
Computer Security (COM-301)
Discretionary Access Control

Carmela Troncoso

SPRING Lab

carmela.troncoso@epfl.ch

1

Simon says

Simon is the owner of Color OS, a simple OS that has 4 files: red, yellow,
green, and blue.

Simon says that a user Harry can read the file red, can write yellow, and can
read and execute blue. What is the capability that Simon should give to Harry?

(a)
red: {(Harry, read, no write/execute)}
yellow: {(Harry, write, no read/execute)}
blue: {(Harry, read/execute, no write)}.

(b)
red: {(Harry, read)}
yellow: {(Harry, write)}
blue: {(Harry, read/execute)}.

(c)
Harry: {(red, read), (yellow, write), (green, -), (blue, read/execute)}

(d)
Harry: {(red, read), (yellow, write), (blue, read/execute)}

The correct answer is (d).
The options (a) and (b) are not capabilities, and (c) has an empty slot. Recall that
negative permissions are not included in capabilities to not waste space.

2

Confusion

Which of the following security violations is NOT caused by a confused deputy?

(a) A hacker gains access to a user’s social network account by getting the user’s
browser to send the hacker this user’s credential

(b) A virus infects an email client to send spam

(c) A journalist tricks a banker into revealing the bank statements of a famous singer

(d) A detective leaks information to a criminal using a covert channel

(D) The detective is no tricking any privileged process into doing something against
the security policy

3

Principals: Customers (N principals of type customer), Admin (bar owner)
Objects: rows in the database. Rows contain the telephone number, and the dates
[You could also justify rows contain other personal information, though it does not
appear in the question]

Customers must have access to their own row to write / append the days of the visit.

1 computer for the whole Bar: ACLs and capabilities would be ok. One could even say
ACL is more robust as it avoids delegation (Customer A adding a date on Customer B’s
row if Customer B gives A their capability). This would depend on the threat model
under consideration.

M computers non connected: ACLs become hard to manage, as now the permissions
are distributed. To revoke/add a permission you need to go to all computers. A
capability would allow you to centralize the permission control in that capability. (of
course, there is still the delegation problem, that in a real case you would have to
weight against the complexity of maintaining the ACL).

We are back in COVID times, and contact tracing is needed.

You are setting up a new Bar in Lausanne, and have one
computer for people to give their phone numbers. To make it
easy you let them register (create a row with their phone
number) and then only add the date where they visit the bar.

Is ACL a good solution to manage access to the database?
(to avoid that users can influence the contact tracing process)

And if instead of one computer you have one computer per
table but they are not connected to the internet?

To ACL or not ACL

Alice writes a small application msg to allow other users to leave messages for her. The application works
such that executing ‘ msg string ’ writes string into msgfile.txt , as described by this
pseudocode

program msg(string input)
{

file = open("msgfile.txt","a"); // open messages log with append rights
write(input+'\n',file); // write input in messages log
close(file); // close messages log
exit;

}

Alice shares this messenger with Bob, and creates a group Alice+Bob to manage permission. What is the
correct (Linux) permission configuration for Alice and Bob to be able to converse securely. Securely for Alice
means that she wants to be sure that the integrity of the conversation is preserved, and no one else can
read her messages with Bob.

---------- Alice Alice+Bob msg
---------- Alice Alice+Bob msgfile

Building a messenger

Two propositions:

 -rwx--x--- Alice Alice+Bob msg

(1) -rwx------ Alice Alice+Bob msgfile

 -rwx--x--- Alice Alice+Bob msg

(2) -rwx-w---- Alice Alice+Bob msgfile

What is wrong with each proposition? Propose a solution.

Building a messenger

Proposition 1: Bob cannot write in Alice’s file!
Proposition 2: Bob can overwrite Alice’s messages!

Solution: “setuid” mechanism:
The solution is to let Bob execute msg as if he was Alice. For this we can set the suid bit s

-rws--x--- Alice Alice+Bob msg

-rwx------ Alice Alice+Bob msgfile

 When the suid bit is set, when the program is executed it runs with the permissions of the
owner. When the program ends, the permissions are returned to normal.

Now, when Bob executes msg, it will run with Alice’s permission. Thus, it can open msgfile
and write the message. When the message end, Bob cannot write on the file so he cannot
overwrite Alice’s messages.

Like with any other program, it is very hard to know if the program is doing only what it is
meant to do. Thus, setting suid on root programs is very dangerous, as they run on the TCB! If
something goes wrong there are no more protections

