
1

Computer Security and Privacy
(COM-301)

Applied cryptography
Carmela Troncoso

SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

Important: you will not become a cryptographer

What you will learn?
What security properties different algorithms offer, and how can
algorithms be combined to secure a system

What you will NOT learn?
Cryptanalysis
How to prove formally that a scheme is secure
How to securely implement cryptographic schemes

High level introduction to applied cryptography does not qualify you to design
cryptographic primitives or protocols!

To do these you need a
cryptographer
(or to become one)

The access control mechanisms we saw in the previous lectures require that there is a
TCB that given the permissions (e.g., in the form of ACL, RBAC or Capabilities) and
implements them. However, we do not always have a TCB. For instance while data is
in transit, or stored in hardware that does not include a CPU, there is no TCB that can
enforce access control.

Cryptography helps when there is not such a TCB. When using cryptography, the
security of the system depends on the confidentiality and integrity of cryptographic
keys.

Why does cryptography matter?

Data in transit Data at rest

What would be the TCB?

ENSURE SECURITY PROPERTIES

Cryptography can be used to ensure the confidentiality and integrity of data in
transit or at rest

BUILD SECURE FUNCTIONALITY
Cryptography can be used, among many others, to build authentication protocols,
to protect from denial of service, or to support anonymous communications

What can we do with cryptography?

We call the “minimal algorithm” that implements a function a cryptographic
primitive.
Minimal means that it cannot be further broken into pieces that carry out a crypto
function, or that if you divide them into smaller sets of instructions then you can no
longer build a security argument.

5

5

Key Vocabulary

https://i.stack.imgur.com/2yBJf.png

https://crypto.stackexchange.com/questions/39735/whats-a-cryptographic-primitive-really

Cryptographic primitives
universal, exchangeable cryptographic building blocks

(What exactly a primitive is depends on the level of
abstraction)

Secure functions where
- either you can't break it down any further or
- either there is no security argument for its individual parts

Key terminology:

Plaintext: The original message written by the sender without encryption. It is
readable by anyone who has access to it.

Cryptographic Algorithm: Set of mathematical instructions that encrypts and
decrypts data

Ciphertext: Encrypted message obtained by applying the cryptographic algorithm to
the plaintext. The intended receiver needs to first decrypt the message to be able to
read it (next slide).

Information

Plaintext:
“Hello world”

Cryptographic
Algorithm

Read

Confidentiality: information cannot be accessed by unauthorized parties

Read

Read

Bob the sender
Gru the

intended

receiver

Evil minion

the Adversary

Evil minion

the Adversary

The origins of cryptography: the quest for confidentiality

Ciphertext:
“0x018EFE9FF664CE3097DD

0362BEDF3512”

Encryption algorithm: Cryptographic instructions that convert a plaintext message
into ciphertext

Decryption algorithm: cryptographic instructions that convert a ciphertext message
into plaintext

Both encryption and decryption algorithm require a key

Information

Plaintext:
“Hello world”

Cryptographic
Algorithm

Ciphertext:
“0x018EFE9FF664CE3097DD

0362BEDF3512”

Encryption

Decryption

As opposed to encoding, encryption cannot be reversed without a KEY

The origins of cryptography: the quest for confidentiality
Confidentiality: information cannot be accessed by unauthorized parties

Cryptographic algorithms all follow a common schema with four steps
1) During the key generation & sharing phase, a key k is generated. The key must then
be made available to both the sender and the intended receiver.
2) The sender has a message m (the plaintext) and encrypts it using the encryption
algorithm. The key k is required to encrypt m
3) The sender sends the encrypted message (the ciphertext) to the intended receiver.
4) The intended receiver decrypts the ciphertext using the decryption algorithm and
key k.

11

The problem with ciphers that transform letters deterministically into other letters is
that the frequency of appearance of letters in the alphabet is preserved. Some letters
appear more often than others, which reduce a lot which words could have
generated the ciphertext.

How to prevent frequency analysis? Make sure that letters are not encrypted to the
same values.

One way of doing this is to have a random key as long as the message so that all parts
of the message get encrypted to different values.
This long key is called a one-time-pad.

To encrypt a message one translates the message into bits, and then XOR these bits
with the key.

Key k
pre-shared

Enc(k,m) = m Å k

Obtaining perfect secrecy: One Time Pad (OTP)
Key = string k of random bits as long as the message

Key k

Message YEAH (ASCII Hex: 59454148)
Binary 01011001010001010100000101001000

OTP-Key 01110101000111010100101001001010

Encryption 00101100010110000000101100000010

Å

m

To decrypt one XORs the encrypted message with the key (Recall: aꚚbꚚb=a)

Key k
pre-shared

Enc(k,m) = m Å k

Obtaining perfect secrecy: One Time Pad (OTP)
Key = string k of random bits as long as the message

Key k

Message YEAH (ASCII Hex: 59454148)
Binary 01011001010001010100000101001000

OTP-Key 01110101000111010100101001001010

Encryption 00101100010110000000101100000010

Dec(k,m) = Enc(k,m) Å k

Å

Å
01110101000111010100101001001010

01011001010001010100000101001000

01011001010001010100000101001000

same

m

One Time Pads are called like this because they should not be reused. If you reuse
them, even though you cannot recover the full message, you can recover information
about plaintexts. This information can be used to inform frequency analysis and help
recover the messages themselves.

In particular, for ASCII characters one can use that spaces start with 00 and letters
with 01 to detect whether a messages has a space:

2 letters = 01 Ꚛ 01 = 00
2 spaces = 00 Ꚛ 00 = 00
Letter + space = 01 Ꚛ 00 = 01

Key k
pre-shared

Enc(k,m) = m Å k

Key = string k of random bits as long as the message

Key k

Message YEAH
Binary (ASCII) 01011001010001010100000101001000

OTP-Key 01110101000111010100101001001010

Encryption 00101100010110000000101100000010

YEAH
01001110010011110101000001000101

11100001010000010111101011010001

10101111000011100010101010010100

same

different

Delete “k” – it must never be reused!
(msg1Å pad) Å (msg2Å pad) → (msg1Å msg2)

Reveals where msg differ
Frequency analysis works
ASCII patterns (space or letter)

00- 01-

Obtaining perfect secrecy: One Time Pad (OTP)

m

Dec(k,m) = Enc(k,m) Å k

Problems:

- Keys as long as the messages themselves are very costly. What if you need to
encrypt a high quality movie?

- Both sender and receiver need to know the full key. It is hard to secretly share such
long strings of bits (also note that they cannot be transmitted in the same channel
as the message, otherwise the adversary would have access to the key)

- The key has to be random (otherwise non-randomness can be used to gain
information about the plaintext). It is very hard to generate long sequence of
random numbers

- The key cannot be reused, so you need even more of these one time pads that are
difficult to generate and share. Also, you need to make sure that they are
destroyed so that they are never used twice.

- This mechanism only ensures confidentiality, but does not provide any integrity
protection

Why do we not use OTPs?

Key as long as the message (nowadays USBs contain several GB)
and pre-shared!

Key cannot be reused

No integrity!

Moscow–Washington hotline

”Each country delivered keying tapes used
to encode its messages via its embassy

abroad”
https://en.wikipedia.org/wiki/Moscow%E2%80%93Washington_hotline

Key must be random!

Obtaining perfect secrecy: One Time Pad (OTP)

Security should not depend on the secrecy of the encryption method (or
algorithm), only the secrecy of the keys.

Modern algorithms are based on mathematically difficult problems - for
example, prime number factorization, discrete logarithms, etc.

Modern cryptographic algorithms are too complex to be executed by
humans.

Modern cryptography

27

Computer Security and Privacy
(COM-301)

Applied cryptography
Symmetric encryption

Carmela Troncoso
SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

First kind of encryption: Symmetric à both sender and receiver use the same key

There are two types of Symmetric Encryption Ciphers: stream ciphers and block
ciphers.

We will also see one way of protecting the integrity of messages using symmetric
encryption

28

28

Symmetric encryption ciphers

Encryption of plaintext and decryption of ciphertext are done using

THE SAME KEY

Two types of ciphers:
Stream ciphers
Block ciphers

Integrity mechanism:
Message Authentication Code (MAC)

30

Computer Security and Privacy
(COM-301)

Applied cryptography
Symmetric encryption - Confidentiality

Carmela Troncoso
SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

A stream cipher receives two inputs:
- A small (much smaller than the message!) key that must be kept

secret
- An initialization vector that does not need to be secret (see next

slide)
The keystream generator outputs a stream of bits that is pseudorandom
(stream(k,IV), i.e., looks random for an adversary that does not have the key.

Stream Ciphers Arbitrary length
pseudo-random
stream

Unless one knows the key

one cannot distinguish it

from a random string

SECURITY ARGUMENT

KEYSTREAM GENERATOR

Fixed Size Key (k)

Initialization Vector (IV)
stream(k, IV)

Message (m)

Å Enc(k,m)

STREAM CIPHER

The IV cannot be reused. If the same IV is used more than once for a given key the
keystream generator would produce the same stream of bits.
As stream-based encryption is based on XORing the message with the stream, if we
use the same stream more than once we run into the same problems as when
reusing a one time pad!

The IV does not need to be secret. The key is what protects the secrecy of the stream
(without the key, only having the IV, one cannot recreate the stream)

However, for some particular ciphers (in particular in some block cipher modes we
will see below) it must be unpredictable. This means that given one IV, the adversary
must not be able to guess how the next IV is going to look like. Otherwise, the
adversary can use this knowledge to recover some plaintext seen in the past. See
https://crypto.stackexchange.com/questions/3883/why-is-cbc-with-predictable-iv-
considered-insecure-against-chosen-plaintext-atta for more details.

What is an Initialization Vector (IV)?

Initialization Vector: Fixed-size input to iterative cryptographic primitives

Important properties:
No IV reuse under the same key

Goal: messages encrypted with the same key look different (even the same message)

It does not need to be secret! Keeping the key secret is enough
But must be unpredictable in some block cipher modes

https://crypto.stackexchange.com/questions/3883/why-is-cbc-with-predictable-iv-considered-insecure-against-chosen-plaintext-atta
https://crypto.stackexchange.com/questions/3883/why-is-cbc-with-predictable-iv-considered-insecure-against-chosen-plaintext-atta

To encrypt the message, similar to the one time pad, we XOR the message bits with
the output of the keystream generator.

To decrypt, the receiver repeats the operation: feeds the stream cipher with the
shared key and the IV (notice it is sent with the encrypted message) to create the
same stream. Then XORs this stream with the encrypted message to obtain the
plaintext.

Stream Ciphers Arbitrary length
pseudo-random
stream

Unless one knows the key

one cannot distinguish it

from a random string

Key k
pre-shared

Key k

SECURITY ARGUMENT

Fresh IV (public)

IV, Enc(k, m) = stream(k, IV) Åm
m

Dec(m) = stream(k, IV) Å Enc(k, m)

KEYSTREAM GENERATOR

Fixed Size Key (k)

Initialization Vector (IV)
stream(k, IV)

Message (m)

Å Enc(k,m)

STREAM CIPHER

Stream Ciphers Arbitrary length
pseudo-random
stream

Unless one knows the key

one cannot distinguish it

from a random string

SECURITY ARGUMENT

KEYSTREAM GENERATOR

Fixed Size Key (k)

Initialization Vector (IV)
stream(k, IV)

Message (m)

Å Enc(k,m)

STREAM CIPHER

Remaining downsides?

Key as long as the message (nowadays USBs contain several GB)
and pre-shared!

Key must be random!
No integrity

Key cannot be reused Better than before,

though still necessary

Strengths:

Stream ciphers are very fast: the encryption time is linear with the size of the
message.

If there is an error in encryption, because encryption is bit per bit, the error only
affects one bit (contrast with block ciphers, see below)

Weaknesses: (contrast with block ciphers, see below)

As encryption is bit per bit, one can concentrate in small parts of the message to
extract information about the corresponding plaintext

As encryption is bit per bit, it is hard to find out if anything has be modified, since the
rest of the message is kept the same:

Imagine Gru knows the message is of the form:
“Pay XXXX to Bob”
Even when encrypted he can take the part corresponding to Bob and do

Stream ciphers

ST
RE

N
GT

HS
W

EA
KN

ES
SE

S

Speed: algorithms are linear in time and constant in space

Low error propagation: errors in one bit do not affect subsequent symbols

Low diffusion: all information of a plaintext symbol is contained in one encrypted symbol

Susceptibility to insertions/ modifications: text can be inserted, difficult to detect

Stream(IV,K) xor (“Bob") xor (“Bob" xor “Gru") = Stream(IV,K) xor (“Bob" xor “Bob“)
xor (“Gru") = Stream(IV,K) xor “Gru“!

37

Stream ciphers

ST
RE

N
GT

HS
W

EA
KN

ES
SE

S

Speed: algorithms are linear in time and constant in space

Low error propagation: errors in one bit do not affect subsequent symbols

Low diffusion: all information of a plaintext symbol is contained in one encrypted symbol

Susceptibility to insertions/ modifications: text can be inserted difficult to detect

Trivium (80 bit key, < 4000 gates in HW)

Salsa20 (128/256 bit key, Random access)

More stream ciphers: https://en.wikipedia.org/wiki/ESTREAM

Don’t design your own

Block ciphers are another symmetric cryptographic algorithm

Block Ciphers
BLOCK CIPHER

ENCRYPTION
ALGORITHM

DECRYPTION
ALGORITHM

The encryption algorithm of a block cipher operates on small blocks.

Encryption receives the key and a message block m and outputs an encrypted block
of the same size as the input.
The encryption algorithm is such that given the output it looks random. In other
words, the output is independent from the input.

Block Ciphers

ENCRYPTION
ALGORITHM

Key k

Message m
Enc(k,m)

BLOCK CIPHER

ENCRYPTION
ALGORITHM

DECRYPTION
ALGORITHM

Without k: a ciphertext block looks

the same as a random block

SECURITY ARGUMENT

short random string (e.g. 128 bits)

Encryption algorithm: Converts plaintext m to ciphertext c

To decrypt, the receiver uses an algorithm Dec(), that is (generally) not the same as
encryption. Given an encrypted block c and a key k, the decryption algorithm outputs
the plaintext m.

Block Ciphers

Decryption algorithm: Concerts ciphertext c to plaintext m.
The inverse of Encryption → Dec(k; Enc(k; m)) = m

ENCRYPTION
ALGORITHM

Key k

Message m
Enc(k,m)

BLOCK CIPHER

DECRYPTION
ALGORITHM

Key k

Ciphertext c=Enc(k,m)
m

ENCRYPTION
ALGORITHM

DECRYPTION
ALGORITHM

Without k: a ciphertext block looks

the same as a random block

SECURITY ARGUMENT

short random string (e.g. 128 bits)

Encryption algorithm: Converts plaintext m to ciphertext c

Messages are more than one block, so we need to have a way of chaining blocks
together. This “chaining” is called a mode of operation.

ENC DEC

k

m mC=Enc(k,m)

Block Ciphers

Key k
pre-shared

Key k
k

The algorithms work on blocks that are the size of the key

Typically 128/256 bits

Messages are longer than a block! Requires iteration

Block ciphers’ mode of operation

Electronic Code Book (ECB) is a mode of operation in which blocks are encrypted
independently.

Mode 1: ELECTRONIC CODE BOOK (ECB)
Straightforward scheme: encrypt & decrypt single blocks

Ek

mi C=Enc(mi)

m = m1 m2 m3 m4

Ek Ek Ek

ENCk

C1 C2 C3 C4

m = m1m2m3m4

mi are the same

size as the key!

To decrypt, one also uses the decryption algorithm on individual ciphertext blocks.

Mode 1: ELECTRONIC CODE BOOK (ECB)
Straightforward scheme: encrypt & decrypt single blocks

Ek

mi C=Enc(mi)

m = m1 m2 m3 m4

Ek Ek Ek

ENCk

C1 C2 C3 C4

m = m1m2m3m4

Dk Dk Dk Dk

C1 C2 C3 C4

DECK mC=E(m)

m = m1 m2 m3 m4

mi are the same

size as the key!

Thus, if two blocks in the message are the same, they will have the same appearance
when encrypted!

Mode 1: ELECTRONIC CODE BOOK (ECB)
Straightforward scheme: encrypt & decrypt single blocks

Ek

mi C=Enc(mi)

Problematic!

m = m1 m2 m3 m4

Ek Ek Ek

ENCk

C1 C2 C3 C4

m1=m2 → C1=C2

https://en.wikipedia.org/wiki/Block_cipher#/media/File:Tux_ecb.jpg

DON’T USE!!

m = m1m2m3m4

Dk Dk Dk Dk

C1 C2 C3 C4

DECK mC=E(m)

m = m1 m2 m3 m4

mi are the same

size as the key!

Cipher Block Chaining is a mode of operation in which a block encryption depends on
previous blocks (as defined in the formula and shown in the schema)

Note that every time a block is encrypted, by the properties of the block cipher, the
ciphertext is random. Because the IV and/or the plaintext changes every time, this
random value is different every time. Thus, when XORed with the next plaintext it
creates a random string. If the IV changes, this is similar to a one-block one-time pad,
but if one reuses the IV for the same plaintext and key, this value will be repeated.

Add IV and propagate information across blocks to introduce randomness

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg

CBC Encryption

C0 = IV

Ci = Enc(k; miÅ Ci-1)

Mode 2: CIPHER BLOCK CHAINING (CBC)

mi C=Enc(mi)ENCk

m = m1m2m3

ENCk

To decrypt Cipher Block Chaining one has to do the inverse operation. Notice where
the XOR with the IV and previous ciphertext happens as opposed to in the encryption
algorithm.

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg

CBC Decryption

C0 = IV

mi = Dec(k; Ci) XOR Ci-1

Mode 2: CIPHER BLOCK CHAINING (CBC)

C = C1C2C3

DECk

DECK mC=E(m)

Add IV and propagate information across blocks to introduce randomness

If IV is incorrect, only the first block is corrupted!! Note that the rest only depend on
the ciphertext.

Blocks cannot be decrypted without having the ciphertext of the previous block! To
recover a plaintext message block, the ciphertext of the previous block is XORed it
with the output of the decryption on the current block.

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg

CBC Decryption

C0 = IV

mi = Dec(k; Ci) XOR Ci-1

Mode 2: CIPHER BLOCK CHAINING (CBC)

C = C1C2C3

DECk

DECK mC=E(m)

What if IV is incorrect? The
full decryption is wrong?

Can you decrypt a block
alone? What do you need?

Add IV and propagate information across blocks to introduce randomness

In Counter Mode, we use a unique number composed by a Nonce and a counter so
that the encryption receives a new number every time.
When encrypted, this number becomes a random one-time-pad that we XOR with
the plaintext to obtain the ciphertext.

Use increasing nonce to add randomness without dependencies between blocks

CTR Encryption

Ci = Enc(k; Nonce+i) Å mi

Mode 3: COUNTER MODE (CTR)

mi C=Enc(mi)ENCk

m = m1m2m3

ENCk

The counter keeps increasing so that, if the nonce is new, the output of the block
cipher for every block will be different.

Use increasing nonce to add randomness without dependencies between blocks

CTR Encryption

Ci = Enc(k; Nonce+i) Å mi

Mode 3: COUNTER MODE (CTR)

mi C=Enc(mi)ENCk

m = m1m2m3

Counter
ENCk

Nonce = number used only once. It must be new every time. Otherwise we are
feeding the encryption with the same number and we obtain the same random pad
at the output: effectively we would be reusing a one time pad!

Use increasing nonce to add randomness without dependencies between blocks

CTR Encryption

Ci = Enc(k; Nonce+i) Å mi

Nonce = number used only

once

Mode 3: COUNTER MODE (CTR)

mi C=Enc(mi)ENCk

m = m1m2m3

ENCk

Counter

Use increasing nonce to add randomness without dependencies between blocks

CTR Encryption

Ci = Enc(k; Nonce+i) Å mi

Nonce = number used only

once

Mode 3: COUNTER MODE (CTR)

mi C=Enc(mi)ENCk

m = m1m2m3

ENCk

Counter

Do we need the decryption
algorithm??

For counter mode we do not need the Decryption algorithm.

As CTR mode operates like a one time pad, to decrypt we need the same random
sequence of bits, i.e., we need the same sequence which is obtained using the same
algorithm: encryption.

CTR Decryption

Ci = Enc(k; Nonce+i) Å mi

Mode 3: COUNTER MODE (CTR)

C = C1C2C3

ENCk

ENCK mC=E(m)

Use increasing nonce to add randomness without dependencies between blocks

Strengths:

Because of the chaining and the entangling of blocks there is great diffusion: every bit
affects several blocks

The chaining also helps to detect insertion or modification (integrity violations): if
something changes it will be propagated and decryption will not make sense.

Weaknesses: (contrast with block ciphers, see below)

Block ciphers are slow compared to stream ciphers because they need to wait for a
full block before encryption/decryption.

When there is an error, in some modes such as CBC where encryption is chained, the
error gets propagated to other blocks

Summary: Block ciphers

ST
RE

N
GT

HS
W

EA
KN

ES
SE

S

High diffusion: information from one plaintext symbol is diffused into several
ciphertext symbols

Immunity to tampering: difficult to insert symbols without detection

Slow: an entire block must be accumulated before encryption / decryption can begin

Error propagation: in some modes of operation errors affect several bits/blocks

*Different modes of operation offer different trade-offs and these weaknesses/strengths may actually not apply.

61

61

Summary: Modes of operation
Electronic Code Book (ECB)

✅ Directly encrypt and decrypt single blocks
❌ Large information leakage due to lack of randomness across ciphertext blocks

Cipher Block Chaining (CBC)
✅ Avoids ECB problems: Each ciphertext block adds randomness to encryption of

following block
❌ Propagates errors and no parallel encryption

Counter mode (CTR)
✅ Uses a nonce and an increasing counter to introduce randomness across ciphertext

blocks
✅ Parallel encryption and decryption

Summary: Block ciphers

ST
RE

N
GT

HS
W

EA
KN

ES
SE

S

High diffusion: information from one plaintext symbol is diffused into several
ciphertext symbols

Immunity to tampering: difficult to insert symbols without detection

Slow: an entire block must be accumulated before encryption / decryption can begin

Error propagation: difficult to insert symbols without detection

AES – The Advanced Encryption Standard
128/256 bit key, NIST Standard, HW support

More: https://en.wikipedia.org/wiki/Block_cipher#Notable_block_ciphers

Don’t design your own

63

Computer Security and Privacy
(COM-301)

Applied cryptography
Symmetric encryption - Integrity

Carmela Troncoso
SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

Recall that integrity means that non-authorized parties cannot modify data. That is if
Bob sends “Banana” he can be sure that Gru will receive “Banana”.
Without cryptography, it is very easy to violate integrity.

Cryptography for integrity

Information

Plaintext:
“Banana”

Plaintext:
“Apple”

Integrity: information cannot be modified by unauthorized parties

Write

Bob the sender

Gru the

intended

receiver
Evil minion

the Adversary

breaking integrity

In the next part, explain how we can use cryptographic algorithm to ensure integrity.

Cryptography for integrity

Information

Plaintext:
“Banana”

Cryptographic
Algorithm

Plaintext:
“Banana”

Integrity: information cannot be modified by unauthorized parties

Write

Bob the sender

Gru the

intended

receiver
Evil minion

the Adversary

cannot break

integrity

A Message Authentication Code receives two inputs:
- A small key that must be kept secret
- The message whose integrity needs to be secured

The MAC algorithm outputs a short string that helps the intended receiver to verify
the integrity of the message sent by the sender.
The key property of the MAC is that it is very difficult to produce a pair [message;
MAC(k,message)] without knowing the key

Integrity from symmetric encryption:
Message Authentication Codes (MAC)

MESSAGE
AUTHENTICATION

CODE

Fixed (short) Size Key (k)

Message (m)

Short output (MAC)

Hard to generate

(m, MAC(k;m))

without knowing k

To verify the integrity of the message, Gru inputs the message and the key to the
MAC algorithm, and compares the output to the MAC he received. If they are the
same, the message has not been tampered with.

Integrity from symmetric encryption:
Message Authentication Codes (MAC)

m, MAC(k;m)

Key k pre-shared
Key k

MESSAGE
AUTHENTICATION

CODE

Fixed (short) Size Key (k)

Message (m)

Short output (MAC)

m

Hard to generate

(m, MAC(k;m))

without knowing k

Because only Bob and Gru know the key, when receiving a message with a valid MAC
they know that only the other could have written it. However, they cannot prove to a
third party that they are not the author of the message (as they know the key, they
could have produced the correct MAC). Thus, the message can be repudiated. Bob
can say that the message was written by Gru; and Gru can say that the message was
written by Bob.

Integrity from symmetric encryption:
Message Authentication Codes (MAC)

m, MAC(k;m)

Key k pre-shared
Key k

MESSAGE
AUTHENTICATION

CODE

Fixed (short) Size Key (k)

Message (m)

Short output (MAC)

Hard to generate

(m, MAC(k;m))

without knowing k

TWO PROPERTIES:

1) m cannot be tampered with

2) message comes from Bob/Gru

Mutual authentication
but cannot authenticate sender towards 3rd parties!

Message can be
repudiated!

m

A block cipher in CBC mode can be turned into a MAC by:

Fix the IV (for example 0) and then do CBC. The MAC is the output of the last
encryption block: one could have only gotten there for one message and one key.
Note that the last block cannot be used to recover anything about the message: it
looks random (as it is the output of a block cipher)

As the IV is fixed, the result for one message is always the same (no value changes!)

It is only secure (ensures integrity) if the length of m is known. This is because the
length of the message determines the output of which block is the MAC. But, if Gru
does not know the length of the message, it is easy to get a MAC for an extension of
the message:
If you have T= CBC-MAC(k,M), and T’=CBC-MAC(k,M’); then T’ is a correct CBC MAC

for M || T XOR M’ where || is concatenation.

Example MAC: CBC-MAC

Turning a block cipher into a MAC

C0 = 0 [any fixed IV]

Ci = Enc(k; miÅ Ci-1)

MAC(k; m1... mx) = Cn

MAC(k;m)

CBC-MAC is deterministic
Only output is the final value!

Differences with respect to CBC

Limitation:
Only secure if the length of
m is known!

How to obtain confidentiality and integrity? Encrypt-and-MAC?

- The MAC is computed on the plaintext, so it cannot protect the integrity of the
ciphertext. To check whether the message is correct, one needs to first decrypt
(expensive operation).

- Because the MAC is deterministic, it may reveal information about the message
(e.g., if the message is sent twice the MAC is the same for both messages)

How to obtain confidentiality and integrity?

Bellare, M., & Namprempre, C. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.
International Conference on the Theory and Application of Cryptology and Information Security, 2000.
Bellare, M., Kohno, T., & Namprempre, C. Breaking and provably repairing the SSH authenticated encryption scheme: A case study of the
Encode-then-Encrypt-and-MAC paradigm. ACM Transactions on Information and System Security, 2004.
https://en.wikipedia.org/wiki/Authenticated_encryption

ENCRYPT-AND-MAC

No integrity check on the ciphertext →
Cipher can be attacked
Need to decrypt to know if message is valid

Integrity of the plaintext can be verified

May reveal information about the plaintext →
Repeated msg, recall the IV of the MAC is fixed
(can be solved with a counter)

MAC

How to obtain confidentiality and integrity? MAC-then-Encrypt?

- Still no integrity check on the ciphertext

- But no info on the MAC because the adversary does not see it (only sees the
encrypted blob)

How to obtain confidentiality and integrity?

Bellare, M., & Namprempre, C. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.
International Conference on the Theory and Application of Cryptology and Information Security, 2000.
Bellare, M., Kohno, T., & Namprempre, C. Breaking and provably repairing the SSH authenticated encryption scheme: A case study of the
Encode-then-Encrypt-and-MAC paradigm. ACM Transactions on Information and System Security, 2004.
https://en.wikipedia.org/wiki/Authenticated_encryption

MAC-THEN-ENCRYPT

No integrity check on the ciphertext →
(In theory) possible to change ciphertext and have a
valid MAC
Need to decrypt to know if message is valid

Integrity of the plaintext can be verified

No information on the plaintext since it is encrypted

MAC

How to obtain confidentiality and integrity? Encrypt-then-MAC?

Ensures integrity of cipher- and plaintext. No information about plaintext.

How to obtain confidentiality and integrity?

Bellare, M., & Namprempre, C. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.
International Conference on the Theory and Application of Cryptology and Information Security, 2000.
Bellare, M., Kohno, T., & Namprempre, C. Breaking and provably repairing the SSH authenticated encryption scheme: A case study of the
Encode-then-Encrypt-and-MAC paradigm. ACM Transactions on Information and System Security, 2004.
https://en.wikipedia.org/wiki/Authenticated_encryption

ENCRYPT-THEN-MAC

Integrity of ciphertext →
Ensures you only read valid messages
Cipher cannot be attacked

Integrity of the plaintext can be verified

No information on the plaintext since it is encrypted

MAC

The combinations are easy to confuse and result in problems. Newer schemes
provide authentication and confidentiality in one go. For this they require, besides the
key and the Nonce/IV more information called associated data.

The output of Authenticated Encryption is the ciphertext and a Tag that can be used
to check integrity.

Galois counter mode - GCM (one pass)
Encrypt-then-authenticate-then-translate - EAX (Two passes)

In practice… (out of the course scope)
Authenticated Encryption with Associated Data (AEAD)

https://www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf

Associated data Tag

Nonce

New constructions to avoid home-made combinations

