M

[y
PrL SPRING

Computer Security and Privacy
(COM-301)
Applied cryptography

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

Important: you will not become a cryptographer

High level introduction to applied cryptography does not qualify you to design
cryptographic primitives or protocols!

What you will learn?

What security properties different algorithms offer, and how can
algorithms be combined to secure a system

What you will NOT learn?
Cryptanalysis To do these you need a

How to prove formally that a scheme is secure cryptographer
How to securely implement cryptographic schemes (or to become one)

Why does cryptography matter?

/ AN PP
N / 4
LR
t
Data in transit Data at rest

What would be the TCB?

The access control mechanisms we saw in the previous lectures require that there is a
TCB that given the permissions (e.g., in the form of ACL, RBAC or Capabilities) and
implements them. However, we do not always have a TCB. For instance while data is
in transit, or stored in hardware that does not include a CPU, there is no TCB that can
enforce access control.

Cryptography helps when there is not such a TCB. When using cryptography, the

security of the system depends on the confidentiality and integrity of cryptographic
keys.

What can we do with cryptography?

ENSURE SECURITY PROPERTIES

Cryptography can be used to ensure the confidentiality and integrity of data in
transit or at rest

BUILD SECURE FUNCTIONALITY

Cryptography can be used, among many others, to build authentication protocols,
to protect from denial of service, or to support anonymous communications

Key Vocabulary

Cryptographic primitives
universal, exchangeable cryptographic building blocks

Secure functions where
either you can't break it down any further or
either there is no security argument for its individual parts

(What exactly a primitive is depends on the level of
abstraction)

https://crypto.stackexchange.com/questions/39735/whats-a-cryptographic-primitive-really

https://i.stack.imgur.com/2yBJf.png

We call the “minimal algorithm” that implements a function a cryptographic
primitive.

Minimal means that it cannot be further broken into pieces that carry out a crypto
function, or that if you divide them into smaller sets of instructions then you can no
longer build a security argument.

The origins of cryptography: the quest for confidentiality

| Confidentiality: information cannot be accessed by unauthorized parties |

Information

ETIENS Ciphertext:
“0x018EFE9FF664CE3097DD
“Hello world” b 0362BEDF3512”

Bob the sender
Read
©

Evil minion
the Adversary

Gru the
intended
receiver

Evil minion
the Adversary

Key terminology:

Plaintext: The original message written by the sender without encryption. It is
readable by anyone who has access to it.

Cryptographic Algorithm: Set of mathematical instructions that encrypts and
decrypts data

Ciphertext: Encrypted message obtained by applying the cryptographic algorithm to
the plaintext. The intended receiver needs to first decrypt the message to be able to

read it (next slide).

The origins of cryptography: the quest for confidentiality

| Confidentiality: information cannot be accessed by unauthorized parties |

Information
ETIENS Ciphertext:
“0x018EFE9FF664CE3097DD
“Hello world” N Ere
Encryption
Decryption

<&
<

As opposed to encoding, encryption cannot be reversed without a KEY

Encryption algorithm: Cryptographic instructions that convert a plaintext message
into ciphertext

Decryption algorithm: cryptographic instructions that convert a ciphertext message
into plaintext

Both encryption and decryption algorithm require a key

Cryptographic algorithms for confidentiality

1. Generate key k (and make sure intended receiver has it)
Requires secure generation and sharing protocols

k
—_—

2. Encrypt message m -> Enc(k,m) encryption I

3. Send encrypted message Enc(k,m)

—_—
k Decryption [N
4. Decrypt message Dec(k,m) ->m —

Cryptographic algorithms all follow a common schema with four steps

1) During the key generation & sharing phase, a key k is generated. The key must then
be made available to both the sender and the intended receiver.

2) The sender has a message m (the plaintext) and encrypts it using the encryption
algorithm. The key k is required to encrypt m

3) The sender sends the encrypted message (the ciphertext) to the intended receiver.
4) The intended receiver decrypts the ciphertext using the decryption algorithm and
key k.

11

The first cryptographic algorithms

Caesar’s cipher (50 BC) Kamasutra cipher (400 AD)
Rotate the alphabet

Permute the alphabet
Key: number of positions to shift (Julius Caesar used 3)

Key: HOWBUGIACRYEVZXPJQMSNTFDKL
(als[c[o]e]F als[c[ole[F
\\ // HOWBUGTACRYEV
als[c[o]e[F [AB]C]OTETF

ZXPIQMSNTFDKL
Encrypt Decrypt Encrypt/Decrypt: substitute by opposite letter
hello world ——— khoor zruog hello world ———— zkvvx pxfvy
Problem??
o Frequency analysis!

The problem with ciphers that transform letters deterministically into other letters is
that the frequency of appearance of letters in the alphabet is preserved. Some letters

appear more often than others, which reduce a lot which words could have
generated the ciphertext.

Obtaining perfect secrecy: One Time Pad (OTP)

Key = string k of random bits as long as the message

pre-shared

Keyk === =====—=-—-—=—-=-—-—-—-="==-=--- - Keyk
o(), Enc(k,m)=m® k
m — e
Message YEAH (ASCII Hex: 59454148)
Binary 01011001010001010100000101001000
OTP-Key 01110101000111010100101001001010
Encryption 00101100010110000000101100000010

How to prevent frequency analysis? Make sure that letters are not encrypted to the

same values.

One way of doing this is to have a random key as long as the message so that all parts

of the message get encrypted to different values.
This long key is called a one-time-pad.

To encrypt a message one translates the message into bits, and then XOR these bits

with the key.

Obtaining perfect secrecy: One Time Pad (OTP)

Key = string k of random bits as long as the message

pre-shared
Keyk «=—-=-========-=—="====-==---
Poo) Enc(k,m)=m® k
m — e ' 4
Message YEAH (ASCII Hex: 59454148)
Binary 01011001010001010100000101001000
OTP-Key 01110101000111010100101001001010
Encryption 00101100010110000000101100000010)
same

01110101000111010100101001001010

01011001010001010100000101001000

Dec(k,m) = Enc(k,m) @ k

To decrypt one XORs the encrypted message with the key (Recall: a®b®b=a)

Obtaining perfect secrecy: One Time Pad (OTP)

Key = string k of random bits as long as the message

pre-shared

Keyk === =====—=-—-—=—-=-—-—-—-="==-=--- - Keyk
Poo Enc(k,m)=m® k
m—)
Dec(k,m) = Enc(k,m) @ k
Message YEAH YEAH
. ame,
Binary (ASCII) 01011001010001010100000101001000 e 01001110010011110101000001000101
OTP-Key 01110101000111010100101001001010 €= 11100001010000010111101011010001
Encryption 00101100010110000000101100000010 4ferent 14101111000011100010101010010100
Delete “k” — it must never be reused! Reveals where msg differ
Frequency analysis works
(msgl @ pad) ® (msg2 @ pad) — (msgl @ msg2) quency ana’y

ASCII patterns (space or letter)
00- 01-

One Time Pads are called like this because they should not be reused. If you reuse
them, even though you cannot recover the full message, you can recover information
about plaintexts. This information can be used to inform frequency analysis and help
recover the messages themselves.

In particular, for ASCII characters one can use that spaces start with 00 and letters
with 01 to detect whether a messages has a space:

2 letters=01® 01 =00
2 spaces =00 & 00 =00
Letter + space =01 ® 00 =01

Obtaining perfect secrecy: One Time Pad (OTP)

Why do we not use OTPs?

Key as long as the message (nowadays USBs contain several GB)
and pre-shared! «——— Moscow-Washington hotline

”Each country delivered keying tapes used
to encode its messages via its embassy

Key must be random! abroad”

Key cannot be reused

No integrity!

Problems:

- Keys as long as the messages themselves are very costly. What if you need to
encrypt a high quality movie?

- Both sender and receiver need to know the full key. It is hard to secretly share such
long strings of bits (also note that they cannot be transmitted in the same channel
as the message, otherwise the adversary would have access to the key)

- The key has to be random (otherwise non-randomness can be used to gain
information about the plaintext). It is very hard to generate long sequence of
random numbers

- The key cannot be reused, so you need even more of these one time pads that are
difficult to generate and share. Also, you need to make sure that they are
destroyed so that they are never used twice.

- This mechanism only ensures confidentiality, but does not provide any integrity
protection

Modern cryptography

Security should not depend on the secrecy of the encryption method (or
algorithm), only the secrecy of the keys.

Modern algorithms are based on mathematically difficult problems - for
example, prime number factorization, discrete logarithms, etc.

Modern cryptographic algorithms are too complex to be executed by
humans.

M

F
PrL
Computer Security and Privacy
(COM-301)
Applied cryptography
Symmetric encryption
Carmela Troncoso

SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

SPRLNG

27

Symmetric encryption ciphers

Encryption of plaintext and decryption of ciphertext are done using
THE SAME KEY

oy Two types of aphers:
Stream ciphers
Block ciphers

key

| plaintext ciphertext i X
e Integrity mechanism:
o Message Authentication Code (MAC)

key

First kind of encryption: Symmetric = both sender and receiver use the same key

There are two types of Symmetric Encryption Ciphers: stream ciphers and block
ciphers.

We will also see one way of protecting the integrity of messages using symmetric
encryption

28

What is a symmetric cryptographic key?

Fixed-size input to symmetric cryptographic primitives.
The size of the key influences the level of security provided

Key properties
Known to both parties
Partners must agree on the key before starting using the primitive
Cryptographic algorithms for confidentiality
It is reused
The key is pre-shared once* and then reused
* keys do have a “duration”

It must be secret
Revealing the key eliminates any protection provided by the primitive

M

— S 4
PrL SPRING

Computer Security and Privacy
(COM-301)
Applied cryptography
Symmetric encryption - Confidentiality
Carmela Troncoso

SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

30

St rea m Ci p h e rS SECURITY ARGUMENT

Arbitrary length Unless one knows the key
pseudo-random one cannot distinguish it
stream from a random string

STREAM CIPHER

Fixed Size Key (k)

stream(k, IV)

KEYSTREAM R

Enc(k,m)

S
N

Initialization Vector (IV)

ge (m)

A stream cipher receives two inputs:

- A small (much smaller than the message!) key that must be kept
secret

- An initialization vector that does not need to be secret (see next
slide)
The keystream generator outputs a stream of bits that is pseudorandom
(stream(k,1V), i.e., looks random for an adversary that does not have the key.

What is an Initialization Vector (IV)?

Initialization Vector: Fixed-size input to iterative cryptographic primitives

Important properties:
No IV reuse under the same key
Goal: messages encrypted with the same key look different (even the same message)

It does not need to be secret! Keeping the key secret is enough
But must be unpredictable in some block cipher modes

The IV cannot be reused. If the same IV is used more than once for a given key the
keystream generator would produce the same stream of bits.

As stream-based encryption is based on XORing the message with the stream, if we
use the same stream more than once we run into the same problems as when
reusing a one time pad!

The IV does not need to be secret. The key is what protects the secrecy of the stream
(without the key, only having the IV, one cannot recreate the stream)

However, for some particular ciphers (in particular in some block cipher modes we
will see below) it must be unpredictable. This means that given one 1V, the adversary
must not be able to guess how the next IV is going to look like. Otherwise, the
adversary can use this knowledge to recover some plaintext seen in the past. See
https://crypto.stackexchange.com/questions/3883/why-is-cbc-with-predictable-iv-
considered-insecure-against-chosen-plaintext-atta for more details.

https://crypto.stackexchange.com/questions/3883/why-is-cbc-with-predictable-iv-considered-insecure-against-chosen-plaintext-atta
https://crypto.stackexchange.com/questions/3883/why-is-cbc-with-predictable-iv-considered-insecure-against-chosen-plaintext-atta

St rea m Ci p h e rS SECURITY ARGUMENT

Arbitrary length Unless one knows the key
pseudo-random one cannot distinguish it
stream from a random string
STREAM CIPHER
Fixed Size Key (k)
stream(k, IV) > Enclk
Initialization Vector (IV) KEYSTREAM - 'Y nc(k,m)
Message (m)
pre-shared
Keyk < ========—-—-—-—-—-—-—-—-—-—-——===-~ = Keyk
Gy IV, Enc(k, m) = stream(k, IV) ® m

D =st k, IV) ® Enc(k,
Fresh IV (public) ec(m) = stream() nelk, m)

To encrypt the message, similar to the one time pad, we XOR the message bits with
the output of the keystream generator.

To decrypt, the receiver repeats the operation: feeds the stream cipher with the
shared key and the IV (notice it is sent with the encrypted message) to create the
same stream. Then XORs this stream with the encrypted message to obtain the
plaintext.

SECURITY ARGUMENT

Stream Ciphers Arbitrary length

Unless one knows the key

pseudo-random one cannot distinguish it
stream from a random string

STREAM CIPHER

Fixed Size Key (k) A
stream
V)
Initialization Vector (1V) - N Enc(k,m)
Message (m)
and pre-shared!
Remaining downsides? { -“eycannetbereused- Better than before,
Key must be random! though still necessary

No integrity

Stream ciphers

Speed: algorithms are linear in time and constant in space

Low error propagation: errors in one bit do not affect subsequent symbols

STRENGTHS

Low diffusion: all information of a plaintext symbol is contained in one encrypted symbol

Susceptibility to insertions/ modifications: text can be inserted, difficult to detect

WEAKNESSES

Strengths:

Stream ciphers are very fast: the encryption time is linear with the size of the
message.

If there is an error in encryption, because encryption is bit per bit, the error only
affects one bit (contrast with block ciphers, see below)

Weaknesses: (contrast with block ciphers, see below)

As encryption is bit per bit, one can concentrate in small parts of the message to
extract information about the corresponding plaintext

As encryption is bit per bit, it is hard to find out if anything has be modified, since the
rest of the message is kept the same:

Imagine Gru knows the message is of the form:
“Pay XXXX to Bob”
Even when encrypted he can take the part corresponding to Bob and do

Stream(IV,K) xor (“Bob") xor (“Bob" xor “Gru") = Stream(IV,K) xor (“Bob" xor “Bob”)
xor (“Gru") = Stream(IV,K) xor “Gru”!

37

Stream ciphers

é Speed: algorit) .

: Don’t design your own

£ Low error proj symbols

“© Va

% Low diffusion: 3 one encrypted symbol
2

X

g Susceptibility td icult to detect

Trivium (80 bit key, < 4000 gates in HW)
iSalsazal(i2sizoplbitlkeviRandomiaccess)l

More stream ciphers: https://en.wikipedia.org/wiki/ESTREAM

Block Ciphers

BLOCK CIPHER

Block ciphers are another symmetric cryptographic algorithm

Block Ciphers

BLOCK CIPHER

ENCRYPTION DECRYPTION
ALGORITHM ALGORITHM

short random string (e.g. 128 bits)

key k ENCRYPTION

Message m — ALGORITHM

— Enc(k,m)

SECURITY ARGUMENT

Without k: a ciphertext block looks
the same as a random block

Encryption algorithm: Converts plaintext m to ciphertext ¢

The encryption algorithm of a block cipher operates on small blocks.

Encryption receives the key and a message block m and outputs an encrypted block
of the same size as the input.

The encryption algorithm is such that given the output it looks random. In other
words, the output is independent from the input.

Block Ciphers

BLocK CIPHER

short random string (e.g. 128 bits)
N

Key k —>

Message m —

ENCRYPTION
ALGORITHM

— Enc(k,m)

SECURITY ARGUMENT

Without k: a ciphertext block looks
the same as a random block

Encryption algorithm: Converts plaintext m to ciphertext ¢

Key k ——>

Ciphertext c=Enc(k,m) —

DECRYPTION
ALGORITHM

Decryption algorithm: Concerts ciphertext c to plaintext m.

The inverse of Encryption - Dec(k; Enc(k; m)) =m

To decrypt, the receiver uses an algorithm Dec(), that is (generally) not the same as
encryption. Given an encrypted block c and a key k, the decryption algorithm outputs

the plaintext m.

Block Ciphers

pre-shared

¥ m —| ENc —— c=Enc(k,m) —| DEC — m Y

The algorithms work on blocks that are the size of the key
Typically 128/256 bits

Messages are longer than a block! Requires iteration
Block ciphers’ mode of operation

Messages are more than one block, so we need to have a way of chaining blocks
together. This “chaining” is called a mode of operation.

Mode 1: ELecTRONIC COoDE Book (ECB)

Straightforward scheme: encrypt & decrypt single blocks

%’ m; —>| ENCx |—> C=Enc(m;)

m = mimamsmgy

Sy

m; are the same my 2 M3 "My
size as the key!

Electronic Code Book (ECB) is a mode of operation in which blocks are encrypted
independently.

Mode 1: ELecTRONIC COoDE Book (ECB)

Straightforward scheme: encrypt & decrypt single blocks

%1 m; —| ENCx —> C=Enc(m) CR m ?

m = mimamsmgy

\ G G G G
m; are the same m; Mz M3 My
size as the key!

m; m m3 mg

To decrypt, one also uses the decryption algorithm on individual ciphertext blocks.

Mode 1: ELecTRONIC COoDE Book (ECB)

Straightforward scheme: encrypt & decrypt single blocks

%ﬂ m; —| ENCx —> C=Enc(m) CR m ?

m = mimamsmgy

\ \ G G G G
m; are the same m; Mz M3 My

size as the key!
m; m m3 mg

G, G C C

Problematic! m,;=m, —» C;=C, DON’T USE!!

https://en.wikipedia.org/wiki/Block_cipher#/media/File:Tux_ecb.jpg

Thus, if two blocks in the message are the same, they will have the same appearance
when encrypted!

Mode 2: CiPHER BLocK CHAINING (CBC)

Add IV and propagate information across blocks to introduce randomness

'.%' m; —>| ENCy —> C=Enc(m)) CBCE ti
ncryption

m = mimom3 CO =1V

C; = Enc(k; m; ® Ci,)

Plaintext Plaintext Plaintext

Initialization Vector (IV) (L (L
OO —
v v
block cipher block cipher
Key —= Key —=| “encryption Key —=| “encryption
Ciphertext Ciphertext Ciphertext

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg

Cipher Block Chaining is a mode of operation in which a block encryption depends on
previous blocks (as defined in the formula and shown in the schema)

Note that every time a block is encrypted, by the properties of the block cipher, the
ciphertext is random. Because the IV and/or the plaintext changes every time, this
random value is different every time. Thus, when XORed with the next plaintext it
creates a random string. If the IV changes, this is similar to a one-block one-time pad,
but if one reuses the IV for the same plaintext and key, this value will be repeated.

Mode 2: CiPHER BLocK CHAINING (CBC)

Add IV and propagate information across blocks to introduce randomness

C=E(m) DECk m .
CBC Decryption
C=C16C Co=1IV
\\\ m; = Dec(k;) XOR Ci
Ciphertext Ciphertext Ciphertext
block cipher block cipher
Key Key —>| "decryption Key —>| decryption
Initialization Vector (IV) ,L ,L
O —
¥ ¥
Plaintext Plaintext Plaintext
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg

To decrypt Cipher Block Chaining one has to do the inverse operation. Notice where
the XOR with the IV and previous ciphertext happens as opposed to in the encryption
algorithm.

Mode 2: CiPHER BLocK CHAINING (CBC)

Add IV and propagate information across blocks to introduce randomness

~E(m D m
C=E(m) ECK Y CBC Decryption

C=Ci6C Co=1IV
\\ m; = Dec(k; C;) XOR C;,

|

block cipher
decryption

block cipher

Key Key —>| "decryption

Key —

What if IV is incorrect? The

Initialization Vector (IV) i i ?
CLTTOITL D) % % full decryption is wrong?
[EnEEEEnEEEEENE]

Plaintext Plaintext Plaintext

Can you decrypt a block
alone? What do you need?

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg

If IV is incorrect, only the first block is corrupted!! Note that the rest only depend on
the ciphertext.

Blocks cannot be decrypted without having the ciphertext of the previous block! To
recover a plaintext message block, the ciphertext of the previous block is XORed it
with the output of the decryption on the current block.

Mode 3: CounTerR MoDE (CTR)

Use increasing nonce to add randomness without dependencies between blocks

T mi —f Ency

m=mimams

—— C=Enc(m;)

Nonce Counter Nonce Counter Nonce Counter
c59bcf35. 00000000 c59bcf35. 00000001 c59bcf35. 00000002
[EESEEEEEEEEES] [NESEEEEEEENES]

[} [}
e -

block cipher
encryption

block cipher

encryption Key —>

Plaintext ——— Plaintext ——— Plaintext ——
[EEEEEEEEEEEEE] [EEEEEEEEEEEEE] [EEEEEEEEEEEEE]
Ciphertext Ciphertext Ciphertext

CTR Encryption
C; = Enc(k; Nonce+i) ® m;

In Counter Mode, we use a unique number composed by a Nonce and a counter so
that the encryption receives a new number every time.
When encrypted, this number becomes a random one-time-pad that we XOR with

the plaintext to obtain the ciphertext.

Mode 3: CounTerR MoDE (CTR)

Use increasing nonce to add randomness without dependencies between blocks

%’ m; —>| ENCx |—> C=Enc(m;)

m=mimams
CTR Encryption
C; = Enc(k; Nonce+i) ® m;

Counter Nonce Counter

Nonce Counter
c59bcf35. 00000000 c59bcf35. 00000001
[EESEEEEEEEEES) [EESEEEEEEEEES]

Nonce
c59bcf35. 00000002
[NESEEEEEEENES]

) i i
block cipher block cipher
Key — Key —=| “encryption Key —=| “encryption
Plaintext ——— Plaintext ——— IPlaintext ———
[Saausssanans] [Suausssanans] i sanans] Counter
[ENEEEREREREEE] [ENEEEREREREEE] [ENEEEREREREEE]
Ciphertext Ciphertext Ciphertext

The counter keeps increasing so that, if the nonce is new, the output of the block
cipher for every block will be different.

Mode 3: CounTerR MoDE (CTR)

Use increasing nonce to add randomness without dependencies between blocks

Nonce = number used only

bl once
@E' m; —>| ENCx |—> C=Enc(m;)

m=mimams
CTR Encryption

C; = Enc(k; Nonce+i) ® m;

Counter Nonce Counter

Nonce Counter
c59bcf35. 00000000 c59bcf35. 00000001
[EESEEEEEEEEES)

Nonce
c59bcf35. 00000002
[NESEEEEEEENES]

]

block cipher block cipher
Key — Key —=| “encryption Key —=| “encryption
Plaintext ——— Plaintext ——— IPlaintext ———
[Saausssanans] [Suausssanans] i sanans] Counter
[ENEEEREREREEE] [ENEEEREREREEE] [ENEEEREREREEE]
Ciphertext Ciphertext Ciphertext

Nonce = number used only once. It must be new every time. Otherwise we are
feeding the encryption with the same number and we obtain the same random pad
at the output: effectively we would be reusing a one time pad!

Mode 3: CounTerR MoDE (CTR)

Use increasing nonce to add randomness without dependencies between blocks

Nonce = number used only

P once
'@3;' m; — ENC —> C=Enc(m;)

m=mimams
CTR Encryption

C; = Enc(k; Nonce+i) ® m;

Counter Nonce Counter

Nonce Nonce Counter
c59bcf35. 00000000 c59bcf35. 00000001
[EESEEEEEEEEES)

c59bcf35. 00000002

[NNEEEEEEEEEEN)
block cipher block cipher
Key —> Key —=| “encryption Key —=| “encryption
Plaintext ——— Plaintext ——— IPlaintext ———
[Saausssanans] [Suausssanans] i sanans] Counter
[ENEEEREREREEE] [ENEEEREREREEE] [ENEEEREREREEE]
Ciphertext Ciphertext Ciphertext

Do we need the decryption
algorithm??

Mode 3: CounTerR MoDE (CTR)

Use increasing nonce to add randomness without dependencies between blocks

C=E(m) ENCk m

C= C1C2C3
CTR Decryption

Nonce Counter Nonce Counter C = Enc(k‘ Nonce+i) 6 m;
cS9bcfas. 00000001/ cSobcf3S. 00000002 ! 4
[ENEEEEEEEEEEE] OIITITITITTT

Nonce Counter
c59bcf35. 00000000
[EnsssEEEsnnss]

block cipher
YP!

block cipher
s

Key —

ey _.|

Clphertextﬁ? cmmm—»? \pheﬂexl—»?
[EnEEEEEEEEEES] [EEEEEEEEEEEEE] [EsEnsEEEEEEnS]

[ENSEENEEEEENE]
Plaintext Plaintext Plaintext

For counter mode we do not need the Decryption algorithm.

As CTR mode operates like a one time pad, to decrypt we need the same random
sequence of bits, i.e., we need the same sequence which is obtained using the same
algorithm: encryption.

Summary: Block ciphers

g High diffusion: information from one plaintext symbol is diffused into several

2 ciphertext symbols

oc

=

Y Immunity to tampering: difficult to insert symbols without detection

@ Slow: an entire block must be accumulated before encryption / decryption can begin
(%]

w

2

% Error propagation: in some modes of operation errors affect several bits/blocks
L

=

*Different modes of operation offer different trade-offs and these weaknesses/strengths may actually not apply.

Strengths:

Because of the chaining and the entangling of blocks there is great diffusion: every bit
affects several blocks

The chaining also helps to detect insertion or modification (integrity violations): if
something changes it will be propagated and decryption will not make sense.

Weaknesses: (contrast with block ciphers, see below)

Block ciphers are slow compared to stream ciphers because they need to wait for a
full block before encryption/decryption.

When there is an error, in some modes such as CBC where encryption is chained, the
error gets propagated to other blocks

Summary: Modes of operation

Electronic Code Book (ECB)

Directly encrypt and decrypt single blocks
X Large information leakage due to lack of randomness across ciphertext blocks

Cipher Block Chaining (CBC)
Avoids ECB problems: Each ciphertext block adds randomness to encryption of
following block
X Propagates errors and no parallel encryption

Counter mode (CTR)

Uses a nonce and an increasing counter to introduce randomness across ciphertext
blocks
Parallel encryption and decryption

61

Summary: Block ciphers

STRENGTHS

WEAKNESSES

od into several

Don’t design your own

Va

decryption can begin

AES - The Advanced Encryption Standard
128/256 bit key, NIST Standard, HW support

More: https://en.wikipedia.org/wiki/Block_cipher#Notable_block_ciphers

M

F
PrL
Computer Security and Privacy
(COM-301)
Applied cryptography
Symmetric encryption - Integrity
Carmela Troncoso

SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

SPRLNG

63

Cryptography for integrity

| Integrity: information cannot be modified by unauthorized parties |

Information

Plaintext: Plaintext:
“Banana” “Apple”

Vo ‘ Write

Evil minion
the Adversary
breaking integrity

Gru the
intended
receiver

«

Bob the sender

Recall that integrity means that non-authorized parties cannot modify data. That is if
Bob sends “Banana” he can be sure that Gru will receive “Banana”.

Without cryptography, it is very easy to violate integrity.

Cryptography for integrity

| Integrity: information cannot be modified by unauthorized parties |

Information

Plaintext: Plaintext:

“Banana” “Banana”
N ﬁ ¥

o J ’ . Gru the
)
Evil minion E intended

the Adversary receiver

cannot break
integrity

Bob the sender

In the next part, explain how we can use cryptographic algorithm to ensure integrity.

Integrity from symmetric encryption:
Message Authentication Codes (MAC)

Fixed (short) Size Key (k) Hard to generate

MESSAGE Short output (MAC) (m, MAC(k;m))
—

Message (m) AUTHENTICATION without knowing k
> CODE

A Message Authentication Code receives two inputs:

- A small key that must be kept secret

- The message whose integrity needs to be secured
The MAC algorithm outputs a short string that helps the intended receiver to verify
the integrity of the message sent by the sender.
The key property of the MAC is that it is very difficult to produce a pair [message;
MAC(k,message)] without knowing the key

Integrity from symmetric encryption:
Message Authentication Codes (MAC)

Fixed (short) Size Key (k) Hard to generate

MESSAGE Short output (MAC) (m, MAC(k;m))
—

Message (m) AUTHENTICATION without knowing k
> CODE

pre-shared

O\Kj’y m, MAC(k;m) ?
m — .‘

To verify the integrity of the message, Gru inputs the message and the key to the
MAC algorithm, and compares the output to the MAC he received. If they are the
same, the message has not been tampered with.

Integrity from symmetric encryption:
Message Authentication Codes (MAC)

Hard to generate

Fixed (short) Size Key (k)
— MESSAGE Short output (MAC) (m, MAC(k;m))
Message (m) AUTHENTICATION — without knowing k
—_— CODE
pre-shared
Keyk < =========-- - - - ———— = Keyk
Gy m, MAC(k;m)

TWO PROPERTIES:
1) m cannot be tampered with
2) message comes from Bob/Gru

Message can be Mutual authentication |
. — . .
repudiated! but cannot authenticat&€sender towards 3™ parties!

Because only Bob and Gru know the key, when receiving a message with a valid MAC
they know that only the other could have written it. However, they cannot prove to a
third party that they are not the author of the message (as they know the key, they
could have produced the correct MAC). Thus, the message can be repudiated. Bob
can say that the message was written by Gru; and Gru can say that the message was

written by Bob.

Example MAC: CBC-MAC

Limitation:
Turning a block cipher into a MAC Onlly secure if the length of
m is known!
CO =0 [any fixed IV] m1 m2

Ci=Enc(k; m;® C;4)

MAC(k; m;... m,) = C, ‘ J ‘;
MAC (k;m)

CBC-MAC is deterministic
Only output is the final value!

Differences with respect to CBC

A block cipher in CBC mode can be turned into a MAC by:

Fix the IV (for example 0) and then do CBC. The MAC is the output of the last
encryption block: one could have only gotten there for one message and one key.
Note that the last block cannot be used to recover anything about the message: it

looks random (as it is the output of a block cipher)
As the IV is fixed, the result for one message is always the same (no value changes!)

It is only secure (ensures integrity) if the length of m is known. This is because the
length of the message determines the output of which block is the MAC. But, if Gru
does not know the length of the message, it is easy to get a MAC for an extension of
the message:

If you have T= CBC-MAC(k,M), and T'=CBC-MAC(k,M’); then T’ is a correct CBC MAC
for M || T XOR M’ where || is concatenation.

How to obtain confidentiality and integrity?

ENCRYPT-AND-MAC

No integrity check on the ciphertext —
Cipher can be attacked
Need to decrypt to know if message is valid

Encryption 1K€ wac function

; | / Integrity of the plaintext can be verified
MAC

x May reveal information about the plaintext —
Repeated msg, recall the IV of the MAC is fixed

(can be solved with a counter)

'e generic composition paradigm.

How to obtain confidentiality and integrity? Encrypt-and-MAC?

- The MAC is computed on the plaintext, so it cannot protect the integrity of the
ciphertext. To check whether the message is correct, one needs to first decrypt
(expensive operation).

- Because the MAC is deterministic, it may reveal information about the message
(e.g., if the message is sent twice the MAC is the same for both messages)

How to obtain confidentiality and integrity?
IMAC-THEN-ENCRYPT

J_— No integrity check on the ciphertext —

(In theory) possible to change ciphertext and have a
valid MAC

Need to decrypt to know if message is valid

MAC function

¥

,mc_

1

Encryption

/ Integrity of the plaintext can be verified

/ No information on the plaintext since it is encrypted

2000.
ed encryption scheme: A case study of the

Bellare, M, Kohno, T., & Namprempre,
Encode-then-Encrypt-and-MAC paradig
https://en.wikipedia.org/wiki/Authenticate

How to obtain confidentiality and integrity? MAC-then-Encrypt?

- Still no integrity check on the ciphertext

- But no info on the MAC because the adversary does not see it (only sees the
encrypted blob)

How to obtain confidentiality and integrity?

ENCRYPT-THEN-MIAC

/ Integrity of ciphertext —
Ensures you only read valid messages
Cipher cannot be attacked

Encryption

/ Integrity of the plaintext can be verified

.

Mac function

l No information on the plaintext since it is encrypted

Bellare, M, & Namprempre, C. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.

 and Inform ty, 2000
ated encryption scheme: A case study of the

Security, 2004,

International Conference on the Theory and Apy of G
Bellare, M, Kohno, T, & Namprempre, C. Breal

Encode-then-Encrypt-and-MAC paradigm. ACM Trar
https://en.wikipedia.org/wiki/Authenticated_encryption

pairing the SSH a
tions on Information and Syst

How to obtain confidentiality and integrity? Encrypt-then-MAC?

Ensures integrity of cipher- and plaintext. No information about plaintext.

In practice... (out of the course scope)
Authenticated Encryption with Associated Data (AEAD)

New constructions to avoid home-made combinations

K

|

Associated data M — AE —— C7® Tag

Nonce @—,

Galois counter mode - GCM (one pass)

Encrypt-then-authenticate-then-translate - EAX (Two passes)

https://www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf

The combinations are easy to confuse and result in problems. Newer schemes
provide authentication and confidentiality in one go. For this they require, besides the
key and the Nonce/IV more information called associated data.

The output of Authenticated Encryption is the ciphertext and a Tag that can be used
to check integrity.

