session ends, Gru and Bob delete their secrets x and y. Like this, because
there is no any record of these values, the key k can never be recovered.

A system based on establishing shared keys using Diffie-Hellman is forward secure as
long as in every session new fresh secret keys are used.

Summary of the crypto lectures

Symmetric cryptography
* Confidentiality: Stream ciphers, Block ciphers (modes of operation!)
* Integrity / Authentication: Message Authentication Codes (MACs)

Asymmetric cryptography Hybrid encryption
* Confidentiality: Encryption best both worlds!
* Integrity / Authentication: Digital signatures

Hash functions Forward secrecy
* Three security properties Diffie Hellman
* Support Digital Signatures + other functions

