
Computer Security and Privacy
Principles of computer security

(part I)

Carmela Troncoso

SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Emiliano de Cristofaro, Gianluca Stringhini

1

The security design principles that we will see in this lecture will be principles that one
must always try to follow.
Of course it may not be possible to follow all of them at the same time, but at least one
must consider them.
If one principle is not followed, one must have a good reason to not consider it, and one
must understand the risks associated with not following this principle.

Basic principles to build Security Mechanisms

“Principles guide the design and contribute to an implementation without security flaws”

READING: J. Saltzer and M. Schroeder. The Protection of Information in Computer Systems.
Fourth ACM Symposium on Operating Systems Principles (October 1973)
(Intro & Section 1)

https://www.acsac.org/secshelf/papers/protection_information.pdf 2

8 + 2 principles at the core of security engineering practices

Why should you care about principles from 1973

READING: J. Saltzer and M. Schroeder. The Protection of Information in Computer Systems.
Fourth ACM Symposium on Operating Systems Principles (October 1973)
(Intro & Section 1)

3

Keynote at Workshop on Artificial Intelligence and Security

2018

The security principles that Saltzer and Schroeder laid down in 1973 are not only widely
used to build secure systems, but are nowadays guiding principles to design secure and
privacy-preserving machine learning systems.
 These security principles are the bread and butter of every security engineer. Learning and
internalizing them is essential to design and implementing secure systems.

The first principle says that the security mechanisms must be as simple as possible. (Also
known as the KISS principle – Keep it Simple Stupid)

When security mechanisms are small and simple it is easy to check everything it does and
verify that the operations are correct.
Reasoning about the security of complex mechanisms with many dependencies, and
auditing them, is extremely hard. How do you know you have taken into account all of the
possible options?

Operational testing, such as one would do to test the functionality of the system, cannot
provide any security guarantees. Security is not about normal operation, and not even
about faulty operation (errors in the implementation or caused at random by the
environment). It is about what can go wrong when the adversary uses particular inputs on
the system, and one cannot test all possible inputs…
This is not to say that penetration testing, whereby one tries to find flaws in the design or
implementatoins is useless. The more things you try the more sure you are you have
covered a big surface of “what could go wrong”. But it cannot give you assurance that
nothing can go wrong.

The (desirably small) security mechanism in which the system relies on to maintain the
security policy is called the Trusted computing base (TCB)

1 - Economy of mechanism

Why?

It needs to be easy to audit and verify.

(operational testing is not appropriate to evaluate security)
[Penetration testing is valuable]

“Keep the [security mechanism / implementation] design as simple and small as possible”

4

“Trusted Computing Base” (TCB): Every component of the system on
which the security policy relies upon

The (desirably small) security mechanism in which the system relies on to maintain the
security policy is called the Trusted computing base (TCB)

By definition, if something goes wrong outside of the TCB security is not affected! The TCB
contains every component that must operate correctly for the security policy to hold. If
something goes wrong outside, the TCB is still working and thus the security policy cannot
be violated.

However, if the TCB gets compromised or fails, then the security of the system cannot be
guaranteed anymore

The “Trusted Computing Base” (TCB)

Every component of the system on which the security policy relies.

Hardware / firmware / software

5

If something goes wrong within the TCB the security policy may be violated

…and if something goes wrong outside the TCB?

The TCB is trusted to operate correctly for the security policy to hold

The only proper use of the verb “to trust” in Security Engineering:

“X trusts Y will do Z”

The TCB must be kept small to ease verification (economy of mechanism) and diminish
the attack surface

The insight behind this principle is that permissions are given after thought. If a permission
is given, we know that the principal is allowed to do the action and this action is safe. On
the contrary, the space of non-permissions is infinite and we do not know exactly what
happens. We cannot list them all and there will be uncertainty. By basing decisions on
permission, you are sure that no matter what is executed, had permission and cannot
harm.

Achieving the goal of security under failure with blacklisting is hard. One can never make
sure th at all harmful events are blacklisted.

Do not try to fix the errors. If something went wrong, the safe step is to go back to a known
safe state. Once there is an error, one does not know what is the state of the system, so
one cannot be sure that steps forward towards a solution are safe.

If something fails, be as secure as if it does not fail

 → errors / uncertainty should err on the side of the security policy

Do not try to fix!! (e.g., automated doors: if they cannot close, stay open)

Whitelist, do not blacklist

→ lack of permission is easy to detect and solve

Examples:
- Security door: if no permission, do not open
- Form input: if no permission to write in X, do not write anywhere

2 – Fail-safe defaults

“Base access decisions on permission rather than exclusion”[SS75]

6

Ideally, all actions should be checked before allowing them to happen.

The reference monitor is the component (both in design and implementation) that
mediates actions and ensures they are according to the policy.

Implenting the ideal reference monitor in reality is very hard:

- If you check every action there would be a big performance hit (think how many
memory access per second your computer does!)

- It is not straightforward to decide when the reference monitor should operate: between
a check and an execution the state may have changed. How do we ensure the check is
correct?

- In distributed systems resources are spread across machines and even networks. Subjects
and objects may not even be on the same machine! Where should the reference monitor
be? If we don’t distribute it, not all checks can be run. If we distribute it, it becomes very
complex and hard to know if it is correct

3 – Complete mediation

“Every access to every object must be checked for authority” [SS75]

Reference
monitor

Audit log

Policy

Subject Object

Difficult to implement

- Performance?

- Checking everything is sloooooow

- Time to check vs. time to use

- Modern distributed systems

- You can only check what you see!
mediates ALL actions from subjects

on objects and ensures they are
according to the policy

7

These are three views on why secrecy is not a good underlying requirement for security:

Kerchoff: every secret in a system creates a potential failure point. Secrecy, in other words,
is a prime cause of weakness. Openness, helps having less points of failure.
Shannon: designing assuming the adversary does not know the system gives advantage to
the adversary, as he is out of the threat model
Baran: designing in secret is hard, as it prevents conversations that could help identifying
weaknesses and better security mechanisms

4 – Open design
“The design should not be secret” [SS75]

Kerckhoff
La Cryptographie Militaire

(1883)

“The design of a system should not require secrecy”

Shannon
 Communication Theory of Secrecy Systems

 (1949)

 "The enemy knows the system"

 "one ought to design systems under the assumption that
the enemy will immediately gain full familiarity with them”

Baran
Security, secrecy, and

tamper-free considerations
 (1964)

https://www.rand.org/pubs/research_memoranda/RM3765/RM3765.chapter2.html

“The Paradox of the Secrecy About Secrecy”

“Without the freedom to expose the system proposal to
widespread scrutiny' by clever minds of diverse interests,
is to increase the risk that significant points of potential
weakness have been overlooked”

4 – Open design
“The design should not be secret” [SS75]

Kerckhoffs
La Cryptographie Militaire

(1883)

“The design of a system should not require secrecy”

Shannon
 Communication Theory of Secrecy Systems

 (1949)

 "The enemy knows the system"

 "one ought to design systems under the assumption that
the enemy will immediately gain full familiarity with them”

Baran
Security, secrecy, and

tamper-free considerations
 (1964)

https://www.rand.org/pubs/research_memoranda/RM3765/RM3765.chapter2.html

“The Paradox of the Secrecy About Secrecy”

When you design… algorithms are public! Only key
elements are kept secret

Crypto: only keep the key secret
Authentication: only keep password secret

Obfuscation: only keep the used noise secret

Open designs can be revised by experts to revise who find vulnerabilities and propose ways
to fix them.

DVD Encryption (1996): the algorithm was called Content Scramble System (CSS).
Propietary 40-bits algorithm (US export law at the time forbid larger keys). It’s use was tied
to a license – only if one has the license, obtained under a non-disclosure agreement, one
can decrypt the content. Every licensee got a decryption key, and in every DVD the
encryption key of the content is encrypted to all the licensees, so that all can read the
content. Eventually, one careless reader developer did not encrypt properly their
decryption key. Hackers could get it and with that read any DVD to enable copies. There
were many secrets, when one was leaked the full system broke (more:
https://www.schneier.com/essays/archives/1999/11/dvd_encryption_broke.html)

GSM Encryption (1987): A5/1, with a key length of 54 bits (short, so that it could be found
via brute force by secret services). It was reverse engineered, and since then many attacks,
some of them very serious have been found. As of today, one can decrypt A5/1 in real time
without knowing the secret key.

The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary (E. Raymond), describes the open design process: software is developed by a
group of engineers, but made available for others to check, comment, and improve.

Open design results in better & easier auditing
Linus’ law: "given enough eyeballs, all bugs are shallow"

Secrecy is unrealistic!!
Way to build a bad threat model!

Famous failures closed design:
- DVD encryption
- GSM encryption

4 – Open design

Raymond
The Cathedral and the Bazaar

(1997)

“The design should not be secret” [SS75]

10

Key principle behind the academic
discipline devoted to understanding

computer security

https://www.schneier.com/essays/archives/1999/11/dvd_encryption_broke.html

The separation of privilege principle indicates that having only one entity/process/user/…
responsible for a (critical) security task is undesirable. If that responsible fails, the system’s
security is compromised. Instead, one must try to divide responsibility so that if one entity
gets compromised the full system does not break.

While having two or more conditions helps with security, it has downsides:
 - Now one needs all conditions to use a service. What happens when you don’t have your
phone to log in on your bank account?
 - When the conditions are related to people, this dilutes responsibility: no one in particular
is responsible. This may also lower security, and also makes it more difficult to establish
liabilities.
 - Having to meet more than one condition increases complexity! How are they combined?
When should they be considered? Does order matter? Remember “economy of
mechanism” principle.

Require multiple conditions to execute an action improves security
Examples: two keys to open a safe, two-factors to authenticate

Problems
- Availability?
- Responsibility?
- Complexity!

5 – Separation of privilege

“No single accident, deception, or breach of trust is sufficient to
compromise the protected information” [SS75]

11

A privilege allows a user to perform an action on a computer system that may have security consequences,
e.g., create a file in a directory, access a device, write to a socket for communicating over the Internet.

12

12

Recap

Economy of mechanism. Keep it simple!

Fail-safe defaults. If there is a problem, your move should comply with the policy

Complete mediation. Verify every action

Open Design. Make the design (and implementation) of your mechanism available

Separation of Privilege. Try to never rely on only one entity or action

The least privilege principle indicates that one should be very careful when assigning
permissions to principals. They should always have the minimal set of permissions
necessary to carry out their task. This helps limiting how much damage can a principal
cause in the system. If a principal does not have privileges, any error/misbehaviour of this
principal cannot create huge damage on the system.

The least privilege principle is very related to the fail safe principle. It ensures that if there is
an error or compromise the compromised principal cannot execute unauthorized actions,
helping staying on a safe state.

Rights added as needed, discarded after use

Damage control
Minimize high privilege actions & interactions

“Need-to-know” principle
Examples

Guest accounts @ EPFL
Data minimization principle (Data Protection)

6 – Least privilege

“Every program and every user of the system should operate using the
least set of privileges necessary to complete the job” [SS75]

13

What principle is
this related to?

Having common mechanisms makes the system more complex (against economy of
mechanism).

At the design level, interactions are difficult to model completely. It is hard to guarantee
one has considered all of the possible cases and thus the validation holds in reality

The number of common flows and unintentional information channels introduced by the
use of common resources when implementing systems tends to grow: for efficiency,
computers share a lot of resources!

“Every shared mechanism represents a potential information path between users and must
be designed with great care to be sure it does not unintentionally compromise security”

Remember “Economy of mechanism”
(Design) Interactions make it hard to validate the security design
(Implementation) Interactions may lead to unintentional leaks of information

Unintended channels: use of /tmp, shared cache

7 – Least common mechanism

“Minimize the amount of mechanism common to more than one
user and depended on by all users” [SS75]

14

Note that this refers to mechanisms! Not to the code. Reusable code
that has been tested many times is helpful for security

Hide complexity introduced by security mechanisms
Security mechanisms should not make the resource more difficult to access
than if it was not present

Mental model of the (honest) users must match security policy and
security mechanisms

Cultural acceptability – not all mechanisms are acceptable everywhere
(Authentication) Face recognition not suitable in cultures that cover their face

(Safety) Register of everyone who sleeps in a dorm

8 – Psychological acceptability
“It is essential that the human interface be designed for ease of use, so that users

routinely and automatically apply the protection mechanisms correctly” [SS75]

15

In order for security mechanisms to succeed, users need to feel comfortable with them:

- They need to be able to use them, and they cannot cause a burden. When the
mechanisms are complicated and hard to interact with, users start following insecure
practices.

- The threat model against which the mechanism is designed must be understandable by
honest users. If users do not perceive the threat, they are unlikely to make good use of
the mechanism.

- The mechanism must not go against any social/cultural norm. Otherwise, users will
ignore it or try to circumvent it.

This principle is useful to reason about security and may help to better define the
threat model (making very explicit the capabilities of the adversary), but it is very
hard to completely transpose to computer security.

Cost is hard to define and quantify for many cases. What is the cost of corrupting an
employee? Or of finding a bug? Time? Expertise?. Also at the end of the day it is
about cost vs benefit. How many people will be able to use the exploit? What will
be the benefit for the adversary that uses the exploit? And what if the cost of
individuals is small, but many individuals can use the exploit.

In this sense, computer security is very different from physical security mechanisms
where in general the cost is easy to see (breaking a lock, climbing a wall) and the
benefit is limited to the people that are physically present.

Extra principles from physical security
9 - Work factor

“Compare the cost of circumventing the mechanism with
the resources of a potential attacker” [SS75]

It helps refining the threat model!

DIFFICULT TO TRANSPOSE TO

COMPUTER SECURITY!!

Difficult to quantify

Quantifying cost is hard?
- cost of compromising insiders?
- cost of finding a bug?
- monetization?

16

Creating secure logs in a digital environment is much harder than in a physical
environment.

The main reason is that you need a new security mechanism for them!
Having a log that helps detecting an attack does not guarantee that the system can
recover. For instance, if the attack deletes keys, even if you know the attack
happened and who made it you cannot recover information
How do we keep their integrity: if the adversary attacking the system can tamper
the log, then there is no use in having a log
Logs may contain information that leak the content of confidential exchanges (e.g.,
a record of a patient talking to an oncologist very frequently reveals the patient
health status even if the patient’s records are confidential)
Availability is crucial: how do we make sure that the log is not deleted or that access
to the log is not prevented?

Thinking about the principles helps designing good logging systems

Extra principles from physical security
10 - Compromise recording
“Reliably record that a compromise of information has occurred [...] in

place of more elaborate mechanisms that completely prevent loss” [SS75]

DIFFICULT TO TRANSPOSE TO

COMPUTER SECURITY!!

Keep tamper-evidence logs,
they may enable recovery (integrity)

Logging is not a guarantee that the compromise is detected.

Logs are not magic:
What if you cannot recover? (if confidentiality mechanisms were in place)
How to keep integrity?
Logs may be a vulnerability (Privacy)?
Logging the log? (Availability)

17

18

18

Why principles are important?

Least privilege. Let the ML learn as little as possible so that information cannot be
extracted

Least Common Mechanism. Get samples labelled from different origins

Psychological acceptability. Users must be able to understand why models
classify or misclassify an input

Work factor. The cost of the attack, e.g., in terms of number of calls to an API,
matters for its relevance

Compromise recording. Ideally we would like to be able to log all steps inside the
algorithm

Summary of the lecture

Principles allow us to identify safe and unsafe patterns in when designing security
mechanisms

Do not use principles as a blind checklist!
Use principles as tools to weight design decisions.

