COM-301 Computer Security
Exercise 7: Software Security

December 5, 2023

Software Security

1. Suppose we are building a web application that asks the user for their
email address and stores it in a variable m. We want to invoke the shell
to send an email message to the email address m, like this:

void sendemail (char sm) {
char cmd[1024];
sprintf (cmd,”%s” ;m);
f = popen(cmd, "w”);

(a) Is this code secure in terms of memory safety?

(b) What checks would you do on m to ensure that no other problem can
happen?

Solution:
No, one must check that the message received is not longer than 1024.

However, you should check that the email is actually an email before
sending it into a command. Check that m starts with a letter (a-z or A-Z)
and is composed solely of the following characters: abc. . . zABC. . .
70123. . . 9Q+-_.

2. In the following code, what is the condition on the lengths of s1 and s2
for it to be safe?

char xconcat(char #sl, char xs2) {
char result [1024];

for (i=0; s1[i] !

= "\0’; ++i)
result [i] s1[i];



for (j=0; s2[j] !'= ’\0’; ++j)
result [i+j] = s2[j];

result [i+j] = ’\0’

}

Solution:

The conditions are:

e The length of sl has to be <= 1024, since the first loop iterates
over each character of sl and copies it to result. Since result is 1024
characters long, s1’s length should not exceed this limit.

e The length of s1+s2 has to be < 1024. After the characters of sl are
copied to result (first loop), the characters of s2 are copied. Thus,
the sum of the lengths of s1 and s2 should not exceed the length of
result.

3. Find the vulnerabilities in the following code:

int main (int argec, char *xargv) {

char xitems[] = {"boat”, "car”, "truck”, 7train”};
char xnewitems;
newitems = malloc (100);

int index = GetUntrustedOffset ();

printf(”You selected %s\n”, items[index —1]);

free (newitems);

printf(”The next item in the list is %s \n”, items[index]);
xnewitems = items [0];

3

Solution:
The vulnerabilities are:

e There is no check on the value of index. If index - 1 points to a loca-
tion outside the bounds of the items array, it could lead to undefined
behavior.

e There is a temporal error. After newitems has been freed, it is being
accessed (last line of the function).

4. What are the three properties that a mitigation must have?

Solution:

Effectiveness against an attack: It effectively should be a defense. The
approach should prevent attacks.



Efficiency: The approach should not add a high computation or memory
burden.

Compatibility: Low effort to be deployed: no need to change software or
hardware, just add a flag.

5. Are each of the following approaches a mitigation mechanism? Justify.

(a) Inexecutable stack

(b) Dynamic library linking: Allowing a program to load an external
library

(¢) Sandboxing: Running the process in a isolated space

(d) Compiling with different optimization flags

Solution:

(a) Yes. Preventing code execution in the stack is fast and efficient and it
is used in production. Furthermore, it makes exploiting stack-based
buffer overflow harder.

(b) No. Dynamic library linking doesn’t help with exploit prevention. In
fact it’s a very attractive target for attackers to corrupt a library to
exploit the programs which use this library, or an approach to run
an arbitrary code in exploited programs which have mechanism to
prevent data/stack execution.

(¢) Yes. Sandboxing prevents a process process from accessing system
resources or corrupting other processes.

(d) No. Compiling several times cannot ensure that errors are found
and/or eliminated. It also does not help isolating. It can even be
counterproductive since different compilations may provide a larger
surface of attack for exploitation.

6. Symbolic execution and dynamic analysis (fuzzing) are two approaches to
automatically find bugs. Symbolic execution provides a full path coverage
while fuzzing gives partial coverage. Fuzzing may hit a coverage wall and
cannot find samples which lead to new coverage. So why is fuzzing more
popular in practice? Is there a way to leverage symbolic execution to get
better coverage in fuzzing?

Solution:

Symbolic execution is a means of analyzing a program to determine what
inputs cause each part of a program to execute. It is based on converting
the program into logical equations that cover many possible executions
by abstracting the value of the variables. Nice tutorial here: https:
//www.cs.und.edu/~mwh/se-tutorial/symbolic-exec.pdf. Symbolic
execution is computation heavy and it cannot scale due to path explosion.


https://www.cs.umd.edu/~mwh/se-tutorial/symbolic-exec.pdf
https://www.cs.umd.edu/~mwh/se-tutorial/symbolic-exec.pdf

Each fork in the control flow doubles the number of paths, resulting in
a blow up of the symbolic constraints or the number of evaluated paths.
Symbolic execution struggles to scale past programs with few thousands
line of code, while production programs can easily reach millions of lines
of codes.

Fuzzing is an automated software testing technique based on randomly
generating inputs in order to trigger bugs in the code. Fuzzing is a prob-
abilistic process that can leverage feedback from prior executions. Also,
fuzzing is “jump started” with seed inputs that conform to valid inputs
that already exercise complex functionality.

Even though symbolic execution is complete, it is very expensive and can-
not be used when the code is large. Thus, Fuzzing is used more often
in practice (e.g., it is used by Google to deal with the huge complexity
of their products that have millions of lines of code: https://security.
googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html).

Whitebox fuzzing allows a fuzzer to check the code of the program, hence
it can use the semantic information to generate input through symbolic
constraint solving for an unseen path to get new coverage when it is stuck.
This allows a fuzzer to leverage symbolic execution to produce new seed
inputs for interesting cases and feed those back into the fuzzing process.

. Branch coverage is a metric to measure how much of the code was exe-
cuted. Compared to statement coverage which measures if a statement is
executed, branch coverage measures if an edge in the control-flow graph
is executed. For each conditional jump, branch coverage measures the
outgoing edges that are taken (e.g., for an if condition, branch coverage
captures if the if or the else branch was executed). Note that branch
coverage is stateless: this means that each branch only remembers if it
has been executed or not.

(a) Branch coverage is incomplete and does not cover all possible exe-
cution paths. Explain why branch coverage cannot cover all paths
(hint: branch coverage is stateless, reason about paths, not about
individual branches).

(b) Complete the ? instructions in the example below, of a program
that has full branch coverage but incomplete path coverage. Add a
memory safety bug (e.g., a buffer overflow or an illegal de-reference
such as buffusrl] = usr2) to the program and provide inputs to the
program that result in full branch coverage but do not trigger the
bug.

int example(bool bl, bool b2) {
int a = 0;
char c¢[2];
?
?


https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html
https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html

return clal;

Solution:

(a)

Branch coverage cannot cover all paths, because it will try to evaluate
every statement to both true and false, but will not try all possible
combinations of statements, which represent all possible execution
paths (e.g see (b) ). In other words, the number of branches is linear
to the possible choices, but the number of paths is exponential.

In this example, branch coverage will test this function by calling
both example(true, true) and example(false, false), it will execute
all the possible branches. These two examples provide a full branch
coverage, but example(true, false) results an undiscovered path which
leads to a memory safety bug. To have a complete path coverage, we
should test to call example(true, false) and example(false, true), to
be sure to check every possible path.

int example(bool bl, bool b2) {
int a = 0;
char c[2];
if (bl) a 4= 1;
if (1b2) a 4= 1;
return cla]l;

8. Fuzzing is an efficient automatic testing technique that scales to large code
bases. Modern fuzzing mechanisms leverage branch coverage to record
which parts of the program have been executed, mapping fuzzing inputs
to coverage. Coverage-guided fuzzers add any input that triggers new
coverage to the pool of inputs to perform a mutation. Additionally, these
fuzzers record any input that crashes or hangs the program.

(a)

Assume a new seed covers a new path. Fuzzing will continuously
mutate this input to trigger different paths and different data-flow
along that path. Why is it necessary to generate alternate data-
flows to trigger bugs, i.e., why does it not suffice to only generate
new paths? (hint: what is the difference between control-flow and
data-flow?)

Fuzzing frequently hits a so-called “coverage wall” where it no
longer makes progress (i.e., random mutations do not trigger new
coverage). What could be the reason for this limitation? (hint: what
types of conditions are hard to satisfy for randomly generated input)



()

Fuzzing struggles to find crashes in libraries. What could be the
reason for the lack of deep coverage when fuzzing the set of exported
library functions? (hint: think about a file I/O library that offers
open/read/write/close functions; what happens if you only fuzz the
read function without prior calls to open?)

Solution:

(a)

Testing can only show the presence of bugs, never their absence. The
number of possible paths is too high (exponential), so the program-
mers cannot test the program for every input, let alone manually
feeding them to the test. The initial set of inputs provided by the
tester is usually small. Generating input manually is costly, and we
want to get high coverage in the testing, that is why we use the initial
pool as a seed to generate more samples, to have a higher chance of
finding bugs.

Executing a path only covers control-flow. However, a bug may
only be triggered using specific data-flow. This means that both
the control-flow and data-flow must match to trigger a bug: control
flow checks whether an instruction executes or not, but the result of
the execution depends on the data. Some data may be okay while
there are inputs which result in a bug. See the example below in
code snippet 1.

(-1,-1) and (1,1) cover all path flows in the function, but (1, 50) results
in divide by zero exception which cannot be detected by control flow
alone.

Programs often have several checks in sequence. If these checks are
complex it is unlikely that a fuzzer will randomly generate input that
satisfies all these checks. For example, see the code snippet 2 below.

Here it is unlikely that a fuzzer will generate input that is exactly
71234567887654321”. The probability of generating this input is 2128,

A library can consist of several features and functions, all of which
might not be used in the program that is using it. Furthermore,
it’s infeasible to determine whether a branch is unreachable from the
main code or the fuzzer didn’t find any input which invokes that
function. If only some of the functions (present in the program) are
fuzzed, there might be dependencies with other functions that are
missed.

Code Snippet 1:

int example(int a, b
if (a>08&&

b
return a /



}

return 0;

}

Code Snippet 2:
long long input [2]

if (input[0] == 0x12345678) {
if (input[l] = 0x87654321) {
bug ();

}

9. Sanitization makes bug detection more likely by enforcing certain policies.
Commonly used sanitizers enforce memory safety and detect undefined
behavior.

(a) Is sanitization instrumentation helpful to find all types of bugs? Un-
der what circumstances will sanitization be counterproductive?

(b) Why is address sanitizer needed to detect memory corruption? Ex-
plain why and how buffer overflows can be missed without address
sanitizer.

(¢) Address sanitizer detects memory corruption by detecting writes to
red-zones (8 byte areas directly adjacent to allocated memory with
static data). Why is address sanitizer not a mitigation?

Solution:

(a) We need to be able to detect and determine a bad behavior when
using a sanitizer. A sanitizer can detect undefined behavior or out of
band address, but it cannot determine a wrong behavior if it is based
on the program specifications. Moreover, sanitization has a high cost
and each check that we add impacts the performance. Hence, running
a time-consuming sanitization in production can be counterproduc-
tive.

Sanitization can test for bugs that violate a codifiable policy. If the
bug is not encodable as a policy then no sanitizer can be built to find
it and sanitization will there not find it. An example is the libssh bug
that allowed an adversary to send a message “I'm successfully logged
in” despite not having sent the password. This was an error in the
SSH state machine that would not be testable through a sanitizer. E|

Thttps://www.zdnet.com/article/security-flaw-in-libssh-leaves-thousands-of-servers-at-
risk-of-hijacking/



(b)

Every memory corruption, such as buffer overflow, doesn’t necessarily
lead to a crash. If the overflow address is mapped in the address space
of the program, the OS allows the program to change the content and
continue the work. Moreover, this corrupted memory may or may
not lead to a crash/wrong output in the future. Hence, sometimes
overflows don’t impact the flow of the program. These inputs are not
problematic, but knowing the reason behind this overflow and fixing
it can help us to prevent possible bugs based on this overflow without
finding an input that triggers the bug.

If an attacker knows about the red-zone, she can move the pointer
past the red zone and thereby adjust the exploit to work in the pres-
ence of address sanitizer. Address sanitizer only detects writes to
the red zone but does not protect or check the pointer itself. The
red-zone can detect an accidental overflow or and unsophisticated at-
tack, but it can be bypassed (i.e., it is not effective against an attack).
Furthermore, adding 8 byte to each variable would have a very high
impact on the memory usage which makes this method impractical
for production (i.e., it is not efficient).

10. Several mitigations exist to make exploitation harder. Mitigations must
adhere to strict performance criteria as they are always enabled.

(a)

ASLR shuffles the address space for each execution. Why can the
address space not easily be reshuffled during execution (e.g., after
each system call)? Why would it be useful to reshuffle after each
system call (think how many stages an attack will have)?

Data Execution Prevention stops code injection attacks. Initial im-
plementations of data execution prevention leveraged segmentation
registers and expensive checks to test if a memory region was exe-
cutable or not. Modern implementations use a page-based mecha-
nism that leverages a bit in the page table to encode execute permis-
sions. Discuss the key advantage and disadvantage of a page-based
solution

Stack canaries protect against buffer overflows on the stack and are
prone to information leaks. How could an attacker bypass stack ca-
naries in an exploit?

Solution:

(a)

The program needs to reread and rewrite the whole program address
space to allow function pointer reshuffling. All pointers in the address
space must be adjusted to the new layout. This requires the system
to keep track of all pointers. This is very costly!



It would be useful (if it was efficient) because the adversary needs to
complete the exploit inside one call because, after each call, the sys-
tem shuffles the memory space and invalidates the previous attacker
pointers.

Disadvantage: Granularity of protection is page based which means
that if a single memory page contains code and data then it must have
a superset of both privileges. If the data is writable then the whole
page is writable which could lead to code injection attacks. Modern
DEP implementations make sure that pages are either executable or
writable though.

Advantage: Very low overhead as the check is executed implicitly
by the memory management unit during address translation and the
lookup is cached in the translation lookaside buffer, allowing a very
fast check in practice.

An information leak allows an attacker to disclose memory content.
The attack uses an information leak in the first step of the attack
to disclose the content of the canary and returns this content to
the attacker. The attacker then adjusts her attack to overwrite the
canary with the correct value. Stack canaries do not enforce integrity
at all times but only check integrity when the function returns, this
allows the attacker to change the content at any time inside the attack
before the function returns.



