
1

In a DAC owners have all powers on the objects they create: they have the right to
establish permission access.
In a MAC the policy is given, and object creators cannot set their own permissions,
they can only assign the rights dictated by this policy.

In this lecture we will study what are the principles behind the main Mandatory
Access Control security policy models.

In these policies, the policies determine all the relations between subjects and
objects. It may be the case that there are no “object owners”, i.e., even if a user
creates an object she has no rights to establish the access policy of this object.

A security model is not a policy or a mechanism itself. It is a design pattern, a way of
reasoning about security properties in order to build security policies that ensure
those properties.

Security models only provide the design patterns, but not the details of the policy!
Those still need to be defined by the security engineer and if they are not defined
carefully following the pattern does not guarantee security.

The Bell LaPadula model for confidentiality assumes the system has subjects S and
objects O.

Reminder: Confidentiality: protect objects O access from non-authorized subjects S

Access to objects are given by four possible attributes. These attributes define the
permissions the subject has on the object in two axis: can be observed (able to see
the object or its content) and can be altered (able to change the object):

Execute: the subject cannot observe or modify the object, but has the capability to
run
Read: the subject can only observe the object but cannot perform any modification
(no addition, change, or deletion)
Append: the subject cannot read the object, but can add content to at the end
without modifying any of the existing content
Write: the subject can see the object and can modify it (add, delete, change, any part
of the object)

The system state at any point is defined as:

The level (i.e., the classification) of both subjects and objects with
respect to confidentiality (defined in the next slides)

An access control matrix that assigns attributes for each subject with
respect to each object

The current accesses (which subject is accessing with object with what
permission) that are authorized at that point in time

5

The Classification of objects defines “how secret” objects are. Objects not only are
associated a classification through the use of a label, but also a Category which
confines it into a compartment.

The tuple (Classification, {set of categories}) is called a Security Level

The idea behind dominance is that a level (l1,c1) dominates a level (l2,c2) if:
- the label is higher (i.e., the label l1 denotes more secrecy than the

label l2)
- and the categories in c2 are a subset of c1 � the categories in lower

levels always allow access to less categories

(D, {}) dominates (S, {}) � TRUE: Doctor is a higher classification than Surgeon

(S, {}) dominates (N, {RESULTS}) � FALSE: Surgeon is a higher classification than
Nurse, but this Nurse can see more than the Surgeon (The nurse can see RESULTS
while the Surgeon cannot). The second condition is not fulfilled. There is no
dominance relation between these categories

(S, {DEMOGRAPHICS,RESULTS}) dominates (N, {DEMOGRAPHICS}) � YES: Surgeon is a
higher classification than Nurse, and the Surgeon can see more information than the
nurse

(D, {ANALYSIS,RESULTS}) dominates (S, {DEMOGRAPHICS}) � FALSE: Doctor is a
higher classification than Surgeon, but this Surgeon sees different information. The
second condition is not fulfilled. There is no dominance relation between these
categories

What level dominates them all? � The level (Doctor, {DEMOGRAPHICS, ANALYSIS,
RESULTS}
What level dominates only itself? � The level (Admin,{})

7

A way of reasoning about dominance is to draw the dominance lattice. It represents
dominance relationships between Security levels on both aspects: labels and
categories.

Note that dominance is transitive. If
(S,{CRYPTO, NUCLEAR}) dominates (S,{NUCLEAR}),
and (S,{NUCLEAR}) dominates (C,{NUCLEAR}),
then (S,{CRYPTO, NUCLEAR}) dominates (C,{NUCLEAR}).

As we saw in the previous slides, there is one level that dominates all the other (top)
and one level that is dominated by all (bottom).

Also note that there is no total order between security levels. Some of them have no
relationship!

(S,{NUCLEAR}) has no relation to (S, {CRYPTO})

The Clearance for subjects defines “how secret” objects they can access. Besides
their overall clearance, subjects can act with a lower level (called current level).

The ss-property fundamentally says that a subject can only access objects whose
classification are dominated by the clearance of the subject. In layman terms, the
subject can read objects with lower classification than its clearance.

This property is also known as No Read Up, as it says that subjects cannot read
anything above their Clearance.

This general, whose Clearance is secret, can Access documents that are Secret,
Classified, and Unclassified, but not Top Secret.

[Note that for simplicity in this slide (and the next ones) we skip the categories, but
the dominance relationship would apply]

The problem with just forbidding people to not read up is that, if you have a
malicious user that can read high level classified information, it can copy this
information to a lower level. Then, subjects with less Clearance, who by the ss-
property could not read this object now are actually allowed to read.

To solve this issue, BLP has a second property: *-property. This property says that if a
subject can observe an object at a Classification level, then this subject can only
modify object in higher levels. Note that, since the Clearance of this subject will not
allow them to read those levels (ss-property, No-Read-Up), this subject can only
append to higher levels.

In other words, what this property says is that subjects cannot write in clearance
levels lower than theirs, so that they cannot leak information.

Regardless of the subjects clearance levels, information should only be known on a
need to know basis! (Least privilege principle)

Thus, the system has an access control matrix that establishes which subjects can
access with objects (provided that the access is permitted by the MAC policy, of
course).

Using the DAC, the system can also protect the integrity of objects by forbidding
subjects from writing on them.

With these three properties, one can reason about the security of the system.

Every time there is a state transition (recall that a state is the current access
permissions, the access control matrix, and the cleareance/classification): one can
decide whether the new state is secure.

Even if the rules are respected, there can still be information leakage from higher
levels to lower levels:
- s2 creates o2 – This is allowed, s2 is not writing down. The level of o2 is C.
- s1 sets his current level as C and reads o2 in C – This is allowed, s1 is not reading
up.
- s1 may change the level of o2 – This is allowed, BLP says nothing about changing
objects’ level
- s2 attempts to access o2 in C – This is allowed, s2 can read in C because it is s2’s
clearance level

The fact that the file is still there when s2 tries to access it can leak one bit of
information (e.g., s1 tells s2 that when the troops will start moving he will make o2
disappear)

There are many possible covert channels in a system. These channels are enabled by
shared resources that can be accessed by subjects with different clearance levels.

This reminds us that violating the principle of Last Common Mechanism is opening
the door to problems.

To eliminate covert channels one can:
- Isolate the high level: once information is up, do not let it go down

(or limit this channel to minimum capacity). This however, it is not practical as
working without acknowledgemets is very hard

- Add noise to communication: add fake interaction between high and
low levels so that real intended covert channels cannot be distinguished from
random noise.

None of this option completely eliminate covert channels, it just slows them down a
lot. But even 1 bit/second, which seems like a lot if we are trying to leak a 3Mb
document (more than 1000h to download), is not much when we consider
cryptographic keys (512 bits for symmetric cryptography – 8 minutes; or 2048 for
asymmetric – 34 minutes).

This is why cryptographic keys are typically stored on dedicated secure hardware
with very limited APIs.

To illustrate that not allowing level changes is problematic think of the example in
the slide. If there is NWD, how will the General communicate with the soldiers after
he has seen any secret document?

To enable communication with lower layers, which is essential and very normal in
computer systems, one needs to include a Declassification process. Declassification
is the process by which an object at a higher level is cleaned from information so that
it can be passed down to lower levels.

It must be noted, however, that it is very hard to rule out any information leakage,
whether it is intentional (via a covert channel) or non intentional (see next slide)

BLP has three main problems:

- It only cares about confidentiality. Although the ds-property can be used to deal
with integrity, BLP itself does not provide any integrity or availability protection

- The transitions enabled by the model are very low level to represent practical
scenarios (one may need many transitions to represent a common operation); and
the model is not expressive to deal with other security properties

- The three properties still do not guarantee that confidentiality is achieved

22

In the previous block we talked about Bell-La Padula. The main goal of this model is
to ensure confidentiality of documents. Confidentiality is relevant in certain
environments where secrecy is the top priority. We can think of military of
government entities for which it is more important that the documents they hold are
not read by others that are not modified.

In other environments, and in particular, for many entities with which we interact in
our daily lives, confidentiality is not the first priority. For banks, registries, shops,
confindentiality is important but not the main concern. Here, the main concern is the
integrity of the accounts. It is indeed bad press if your accounting is made public, but
what is really crucial is that your accounting is correct and has not been modified.

The need for integrity is not only important for commercial and economic activities.
It is in fact key for computer security. Recall that the security of the system relies on
the TCB. Therefore, the integrity of the TCB needs to be maintained!
Another example is Public key cryptography. As we will see in the applied
cryptography lecture, if the encryption keys are corrupted during exchange one
cannot guarantee anymore that only the intended receiver can see the information.

Similar as in BLP, in Biba subjects and objetcs are assigned an integrity level

There are two operations (as opposed to four). For instance, executing is not
considered.

The two key properties are the dual of BLP:
- high level subjects should never see information of lower levels, so as not corrupt

their vision
- for the same reason, low level subjects should never write in high levels so that

they cannot pollute the high-integrity information

Summary of the Biba model:

High integrity subjects can write down, but cannot read from down

Low integrity subjects can read from up, but cannot write up

If a subject (e.g., a process) needs to interact with an object in a lower level, then its
current level is downgraded to low.

You can see this as a similar operation as “sandboxing”. Execute the process with
dirty information in a safe environment.

A problem with this process is that you could have a label creep problem in which all
the subjects would end up in a lower level, or one subject is continuously lowered,
and no-one can write in a higher level anymore

If a subject “pollutes” an object with information (by writing on it) this object is
automatically downgraded to the level of the subject to avoid problems.

This policy does only allow for integrity violation detection. The file cannot harm, but
the tampering has happened.

An option to avoid prevent the tampering is, instead of downgrading the real object,
replicate it. After the operation has happened either sanitize and upgrade (see slide
below) or just delete the replica.

To avoid limitations, BIBA also allows the action invoke, so that subjects can interact
with objects at other levels, but still protecting the object:

Here the Director acts as protection (can run checks or deny operations) for the
object that the Teller needs to write on.

Invocation can be in one of the two directions:
- Simple invocation: High level invoke low level, hence protecting high level data.
This has the problem that it is unclear which level the modified object has: low as the
principal that performed the action, or high as the action was requested by a
privileged principal?

- Controlled invocation: Low level invokes high level. The high level can act as
protection, and in principle act as a warden to prevent the corruption of high
integrity data but… we know it is hard to check that no secret/bad information is
actually being written to the high integrity objects.

Remember that we cannot know the full extent of the Universe of bad things.
Therefore, checking whether an input is in that universe in order to reject is not a
good practice. Your blacklist is never guaranteed to be complete.

The good practice is to check whether the inputs are part of the Universe of good
things, which is actually well defined and much smaller.

Even if an input complies with the rules of the good things, it does not mean that
there is no covert channel. As we know, they hare very hard to avoid.

Three principles that help designing and implementing security mechanisms that
provide strong integrity.

- The principle of separation of duties is also known as “segregation” or “dual
control”. It implements the “separation of privilege” security principle. Why is this
principle a good way to ensure integrity? when more than one entity is involved in an
operation it is harder for one single entity to tamper with the integrity of the system
and its outputs.

Examples:
- Accountant records payments / income, and stores checks deliveries/sales.
The two must match!

- Both sides of a transaction need to keep a record, and the records must
match (legal receipts)

- Two officers are required to launch a missile

- Developers should not also be operators

The principle of rotation of duties limits the time a principal is responsible for an
action. The least time a principal is responsible for an action, the least opportunities
this principal has to tamper with this action. This also implements in a way the
separation of privilege principle, in the sense that for each action there are more
than one principal responsible over time. In addition, as new principals become
responsible, they act as auditors of the previous principals increasing the chance of
detecting misbehaviour.

Examples:
- Guards appointed for a single (random) shift to guard the bank safe

- Tellers changed over time so that they cannot fiddle with accounts

An final principle to increase the chance of detecting misbehaviour, and recover from
integrity problems, is the use of logging. This in fact implements the principle of
“Compromise recording”.

Secure logging means that the log itself is tamper resistant: i.e., a principal that can
tamper with the system integrity cannot change the value of the log to hide her
actions.
To enable secure logging it is important to consider the Separation and Rotation of
Duties principles.

Examples:
- Log of transactions inside the ATM machine.

- Cash till has an internal log.

- Notaries maintain logs of transactions and contracts.

- Bitcoin!

32

As in BIBA, one can also have sanitization to enable flexibility in Chinese Wall models.
While some information learned from Pepsi should never get to Coca-cola via IBM,
one can sanitize (remember, this is hard) some of the inputs to IBM so that Alice can
actually work with more clients!

Biba focuses on integrity, but having integrity helps bootstrapping systems that have
other properties:

- High integrity of public keys is essential to create systems that enable
high confidentiality, such as in Public Key Infrastructure (see Applied cryptography
and Network Security lectures)

- High integrity of logs is essential for replication to be useful and
provide high availability.

