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A cryptographic hash function is an unkeyed cryptographic primitive. It takes as 
input a message, and outputs a short fixed-length string of bits.

The correspondence between input and output is deterministic. Given a message 
m, a hash function H will always output the same string h=H(m)



Cryptographic hash functions are designed to be fast and efficient to compute, and 
they have several important properties that make them valuable in various 
applications:

Pre-image resistance: given a hash of a message H(m) it is hard to recover the 
original message m. This property says that hash functions are not invertible.

Second pre-image resistance: given a message m and its hash H(m), it is hard to 
find another message m’ (different from the original message) with the same 
hash (H(m’) = H(m)). 

Collision resistance: it is hard to find two messages m, m’ (m != m’) thet have the 
same hash (H(m) = H(m’) )



As with any other primitive, designing good hash functions that fulfil these 
properties is hard. There are many standardized functions, use those.



Cryptographic hash functions are designed to be fast and efficient to compute, and 
they have several important properties that make them valuable in various 
applications:



An HMAC is a MAC built using hashes. They are hard to build

Even though it appears in the Computer Networks book, H(K||m) is not a good 
HMAC, this is because for some hash functions (those based on the so-called Merkle-
Damgard structure) one can do length extension attacks similar to those in CBC-MAC  
-- see extra slides at the bottom).
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Even though symmetric keys are small, the fact that Gru and Bob need to share a key 
is problematic: 

1) how to send it?
2) how many keys do we need to ensure that everyone can talk with everyone?



In asymmetric cryptography every user has two keys:

One secret key that the user keeps to himself
One public key that does not need to be secret



The public keys can be uploaded to public servers that form the backbone of so-
called Public Key Infrastructure.



When Bob wants to write to Gru:

- Finds Gru’s public key in the repository.
- Encrypts the message with Gru’s public key
- This message can only be decrypted with Gru’s secret key (decrypting a message 

with the public key returns garbage)



To verify a signature, Gru gets Bob’s public key from the repository.



This enables Gru to not only know the message has not been modified, but also that 
he is talking to Bob: only Bob, that knows the secret key, could have created the 
signature



Digital signatures provide:
- Integrity of the message: since no party than the sender can create a valid 

signature for a message, no adversary can modify the message without being 
detected (if they modify the message, the signature would not be valid)

- Authenticity of the sender: since no party than the sender can create a valid 
signature for a message, the server can verify that the identity of the sender. No 
adversary can produce a valid signature to the public key of the sender and 
therefore cannot impersonate the sender.

- Non-repudiation: since no party than the sender can create a valid signature for a 
message, if a message has a valid signature, the sender cannot claim they did not 
sign it (no-one else can produce such signature). This is different than symmetric 
key MAC mechanisms, where both sender and receiver of a message can produce 
the MAC(k,m) and both can claim that the message was sent by the other party.

While typically the signature is sent along with the message, and thus confidentiality 
is not a consideration, signatures do generally provide message confidentiality. 
Given a signature, it is generally not possible to recover the message.

Digital signatures are used in the Internet Public Key infrastructure to sign 



Certificates that authenticate the web servers / domain names we use in the 
internet.
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The commodity of not having to pre-share a key comes at a cost. Asymmetric 
cryptography is much more expensive than symmetric counterparts with the same 
security level (both for encryption and signing).

Also, there are not good cipher modes to encrypt large messages: we can only do 
one block.

To overcome these shortcomings instead of signing long messages we sign a hash, 
and to encrypt we use hybrid encryption (see next slides)
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Signing is a slow property.



If we sign long messages, both signing and verification will take a very long time and 
will be not practical



Preimage resistance is not needed, as the message m is already sent in public

Second pre-image resistance says that, given a signature on h(m), the hash of 
message m; it is hard to find a second message that leads to the same hash and 
therefore to the same signature. In other words, given a signature on a hash, you 
cannot have an alternative message to the true one.

Collision resistance says that you cannot produce two messages that lead to the same 
hash. That means that you cannot have someone sign a message m, and then claim 
that they signed anoter message m’



In Hybrid encryption the idea is to get the best of the both worlds.

To avoid sharing keys we use public keys, but as we cannot encrypt a lot with them, 
we use to send a symmetric key

And then we use this symmetric key to encrypt the rest of the communication



Every time Bob communicates with Gru, he can create a new key. These are called 
session keys.
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But there is a problem in this scheme: If the adversary gets hold of Gru’s secret key , 
the secrecy of all past sessions is compromised
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We want to avoid this. A key compromise at time t should not compromise the 
secrecy of any past conversation.
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The main math that we use to be able to build a shared secret is modular discrete 
arithmetic

Concretely modular discrete arithmetic in which the modulo is a large prime.
When the modulo is a large prime, addition, multiplication, and exponentiation, are 
easy to compute. 

However, computing a discrete logarithm is hard. This means that, if the modulo p is 
well chosen, given ax mod p, it is not computationally feasible to compute x



A Diffie-Hellman key exchange exploits the hardness of the discrete logarithm 
problem to enable a sender and a receiver to obtain a shared key without an 
eavesdropper being able to compute this key.

How it works is that Bob sends to Gru gx mod p, where x is Bob’s secret 
key;  and Gru sends to Bob gy mod p, where y is Gru’s secret key.
With these values, both Gru and Bob can compute the same secret key gxy. 

Yet, an adversary eavesdropping on the channel cannot compute the same key 
because they do not know x or y. And, due to the hardness of the discrete logarithm 
problem they cannot recover these values from what is observed on the wire (i.e., x 
cannot be recovered from Pb=gx mod p).



Once a session ends, Gru and Bob delete their secrets x and y. Like this, because 
there is no any record of these values, the key k can never be recovered. 

A system based on establishing shared keys using Diffie-Hellman is forward secure as 
long as in every session new fresh secret keys are used.




