=PrFL

Computer Security (COM-301)
Malware
Introduction

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Gianluca Stringhini/ Emiliano de Cristofaro / George Danezis

Previous attacks: the adversary actively exploits
model/ design/ implementation errors

Insecure interactions between components

Usually enabled by lack of checks when processing input Risky Resource Management

Enabled by lack of checks or careless programming Network attacks
f i Lack of security mechanisms in network protocols

y
sd

requires deep understanding of computer systems and networks

“Manual” adversary
requires manual coding and testing to find the vulnerabilities and exploit them

n the attacks we saw in the previous lecture the adversary is an expert that
understands protocols and their threat models.

For instance, the attacks on nework protocols assume threat modeling errors, namely
the assumption that network nodes will be honest; or downgrade attacks on TLS
exploit the fact that to make TLS compatible with previous versions the designers
allow servers and clients to choose insecure primitives. On the implementation side,
we saw how not sanitizing inputs allows to exploit all sorts of bugs that can result in
impersonation, arbitrary commands execution, or the machine just crashing.

All these attacks have a common ground: they require the adversary to study the
protocol and produce the code that exploits the vulnerability. This is very time
consuming, and not all adversaries may have this knowledge.

Cool stuff

Bit less cool
but fun

Malware use
u I 56 %
Social engineering

\ & I 36 %

7

N\
J Reality

4 Hacking
= I 17%1
Web attacks
(& o——12%)
(Credential compromise]
E — 1% J
Other
— 8%

0% 10% 20%

In fact, those attacks are not the most popular in reality. Social engineering, in which
the adversary bypasses security mechanisms by getting information from users, or
malware use, in which adversaries deploy malicious software to launch attacks at
large scale are the most numerous.

Malware

Short for “Malicious Software”
Software that fulfills the author’s malicious intent

Intentionally written to cause adverse effects
Many flavors with a common characteristic: perform some unwanted activity

Malware != virus

In this lecture we study Malware. This is software intentionally designed to do some
malicious activity and create damage for hosts and users.

It is important to note that virus is only one type of malware. There are other kinds as
we will see in this lecture.

Distribution of maiware T T
under Windows in 2018 Distribution of malware

Windows
74.49%
€ Browser 2210%
Android 412% @ Browser 1073%
Android 277%

https://www.av-test.org /fileadmin/pdf/security_report/AV-TEST_Security_Report_2018-2019.pdf

In fact, Viruses are only the 21% of malware written for Windows; which is the most
common target of malware, followed by browser-oriented malware and Android.

Malware — why the rise?

e Exploit new capabilities

vviINGOWS/ANGIoIG Mmake ve emptuling targeis i : g
prepared than expected in the
design phase!)

Clueless user base 3

Many targets available

Unprecedented connectivity
Deploying remote / distributed attacks s increasingly easier

Malicious code has become profitable!
Compromised computers can be sold and/or used to make money (and Bitcoins)

There are several reasons for the rise and dominance of Malware as the main threat
for computer security.

First, the increase in devices connected to the network, with some operative systems
(such as Windows or Android) having a base of millions of users across the planet
increase the impact of any piece of malware — one attack, millions of victims.

Computers have gone from being a work-station for experts, to be a commodity for
any user. Users, thus, are not anymore experts and thus are easier targets for attacks.

Not only there are more users with less education, but their computers are
connected to the network, increasing the surface of attack.

The importance on computers in everyday users’ and industry activities, as well as
their computational capabilities, also make compromised computers highly
profitable. For instance, by requesting money from users to recover their machines,
or using these machines to deploy new attacks or perform heavy computations (e.g.,
mininig Bitcoins).

|
Self vl’
Computer
spreading Viriiges orms
Trojan Horse Keyiogger
Non Rootkit Spyware
spreading
Need host Self-contained
program program

There are different types of malware. Main differences are how they spread, and
whether they are self contained.

- Viruses and worms can spread by themselves. However, Viruses tend to need
some human action that triggers their spread, while Worms do it on their own.
Trojans or spyware do not perform any action to automate their spread and only
move to new devices with deliberate downloads of compromised software.

- Viruses and Trojans typically cannot execute by themselves, they need to infect
another program —i.e., include their code in another program and be executed
with that program.

Nowadays the boundaries between these categories have become very blurry
(https://www.websecurity.digicert.com/security-topics/difference-between-virus-
worm-and-trojan-horse)

Modern malware tends to combine “the
Malware — taxonomy

AT best” of the categories to achieve its purpose

‘/Symantec ENTERPRISE

ucts & Se wbon upport Cent ec: o Biog:

[DEPRECATED]

Lists of:
Threats
Vulnerabilities
Risks

Not only the boundaries have become blurry, but typically modern malware
combines features from the different categories to increase its impact..

(This web from Symantec does not exist anymore after it was bought by Broadcom)

=PrFL

Computer Security (COM-301)
Malware
Types of Malware

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Gianluca Stringhini/ Emiliano de Cristofaro / George Danezis

RANSOMWARE: malware that threatens to
destroy a system unless the owner pays
money to receive the “antidote”

Virus (1
\—

_/

Piece of software that infects programs to monitor / steal /—
Viruses r "l“Ouuy‘ programs to include a \i‘)u y IIIUUIIIEU} Copy o
Viruses cannot survive without the host

What are the permissions of a virus?
The same permissions as the host!
virus can do anything that the host program is permitted to d

/irus executes secretly when the host program is rur

- iy vvi LEAC S LS

.f

f

sst The e
deputy again!
Mitigation: follow B e

Specific to operating system and hardware the 'e?st_l’:i"li'eee Recurring problem in
4 < principle :
take advantage of their details and weaknesses security!

A virus is a piece of software that infects (embeds itself in) other programs to
perform malicious actions such as monitor users’ actions, steal users’ data, or destroy
users’ data.

The virus cannot survive or execute without the host (i.e., if the host is deleted so is
the virus — though the virus may remain in the machine if it has infected more
programs). When the virus executes, it does so with the permissions of the host
program, which becomes a confused deputy that does malicious actions in the name
of the virus. A key mitigation is to give programs the least privileges such that, even
when they act in malicious ways they cannot do great damage.

Virus exploit OS-specific or hardware-specific vulnerabilities. Thus they are typically
very targeted to one particular architecture and system.

10

WOW tnbex [x

Devon

hitp:

Replicates to infect other content or machine m

(host spreads through network or hardware) =SSN

show details Sep 20 | 4y Reply | ¥

com/files/282512175/install exe
ﬁ Probably a f
Virus
~———

S Reply “Replytoall

J
/
J

—~
hY

Half of people plug in USB drives they

find in the narking lot
find in the parking lot
Why do we even bother with security software?

By Shaun N San Fra 11 Apr 2016 at 21:09 150 SHARE ¥

A new study has found that almost half the people who pick up a USB
stick they happen across in a parking lot plug said drives into their PCs.

Researchers from Google, the University of lllinois Urbana-Champaign.
and the University of Michigan, spread 297 USB drives around the
Urbana-Champaign campus. They found that 48 percent of the drives
were picked up and plugged into a computer, some within minutes of

ommunity has long held the belief that users can be
ered into picking up and plugging in seemingly lost USB
y find,” the researchers reported this montt

Virus replicate themselves to infect contents or machines. Typically, the replication is

triggered by a human action:

Opening an email or an attachment both infects files in the host and triggers

distribution

Visiting a malicious website that downloads a virus into the computer
Using an infected hardware support (such a usb or a diskette) that contains
malicious code that infects the host as soon as it is connected.

Virus — where can they act

File infection

Overwrite (substitute the original program), Parasitic (append and modify)

Macro infection

. a v Avn~tibad Al A sraan s At C Cumal \AlAod\
UVt!lWIILt! imaciro executea on progiaini IUdU \IVIO CALEI, VWUIU)

Need to find an exploit to insert the macro

Boot infection

Most difficult! ...and most dangerous
Infect booting partition

Viruses can infect any kind of software, from any file in the system (overwriting it or
just modifying some of its pieces as part of the infection), a macro that is executed by
one or more programs, or if can also infect the very operative system (e.g., the bios
and the booting programs). The latter is the most dangerous, as it gets to be executed

before the computer is totally started, and thus before the TCB is in place (see
rootkits at the end of the lecture).

12

| B £k vew Go Took Ao teb J
|9 - | @ 0% X | Qoo O WDroad | (8| Y Zopnd Sgorone | @) |

Example Virus — [LoveYo

Target: Windows 9X/2000

"LOVE-LETTER-FOR-YOU. txt.ybs"| sentas email attachment

[l

Known extension to Windows, hidden from users!
n X

1lcarcthink thayv Aana
USETIS UK tiey open

Operation:
Replaced files with extensions JPG, JPEG, VBS, JS, DOC, ...
The script adds Windows Registry data for automatic startup on system boot
Sent itself to each entry Outlook address book, sometimes changing subject

Downloaded the Barok Trojan: "WIN-BUGSFIX.EXE“ (steal passwords)

Damage: $10 billion

13

Virus — defenses

Antivirus Software
Signature-based detection
Database of byte-level or instruction-level that match virus
Wildcards and regular expression can be used
Hash of known maiicious programs

Heuristics (check for signs of infection / anomalies) and
incorrect header sizes, suspicious code section name
Behavioral signatures — detect series of changes done by a virus

Sandboxing
Run untrusted applications in restricted environment (e.g., use a VM)

The main defense against virus is the use of Antivirus. Programs that identify virus to
avoid that the user executes them (avoiding infection, malicious activity, or further
spread) and to indicate which files have to be cleaned or removed from the system.

Antivirus typically have two ways of identifying virus:

- Signature-based: in this mode, antivirus try to find exact signatures in the host.
Signatures are pieces of code (at byte or instruction levels) that match previously
identified virus. Signatures can also be made of regular expressions, including
wildcards, or can be full programs (e.g., by comparing a hash of the executable).

- Heuristic-based: in this mode, antivirus try to find patterns that are known to be
produced by viruses, e.g., series of access to the registry, systematic changes in
function headers, etc.

Signature-based produce very few false positives (i.e., false alarms), but can only find
versions of virus for which their signature is known. Heuristics-based can be more
flexible and also identify virus mutations, at the cost of increased false positives.

14

Besides using an antivirus, the effect of the virus can be reduced by running untrusted
applications with least privileges (i.e., sandboxing the application).

14

Worm

Self-replicating computer program that uses a network to send copies of itself
to other nodes
Does not need a host program to execute

Autonomous spread over the network

Email harvesting (address book, inbox, browser cache)
Network enumeration

Scanning (at random or targeted)

Email: requires human interaction (fake from, hidden attachments)
Network: automated!

A worm is a standalone (i.e., does not need a host to be executed) piece of software
that can generate malicious actions.

A worm can spread autonomously, i.e., does not necessarily need a human action to
replicate itself (although replication can also be triggered use human actions, e.g., by
opening an email attachment).

To decide where to replicate the worm can find addresses at the application layer —
such as emails in the infected host (e.g., address book, emails in inbox, etc) -- or at
the network level — such as scanning the network to learn which IPs are reachable, or
directly enumerate all possible address and try to infect them if any machine is found
at those addresses.

15

Worm example 1: Code Red (2001)

Exploits known buffer overflow in Microsoft IIS (web server)
.

Achieve the
overflow

Operation
1%t Defacing: = -
2" Date dependent:

Day 1-19: continue spreading (random IPs)

GET /default.ida?

NNNNNNNNNNNNNNNNNNN
%u90908%u6858%ucbd3%u7801%u9090%u6858%ucbd3%¥u7801
%u9090%u6858%ucbd3%u7801%u9090%u9e9e%us198%ueec3

%uBBB3%UBDER%US31bRUS3TFRUBET BRUBBEO%UGE=a HTTP/1.0

Payload: injected executable code

Lack of Sanitization!!

Day 20-27: Launch Denial of Service (among them White House)

Day 28-end: Sleep

Vulnerable population (360,000 servers) infected in 14 hours

16

rr

Expioits a vuinerabiiity (buffer overfiow) in Microsoft SQL Server

HY PP s

fnmtnAd s A~ H, ~Ac
mrecLeyd wiLnin Ltern rmirnuLes

C NNN y.ind
J,UUU ViCliim
Doubled infections every 8.5 seconds

Consequences — Internet denied of service:
saturated many Internet links
routers collapsed
affected ATMs and emergency numbers
root DNS shut down

rr

Expioits a vuinerabiiity (buffer overfiow) in M

Creates random IPs and sends itself (small 38

i dnim tan i ik

infected within ten minutes
infections every 8.5 seconds

Consequences — Internet denied of service:
saturated many Internet links
routers collapsed
affected ATMs and emergency numbe
root DNS shut down

MNND)\

Security

Slammer worm slithers back online to

~iRiiEsan v e H ¥ H H

attack ancient SQL servers

If you get taken down by this 13-year-old malware,
you probably deserve it

By Darren Pauli 5 Feb 2017 at 23:29 11 SHAREY

One of the world's most famous net menaces, SQL Slammer, has
resumed attacking servers some 13 years after it set records by infecting
75,000 servers in 10 minutes, researchers say.

The in-memory worm exploits an ancient flaw in Microsoft SQL server
and Desktop Engine triggering denial of service, and at the time of its

eI T S5 g Lo

emergence significantly choking internet traffic.

Researcher Michael Bacarella first raised the alarm to Slammer which
was created on the back of public proof-of-concept exploit code
published during Black Hat by now Google security boffin David
Litchfieid.

Check Point researchers detected re-emergent attacks in early
December, noting that most targeted machines in the US.

"More than a decade later, Slammer is hitting again,” researchers say.

18

18

Exploits a vulnerability revealed in a NSA hacking toolkit leak
- Mishandled packets for the Microsoft Server Message Block (protocol for shared access) enable

arbitrary code execution
- The ieak contained vuinerabilities in systems from e.g., Cisco Systems and Fortinet Iinc

Encrypted data and asked for ransom in Bitcoins
-300Sin 3 days or 600S in 7 days or DELETE

>200,000 victims
$130,634 obtained in ransom
billions of dollars in damage, UK Hospitals affected 1

19

~aca ~Af Damemimariazmmna

H case O nansomwaie

[Require money to recover system

How did it end?

The worm “kill switch” was found
Upon installation, the malware checked the existence of a web. If yes, it stopped.

PR PR R, ol ol

A researcher registereatne website and the worm SfO‘p‘p ed

Why have a kill switch?
Avoid worm study if hijacked, or if in sandbox

Some worms have a “kill switch” that makes them stop their spread. Kill switches are
used for hackers both to stop the spread of the worm once monetization has been
successful, but also to avoid that sexurity researchers can analyze the worm in
controlled conditions (e.g., by running it in a sandbox).

For the particular case of WannaCry, the kill switch was the existence of a website.
When the worm arrived to a new host, the first thing it did was to check the existence
of a web by launching a DNS request on a domain hardcoded in the worm code. A
researcher studying the worm saw this domain and registered it. This effectively
stopped the worm.

20

Worm — defenses

Host-level
Protecting software from remote exploitation - Attacks & Software security lecture!
Stack protection techniques - Software security lecture!

Achieve to increase protection = require more sophisticated worms
Antivirus (email-based Worms)
(‘ It could clash with

economy of mechanism
(and functionality)

Network-level \
Limit the number of outgoing connections: limit worm spreading
Personal firewall
e.g., block outgoing SMTP connections from unknown applications
Intrusion detection systems

Host-level protection

First, Worms infect machines by exploiting vulnerabilities on hosts. Protections such
as those seen in the software security and attacks lectures that reduce the possibility
of exploitation will mitigate the impact of the worm.

Second, Like virus, worms may have signatures or recognizable behaviours that can
be identified by an antivirus.

Finally, diversity in OS/programs/interfaces/ help avoiding wide compromise of a
systems. See this as a separation of privilege: the worm needs to be able to find (and
exploit) vulnerabilities in all this environments.

Network-level protection

A way to mitigate the damage done by worms is to limit their capability to spread.
This can be done by limiting the amount of outgoing connections from a host or a
network. Another option is to have rules that avoid network connections that are
inconsistent with typical behavior (e.g., sending emails from applications that are not
a mail client).

Finally, one can also try to detect Intrusions, i.e., detecting the worm when it is trying
to infect the system.

21

Intrusion detection systems — what they do

iost-based vs. Network-based
Host: process running on a host. Detects local malware
Network: network appliance monitoring all traffic

Signature based vs. Anomaly-based detection

Signature: identifies known patterns

‘ / f 1art
- expensive (need up-to-date signatures), can’t find new attacks

Anomaly: attempts to identify behavior different than legitimate
adapt to | ks (| (I te do
- high number of false alarms

An Intrusion Detection System (IDS) aims at identifying when the system is under an
attack from a malicious entity. IDS can run on a host aiming at detecting malware
attacking the host; or at the network level inspecting traffic aiming at identifying
malware attacking hosts in the network via patterns in the traffic.

IDSs can be classified in a similar way as antivirus:

- Signature-based: where the IDS tries to find known patterns in connections or
host processes. As in the antivirus case, this produces very few false alarms at the
cost of only being able to detect already known attacks.

- Anomaly-based: where the IDS tries to model what normal behavior is, and to
identify any deviation and tag it as malicious. This approach holds great potential
to detect new attacks: no matter what the new attack does, the legitimate traffic
does not change and does the attack is still identifiable. On the downside this
approach is prone to produce a high number of false alarms as legitimate
programs may many times do actions that are different from their normal
behavior.

Note: Intrusion Detection Systems are not limited to detecting worms and can be used

22

to identify other types of malicious behavior.

22

P P Pl nd mimimm e R SN P 1P
vidiwdi € widL yppedurs Lo perjorirr u uesir

undisclosed malicious activities
Requires u?ers to expiicitiy run the program

Q)
o
-
C
-
)
=
C
S
T
c

» Defense: Train users!

Cannot replicate but can do any malicious activity and follow least
Spy on sensitive user data (spyware) Gl DL

Allow remote access (backdoor)
Allow rem {backdoor)

Base for further attacks—> act as mail relay (for spammers)
Damage routines (corrupting files)

A Trojan horse is a piece of software that performs (or appears to perform) a
desirable function (e.g., cleaning the hard drive, improve the performance of the
machine), but at the same time is performing another malicious function in the
background.

Trojans cannot run on their own. They require that the user executes the program
that contains the Trojan. As such, good defenses are running untrusted programs with
least privilege, and also train the user to not run programs that come from untrusted
sources and therefore may contain malicious code.

Trojans cannot replicate by themselves. They require users to download or transfer
the program with the Trojan.

23

Mode of Operation 1
1. Sniff packets to learn when a user visits a banking website
2. Steal credentials before they are sent = send to malware server
Reads keystrokes before encryption!!

Mode of Operation 2
1. Sniff packets to learn when a user visits a banking website
2. Steal appearance from website
3. Ask questions to user on a pop-up = send answer to malware server

24

Rootkit

Adversary controlled code that takes residence deep within the TCB of a system
Hides his presence by modifying the OS

Installed by an attacker after a system has been compromised
Difficult to detect
Replace system programs with trojaned versions
Modify kernel data structures to hide processes, files, and
network activities
Allows the adversary to return on a later time

Defense (difficult!): Integrity checkers user/kernel level

A Rootkit is malicious code that the adversary has managed to install in the core of
the Operative System, and thus inside the Trusted Computing Base. To get to this
point, the adversary typically has to first compromise the system to be able to run
inside and then installs this code. Once the code is installed it can replace system’s
programs with Trojans that perform malicious activities.

Rootkits are extremely dangerous because they run inside the TCB. Thus, there is no
protection in place! (recall that everything in the TCB is trusted by definition and does
not need to be checked). As they are in the TCB defending is hard. One has to look for
anomalies that hint that something weird is happening within the system.

Furthermore, rootkits are extremely difficult to detect. As they are inside the OS and
can act on booting, they can hide themselves by modifying the OS and kernel

structures such that their actions are invisible.

Rootkits also typically open backdoors to let the adversary come back to the user.

25

Rootkit+Worm example: Stuxnet (2010)

Goal: Attack SCADA (Controi systems) of Iran’s nuciear power piants

Three modules:

\Worm: spread Stuxnet’s payload s ed and di
Link file: executed malicious code (7 tnteredviainiected Y55

Rootkit: hide the presence of malicious file to avoid detection

Stuxnet needs to be in the network, but
the network is closed and disconnected

i UPDRATE FROM SOURCE ?
| 2 | -»gg/?-»@ - 7> <7
— Very targeted attack. If the system
1. infection " 2.search 3. update infected is not a target, the malware

stays dormant.

Authorship?
Alleged Israel/US Cyberweapon

4. compromise 5. control 6. deceive and destroy

The worm then compromises the Inthe beginning Stunet spes on the Meanwh. provides fase foed.
target system's logic controliers, Thenit ensur-
exploiing“zero day" g thatthey
making 90ing wrong until it's too late to do.
anything about it 26

https://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet/

26

Backdoor

mechanism

Why not “audit” the program?
We can audit the program source

what if the compiler is malicious and introduces backdoors?

Chain of reasoning leads us to suspectall programs down to the very first compiler!

Key paper: Thompson, Ken. "Reflections on trusting trust." Communications of the ACM (1984)

More readable summary: https://www.schneier.com/blog/archives/2006/01/countering_trus.html

A Backdoor is a hidden functionality that enables the user to skip some security
mechanism (e.g., opens ports that are not protected by the policy, open connections
to applications without authentication, etc.)

An idea to find out whether a program has a backdoor (or a Trojan, or whether an OS
has a rootkit installed) is to audit the program. A first step can be to inspect the
source code, but even if the source code is clean, a backdoor can be introduced by
the compiler. One could then think to audit the compiler, but the same problem
arises... at the end of the day one has to trust the first compiler.

27

Cheatsheet: what is a compiler?

Computer software that transforms high-level code (basically any programming language) into low-level code that can
be understood by the machine

b, now
7 understand!

Source
code

<+«———— Executable

-

Example compilers: gcc (C language), javac (Java language)

28

Backdoor

How can we avoid blind trust on compilers? (How can we avoid trusting trust?)

Challanaga: vni hava tha avariitahla Af fwaA rAamnilare C1 \and () | \
wrancrigc. yvu riagvc Ui CATLulauvic U1 twU CUIMIPINCIS vl |] aiiu vz |]-
You want to know if they are hiding a backdoor.

1. Start with another compiler C, source and compile it with the two compiler executables|

Exec, and Exe.,
Compile C, with the first compiler: Exec,(C,) = Exe, ,
Compile C, with the second compiler: Exe,(C,) = Exe, ,

A trick to check for the existence of backdoors is to follow the separation of privilege
principle.

Suppose we have two compilers C1 and C2 for which we suspect they may introduce
backdoors on the programs it compiles.

And another compiler C, source. One can compile the compiler C, with the two
suspect executables. The result should be two versions of the same compiler, i.e.,
when they are applied to another program they should result on the same
executable.

29

Ba

How can we avoid blind trust on compilers? (How can we avoid trusting trust?)

kdoor

(@
Y
——
S

o

2. Use the compiler executables Exe, ; and Exe, , to compile C, again

We expect that: Exe, 1(Ca)=Exe, ,(Cp) Why?

Exe,q and Exe, , are executables of the same compiler C,!
Therefore given the same input they should output the same executable code

3. If not, one of them (or both) are introducing a backdoor!

~——
.

Then, we can use the two executable versions of C, to compile C, again. As both
executables are from the same compiler, the result should be the same.

If this is not the case, and there are some differences one can conclude that one
compiler (or both compilers) are introducing a backdoor that changes the execution
of the programs they compile, In this case they change the execution of the compiler
Ca.

30

Backdoor here?

Separation of privilege
Have two compilers 9 the adversary needs to subvert both

Moz)
- (V4

1. Start with another compiler C, source and compile it with the two compiler
executabies Exe., and Exe,
Exec,(C,) = Exe, ; Exec,(Cy) = Exe,,

3. If not, one of them (or both) are introducing a backdoor!

https://dwheeler.com/trusting-trust/

rusting trust?)

31

31

=PrFL

Computer Security (COM-301)
Malware
Botnets

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Gianluca Stringhini/ Emiliano de Cristofaro / George Danezis

32

0
&
—t
-
(D
—t
N

Multiple (millions) compromised under the control of a single entity

Bot-net command & control (C&C)

,,,,,

Up to here we have seen attacks that can be automatized by malware, but are still
launched from one machine, or from uncoordinated machines.

Botnets are groups of compromised hosts (up to millions) under the control of one
entity that coordinates their actions. Compromised hosts are called bots or zombies
(as many times they are computers connected to the internet that do not interact,
and are in zombie state until the entity controlling them launches an attack). The
single entity that controls the bots uses a botnet Command & Control center (C&C).
This is a system, composed by one or more machines, that enables the entity to send
commands to the bots.

33

0
&
—t
-
(D
—t
N

Multiple (millions) compromised under the control of a single entity

Up to here we have seen attacks that can be automatized by malware, but are still
launched from one machine, or from uncoordinated machines.

Botnets are groups of compromised hosts (up to millions) under the control of one
entity that coordinates their actions. Compromised hosts are called bots or zombies
(as many times they are computers connected to the internet that do not interact,
and are in zombie state until the entity controlling them launches an attack). The
single entity that controls the bots uses a botnet Command & Control center (C&C).
This is a system, composed by one or more machines, that enables the entity to send
commands to the bots.

34

A
a = 5 What is the problem here?

C&C single point of failure

Ny l R o :
re_] N e = the botnet wolatgs the {ea.st
Bot ~ 5 -~ Bot common mechanism principle!
/ C&C \

t

The simplest option to centralize the Command & Control (C&C) on one machine
controlled by the hacker. This is simple to manage, but also implies that the C&C
machine is a single point of failure. If the machine is taken down, the hacker loses
control of the botnet.

Also, one machine may not scale if the number of bots in the botnet is larger than
thousands or millions of machines.

s~

\ - .
'fjv Lrjv 2) Bo:

Bot Bot

No Command and Control!!
Difficult management (join? leave?)
Vulnerable to attacksin which too

many bots are taken over
(these are called Sybil attacks)

On the opposite side to a centralized C&C design, is a totally decentralized option in
which there is no machine that issues commands, but the bots themselves issue
commands. The hacker would communicate with some of the bots and these would
pass the commands to the other bots in a peer-to-peer (P2P) fashion.

This scheme has high resilience. Even if some of the bots are taken down, the
network can still operate. However, it is very difficult to manage: how can a node
enter or leave the network? How do bots know with whom they have to

communicate?

It also opens the door to Sybil attacks in which security defenders gain control of

enough bots in the network to counter the malicious commands issued by the hacker.

36

e =asey

In general, botnets follow an approach in the middle. Few nodes form the C&C talking
to each other in a P2P fashion, under the strict control of the hacker. As there are few,
there are easy to manage (e.g., they could be enumerated by the hacker that can tell
each of them who are their neighbours in the network).

Each of the C&C nodes can take care of issuing commands to a subset of the bots in
the network. Even though in the figure bots are only connected to one C&C node, in
reality it may be desirable to connect them to more than one for resilience: i.e., if one
C&C node is taken down, the bots are still reachable.

37

Monetizing Botnets

Rental — “Pay me money, and I'll let you use my botnet...”

itimate business”

Bulk traffic selling — “Pay me to boost visit counts on your website”

Click fraud - “Simulate clicks on advertised links to generate revenue”
Distribute Ransomware — “I've encrypted your hard drive, pay!”
Advertise products — “Pay me, | will leave comments all around the web”

= Y ssSse (LR (9L

Bitcoin mining!!

Botnets can be used for many purposes. These purposes are typically profitable for
the botnet owner.

38

Example Botnet — Mirai

(2016)

Target: ioT devices
scanning of Telnet ports, attemptedto log in using 61 username/password combos

r g
KrebsonSecurity r@
e
SRR poiond Hacklorums.com

s, o 0
Sept 20 Sept 30 Oct 22 Nov 27

Open source code — variants appear all the time

Wicked (2018): scans ports 8080, 8443, 80, and 81 and attempts to locate vulnerable, unpatched loT
devices running on those ports.

https://www.nanog.org/sites/default/files/1 Winward Mirai The Rise v1.pdf
https://www.usenix.org /system/files/conference/usenixsecurityl17/sec17-antonakakis.pdf

39

0
O
—t
D)
D
—t
N
Q.
(D
—r‘
(D
>
N
(D

Attack C&C infrastructure
Take communication channel off-line
Hijack/poison DNS to route traffic to black hole

Honeypots
Vulnerable computer that serves no purpose other than to attract
attackers and study their behavior in controlled environments

Study botnet behavior to find defense (or study ecosystem)

In order to take down a botnet, one must take down the C&C infrastructure, either by
taking the nodes down or isolating them so that they cannot communicate with the
nodes. The latter can be done by taking the communication offline, or by rerouting
the traffic from/to bots to a black hole, e.g., by hijacking or poisoning the DNS
domain of the C&C.

To take down the C&C one needs to find it. A useful tool to discover where the C&C is
is the deployment of honeypots — machines that are vulnerable on purpose so that
the botnet takes over them and then their behavior can be studied.

40

Other malware

Rabbit: code that replicates itself w/o limit to exhaust resources

Logic (time) bomb: code that triggers action when condition (time) occurs
Dropper: code that drops other malicious code

Tool/toolkit: program used to assemble malicious code (not malicious itself)

Scareware: false warning of malicious code attack

41

Summary

Malware = software intentionally malicious

Can be exploited by non-experienced adversaries

Many types depending on
(auto) replication, need for a host

Botnets — attacks at scale!

42

	Leture_W14_Malware_Notes
	Leture_W14_Malware_Notes2

