
1

Computer Security (COM-301)
Monday live exercises

Execution Attacks and Security testing

Carmela Troncoso

SPRING Lab

carmela.troncoso@epfl.ch

It is not correct: If DEP is implemented and active; anything that is written in the stack
(such as a parameter) cannot be executed.

DEP protection

The startup NewHaven hires you to help them develop secure software.

The NewHaven developers tell you that in their server, they sometimes
need to execute code that is provided as a parameter in a function. But they
tell you that this is safe because the server implements Data Execution
Prevention. Is this correct? (Justify your answer).

It is not correct: If DEP is implemented and active; anything that is written in the stack
(such as a parameter) cannot be executed.

DEP protection

The startup NewHaven hires you to help them develop secure software.

The NewHaven developers tell you that in their server, they sometimes
need to execute code that is provided as a parameter in a function. But they
tell you that this is safe because the server implements Data Execution
Prevention. Is this correct? (Justify your answer).

Answer

It is not correct: If DEP is implemented and active; anything that is written in the stack (such as a parameter) cannot be
executed.

(a) False. A compiler can add the canary generation and checking without needing any
extra functionality from the operating system. Here more info on how this works:
https://ctf-wiki.github.io/ctf-wiki/pwn/linux/mitigation/canary/#canary-
implementation-principle

(a) False. The canary does not avoid *any* attack. If the attack enables the canary to be
overwriten or skipped, then the canary will not help.

(a) False. Only if the use of the format string overwrites the canary. Forms of format string
vulnerabilities read data from the stack but do not alter stack contents; or write onto
the stack in pinpoint locations (for example, to alter the value of a variable) cannot be
prevented by a canary.

The (true or not) power of the canary

(a)Stack canaries, which are a defense against buffer overflow attacks, require
operating system support

(a)Stack canaries will prevent any attack that overflows local variables from
executing injected code

(a)Stack canaries protect against all printf format string vulnerabilities

(a) False. A compiler can add the canary generation and checking without needing any
extra functionality from the operating system. Here more info on how this works:
https://ctf-wiki.github.io/ctf-wiki/pwn/linux/mitigation/canary/#canary-
implementation-principle

(a) False. The canary does not avoid *any* attack. If the attack enables the canary to be
overwriten or skipped, then the canary will not help.

(a) False. Only if the use of the format string overwrites the canary. Forms of format string
vulnerabilities read data from the stack but do not alter stack contents; or write onto
the stack in pinpoint locations (for example, to alter the value of a variable) cannot be
prevented by a canary.

The (true or not) power of the canary

(a) Stack canaries, which are a defense against buffer overflow attacks, require operating system
support

(b) Stack canaries will prevent any attack that overflows local variables from executing injected
code

(c) Stack canaries protect against all printf format string vulnerabilities

Answer
(a)False. A compiler can add the canary generation and checking without needing any extra functionality from the

operating system. Here more info on how this works: https://ctf-wiki.github.io/ctf-
wiki/pwn/linux/mitigation/canary/#canary-implementation-principle

(b)False. The canary does not avoid *any* attack. If the attack enables the canary to be overwriten or skipped, then the
canary will not help.

(c)False. Only if the use of the format string overwrites the canary. Forms of format string vulnerabilities read data from
the stack but do not alter stack contents; or write onto the stack in pinpoint locations (for example, to alter the value of

a variable) cannot be prevented by a canary.

This strategy will not be able to uncover a vulnerability.

The vulnerability is: The length of the input taken by the gets function is not verified so
password could take more than the allocated stack memory.

The fuzzer will not uncover the vulnerability
This will at most overwrite parts of the isCorrect variable and not the return address. But
the overwrite will be with 0.
The comparison strcmp will not succeed, so isCorrect will be zero (as in not knowing the
password)

A fix would be to change the fuzzing to 1s, which would result on isCorrect being True even
not knowing the password.

Consider the following C function for getting a password from the standard input and checking it (strcmp
compares two strings, and returns 0 if strings are equal, or a number that is not equal to zero if they are not):

getPassword() {

int isCorrect = 0;

char password[12];

printf("Enter your password > ");

gets(password);

if(strcmp(password, "C0m301-Adm1N") == 0) isCorrect = 1;

return isCorrect;

}

Consider the following fuzzing strategy: a fuzzer generates and feeds strings composed of multiple '\0' characters

(null string terminators), of length up to 15.
Is this strategy able to uncover a vulnerability? If yes, identify which vulnerability and explain why the fuzzer finds

it. If not, propose an alternative approach to test (may or may not be fuzzing) that uncovers a vulnerability.
Explain why your approach would find that vulnerability.

Bypassing the password

Consider the following C function for getting a password from the standard input and checking it (strcmp
compares two strings, and returns 0 if strings are equal, or a number that is not equal to zero if they are not):

getPassword() {

int isCorrect = 0;

char password[12];

printf("Enter your password > ");

gets(password);

if(strcmp(password, "C0m301-Adm1N") == 0) isCorrect = 1;

return isCorrect;

}

Consider the following fuzzing strategy: a fuzzer generates and feeds strings composed of multiple '\0' characters

(null string terminators), of length up to 15.
Is this strategy able to uncover a vulnerability? If yes, identify which vulnerability and explain why the fuzzer finds

it. If not, propose an alternative approach to test (may or may not be fuzzing) that uncovers a vulnerability.
Explain why your approach would find that vulnerability.

Bypassing the password

Answer
This strategy will not be able to uncover a vulnerability.

The vulnerability is: The length of the input taken by the gets

function is not verified so password could take more than the
allocated stack memory.

The fuzzer will not uncover the vulnerability

This will at most overwrite parts of the isCorrect variable and
not the return address. But the overwrite will be with 0.

The comparison strcmp will not succeed, so isCorrect will be
zero (as in not knowing the password)

A fix would be to change the fuzzing to 1s, which would result

on isCorrect being True even not knowing the password.

Bonus for everyone

Gru has written the code in the next slide to manage the bonuses of minions that
participate in evil missions. This function receives an identifier for a minion and then
prompts the minion to provide the name of the mission they participated in. Gru
asks for your help debugging the function.

Identify two lines that contain unsafe code that may lead to a memory safety error.
For those two lines i) explain the vulnerability, and ii) explain whether a Minion can
exploit this vulnerability to increase their bonus even when their mission did not
succeed.

Assume that Minions are good teammates and will never steal a bonus from another
Minion by providing others' successful mission names

Assume that local variables are pushed to the pile as in the order they are created

Line 5: Gets(mission) can overwrite success [no check in mission]

Success either is overwritten again in line 6; or the function successDB crashes.

Cannot get bonus, unless knows a number of a mission that has a bonus (which they won’t
do, recall they are nice minions)

Line 8: Lack of check on minion ID being <100

Would give an error, but not increase the bonus.

The only way of increasing bonus is, because there is no authentication (could be
considered an error) they can give another minion ID and increase that minion’s bonus. As
this was not forbidden in the question we gave it as an ok answer.

Bonus for everyone

Identify two lines that contain unsafe code that may lead to a memory safety error.
For those two lines i) explain the vulnerability, and ii) explain whether a Minion can
exploit this vulnerability to increase their bonus even when their mission did not
succeed.

Line 5: Gets(mission) can overwrite success [no check in mission]

Success either is overwritten again in line 6; or the function successDB crashes.

Cannot get bonus, unless knows a number of a mission that has a bonus (which they won’t
do, recall they are nice minions)

Line 8: Lack of check on minion ID being <100

Would give an error, but not increase the bonus.

The only way of increasing bonus is, because there is no authentication (could be
considered an error) they can give another minion ID and increase that minion’s bonus. As
this was not forbidden in the question we gave it as an ok answer.

Bonus for everyone

Answer
Line 5: Gets(mission) can overwrite success [no check in

mission]
Success either is overwritten again in line 6; or the function

successDB crashes.
Cannot get bonus, unless knows a number of a mission that has

a bonus (which they won’t do, recall they are nice minions)

Line 8: Lack of check on minion ID being <100
Would give an error, but not increase the bonus.

The only way of increasing bonus is, because there is no

authentication (could be considered an error) they can give
another minion ID and increase that minion’s bonus. As this was

not forbidden in the question we gave it as an ok answer.

Identify two lines that contain unsafe code that may lead
to a memory safety error. For those two lines i) explain the
vulnerability, and ii) explain whether a Minion can exploit
this vulnerability to increase their bonus even when their
mission did not succeed.

(a) False: there is no perfect fuzzer, so running one cannot be enough
(b) True: using different fuzzers that produce many different inputs for as long as possible

ensures that one will get more coverage.
(c) This is only enough if those 1000 iterations of those fuzzers can achieve complete

coverage (impossible for any commercial big program)
(d) Types matter: how inputs are chosen determines the code coverage that will be

achieved.

The more fuzz, the fuzzier

When you fuzz a program… True or false (as always, justify!)

[a] Using one fuzzer is enough

[b] You should use as many fuzzers as possible for as long as possible

[c] Running three complementary fuzzers for 1000 iterations each is enough

[d] It does not matter which fuzzer you choose. All types are good.

(a) False: there is no perfect fuzzer, so running one cannot be enough
(b) True: using different fuzzers that produce many different inputs for as long as possible

ensures that one will get more coverage.
(c) This is only enough if those 1000 iterations of those fuzzers can achieve complete

coverage (impossible for any commercial big program)
(d) Types matter: how inputs are chosen determines the code coverage that will be

achieved.

The more fuzz, the fuzzier

When you fuzz a program… True or false (as always, justify!)

[a] Using one fuzzer is enough

[b] You should use as many fuzzers as possible for as long as possible

[c] Running three complementary fuzzers for 1000 iterations each is enough

[d] It does not matter which fuzzer you choose. All types are good.

Answer
(a)False: there is no perfect fuzzer, so running one cannot be enough

(b)True: using different fuzzers that produce many different inputs for as long as possible ensures that one will get more
coverage.

(c)This is only enough if those 1000 iterations of those fuzzers can achieve complete coverage (impossible for any commercial
big program)

(d)Types matter: how inputs are chosen determines the code coverage that will be achieved.

