
1

2

A cryptographic hash function is an unkeyed cryptographic primitive. It takes as
input a message, and outputs a short fixed-length string of bits.

The correspondence between input and output is deterministic. Given a message
m, a hash function H will always output the same string h=H(m)

Cryptographic hash functions are designed to be fast and efficient to compute, and
they have several important properties that make them valuable in various
applications:

Pre-image resistance: given a hash of a message H(m) it is hard to recover the
original message m. This property says that hash functions are not invertible.

Second pre-image resistance: given a message m and its hash H(m), it is hard to
find another message m’ (different from the original message) with the same
hash (H(m’) = H(m)).

Collision resistance: it is hard to find two messages m, m’ (m != m’) thet have the
same hash (H(m) = H(m’))

As with any other primitive, designing good hash functions that fulfil these
properties is hard. There are many standardized functions, use those.

Cryptographic hash functions are designed to be fast and efficient to compute, and
they have several important properties that make them valuable in various
applications:

An HMAC is a MAC built using hashes. They are hard to build

Even though it appears in the Computer Networks book, H(K||m) is not a good
HMAC, this is because for some hash functions (those based on the so-called Merkle-
Damgard structure) one can do length extension attacks similar to those in CBC-MAC
-- see extra slides at the bottom).

8

Even though symmetric keys are small, the fact that Gru and Bob need to share a key
is problematic:

1) how to send it?
2) how many keys do we need to ensure that everyone can talk with everyone?

In asymmetric cryptography every user has two keys:

One secret key that the user keeps to himself
One public key that does not need to be secret

The public keys can be uploaded to public servers that form the backbone of so-
called Public Key Infrastructure.

When Bob wants to write to Gru:

- Finds Gru’s public key in the repository.
- Encrypts the message with Gru’s public key
- This message can only be decrypted with Gru’s secret key (decrypting a message

with the public key returns garbage)

To verify a signature, Gru gets Bob’s public key from the repository.

This enables Gru to not only know the message has not been modified, but also that
he is talking to Bob: only Bob, that knows the secret key, could have created the
signature

Digital signatures provide:
- Integrity of the message: since no party than the sender can create a valid

signature for a message, no adversary can modify the message without being
detected (if they modify the message, the signature would not be valid)

- Authenticity of the sender: since no party than the sender can create a valid
signature for a message, the server can verify that the identity of the sender. No
adversary can produce a valid signature to the public key of the sender and
therefore cannot impersonate the sender.

- Non-repudiation: since no party than the sender can create a valid signature for a
message, if a message has a valid signature, the sender cannot claim they did not
sign it (no-one else can produce such signature). This is different than symmetric
key MAC mechanisms, where both sender and receiver of a message can produce
the MAC(k,m) and both can claim that the message was sent by the other party.

While typically the signature is sent along with the message, and thus confidentiality
is not a consideration, signatures do generally provide message confidentiality.
Given a signature, it is generally not possible to recover the message.

Digital signatures are used in the Internet Public Key infrastructure to sign

Certificates that authenticate the web servers / domain names we use in the
internet.

15

The commodity of not having to pre-share a key comes at a cost. Asymmetric
cryptography is much more expensive than symmetric counterparts with the same
security level (both for encryption and signing).

Also, there are not good cipher modes to encrypt large messages: we can only do
one block.

To overcome these shortcomings instead of signing long messages we sign a hash,
and to encrypt we use hybrid encryption (see next slides)

18

Signing is a slow property.

If we sign long messages, both signing and verification will take a very long time and
will be not practical

Preimage resistance is not needed, as the message m is already sent in public

Second pre-image resistance says that, given a signature on h(m), the hash of
message m; it is hard to find a second message that leads to the same hash and
therefore to the same signature. In other words, given a signature on a hash, you
cannot have an alternative message to the true one.

Collision resistance says that you cannot produce two messages that lead to the same
hash. That means that you cannot have someone sign a message m, and then claim
that they signed anoter message m’

In Hybrid encryption the idea is to get the best of the both worlds.

To avoid sharing keys we use public keys, but as we cannot encrypt a lot with them,
we use to send a symmetric key

And then we use this symmetric key to encrypt the rest of the communication

Every time Bob communicates with Gru, he can create a new key. These are called
session keys.

23

But there is a problem in this scheme: If the adversary gets hold of Gru’s secret key ,
the secrecy of all past sessions is compromised

24

We want to avoid this. A key compromise at time t should not compromise the
secrecy of any past conversation.

25

The main math that we use to be able to build a shared secret is modular discrete
arithmetic

Concretely modular discrete arithmetic in which the modulo is a large prime.
When the modulo is a large prime, addition, multiplication, and exponentiation, are
easy to compute.

However, computing a discrete logarithm is hard. This means that, if the modulo p is
well chosen, given ax mod p, it is not computationally feasible to compute x

A Diffie-Hellman key exchange exploits the hardness of the discrete logarithm
problem to enable a sender and a receiver to obtain a shared key without an
eavesdropper being able to compute this key.

How it works is that Bob sends to Gru gx mod p, where x is Bob’s secret
key; and Gru sends to Bob gy mod p, where y is Gru’s secret key.
With these values, both Gru and Bob can compute the same secret key gxy.

Yet, an adversary eavesdropping on the channel cannot compute the same key
because they do not know x or y. And, due to the hardness of the discrete logarithm
problem they cannot recover these values from what is observed on the wire (i.e., x
cannot be recovered from Pb=gx mod p).

Once a session ends, Gru and Bob delete their secrets x and y. Like this, because
there is no any record of these values, the key k can never be recovered.

A system based on establishing shared keys using Diffie-Hellman is forward secure as
long as in every session new fresh secret keys are used.

