m

e AN
PrL SPRING

Computer Security and Privacy
Access Control

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Ninghui Li

m

e AN
PrL SPRING

Computer Security and Privacy
Access control Introduction

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Ninghui Li

What is “access control”?

b Bt

Access control is a concept that we have in the physical world, where we often have
resources to which not everyone should have access.
In the physical world, we have many means to restrict access to resources (e.g., keys to

access homes or cars). Sometimes these physical means rely on digital support (e.g., access
via CAMIPRO card).

What is “digital” access control?

AccEss CONTROL: Security mechanism that ensures that
“all accesses and actions on objects by principals are WITHIN the security policy”

Example questions access control systems need to answer:
- Can Alice read file “/users/Bob/readme. txt”?
- Can Bob open a TCP socket to “http://www.abc.com/”?
- Can Charlie write to row 15 of the table GRADES?

v X

“authorized” “unauthorized”
“has permission” “access denied”

Only events within the security policy

The most basic security mechanism is access control. This mechanism’s goal is to ensure
that every action in a system (reading a file, writing on a socket, accessing an entry on a
database, ...) always respects the security policy.

If every action respects the security policy, then the system is secure (of course, within the
threat model considered by the security policy).

Given a tuple “principal-object-action”, an access control mechanism returns one of two
outcomes:

- action authorized, meaning that the principal has permission to execute the action.

- action unauthorized, meaning that the principal has been denied access to the object in
question.

Why is so important to learn about access
control?

Access control is the first line of defense. Thus, it is used everywhere

Applications
Online Social Networks, Email server, Cloud storage

Middleware
Databases Management Systems (DBMS)

Operating System
control access to files, directories, ports,...

Hardware
Memory, register, privileges

Access control is also the most pervasive security mechanism. You (or your computer, or
your phone) use it everyday. From the application level, exposed to the user, where the
system decides whether a user has access to a resource, to lower levels: middleware
supporting applications (e.g., deciding which database tables can be accessed), operative
systems (e.g., deciding which ports), and even hardware that controls which parts of the
memory can be accessed.

Access control is a cornerstone of computer security, and it is very important to get it
correct when engineering security into systems.

Where does access control (usually) fit?

@%.*

The system needs to bind the actor The system needs to decide whether
to a principal before authorization the principal is authorized
abstract entity that is authorized to act | The mechanisms that do
Access control authentication and

(users, connections, processes)

authorization are in the
Trusted Computing Base!

Access control helps the system decide about whether to authorize a principal (in the
example the minion Bob) to access a resource to execute a particular action (in the
example write on a database).

Authorization refers to a tuple principal-access-object. As such, it needs to know who is the
principal! The security mechanism to bind a principal to the actor that wants to perform
the access is called Authentication and we study it later in the course.

Both authentication and access control are key mechanisms to enforce the security policy.
If authentication or access control fails, the security policy is breached. Thus, these
mechanisms must be inside the TCB.

Implementing access control

What NOT to do: “Checks soup”
- All over the program, add checks

- implementing the decision in-line based on the policy

#some code that needs to access file3.txt

if (action == read) and ((userID == Alice) or (userID == Bob) :
open (file3.txt, ‘r’)
elif (action == write) or (userID == Bob) then:

open (file3.txt, ' w’)
else:
print (“The user does not have access to file3.txt”)

Some advice on implementing access control:
Do not check everywhere in a program!

1) Itis prone to errors. What if you missed any permission? How to check correctness or
debug?

2) Itis very hard to change. If anything changes in the policy one has to go in the code and
find every place the check is made. What if we have thousands of lines of code?

Implementing access control

What you SHOULD DO: Systematic calls to “reference monitor”

- All over the program add checks that call the monitor
- Checks authorisation required, and provide evidence as to the principals and objects
- “Central” subsystem establishes whether the checks pass or not

Apache Shiro
https://shiro.apache.org

if (subj j sPermittad(® . Jsmith®)) (Least common
1 su. ect.isPermitte: user:delete:jsmith” o
//delete the ‘jsmith’ user mechanism??

} else {
//don’t delete ‘jsmith’
}

What one should do is to have one only place where everything is checked. This central
system is called the Reference monitor.

The reference monitor indeed violates the least common mechanism principle. If the
reference monitor fails or is compromised, the security policy can be breached. On the
other hand it fulfils economy of mechanism, as it keeps the access control in one place
where it is easy to check. It also supports the principle of complete mediation, as ideally
should check that subjects have permissions to perform all actions.

This is one example of a case where not all principles can be followed at the same time,
and the one that is better for security is used.

Who decides the access policy? Two approaches

DISCRETIONARY AccEss ConTroL (DAC) MANDATORY Access ConTroL (MAC)
- Object owners assign permissions - Central security policy assigns permissions
- Ownership of resources - Organizations with need for central controls
- Windows, Linux, macOS - Military — focus on confidentiality
- Social Networks - Hospital environment — focus on confidentiality

and integrity
- Banking — focus on integrity

f :

STRAVA 100 -

An important question regarding access control is who decides which principals are
authorized to have which access to which objects. There are two main alternatives:

In Discretionary Access Control (DAC) the permissions of one object is decided by the
owner of that object. Not all objects are owned by the same entity, i.e., there is not one
central authority. Objects are typically owned by users, who decide the permissions on the
object. As systems tend to have a very large amount of objects, it is common that instead
of allowing owners fine-grained access control decisions, they can choose from a pre-
defined set of options.

- This is the access control mode for operative systems, such as Windows or Linux, which
we revisit later in this lecture.

- This is also the access control mode for social networks, where users decide which other
users have access to the content they publish on the network.

In Mandatory Access Control (MAC) the decision is made by a central authority. This
authority defines the permissions assigned to each principal with respect to each object.
Mandatory access control are typical to organizations in which decisions need to be made
centrally and affect all the individuals in the organization (it is a system-wide policy).
Depending on the needs of the organization, the MAC policies focus on one or more

security properties:

- Military organizations have strong focus on confidentiality. In these organizations the most
important property is that secret information is not accessible to lower rank members.
Integrity of course is also important, but on a lesser level. It is better that the battle plans are
corrupted or deleted, than they are leaked to the enemy.

- Hospitals have strong needs for both integrity (keeping the information unchanged, and
not modified by unauthorized parties), and confidential (ensuring that patient medical
records are only accessed with those with need to do so in order to deliver medical
treatment).

- Banks most important requirement is integrity. The accounting must not be tampered with
by any unauthorized party! Confidentiality of course is also important, people should not
learn about others earnings and expenses, but the leakage of this information is less critical
than a modification of the bank records redistributing money among users.

m

e AN
PrL SPRING

Computer Security (COM-301)
Discretionary Access control

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Ninghui Li

10

Implementing Discretionary Access Control

’S—— How??
Object owners assign permissions Permissions establish which subjects can access which

- Ownership of resources objects
- Windows, Linux
- Social Networks But in a system there are many subjects and objects.
’ There can be many subjects, many objects, and many
. RAVA combinations of permissions combining subjects and

objects, how can we handle?

Discretionary Access Control policies are often
conceptualized as an Access Control Matrix

In Discretionary Access Control (DAC) the permissions of one object is decided by the
owner of that object. Not all objects are owned by the same entity, i.e., there is not one
central authority. Objects are typically owned by users, who decide the permissions on the
object. As systems tend to have a very large amount of objects, it is common that instead
of allowing owners fine-grained access control decisions, they can choose from a pre-
defined set of options.

- This is the access control mode for operative systems, such as Windows or Linux, which
we revisit later in this lecture.

- This is also the access control mode for social networks, where users decide which other
users have access to the content they publish on the network.

DAC policies are typically conceptualized as an Access Control Mac

The Access Control Matrix

AccEss CONTROL MATRIX: an abstract representation of all permitted triplets
of (subject, object, access right) within a system

Subjects (principals): entity within an IT system

a user, a process, a service

Objects(assets): resources that (some) subject may access or use

a file, a folder, a row in a database, the system’s memory, a machine in the network,
a printer, a page in a website

Operations: in abstract, subjects can observe and/or alter objects
read, write, append, execute

B. Lampson. Protection. Proc. 5th Princeton Conf. on Information Sciences and Systems, Princeton, 1971.
Reprinted in ACM Operating Systems Rev. 8, 1 (Jan. 1974), pp 18-24.

Access control is complex. The number of principals and objects in a system is huge. To
reason about the permitted triples, in 1974, Lampson introduced the access control matrix.
An access control matrix M has |S| rows, one per subject in the system; and |O| columns,
one per object in the system. Every element Mg, of the matrix is an access operation (read,
write, execute, replace, delete, etc). It specifies if the subject in row s is authorized to
perform the given operation on the object in row o.

12

Access Control Matrix - Example

S ... Alice, Bob
0 ... filel, file2, file3
A ... read, write

Access control matrix:

Can Alice read file1?
Can Bob write file1?
Can file3 be written by Alice?

filel file2 file3

Alice read
X read

write
Bob read read
write write

Here we have an example with:
- Two subjects: Alice and Bob

- Three objects: filel, file2 and file3
- Two possible access operations: read and write

The access control matrix says that:

- Alice can read and write on filel, and read file3, Alice cannot do any action on file2

- Bob can read and write file2, and read and write file3 , Bob cannot do any action on filel

Answering the questions:

- Alice can read filel

- Bob cannot write filel

- Alice cannot write on file3

The Access Control Matrix is an abstract concept

Not suitable for direct implementation!
what if there are thousands of files or hundreds of users?

1 O(f-u)
1 bit per file, 1 user 78KB
3 bits per file, 1 user 236KB
3 bits per file, 10 users 2.36MB

Two more issues:
usually very sparse — extremely inefficient
error prone — hard to have a global view

The Access Control Matrix is a great abstract way to reason about permissions, but storing
it as in the definition is impractical. The size of the matrix is in the order of f*u, where fis
the number of files in the system, and u is the number of users. As soon as one of the two
number grows a little, the matrix size grows very fast.

There are two more issues that hinder the implementation of the matrix:

1) Itis very sparse: typically each user has access to a “handful” of files (a small
percentage of the total files in the system). Thus, most of the matrix is full of empty
entries indicating that the user does NOT have permission to access a file. Thus, most
of the huge size of the matrix is dedicated to non useful information.

2) Filling such a sparse, large, matrix is error prone: it is hard to keep a global view of the
full system and make sure that no permission is entered in the wrong entry.
Implementing checks to ensure that the ACM is always correctly filled may be as hard
as establishing the matrix itself.

We will see two ways of implementing the matrix: associating permissions to objects
(follow the matrix columns) or associate permissions to subjects (follow the matrix’ rows)

14

Access Control Lists (ACLs)

Associate permissions to objects

filel file2 file3
Alice 'e"f‘td read Permissions are associated to objects
write
Bob read read f%lel: { (Alice,read/wxjite) }
. X file2: {(Bob, read/write)}
| write write .
1 file3:
{ (Alice, read), (Bob, read/write)}
can store close/with the resource g'?cu:: :o chz(_:tk EI’It .“‘r’]‘:'"‘ef
easy to determine who can access a resource iicutt to audt al rights of a user
difficult to remove all permissions from a user

easy to revoke rights by resource (better remove authentication!)

difficult delegation

A first option is to store the matrix taking information in columns, i.e., associate the
permissions to objects. This is called an object’s Access Control List (ACL). For each object,
the ACL contains a tuple for each subject expressing the permissions of that subject for the
object.

For filel, the ACL contains filel: { (Alice,read/write)}
indicating that Alice has read and write permissions on filel.

Note that, as Bob has no permissions the ACL for filel contains no
information about Bob!

ACLs have the following advantages. They can be stored with the resource (and sent with
the resource), and thus it is easy to quickly determine who has access to the resource. It is
also easy to revoke permissions by resource: one finds the ACL close to the resource and
eliminate the permission.

ACLs also have drawbacks:

- They are difficult to check at runtime, as in many cases it is not clear who is the subject
accessing (see confused deputy below)

- It is difficult to audit all rights of a user (one has to go file by file checking if the user has
some rights! This grows linearly with the number of files). This makes also very difficult to
remove all the permissions of a user (error-prone process). If this needs to be done, may be

easier to delete the user as a whole, e.g., by revoking his authentication credentials (see

Authentication lecture).

- It is difficult to delegate permissions. As it is hard to associate a permission to a user, it is
also difficult find out whether a user has permission to delegate, and then difficult to
temporarily assign a permission to other user (as it is difficult to remove this permission

later)

18

Role Based Access Control (RBAC)

Systems have too many subjects! that come and go!
Large dynamic ACLs ‘&

Subjects are similar to each other: assign same rights
e.g., a doctor has the same privileges as another doctor

1) assign permissions to roles

2) assign roles to subjects

3) subjects select an active role — they have the permissions of the active role

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-Based Access Control Models. IEEE Computer, 29(2):38--47, 1996

Real systems may have a lot of users, whose permissions change over time (imagine
Facebook’s ACLs), so we end up with very large ACLs that are unmanageable.

To make the management easier, a firs alternative is what is called Role Based Access
Control (RBAC).

Under the observation that subjects are similar in terms of permission (e.g., all doctors
have the same privileges, all generals have the same privileges), one can group permissions
by role.

RBAC systems work as follows:

One creates roles, and assigns permissions to roles.

Each subject is assigned one or more roles. For instance, Alice the surgeon
can have both Doctor and Nurse roles so that she can see all the information from her
patients.

At each point in time, subjects selects one role and acts with the
permissions of that role. This prevents users from misusing privileges (or enforce least
privilege). For instance, when Alice is acting as a Nurse, she can read the patient’s
treatment but she cannot write the patient’s treatment. If she changes her role as Doctor,

then she can do both.

19

RBAC Problems

Problem 1: Role Explosion
- Temptation to create fine grained roles, denying benefits of RBAC

Problem 2: Simple RBAC has limited expressiveness
- Problems with implementing least privilege
- Some roles are relative: “Carmela's Doctor” vs. “Any Doctor”

Problem 3: Difficult to implement separation of duty
- “Two doctors are needed to authorize a procedure”
- RBAC Mechanism needs to ensure they are distinct!

Problem 1: In order to accommodate all requirements of a system, and small differences
between different subjects, one may be tempted to create new roles all the time. When
there are too many roles and they end up being almost one role per each user, then the
gain in having roles is lost. We still have a very complex system, almost equivalent to an
ACL.

Problem 2: If RBAC keeps its advantage (a small number of roles), then it is not very
expressive and may lose nuanced cases. For instance, though all doctors have similar
privileges regarding patients, they only should be able to see medical data of the patients
they treat.

Problem 3: It makes it almost impossible to implement the separation of privilege
principle. As all subjects assigned to a role are the same to the system, the system does not
have the means to see if there are one or two users to enforce the separation of privilege.

Group Based Access Control

Systems have too many subjects! that come and go!
Large dynamic ACLs &

Observation: Some permissions are always needed together
e.g., access to sockets and network interface always go hand in hand

1) assign permissions to access objects to groups
2) assign subjects to groups
3) subjects have the permissions of all their groups

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-Based Access Control Models. IEEE Computer, 29(2):38--47, 1996 21

Another option, instead of looking at similarity between users, is to look at of permissions
that are often needed together to run the system. These permissions are then put together
in so-called groups.

Group based access control

Negative permissions to implement fine-grained policies

mmmwread eeeees »write — read/write

Alice Bob subjects

Negative groups

permissions \ | o —~

objects

What would you check first: Negative permissions or group permissions?

Sometimes it makes sense for a subject to belong to a group, but this subject may not be
allowed to access one of the resources in the group by the security policy.

In this case we can implement what are called negative permissions, which indicate that a
particular subject does not have a particular permission on an object. For instance in the
example Alice needs access to file2 and file3, so groupl makes sense for her; but she
should not read or write on filel. Instead of creating a new group, or breaching the security
policy, we can add a negative permission that indicates that

Negative permissions should always be tested first. If there is a negative permission, there
is no need to check anything else. It guarantees that there is no error when checking and
obtaining some positive permission (fail safe: if something is incorrect, the subject cannot
access).

Capabilities

Associate permissions to subjects

filel file2 file3 . . .
Permissions associated to subjects
Alice read
rite. read Alice:{ (filel,read/write), (file3, read
Bob:{ (file2,read/write), (file3,write)
Bob read read
write write
can store with the subject (portable!) revoking permission on one object is hard
easy to audit all subject permissions x transferability, once the capability is given

how can we prevent sharing?
authenticity, how to check?

delegating is “simple”

Mark S. Miller , Ka-Ping Yee, and Jonathan Shapiro. Capability myths demolished. Technical Report SRL2003-02, Johns Hopkins University
Systems Research Laboratory, 2003 2

A second option is to store the matrix taking information in rows, i.e., associate the
permissions to subjects. This is called a subject’s Capabilities. For each subject, the
Capabilities list contains a tuple for each object expressing the permissions for that object
of the subject.

For Alice, the Capabilities contains Alice:
{(filel, read/write), (file3, read) } indicating that Alice has read and write
permissions on filel, and read permissions on file3.

Note that, as Alice has no permissions on file2, Alice’s capabilities contains
no information about file2!

Capabilities have the following advantages. They can be stored with the subject, and thus
are “portable” to the subject — this is an advantage, for instance, in distributed systems
where not all objects are on the same place. The subject can show her credential to any
subsystem or node and prove her permissions. In this case it is easy to know all the
permissions associated to a subject. Also, delegating is simpler. As the subject has the
capability list it suffices with giving it to other subject to transfer the permission. This of
course has also problems (see below)

Capabilities also have drawbacks:
- Revoking just one permission is hard. The search for the permission is linear with the

number of objects of a user.

- Transferrability makes delegation easy, but how to ensure that transfers are only made in
legitimate ways? What if Alice transfer to Bob her permission to read filel, which is not in
the ACM. This would break the security policy.

- When the permissions reside with the subject that shows them, how do we check
authenticity (this is similar to the authenticity problem of concert tickets).

28

A recurrent problem in access control

AMBIENT AUTHORITY is used by a subject if for an action to succeed it only needs to
specify the operation and the names of the involved object(s)

In these cases the subject (with authority) is implicit

open(“filel”, “rw”) The program cannot check permissions!
(the subject is missing, it is understood it is the process owner)
/ no need to repeat the subject all the time (usability)

x least privilege becomes harder to enforce
confused deputy problem!

The concept of Ambient Authority refers to the situations in which when performing an
action in a system, we do not specify the subject, but only the operation and the object on
which it is performed. The subject, which is needed to decide whether the operation on
the object is permitted or not is implicit, usually from environmental conditions. For
instance, when we writing a file, one does no specify which user is opening the file, just
“open”, “file”, and for what operations “rw”. When the program is run by a user, it has the
permission of this user. The user in this case is the Ambient Authority.

The use of ambient authority simplifies program design and usability, by not having to
associate a user to the instructions and not having to repeat it for every instruction.

However, the lack of subject is troublesome. Since sometimes the authority is not clear, it is
hard to enforce least privilege.

31

The confused deputy problem

Problem with ambient authority:
A privileged program can be tricked to misuse its authority
(Confused deputy problem)

ACL generally considers ambient authority, since permissions are usually checked for the
user running the program (the ambient authority)

In Capabilities the capability itself contains the identity of the principal. Thus, there is no
ambient authority.

A confused deputy is a privileged principal that is used by another less privileged principal
to improve her access to the system

32

The confused deputy problem

Security breach!!

Confused
deputy

A group of students want to enter a classroom but their CAMIPRO cards do not have access

They can try to break the lock, or break EPFL central services to get access. These are
difficult.

Alternatively, they can try to get a new professor that does not know very well who has
access to what to open the door with their very privileged badge.

In this case the professor is the Confused Deputy

35

The confused deputy Toput | output | biLl

Alice write read read
PAY-PER-USE COMPILER

¢ il d read read
- Compiler receives (input, output) ompiler rea write write

- Compiles the program input and:
writes usage intobill
writes errors into output

ACL

input: {(Alice, write), (Compiler, read)}
output: {(Alice, read), (Compiler, read/write)}
bill: {(Alice, read), (Compiler, read/write)}

CAN ALICE CHANGE THEL111?
AND AVOID PAYING?

1. Compiles input
2. Writes errors in output=bill

(input,bill) Pay-per-use

Ali > .
ice Compiler

bill is corrupted!!!

In @ computer environment.

Assume a compiler as a service, where users pay per use. The compiler works as follows:
1) it receives two files:

input: the file to be compiled

output: a file where compiling errors are written to help the user to fix
programming errors
2) and then it:

compiles the file input

writes a record of the compile process in a file called bi11 for billing
purposes

writes errors in the file output

Alice wants to compile without paying. Given the access control matrix, however, she
cannot change bil1 (she only has read permission). But what she can do is to try to
corrupt bi 11l so that no billing can be done.

For this, she uses the fact that the compiler does have write access on bi11. So, instead of
giving an empty file to collect the errors, she providesbill. The compiler does its job
and while compiling overwrites bill. Oncebill is corrupted, Alice cannot be billed

anymore as there is no record of her usage of the compiler.

In this scenario, the compiler acts as confused deputy. Its authority to write onbi 11 is
abused by Alice to avoid paying.

37

How to avoid confused deputies

Real problem. Ambient authority is used for convenience in many real systems,
OS services, web servers,...

Solutions:
1) Re-implement access control in the privileged process
2) Let privileged process check authorization for Alice.
3) Capabilities can help!

In the previous example...

- Compiler has capabilities to the file bil1.

- To compile Alice must give access to the debugging file output
- Cannot give a capability for writingonbill!
- Cannot confuse anyone!

The confused deputy, as we will see along the course, is a real problem any time there is
ambient authority (and this happens in many real servers).

How to avoid it:

1)

2)

3)

Have access control inside the privileged process: avoid the ambient authority. This is
very expensive and cumbersome., thus prone to errors.
Give the privileged process the means to check Alice’s permissions. There is ambient
authority (the process) but this authority can check whether the user invoking the
authority has the same permissions.
Use capabilities. When using capabilities instead of an ACL, there is no ambient
authority anymore. The permissions are explicit in the capability.

In the example, with capabilities Alice would show her capabilities to the

compiler to show that she can write in the debugging file output. As she does not have
capabilities for bi11, she cannot use it as output file!

Summary

Discretionary Access Control: owners establish permissions
Conceptualized as an Access Control Matrix
Implemented in two flavors:

Access control list: permission associated to objects
Capabilities: permission associated to owners

When relying on access control, it is always important to think about confused
deputies

40

= 2 4
PrL SPRING

M

Computer Security and Privacy
Discretionary Access Control
Examples: Linux & Windows

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Ninghui Li

41

Discretionary Access Control in Real life

We saw that many of the systems we use nowadays rely on discretionary
access control:

- Social networks

- Cloud file sharing systems

- Operative systems

Many of the systems we interact with in our daily lives rely on discretionary access control
to support their security policy.

In social networks, such as Facebook or Instagram, the user (owner) of the content
(resources such as posts, photos, videos) decides which other users have access to this
content.

In cloud file sharing systems, such as Google Drive or Dropbox, it is the same. The user
(owner) of the files (resources) decides with whom to share this content.

The same holds for Operative Systems (OSs). In OSs users have accounts, and files are
owned by those who create them. The owners are the ones that decide which other
users/accounts can have access to the file. We will now see how the most used OSs, Linux
and Windows, do this.

Unix: Principals & Groups

- User Identities (UIDs) and Group ldentities (GIDs)
- Originally 16-bit (now 32-bit) numbers.
- Special UIDs: -2, 0, 1, ...

- User Information
- Each user has own directory /home /username

- User accounts: /etc/passwd
username:password:UID:GID:info:home:shell

- Users belong to one or more groups
- Primary group (/etc/passwd), other groups (/etc/group)

In UNIX systems principals are users. Each user has an identity UID. There are some
reserved UIDs, which we will see in the following slides.
Users belong to groups, with identity GID.

User accounts are defined in a file /etc/passwd. Each line defines a user as
username:password:UID:GID:info:home:shell

info isacomment field that can contain some information about the user;

home, the absolute path to the directory where the user will appear when they log in;

and shell the absolute path to the default shell of the user

If users belong to more groups, it will be marked in the file /etc/group. There is
one line per group, and for each group we have the ID and the
list of users belonging to the group. Asinanygroup-based access
control, each group the user belongs to provides new permissions to the user.

Security Architecture

- Everything is a file
- Each user “owns” a set of files

- Each file as a simple Access Control List to express the access control policy to the file
- System files are owned by special users that can make system operations

- All user processes run by a user run with that user’s privileges
Ambient authority!!

In UNIX, everything is a file.
Files are created, and owned, by users (they can be created by the root user).

This file has an access control list that says who has access to the file and what operations
can they perform. System files are owned by special users which are the only ones with
privileges to operate on system files.

All processes run by a user have the privileges of that user (this is a very practical case of
the use of Ambient authority)

File Access Control Lists

- Files have ACLs attached to them
- Each file is assigned an owner UID and GID

- Each file has 9 permission bits
— 3 actions: Read, write, execute
— 3 subjects owner, group, other

- Different semantics between files and directories
- Directories: Read - List files, Write > Add file, Exec > “cd”

- 3 attributes: “suid”, “sgid”, and “sticky”

Permission bits (see next slide) provide permissions for the 3 groups in UNIX: the user, the
user’s group ,others.
The three permissions are read, write (modify or delete), execute

Each user owns their files and has access to them. UNIX has a very simple way of defining
who else has access by defining three groups:

owner: the group is formed just by the file owner

group: the file’s group

other: anyone that is not the owner or on one of the owner’s group(s)

When the file represents a directory the permissions change semantics:

- Read -> the user has the right to list the files inside the directory, i.e.,
executing the command “Is”

- Write -> the user has the right to create a file in the directory (by creating a
new file, moving a file, or renaming a file)

- Execute -> the user has the right to “move into” the directory, i.e., to
execute the command “cd”

Note: in practice, in Unix systems, one cannot read and write the files on the

directory unless the execution permission (x) is also active

Besides the 9 permission bits, there can be three attributes explained in slides below.

45

Example of UNIX ACLs

& R & O R\

N o‘) 2 QQO o
directories_ o & & ° D)
rwxrwxr-x 1 catronco catronco 4096 Sep 16 14:23 exampledir
-rwxrwxrw- 1 catronco catronco 8600 Sep 15 15:20 hello

-rw-rw-rw- 1 catronco catronco 150 Sep 15 15:14 hello.c

-rw-rw--w- 1 catronco catronco 45 Sep 15 15:07 testl.txt
links size last filename
modified

Owner can change permissions on files

+r, -W, §
chmod 1466 662 filename
+t or 1666, +s or 4666

The d at the beginning stands for directory. When there is no letter it is a file.

The next 9 bits are the permission read (r), write (w), execute (x), for owner, file’s group,
and others.

links — number of symbolic links to the file
The owner can change permissions on files with the command chmod. This command

receives as parameter the new permissions as either the letter representing the permission
(r,w,x) or attribute (s,t); or as a binary that expresses the ‘1’ bits.

UNIX Access control in action

Compare:
UID/GID of process trying to perform action
with:

state of file (Owner, Group, mode bits)

Order matters in the comparison
1. If UID says you are owner: check bits for owner.
2. If not owner, but your group is owner, check GID with bits for group.

3. Otherwise check bits for “other”

root useris never denied access

To decide whether an action can be performed, UNIX compares the UID/GID of the process
trying to perform the action (that of the user, remember ambient authority) with the
information appearing in the access control list of the file:

-rwxrwxrw- 1 catronco catronco 8600 Sep 15 15:20 hello

Depending of what your UID/GID is, it will use the permissions of owner, group, or other

If the UID is the one of the root user, the permission will always be granted

Super users

Special “root” user account
-UseriDO
- Access system files and special operations
- Can access anything: (almost all) security checks disabled
- root isin the TCB!!

The diference between sudo and su is that

sudo — executes one action as super user

su — changes the current user to another user. If there is no argument, it
changes to root, the super user € doing this is very dangerous, as any action you would
realize would not undergo security checks

To allow users to access systems files and services, there is the suid mechanism that we will
see in a couple of slides

Super users

Never login as root!

- Some distributions assign no password

- Use “sudo” or “su” command

Special “root” user account
-UseriDO
- Access system files and special operations
- Can access anything: (almost all) security checks disabled
- root isin the TCB!!

- Difference?

sudo su catronco)

".‘ = Normal users also need to access system services
() but these services need to run with system privileges
—
- suid/ sgid mechanism

The diference between sudo and su is that

sudo — executes one action as super user

su — changes the current user to another user. If there is no argument, it
changes to root, the super user € doing this is very dangerous, as any action you would
realize would not undergo security checks

To allow users to access systems files and services, there is the suid mechanism that we will
see in a couple of slides

Special rights: suid/sgid

Setuid and setgid bits serve to indicate that a file is not run with the
privileges of the launcher, but with the privileges of the owner user/group

Specially useful to run programs that require root, respecting the least
privilege principle, e.g., to change a password:

ls -1 /bin/passwd
-rwsr-xr-x. 1 root root 27768 Aug 20 2020 /bin/passwd

Special rights: suid/sgid

How do you know if a suid program does what it is meant to do? and only what it is meant to do?

-rwxr-xr-x 1 root root 3492656 Dec 4 2017 python2.7

Setuid Root programs are dangerous! (in TCB)

Chen, H., Wagner, D., and Dean, D. “Setuid Demystified”. In USENIX Security Symposium 2002
Kamp, PH., and Watson, R.N. “Jails: Confining the omnipotent root”. Proceedings of SANE 2000

When the suid bit is set, when the program is executed it runs with the permissions of the
owner. When the program ends, the permissions are returned to normal.

Like with any other program, it is very hard to know if the program is doing only what it is
meant to do. Thus, setting suid on root programs is very dangerous, as they run on the
TCB! If something goes wrong there are no more protections

Special rights: sticky bit

“Restricted deletion bit” (chmod +t)

Directories:
prevents unprivileged users from removing or renaming a file in the directory

unless they own the file
Example: /tmp folder. Users can only edit their own files

Files:
historically prevented program from being moved from swap for fast load

current: linux ignores the bit

It applies to directories, and it indicates that
1) the directory can only be deleted by the directory owner or the super

user
2) files in the directory can only be renamed by the directory owner or the

super user

The sticky bit is for instance on the UNIX /tmp, a folder share by all users where their
temporary files are stored (e.g., downloads from the internet). The sticky bit ensures that
only owners or super users can delete their own files

Special rights: Nobody

Special user (User ID -2) &
- owns no files ‘ ‘ h

- belongs to no user

- Safer user to execute code you do not know, particularly obfuscated code
- Limits damages if they misbehave / get compromised

The Nobody user can be used to sandbox programs. It owns no files and belongs to no
user, so even if the program is malicious and gains control of the user it gains no privileges.

What about Windows?

&0 O
] . EE
1985 990 1995 2001 2006-2009 2006 2012

Principals = users, machines, groups,...
Objects = files, Registry keys, printers, ...

Access control:

Each object has a discretionary access control list (DACL) Compare DACL with the
Each process (or thread) has an access token with process’ access token when
Login user account (process “runs as” this user) creating a handle to the object

All groups of which the user is a member(recursively!)
All privileges assigned to these groups

Windows also uses Discretionary Access Control Lists, one per object, that contain which
users have rights to access the object and for what actions

Processes have access tokens

that contain the login of the user account (as the process will run with this
user’s privileges

all groups of which the user is a member

the privileges of this groups

Tokens are compared with DACL of objects. If no permission, then no handle is provided.

What about Windows? DACL

List of Access Control Entries (ACEs)

Why negative first?
s

A Type: negative / positive

oact prevemyo Principal
E Grounn
Croup Permissions: more fine grained than UNIX

+ Flags and others...

e [

ACE
S [Evenone Tone
Read, exeoute Group A

Least Privilege by default
Run as administrator

https://docs.microsoft.com/en-us/windows/desktop/secauthz/dacls-and-aces

On the left a DACL. It contains different Access Control Entities (ACEs)

Each ACE expresses, for a login/group/everyone, the type of permission, and whether the
permission is negative (not allowed actions for the principal) or positive (allowed actions
for the principal)

ACEs with negative permissions are always first, so that they are check before positive
permissions, following the fail safe defaults principle.

By definition, as in UNIX, processes run on least privilege. In order to change the user must
run as administrator.

