Computer Security (COM-301)
Mandatory Access Control
Confidentiality security models

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis

We talked about DAC

DiscrReTIONARY Access ConTroL (DAC)

MANDATORY Access ConTroL (MAC)

Central security policy assigns permissions Object owners assign permissions
aen - L, = R
- - = & STRAVA

Theoretical lecture ahead!
Understand basic concepts and principles of security design and

engineering that will outlast current technology

In a DAC owners have all powers on the objects they create: they have the right to

establish permission access.
In a MAC the policy is given, and object creators cannot set their own permissions,

they can only assign the rights dictated by this policy.

Mandatory Access Control

Access to and operations on resources are determined by the security
policy

- “owner” may not exist or not have power to set permissions against policy

- the security policy must be enforced despite subjects trying to subvert it

In this lecture we will study what are the principles behind the main Mandatory
Access Control security policy models.

In these policies, the policies determine all the relations between subjects and
objects. It may be the case that there are no “object owners”, i.e., even if a user
creates an object she has no rights to establish the access policy of this object.

Security models

SECURITY MODEL: a design pattern for a specific security
property or set of properties

When faced with a standard security problem - use well-known model!

T Many aspects not covered by the model!
I]E NI. who are the subjects?
what are the objects?

The devil is in

the details! what mechanisms to use to implement it?

A security model is not a policy or a mechanism itself. It is a design pattern, a way of
reasoning about security properties in order to build security policies that ensure
those properties.

Security models only provide the design patterns, but not the details of the policy!
Those still need to be defined by the security engineer and if they are not defined
carefully following the pattern does not guarantee security.

'Bell-La Padula (BLP) model: Protecting
confidentiality

Subjects S and objects O associated to a level of confidentiality

Subjects access rights are defined by four attributes:
Execute: the subject cannot see or modify the object, but can run it
Read: the subject can only see the object but cannot modify it
Append: the subject cannot read the object, but can attach new content
Write: the subject can see the object and add content or modify existing content

These access rights are defined in an access control matrix

D. Bell and L. LaPadula. "Secure computer systems: Unified exposition and Multics interpretation”. Technical Report ESD-TR-75-306,
MITRE Corp., March 1976.

The Bell LaPadula model for confidentiality assumes the system has subjects S and
objects O.

Reminder: Confidentiality: protect objects O access from non-authorized subjects S

Access to objects are given by four possible attributes. These attributes define the
permissions the subject has on the object in two axis: can be observed (able to see
the object or its content) and can be altered (able to change the object):

Execute: the subject cannot observe or modify the object, but has the capability to
run

Read: the subject can only observe the object but cannot perform any modification
(no addition, change, or deletion)

Append: the subject cannot read the object, but can add content to at the end
without modifying any of the existing content

Write: the subject can see the object and can modify it (add, delete, change, any part
of the object)

The system state at any point is defined as:

The level (i.e., the classification) of both subjects and objects with
respect to confidentiality (defined in the next slides)

An access control matrix that assigns attributes for each subject with
respect to each object

The current accesses (which subject is accessing with object with what
permission) that are authorized at that point in time

Level function for objects: Classification

Objects are associated to a Security Level
(they have a label, and belong to one or more categories)

| Security Level = (Classification, {set of categories}) |

Classification - total order of labels (e.g., Unclassified, Confidential, Secret, Top Secret)

Categories — compartments of objects with a common topic (e.g., Nuclear, NATO,
Crypto)

The Classification of objects defines “how secret” objects are. Objects not only are

associated a classification through the use of a label, but also a Category which
confines it into a compartment.

The tuple (Classification, {set of categories}) is called a Security Level

Classification: dominance relationship

DOMINANCE RELATIONSHIP

A security level (11,c1) “dominates” (12, c2) if and only if 11 >= 12 and c2 is a subset of

cl
Labels: Admin < Nurse < Surgeon < Doctor
Categories: DEMOGRAPHICS, ANALYSIS, RESULTS

Which statements are true?
(D, {}) dominates (S, {})
(S, {}) dominates (N, {RESULTS})
(S, {DEMOGRAPHICS,RESULTS}) dominates (N, {DEMOGRAPHICS})
(D, {ANALYSIS,RESULTS}) dominates (S, {DEMOGRAPHICS})

What level dominates them all?
What level dominates only itself?

The idea behind dominance is that a level (11,c1) dominates a level (12,c2) if:

- the label is higher (i.e., the label |1 denotes more secrecy than the
label 12)

- and the categories in c2 are a subset of c1 [the categories in lower
levels always allow access to less categories

(D, {}) dominates (S, {}) @ TRUE: Doctor is a higher classification than Surgeon

(S, {}) dominates (N, {RESULTS}) @ FALSE: Surgeon is a higher classification than
Nurse, but this Nurse can see more than the Surgeon (The nurse can see RESULTS
while the Surgeon cannot). The second condition is not fulfilled. There is no
dominance relation between these categories

(S, {DEMOGRAPHICS,RESULTS}) dominates (N, {DEMOGRAPHICS}) B YES: Surgeon is a

higher classification than Nurse, and the Surgeon can see more information than the
nurse

(D, {ANALYSIS,RESULTS}) dominates (S, {DEMOGRAPHICS}) B FALSE: Doctor is a
higher classification than Surgeon, but this Surgeon sees different information. The
second condition is not fulfilled. There is no dominance relation between these

categories

What level dominates them all? @ The level (Doctor, {DEMOGRAPHICS, ANALYSIS,

RESULTS}
What level dominates only itself? @ The level (Admin,{})

Domina nce Iattice DOMINANCE RELATIONSHIP

Alevel (c1, 11) “dominates” (c2, 12)
iffc1 >=c2 and 12 is a subset of I1

Labels: C< S Categories: Crypto, Nuclear

S, {Crypto, Nucl S>cC
(S, {Crypto ucear}) \I(Clypto,Nuclear) < {Crypto,Nuclear}

§==S§
{Crypto} < (Crypto,NucleaV N
(C, {Crypto, Nuclear})

(8. {Crypto}) (S, {Nuclear}) - / \

~* (C, {Crypto}) =+ (C, {Nuclear})

®O-.. | \ /

Three key properties -G label

(a) Dominates is transitive. X _c;t;g_o;ie_s Y
(b) Top and bottom elements.

(c) Only partial order.

A way of reasoning about dominance is to draw the dominance lattice. It represents
dominance relationships between Security levels on both aspects: labels and
categories.

Note that dominance is transitive. If
(S,{CRYPTO, NUCLEAR}) dominates (S,{NUCLEAR}),
and (S,{NUCLEAR}) dominates (C,{NUCLEAR}),
then (S,{CRYPTO, NUCLEAR}) dominates (C,{NUCLEAR}).

As we saw in the previous slides, there is one level that dominates all the other (top)
and one level that is dominated by all (bottom).

Also note that there is no total order between security levels. Some of them have no
relationship!

(S,{NUCLEARY}) has no relation to (S, {CRYPTO})

Level function for subjects: Clearance level

BLP calls this also “classification”

Clearance —maximum security level a subject has been assigned: clearance level(s;)
Current security level — subjects can operate at lower security levels: current-level(S)
level(S;) must dominate current-level(S;) !!!

r

Top Secret

A Classified
ﬁ \ Unclassified

The Clearance for subjects defines “how secret” objects they can access. Besides
their overall clearance, subjects can act with a lower level (called current level).

BLP System: ss-property

SIMPLE SECURITY PROPERTY (SS-PROPERTY)

If (subject, object, r) is a current access, then level(subject) dominates level(object)

OBJECTS CLASSIFICATION

Top Secret
No Read Up op Secre
NRU Secret
() g Read Classified
%) ©
1 Unclassified

CLEARANCE: SECRET

The ss-property fundamentally says that a subject can only access objects whose
classification are dominated by the clearance of the subject. In layman terms, the
subject can read objects with lower classification than its clearance.

This property is also known as No Read Up, as it says that subjects cannot read
anything above their Clearance.

This general, whose Clearance is secret, can Access documents that are Secret,
Classified, and Unclassified, but not Top Secret.

[Note that for simplicity in this slide (and the next ones) we skip the categories, but
the dominance relationship would apply]

Why is the ss-property not sufficient?
No Read Up (NRU)

Disallowed by
ss-property

Allowed by
ss-property

C

Allowed by
ss-property

Malicious code

The problem with just forbidding people to not read up is that, if you have a
malicious user that can read high level classified information, it can copy this
information to a lower level. Then, subjects with less Clearance, who by the ss-

property could not read this object now are actually allowed to read.

BLP System: *-property

STAR PROPERTY (*-PROPERTY)

if a subject has simultaneous “observe” (r,w) access to O,
and “alter” (a,w) access to O, then level (O,) dominates level (O,)

OBJECTS CLASSIFICATION

Top Secret
Secret No Write Down
pog——1 P (NWD)
- Unclassified

CLEARANCE: SECRET

To solve this issue, BLP has a second property: *-property. This property says that if a
subject can observe an object at a Classification level, then this subject can only
modify object in higher levels. Note that, since the Clearance of this subject will not
allow them to read those levels (ss-property, No-Read-Up), this subject can only
append to higher levels.

In other words, what this property says is that subjects cannot write in clearance
levels lower than theirs, so that they cannot leak information.

BLP System: ds-property

DISCRETIONARY PROPERTY (DS-PROPERTY)
if an access (subject, object, action) takes place it must be in the access
control matrix

Information should only be accessed on a “need-to-know” basis
Also needs DAC (least privilege inside the Security Level)
Also important to protect integrity

Regardless of the subjects clearance levels, information should only be known on a
need to know basis! (Least privilege principle)

Thus, the system has an access control matrix that establishes which subjects can
access with objects (provided that the access is permitted by the MAC policy, of

course).

Using the DAC, the system can also protect the integrity of objects by forbidding
subjects from writing on them.

BLP: Basic Security Theorem

BASIC SECURITY THEOREM

if all state transitions are secure, and the initial state is secure, then every
subsequent state is secure regardless of the inputs

If for any individual access:
(1) the ss-property holds.
(2) the *-property holds.
(3) the ds-property holds.
... then for any sequential composition security holds!

A system can be analyzed in terms of single step transitions of states!!

14

With these three properties, one can reason about the security of the system.

Every time there is a state transition (recall that a state is the current access
permissions, the access control matrix, and the cleareance/classification): one can
decide whether the new state is secure.

But... these properties are not enough

Assume
- level(s,) is TS (Top Secret)
- level(s,) is C (Confidential)

Sequence of events
1) s, creates 0, > level(o,) =C
2) s, reads C and either:
- changes the object level - level(o,) = TS
- leaves object level untouched - level(o,) = C

3) s, attempts to access to 0, in C - success or failure leaks 1 bit of
information!

Even if the rules are respected, there can still be information leakage from higher
levels to lower levels:

- s2 creates 02 — This is allowed, s2 is not writing down. The level of 02 is C.

- 51 sets his current level as C and reads 02 in C—This is allowed, s1 is not reading
up.

- s1 may change the level of 02 — This is allowed, BLP says nothing about changing
objects’ level

- s2 attempts to access 02 in C— This is allowed, s2 can read in C because it is s2’s
clearance level

The fact that the file is still there when s2 tries to access it can leak one bit of
information (e.g., s1 tells s2 that when the troops will start moving he will make 02
disappear)

Covert channels

COVERT CHANNEL
any channel that allows information flows contrary to the security

policy
Storage channels

e.g. shared counters, ID fields, file meta-data, etc.

Timing channels

Principle 7
e.g. use of CPU, load to memory (cache), queuing time, etd.

Least common mechanism

The more resources are shared, the harder it is to eliminate covert channels

16

There are many possible covert channels in a system. These channels are enabled by
shared resources that can be accessed by subjects with different clearance levels.

This reminds us that violating the principle of Last Common Mechanism is opening
the door to problems.

Mitigating Covert channels

COVERT CHANNEL
any channel that allows information flows contrary to the security

policy

Mitigation: isolation (communication with low level not possible) or add of noise to communication.
- Hard to achieve less than 1 bit / sec
- OK for documents, NOT OK for cryptographic keys
- DoD policy: cryptographic keys must always be stored on dedicated hardware.

To eliminate covert channels one can:

- Isolate the high level: once information is up, do not let it go down
(or limit this channel to minimum capacity). This however, it is not practical as
working without acknowledgemets is very hard

- Add noise to communication: add fake interaction between high and
low levels so that real intended covert channels cannot be distinguished from
random noise.

None of this option completely eliminate covert channels, it just slows them down a
lot. But even 1 bit/second, which seems like a lot if we are trying to leak a 3Mb
document (more than 1000h to download), is not much when we consider
cryptographic keys (512 bits for symmetric cryptography — 8 minutes; or 2048 for
asymmetric — 34 minutes).

This is why cryptographic keys are typically stored on dedicated secure hardware
with very limited APIs.

We’ve seen tanks
moving!

Allowed by BLP
(Write

No Read Up

up)
-

o =,

Allowed by BLP
(Read
clearance level)

Not allowed!!
(Write Down! Against *-
()

s

property)

85 &=,

To illustrate that not allowing level changes is problematic think of the example in

the slide. If there is NWD, how will the General communicate with the soldiers after
he has seen any secret document?

Declassification

We've seen tanks
moving!

Allowed by BLP
(Write
up)

Allowed by BLP
(Read
clearance level)

DECLASSIFICATION

remove classification

label

It is very typical and necessary

Under the control of the security policy.
- It cannot be made inherently safe
(manual process)
-Rules about archives, historical records

Hard to rule out covert channels.

How to know the object does not contain
secrets?

19

To enable communication with lower layers, which is essential and very normal in
computer systems, one needs to include a Declassification process. Declassification
is the process by which an object at a higher level is cleaned from information so that

it can be passed down to lower levels.

It must be noted, however, that it is very hard to rule out any information leakage,
whether it is intentional (via a covert channel) or non intentional (see next slide)

Difficulty of Declassification in practice

- Microsoft Word revision history retains deleted text

- Portable Document Format (PDF) redaction by overlaying graphical elements
(usually black rectangles) - the text is on the file!

Strategic adversary!

https://www.slideshare.net/ange4771/pdf-secrets
Hill, S., Zhou, Z., Saul, L., & Shacham, H. On the (in) effectiveness of mosaicing and blurring as tools for document redaction.
Proceedings on Privacy Enhancing Technologies, 2016. 2

Bell La Padula: limitations

- Confidentiality-oriented: does not consider integrity or availability
- State-based + single transition model: too low-level, not expressive

- The 3 security properties are not sufficient to ensure confidentiality...
- Changes in clearance and classification can create covert channels
- A static system without changes is impractical

BLP has three main problems:

- It only cares about confidentiality. Although the ds-property can be used to deal
with integrity, BLP itself does not provide any integrity or availability protection

- The transitions enabled by the model are very low level to represent practical
scenarios (one may need many transitions to represent a common operation); and

the model is not expressive to deal with other security properties

- The three properties still do not guarantee that confidentiality is achieved

mpr- e 4
=PrL SPRING

Computer Security (COM-301)
Mandatory Access Control
Integrity Security models

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis

22

Protecting integrity
Bell-La Padula focuses on confidentiality. Relevant for military / government environments

What about commercial services?

Banking, Stock and sales inventory, stock exchange, land registry, student grades database,
electronic contracts, payments, ...

Preventing fraud is about protecting integrity: the adversary has not influenced the result
Confidentiality is either secondary or unnecessary.

Integrity is key for computer security in general!!
TCB has to have high integrity.
Public key cryptography requires high-integrity for confidentiality

In the previous block we talked about Bell-La Padula. The main goal of this model is
to ensure confidentiality of documents. Confidentiality is relevant in certain
environments where secrecy is the top priority. We can think of military of
government entities for which it is more important that the documents they hold are
not read by others that are not modified.

In other environments, and in particular, for many entities with which we interact in
our daily lives, confidentiality is not the first priority. For banks, registries, shops,
confindentiality is important but not the main concern. Here, the main concern is the
integrity of the accounts. It is indeed bad press if your accounting is made public, but
what is really crucial is that your accounting is correct and has not been modified.

The need for integrity is not only important for commercial and economic activities.
It is in fact key for computer security. Recall that the security of the system relies on
the TCB. Therefore, the integrity of the TCB needs to be maintained!

Another example is Public key cryptography. As we will see in the applied
cryptography lecture, if the encryption keys are corrupted during exchange one
cannot guarantee anymore that only the intended receiver can see the information.

The BIBA model for integrity

T _&__—__———# High integrity ¢
f— Two operations:
“read” (observe)

j.-:i‘\‘ ' T “write” (modify)
Lowest integrity =] :
—l

Two key rules (strict)

- simple integrity (no read-down): protects higher integrity principals from being
corrupted by lower integrity level data

- *.integrity (no write-up): prevents lower integrity principals from corrupting high
integrity data

Similar as in BLP, in Biba subjects and objetcs are assigned an integrity level

There are two operations (as opposed to four). For instance, executing is not
considered.

The two key properties are the dual of BLP:

- high level subjects should never see information of lower levels, so as not corrupt
their vision

- for the same reason, low level subjects should never write in high levels so that
they cannot pollute the high-integrity information

BIBA illustrated

Write (send)

% “Low” INTEGRITY

EXAMPLES

In the Bank:

Director can establish a
rule and every employee
reads. Employees
cannot rewrite rules

In the computer:

Web application open in
the browser should not
write to the file system
(at most /tmp)

Summary of the Biba model:

High integrity subjects can write down, but cannot read from down

Low integrity subjects can read from up, but cannot write up

BIBA variant 1: Low-water-mark for subjects

Low-water-mark policy for subjects High (OS Data)
- Subjects start processes at their highest integrity level. e
- When accessing an object, its current level is lowered to . /% Not allowed
the lowest of the two: current-level(s) and level(o)
Temporary downgrade for the session
- Example: mitigate impact of a network Trojan
- —
- Hard to avoid label creep =" read
Low (Network Data)

If a subject (e.g., a process) needs to interact with an object in a lower level, then its
current level is downgraded to low.

You can see this as a similar operation as “sandboxing”. Execute the process with
dirty information in a safe environment.

A problem with this process is that you could have a label creep problem in which all
the subjects would end up in a lower level, or one subject is continuously lowered,
and no-one can write in a higher level anymore

BIBA variant 2: Low-water-mark for objects

Low-water-mark policy for objects

- Once an object has been written to by a subject, it High (OS Data)
assumed the lowest level of the object or subject.

A high-integrity database written to by a process % Read
with access to the network (low integrity) is labelled Not allowed
at “low” integrity

What is the effect?

Dangerous! only allows for integrity violation detection)
Mitigation: replicate objects & sanitize / erase write

Low (Network Data)

If a subject “pollutes” an object with information (by writing on it) this object is
automatically downgraded to the level of the subject to avoid problems.

This policy does only allow for integrity violation detection. The file cannot harm, but
the tampering has happened.

An option to avoid prevent the tampering is, instead of downgrading the real object,
replicate it. After the operation has happened either sanitize and upgrade (see slide
below) or just delete the replica.

BIBA Additional actions: Invoke

Simple Invocation
Only allow subjects to invoke subjects with a label they dominate
+ protect high integrity data from misuse by low integrity principals

- what level is the output?

Controlled Invocation
Only allow subjects to invoke subjects that dominate them
+ prevents corruption of high integrity data
- hard to detect polluting information

To avoid limitations, BIBA also allows the action invoke, so that subjects can interact
with objects at other levels, but still protecting the object:

Here the Director acts as protection (can run checks or deny operations) for the
object that the Teller needs to write on.

Invocation can be in one of the two directions:

- Simple invocation: High level invoke low level, hence protecting high level data.
This has the problem that it is unclear which level the modified object has: low as the
principal that performed the action, or high as the action was requested by a
privileged principal?

- Controlled invocation: Low level invokes high level. The high level can act as
protection, and in principle act as a warden to prevent the corruption of high
integrity data but... we know it is hard to check that no secret/bad information is
actually being written to the high integrity objects.

Sanitization

SANITIZATION
Process of taking objects with “low” integrity and “lifting them” to “high

integrity”

“Sanitization” problems are the root cause of large classes of real-world
security vulnerabilities

Malformed “low” (user) input can influence “high” (service) data and code

EXAMPLES
Web security: web server (high) accepts input from web client (low)
-> SQL interpreter - SQL injection vulnerability
OS Security: UNIX suid program (high) accepts input from a user (low)
-> short buffer - buffer overflow

Fundamental principle of sanitization

PRINCIPLE 2: FAIL-SAFE DEFAULT
“Base access decisions on permission rather than exclusion”[SS75]

Positively verify that “low” objects are within a valid set before
elevating their integrity to “high”.

- White list: check that all properties of good objects hold.
- Do not blacklist: do not just check for bad objects or properties.
Insert a photo in a web album? Ensure caption is from a restricted set of Unicode, or apply to it a

transform to “escape” / “encode” any characters not from that safe set into it. Do not simply
check it does not contain “<script>”. (XSS Attack)

COVERT CHANNELS
DIFFICULT TO CATCH!

Universe of
good things

é Il_& Do this ...

... not that!

Bad things ... (large, undefined set)

Remember that we cannot know the full extent of the Universe of bad things.
Therefore, checking whether an input is in that universe in order to reject is not a

good practice. Your blacklist is never guaranteed to be complete.

The good practice is to check whether the inputs are part of the Universe of good
things, which is actually well defined and much smaller.

Even if an input complies with the rules of the good things, it does not mean that
there is no covert channel. As we know, they hare very hard to avoid.

Principles to support integrity

Three principles to guide your choices:
- SEPARATION OF DUTIES: Require multiple principals to perform an operation
(harder for an adversary to tamper with the system as they have to corrupt two principals)

- ROTATION OF DUTIES: Allow a principal only a limited time on any particular role and limit
other actions while in this role

(harder for an adversarial insider to tamper with the system)

- SECURE LOGGING: Tamper evident log to recover from integrity failures. Consistency of log
across multiple entities is key.

(harder to make an integrity breach durable)

Three principles that help designing and implementing security mechanisms that
provide strong integrity.

- The principle of separation of duties is also known as “segregation” or “dual
control”. It implements the “separation of privilege” security principle. Why is this
principle a good way to ensure integrity? when more than one entity is involved in an
operation it is harder for one single entity to tamper with the integrity of the system
and its outputs.

Examples:

- Accountant records payments / income, and stores checks deliveries/sales.
The two must match!

- Both sides of a transaction need to keep a record, and the records must
match (legal receipts)

- Two officers are required to launch a missile

- Developers should not also be operators

The principle of rotation of duties limits the time a principal is responsible for an
action. The least time a principal is responsible for an action, the least opportunities
this principal has to tamper with this action. This also implements in a way the
separation of privilege principle, in the sense that for each action there are more
than one principal responsible over time. In addition, as new principals become
responsible, they act as auditors of the previous principals increasing the chance of
detecting misbehaviour.

Examples:
- Guards appointed for a single (random) shift to guard the bank safe

- Tellers changed over time so that they cannot fiddle with accounts

An final principle to increase the chance of detecting misbehaviour, and recover from
integrity problems, is the use of logging. This in fact implements the principle of
“Compromise recording”.

Secure logging means that the log itself is tamper resistant: i.e., a principal that can
tamper with the system integrity cannot change the value of the log to hide her
actions.

To enable secure logging it is important to consider the Separation and Rotation of
Duties principles.

Examples:
- Log of transactions inside the ATM machine.
- Cash till has an internal log.
- Notaries maintain logs of transactions and contracts.

- Bitcoin!

32

Chinese Wall model

Inspiration: UK rules about handling “conflicts of interest” in the
financial sector.

- A separation must exist at all times, even within the same firm, between
people engaging in activities that conflict with each other.

- Cost of failure: large fines and reputation

David FC. Brewer and Michael J. Nash. “The Chinese Wall Security Policy.” in IEEE SSP 1989

Chinese Wall model: Entities and Basic Concepts

1. All objects are associated with a label denoting their origin

“Pepsi Ltd.”, “Coca-Cola Co.”, “Microsoft Audit”, “Microsoft Investments”

2. The originators define “conflict sets” of labels

{“Pepsi Ltd.”, “Coca-Cola Co.”}, {“Microsoft Audit”, “Microsoft
Investments”}

3. Subjects are associated with a history of their accesses to

objects, and in pz511::quiLthﬂle~1t1elsﬁ

Avice

1. Pepsi
2. Microsoft

Chinese Wall model: Access rules

A subject can read an object (for either read or write) if the access does not
allow an information flow between items with labels in the same conflict set

©
Alice starts her first day at work

1) She accesses files of “Pepsi Ltd” (OK)

2) She accesses files of “Microsoft invest” (OK)

3) She tries to access files of “Coca-cola Co.” (access denied!)

Why? She has already accessed files from “Pepsi Ltd” thus
an information flow between those and “Coca-cola Co”
might happen (She could work again with “Pepsi”)

Chinese Wall model: Indirect flows

Direct flow within a conflict set is easy to detect! What about indirect?

Alice and Bob start together
1) Alice is assigned to “Pepsi Ltd” (OK) m— 7 Coca
epsi . 7
2) Bob is assigned to “Coca-cola Co.” and “IBM Co.” (OK) S

3) Alice tries to access files of “IBM Co.” (access denied!)

Why? If she writes in IBM with her knowledge of Pepsi, 1BM oca

then the information may flow to Coca-cola. _A
SANITIZATION is necessary for business 0 v

“Un-label” some items as long as the information

cannot lead to any conflict of interest, e.g., extract
some “general market information”

As in BIBA, one can also have sanitization to enable flexibility in Chinese Wall models.
While some information learned from Pepsi should never get to Coca-cola via IBM,
one can sanitize (remember, this is hard) some of the inputs to IBM so that Alice can
actually work with more clients!

Summary of the lecture
- Security models: patterns to design MAC policies

- BLP: Confidentiality
- Key concept: Declassification
- BIBA: Integrity
- Can bootstrap: high confidentiality (PKI) or High availability (replication)
- Can lead to: low confidentiality or low availability
- Key concept: Sanitization
- Chinese Wall: Conflicts of interest (confidentiality & integrity)

- Multilateral security: conflicting properties

Biba focuses on integrity, but having integrity helps bootstrapping systems that have
other properties:

- High integrity of public keys is essential to create systems that enable
high confidentiality, such as in Public Key Infrastructure (see Applied cryptography
and Network Security lectures)

- High integrity of logs is essential for replication to be useful and

provide high availability.

