I
11

C programming cheatsheet
(preliminaries to follow the lecture)

L o,
& >/
=
SECURITY WD PRIVACY ENGINEERING LABORATORY

C language 101: concepts for the lecture
(not a programming course)

Low-level general-purpose programming language
very efficient

very prevalent (Windows, iOS, loT)

1. #include <stdio+h>
2. int print_hellel)
3. &

4. printf("Hello,
World!\n*)

6. }

7x = primt_hettot)

These are basic concepts in C to follow the lecture. Please check books or online
tutorials to gain familiarity with these concepts.

Suggestions for online tutorials:

- https://www.guru99.com/c-programming-tutorial.html
- https://www.learn-c.org/

Note that you do not need to learn to program in C, but you do need to understand
concepts such as function calls, pointers, variable, types, etc.

https://www.guru99.com/c-programming-tutorial.html
https://www.learn-c.org/

C language 101: concepts for the lecture
(not a programming course)

. int addNumbers(int as—int b)

. {

. int resut;

. result = a+b;

. return result; // return statement

ST, WN -

C language 101: concepts for the lecture
(not a programming course)

* Indicates a pointer: a pointer is a
special variable that stores addresses

ratpr than values
. . & Returns the address of
« 1Ptk pc, C; a variable
C

1

2. = 5;
3. pc = &c;
4

printf('sd"
*pc);

Returns the content of in
the address pointed by a
pointer
(in this case, the content
of the address pointed by pc
is the address of the

variahla)
Y-oH—Lcho

C—C7

C language 101: concepts for the lecture

(not a programming course)

Layout of a C program
high

LIFO structure address »

function variables, along with
information that is saved each -—__“——____________-¢
time a function is called

dynamic memory
allocation
(malloc, calloc,..)
global variables and static variables
that are initialized to zero or do not
have explicit initialization in
code

global variables and static variables

uninitialized
data(bss)

that are initialized by the proI_T;'T'a-1i\ﬂr«-‘1q-e--z:.______________'b

initialized
data

text

Executable instructions (code). It is low >
under the heap and the stack with the address >
goal of avoiding that it gets
rewritten

I

1L

command-line arguments
and environment variables

initialized to zero
by exec

read from
program file by
exec

In order to understand software vulnerabilities, it is necessary to know how the different
variables and objects in a C program are laid out in memory. The figure illustrates where
global, local, and dynamically allocated variables are placed in memory.

In particular it is important to understand heap and stack. This link can help:
https://www.gribblelab.org/CBootCamp/7 Memory Stack vs Heap.html but there are

many other resources online that can help improving your understanding of memory

allocation.

https://www.gribblelab.org/CBootCamp/7_Memory_Stack_vs_Heap.html

C language 101: concepts for the lecture
(not a programming course)

Layout of a C program

high _
address . command-line arguments
and environment variables
char big_array[100]; stack
char huge_array[1000]; g |12 1 ______
int global =-0;
int useless() { return0; } —
intmain(){ _————"—~>~_ = —~_ = ~_ |..__. T
id ¥ * * .
Yotul:i pll, OpZ, P3; heap
int local =0; oy
B Uninitialized initialized to zero
pl = malloc(28); data(bss) G e
p2 = malloc(8); initialized read from
p3 = malloc(32); data program file by
} low text exec
address >

This figure illustrates the concepts of the previous slide and how different variables map
to memory.

When a function is called, it reserves a “stack frame”: space in the stack for its variables.

Stack frames are reserved “on top” of each other according to how the stack grows.
Whether the stack grows upwards or downwards depends on the architecture, but
within an architecture it is consistent. In most architectures, the stack grows
downwards.

Within the stack frame, most architectures allocate space for the variables as they come
(see lecture 7.2); but in some the order can be random.

C language 101: concepts for the lecture
(not a programming course)

Calling a function

int __printf (const char *format, ...) {

Code to print things; score
0x8048464
Return address

}

int main {
/* code doing stuff */
printf(“You scored %d\n”, score)

/* code doing stufi

}

stuff from main function

\0o(\n| d
% d| e
r c| s
ul|o |y

Explanation about how C programs store the addresses and values of variables in the
stack and in memory.

printf is a function that takes one or more parameters:

- The first parameter (written above the return address on the stack) is the address of
a string to be printed in the screen. This string may contain format specifiers which
indicate that subsequent parameters will be variables whose values will be plugged in
the string when it is printed.

- If the string has format specifiers, these variables are given as parameters to the
printf function, and as such are also on the stack.

I

S =)
& >/
Sk
SECURITY 4D PRIVACY ENGINEERING LABORATORY

End C programming cheatsheet
(preliminaries to follow the lecture)

= NN

£ NN/

: I X ES 0

P 7) =
SECURITY AND PRIVACY ENGINEERING LABORATORY

Computer Security (COM-301)
Software security
Memory safety

m

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Tuomas Aura, Yoshi Kohno, Trent Jaeger

Why all the fuzz with overflows...

(This is an example for the purpose of illustrating the damage that an overflow —i.e.,
writing on a variable past is allocated length — can produce. Any resemblance with
reality is pure coincidence)

Imagine a simple check-in form in which users of an airline input their data, and these
data are shown to the desk staff when they are receiving their boarding passes.

10

‘ Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
on the photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:
or.) Alice Smith

X Travelers are required to enter a middle name/Initial If one Is
Gender: Date of Birth: e B I

female 18) (01/24/93
Some younger travelers are not required to present an I
when traveling within the U.S. Leam mor
+ Known Traveler Number/Pass ID (optional): (2]

+ Redress Number (optional): [Z]

Seat Request:
@ No Preference O Aisle O Window

This form takes the information shown in the figure on the top left: the passenger First,
Middle and Last name, and the passenger’s Gender and Date of Birth.

None of this information is sanitized (in particular, checked for length) when stored in
the server

At the airport, this information is shown to the desk staff with the following format (see
bottom right figure):

Line 1: some internal information about the flight number

Line 2: name of the passenger (extracted from the information the passenger provides
in the form)

Line 3: ticket type (first class, business, coach, etc)
Line 4: [blank]

Line 5: Special requisites for this passenger formatted as the string “Special Instrux:”
followed by the requisites — None if the passenger does not have any special treatment.

11

‘ Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
i ion on the issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:
or. +)Alice Smithhhhhhhhhhhhh
. Travelers are required to enter a middie name/Initial If one Is
Gender: Date of Birth: listed on their government-issued photo ID.
Female #) 01/24/93

Some younger travelers are not required to present an ID
when traveling within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional):
+ Redress Number (optional): ()

Seat Request:
@® No Preference () Aisle) Window

How could Alice exploit this?
Find a partner and talk it through.

The old screen at the desk allows 21 characters per line. After that, it starts overwriting
the next line, as shown in the bottom right.

‘ Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
on the issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:
Dr. #]Alice Smith First
5 Travelers are required to enter a middle name/Initial If one Is
Gender: Date of Birth: listed on their government-Issued photo 1D.
Female 18) 01/24/93
Some younger travelers are not required to present an ID
when traveling within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): (7]

+ Redress Number (optional): (2]

Seat Request
@ No Preference () Aisle O Window

If Alice knows that there is no length check, and also the configuration of the screen,
instead of writing random characters she can overwrite the second line with something

clever.

In particular if after her Last Name she writes 10 spaces, the next information will be
written in the next line (line 3, where the ticket type appears)

13

Passenger last name:
“Smith First Special Instrux: Give Pax Extra Champagne.”

In fact given this knowledge Alice can go further and overwrite also the special

instruction by introducing the adequate number of spaces after the ticket type.

14

Memory corruption

Unintended modification of memory location due to missing / faulty safety check

void vulnerable(int user1, int *array) {
I/l missing bound check for user1
array[user1] = 42;

Memory corruption happens when a region of the memory that is not allocated to a
program is modified by this program. The C language does not check for this situation,
so it can happen when the programmer misses a check, or does not check for all
possible cases.

15

Memory safety: temporal error

void vulnerable(char *buf) {

free(buf);
buf[12] = 42 ;é
}

Temporal safety when accessing an object means that the pointed-to object is the same
as when the pointer was created. When an object is freed (e.g., by calling free for heap
objects or by returning from a function for stack objects), the underlying memory is no
longer associated to the object and the pointer is no longer valid.

Accessing the region of memory pointed by such an invalid pointer results in a temporal
memory safety error and undefined behavior.

16

Memory safety: spatial error

void vulnerable() {
char buf{12];
char *ptr = buf[11]; ¢t D

*ptr++ = 10; v
*ptr = 42; =

Spatial memory safety is a property that ensures that all memory accesses in a program
are within the bounds of their pointers valid objects. A pointer references a specific
address in an application’s address space. Memory objects are allocated explicitly by
calling into the memory allocator (e.g., through malloc) or implicitly by calling a function
for local variables. An object’s bounds are defined when the object is allocated and a
pointer to the object is returned.

Accessing memory using a pointer that points outside of the associated object results in
a spatial memory safety error and undefined behavior.

In many cases a spatial memory safety error can result on a segmentation fault that
causes the program to stop (see more about what is a segmentation fault and what
causes it here: https://stackoverflow.com/questions/2346806/what-is-a-segmentation-
fault)

17

Memory safety: spatial error

void vulnerable() How can you exploit this?
{
int authenticated = 0; If we give more than 80
char buf[80]; charac_ters from std!n, it will
overwrite authenticated!
(both are in the stack)
gets(buf);
If the value is =0 the user
} will be authenticated!

Gets (buf):reads aline from stdin and stores it into the string pointed to by buf

Here is an example of a problem that can happen when the boundaries of the allocated
memory are not checked.

The function gets just reads anything that the user inputs. However, it does not check
the boundary of the memory reserved to buf.

If the value input by the user is too long, it may overwrite authenticated (whichis
stored), causing problems later when the program checks the authenticated value
as if it has been modified and is different from zero the user will be considered as
authenticated

[Note: This may not work on your computer as is, as it depends on the protections your
OS has implemented, and on the concrete architecture that determines the order in
which variables are stored on a function’s stack frame.

If you are interested in more Stack manipulations, you can learn about it in COM-402 at
the masters]

18

Uncontrolled Format String (cwe-134)

What would this print if argv[1] = “You scored %d\n”?

4 bytes from the stack!

0x8048464
Return address

stuff from main function

And if it was printf(“You scored %d %d %d %d”)?

And if it was printf(“You scored %s”)?

Format string can read beyond the parameters
e.g, if input = '%4Sp” > Read from 4th parameter (even if it does not exist)

Format string can write to memory
e.g, if input = '%65n” > Write to the address pointed to by 6" parameter

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owEEAorg/www-community/attacks/Format string_attack

In the code in the example, we are getting a string to print as an argument. The string
can be anything. If in the string given as input there is a parameter, then it will be
interpreted that the value of this parameter is in the next bytes of the stack (the number
of bytes will be given by the specifier used in the string:

- %d, which prints and int, will print 4 positions from the stack
- %s, which prints a string, will print until it finds ‘\O’ the character that indicates end of
string.

Note that particular format specifiers allow to read and write from positions beyond the
next in the stack:

19

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format_string_attack

SOLVING THE PROBLEM

The programmer should decide the format of the
string. That ensures that no extra argument, read
or write, can be used.

20

httes:Mowase.org/www-com;nunitv/attacks‘Format string_attack

In order to avoid this problem, it is very important that the programmer defines the
parameters, and does not let the user input them.

20

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format_string_attack

Attack scenario: code injection

Force memory corruption to set up attack
Redirect control-flow to injected code

The goal of a code injection attack goal is to execute code (e.g. access a file) into a

running process or modifying the program flow to execute unexpected commands.
The means in injecting new code.

Control flow attacks most common on current systems. In these attacks the adversary
uses memory corruption to modify a code pointer and prepare data to be processed by
system functions.

21

Code injection attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}

vuln(&exploit);

Next stack frame

When a function is called, the program prepares the stack.

It reserves a new stack frame where the data of the function will be stored (check the
cheatsheet at the beginning of the lecture for more information about frames and

where they are store in relation with the memory layout of the program)

23

Code injection attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
- vuln(&exploit);

First, the argument of the function is pushed to the stack

24

Code injection attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
- vuln(&exploit);

Second, the return address for the program (where to go after the current function is
finished) is pushed to the stack.

25

Code injection attack

- void vuln(char *u1l) {
// strlen(ul) < MAX?

char tmp[MAX];
strcpy(tmp, ul);

}
vuln(&exploit);

Before starting the function, we also reserve space for the local variables in the stack, in
this case MAX bytes for the variable tmp.

There is also saved space for the so-called Base pointer (4 bytes in 32-bit operative
systems / 8 bytes in 64-bit operative systems), which is irrelevant for this lecture.

26

Code injection attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
- strcpy(tmp, ul);

}
vuln(&exploit);

Shellcode
(executable attack code)

When executing strcpy, the program will start copying the content of ul into tmp.

Let us consider that the content of ul is some executable code that implements an
attack.

27

Code injection attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
- strcpy(tmp, ul);

}
vuln(&exploit);

Shellcode
(executable attack code)

Don't care

As there is no control on the size of ul, if this variable is longer than MAX bytes, it will
overwrite the next value in the stack, the base pointer. (We do not care what value is
written there as it will not be used)

At this point, there is a pointer that may point to memory that is no allocated for the
program variable: there is a memory safety violation.

28

Code injection attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
‘ strcpy(tmp, ul);

}
vuln(&exploit);

Shellcode
(executable attack code)

Don't care

Points to shellcode

If the content of ul is even longer, the program continues writing and will overwrite the
return address.

At this point the program has violated the integrity of the return address pointer.

29

Code injection attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
- strcpy(tmp, ul);

}
vuln(&exploit);

Shellcode
(executable attack code)

Don't care

Points to shellcode

The return address is overwritten with a new address: the address where the executable
attack code start (we change the location where the execution will go next)

30

Code injection attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
‘ strcpy(tmp, ul);
}
vuln(&exploit);

Shellcode
(executable attack code)

Don't care

Points to shellcode

When the function ends, the program will use the corrupted return address to continue
the program, i.e., the attack code.

31

Code injection attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
‘ strcpy(tmp, ul);
}
vuln(&exploit);

Shellcode
(executable attack code)

Don't care

Points to shellcode

At this point the adversary has succeeded in their attack: they can execute arbitrary
code!

32

Data Execution Prevention

* Enforces code integrity on page granularity
* Execute code if eXecutable bit set

* WAX ensures write access or executable
* Mitigates against code corruption attacks
* Low overhead, hardware enforced, widely deployed

* Weaknesses and limitations
* No-self modifying code supported

0x00000000
0x00010000 [

Virtual address space

text

ox7fffAAAfL |

Physical address space

0x00000000

OxO00ffffff

:] page belonging to process
r| page not belonging to process

A defense against code injection is Data Execution Prevention (DEP). This is a
countermeasure enforced at the hardware level. It protects the memory at a page

granularity. Every page on a program is assigned as writable OR executable. Thus, the
stack, where the adversary can write, can never be executed.

A limitation of this countermeasure is that it prevents self-modifying code. This prevents
many functionalities in applications offered as a service, where the user executes code
supplied by the server on their machine (e.g., Javascript being executed on the browser).

33

Attack scenario: code reuse

* Find addresses of gadgets
* Force memory corruption to set up attack
* Redirect control-flow to gadget chain

In a code injection attack, the adversary first writes code, and then gets the OS to
execute this code.

If DEP is in place, however, executing writable memory becomes impossible.
Thus, this attack cannot be deployed.

To circumvent this protection, instead of executing injected code, the adversary can find
pieces of code already that already exist in memory (and therefore are executable) and
redirect the program flow to those pieces.

These pieces are typically known as gadgets.

34

Control-flow hijack attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
- vuln(&exploit);

The attack starts as a code injection attack, when the OS prepares the stack for the
function call.

36

Control-flow hijack attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
- vuln(&exploit);

The OS reserves space for the function argument

37

Control-flow hijack attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
- vuln(&exploit);

The OS then reserves space for the return address and the base pointer

38

Control-flow hijack attack

- void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
vuln(&exploit);

And finally space for the variable tmp inside of the function

39

Control-flow hijack attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
- strcpy(tmp, ul);

}
vuln(&exploit);

Don't care

The adversary exploits the same lack of check as in the code injection attack to write
beyond the boundaries of tmp.

However, as it is not possible to execute the code in the stack, the adversary now does
not care about what is written in the first MAX bytes: this code will not be executed.

40

Control-flow hijack attack

void vuln(char *u1l) {
// strlen(ul) < MAX?

char tmp[MAX];
- strcpy(tmp, ul);
}
vuln(&exploit);
Don't care
Don't care

As before, a memory safety violation happens as soon as the adversary overwrites
pointers that they are not allowed to write on.

41

Control-flow hijack attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
- strcpy(tmp, ul);

}
vuln(&exploit);

Don't care

Don't care

Points to &system()

But now, instead of point to the start address of tmp, as it would happen in code
injection, the adversary modifies the address pointed by the return pointer to be the
location of an executable function somewhere in the memory, e.g., the system()
function

Control-flow hijack attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
- strcpy(tmp, ul);

}
vuln(&exploit);

Don't care

Don't care

Points to &system()

Base pointer after system()

Return address after system

As the adversary prepares to return to the new location (system()), they also need to
prepares the stack to be in the state that system() is expecting: they need to add the
base pointer, the return address after system() is called...

43

Control-flow hijack attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
- strcpy(tmp, ul);

}
vuln(&exploit);

Don't care

Don't care

Points to &system()

Base pointer after system()

Return address after system

1st argument to system()

... and then the argument that system() will receive, i.e., the command that will be
executed

44

Control-flow hijack attack

void vuln(char *u1l) {
// strlen(ul) < MAX?
char tmp[MAX];
- strcpy(tmp, ul);
}
vuln(&exploit);

Points to &system()

Base pointer after system()
Return address after system
1st argument to system()

When the function vuln() ends, the program will continue its flow to system().

At this point in time, the adversary has hijacked the flow of the program to redirect to
where they want.

Typically, the adversary will try to use several gadgets in a row by exploiting bugs in
different functions in order to be able to execute arbitrary chains of instructions.

45

Address Space Layout Randomization

* Goal: prevent the attack from reaching a target address

* Randomizes locations of code and data regions

* Probabilistic defense
* Depends on loader and OS

* Weaknesses and limitations
* Undefined behavior: prone to information leaks
* Some regions remain static (on x86)
* Performance impact (~10%)

Hijack attacks are enables by the fact that the adversary knows where system functions
reside in memory.

A defense to avoid these attacks is to randomize the memory layout so that the
adversary cannot know a priori where to redirect the function thus reducing the
likelihood of the attack. This randomization depends on the capabilities of the operative
system and the loader that maps OS functions in memory. As such, the defense is
probabilistic. The adversary does not know where functions reside, but can guess (with
lower or higher probability depending on the randomization implemented).

This defense has the following problems:

- The adversary can still redirect the program. This does not guarantee success of the
attack, but also does not guarantee that nothing bad will happen. The adversary may
end up triggering other unintended functionality and reading from memory.

- In runtime the OS needs to “undo” the randomization to execute the program. This
slows down execution.

- Not all regions can be randomized. Due to the way in which CPUs and memory are
constructed, some regions are always the same and ASLR can not not defend them.

46

Stack canaries

47

Stack canaries

0x0000
* Protect return instruction pointer on stack 4
* Compiler modifies stack layout
* Probabilistic protection buf0)
Vulnerable Buffer
L. . Stack
* Weaknesses and limitations growth Sl
* Prone to information leaks
. . . c Val
* No protection against targeted writes / reads anary Take
Return Address
OXFFFF

Stack canaries, like coal mine canaries, are a means to detect if something fishy is going
on. Stack canaries are a value between the part of the stack writable by the program and
the return address. The idea is that, if the canary value has changed (the canary ‘has
died’) then it is not safe to use the return address, as it could have been compromised.

This mitigation is also probabilistic, in the sense that the adversary may be able to
predict the canary and overwrite it.

Also, the fact that the adversary cannot write on the stack beyond the canary, does not
mean she cannot read (e.g., exploiting an uncontrolled format string vulnerability). As
such, it cannot prevent information leaks. Also, canaries do not protect against
vulnerability exploits that can target a particular address.

48

Status of deployed defenses

* Data Execution Prevention (DEP) Memory
* Address Space Layout Randomization 0x460 RWMX
(ASLR) text
* Stack canaries
« Safe exception handlers 0x800 RWHX
* Pre-defined set of handler addresses data

Oxfff E“ﬁiﬂ
stack

The currently deployed defenses work as follows. (The three first are explained in the
previous slides.)

- DEP: protects the memory making sure that the text part of the memory (i.e., the
original program) is executable but cannot be overwritten; and that the data can be
written but not executed.

- ASLR acts across the memory, effectively scrambling addresses (i.e., the two last
bytes of the address are unknown to the adversary)

- Stack canaries are inserted in the stack, helping to detect overflow attacks.

- Windows also uses safe exception handlers, which aim at keeping the system safe
even after errors. This countermeasure makes sure that, after an error there is no
undefined behavior, but the system only can execute a pre-defined set of error
handling functions.

49

Software testing

Testing is the process of executing a program to find errors

Error: deviation between observed behavior and specified
behavior (a violation of the underlying specification)
Functional requirements
Operational requirements
Security requirements?

50

Software testing executes code under different circumstances with the goal of finding
configurations that raise an error. An error is a deviation between how we expect the
program would function and what actually happens. This can be:

- an error regarding functionality: the program does not provide the expected result

- and error regarding operation: the program crashes, is too slow (even never
terminating)

But what about security? Testing for security is hard. We cannot ensure that we have
found all bugs that matter (the adversary will do things that have not or cannot be
tested). Therefore, we cannot prove the absence of security-critical bugs using testing.
Still, finding as many bugs as possible helps increasing the safety of software.

Security testing

Complete testing of all
Control-flows: test all path through the program
Data-flow: test all values used at each location

Achieving this would be equivalent to solving the “halting problem”
Practical testing is limited by state explosion

51

Ideally, we would like to test all possible

Control-flows: all possible paths through the program, i.e., all possible outcomes of
branches in a program (if-else clauses, for clauses, while clauses, etc).

Data-flows: all possible values for the variables / locations that are used by the
program.

Of course, testing all possible paths and data values is impossible, these are too many
states.

The Halting problem is a hard problem in Computation Theory: given a certain input, can
we have an algorithm that can predict whether the a program will terminate ? The
answer is no, a general algorithm does not exist. The only solution is to run.

Control-Flow vs. Data-Flow

void program() {
int a = read();
int x[100] = read();

if (@ >=0 && a <=100) {

x[a] = 42;
}

52

The difference between control-flow and data-flow”.
Consider this example program.

The values a=12 and a=101 cover all flows:

When a=12, (a>=0 && a<=100) is True, and the instruction within the if (x[a]=42) is
executed.

When a=101, (a>=0 && a<=100) is False and the instruction within the if is not
executed.

However, even all statements are executed, and both flows are explored, not all data-
flows are considered, i.e., we did not consider all possible values of variables in each
instruction.

This may be very relevant. For instance, for this program, the data-flow a=100 would
raise a bug. In this case (a>=0 && a<=100) would be True, but x[100] is not reserved for
the program (x has 100 positions starting in position 0). Thus, when arriving to the
instruction x[a] = 42, the program would crash trying to access x[100]

How to test security properties

Manual Testing: testing is designed by a human
- Code review
- Heuristic test cases

Automated testing: testing is decided algorithmically
- Algorithms designed to run the program and find bugs
- Algorithms enhanced by means to enforce properties

54

There are two ways of testing for security properties:

Manual testing in which the tests to be carried out are defined by a human, trying to
identify corner cases that may appear in reality. Whether these corner cases could
trigger a bug is typically done via code reviews, in which humans read each others’ code
to search for programming errors; or by implementing test cases so that the checks can
be performed in runtime.

Automated testing in which the tests are not defined directly by a human, but the
human designs an algorithm to create these tests in an automated manner. The
capabilities of these automated tests to find bugs can be enhanced by having means to

detect in runtime when security properties may be violated.

Manual testing

Exhaustive: cover all inputs
Not feasible due to massive state space

Functional: cover all requirements
Depends on specification

Random: automate test generation
Incomplete (what about that hard check?)

Structural: cover all code
Works for unit testing

55

When manual tests are defined by humans, they can be guided by the following
principles:

- One can try to cover all inputs. This is unfeasible as the number of inputs grows
exponentially with the number of new variables and branch conditions

- One can try to cover all requirements, extracting those from the specification. This
requires that the specification is available, and that all requirements can be well
identified from the spec itself.

- One can perform random checks by generating them automatically. It is difficult that
completely random checks achieve good code coverage, as they will never pass hard
checks in which the program checks for a particular value. For instance:

if (a = sha256(“Hello World”))

- Finally we can try to cover all code, but this only works for small code bases (e.g., for
unit tests)

Automated testing

Static analysis
Analyze the program without executing it
Imprecision by lack of runtime information, e.g. aliasing

Symbolic analysis
Execute the program symbolically
Keeping track of branch conditions
Not scalable

Dynamic analysis (e.g., fuzzing)
Inspect the program by executing it
Challenging to cover all paths

56

On the other hand, one can design algorithms to define the tests to run.
These algorithms can be based on one of these three approaches:

Static analysis: this type of analysis analyzes the code without executing it. Static
analysis can find basic errors. This method is limited by its incapability to know what the
values of variables are going to be in runtime. It can also not catch race conditions that
happen when an address is pointed by more than one variable (this phenomenon is also
called “aliasing”).

Symbolic analysis: this analysis computes an approximation of what the program
actually does by constructing formulas representing the program state at various points.
It is called "symbolic" because the approximation relies on representing the program,
and its different branches, as logic formulas.

Symbolic execution identifies decision points (e.g., if statements) and associates them
with logical variables that can be met or not.

This approach is extremely effective, as it can consider all paths, but it requires to keep
an enormous amount of state (remember all options for all decision points). It cannot
scale to large pieces of code.

Symbolic execution will also perform poorly when the program includes calls to
components that are not under the control of the program itself (e.g., calls to the

system); or when memory regions are accessed using different names.

Dynamic analysis: this analysis consists on executing the code with diverse inputs. The
main challenge is to cover all the paths (control- and data-flows).

56

Coverage: testing needs a metric

Why use Coverage?
Intuition: A software flaw is only detected if the flawed statement is executed!
Effectiveness of test suite therefore depends on how many statements are executed.

Statement coverage

how many statements (e.g., an assignment, a comparison, etc.) in the program
have been executed

Branch coverage
how many branches among all possible paths have been executed

57

To measure how complete a set of tests is we use the concept of coverage with aims at
guantifying how many statements of the program are executed by the tests.

Coverage can be measured with respect to different elements:

Statement coverage: measures how many statements (e.g., an assignment, a
comparison, etc.) in the program have been executed.

Statement coverage does not mean full coverage. All statements may be executed at
least once, but if the values of the variables are limited, some errors may not be found.

Branch coverage: measures how many branches among all possible paths have been
executed. In other words, for each branch in the program (e.g., if statements, loops),
how many branches have been executed at least once during testing.

Branch coverage is neither complete. All branches may be executed, but that does not
mean we have tested all the values of the variables.

Coverage: testing needs a metric

int func(int elem, int *inp, int len) {
intret=-1;
for (inti=0;i<=len; ++i) {
if (inp[i] == elem) { ret = i; break; }
}

ret;

}

Test input: elem = 2, inp =[1, 2], len = 2 results in full statement coverage.

Loop is never executed to termination, where the out of bounds access happens.
Statement coverage does not imply full coverage.

Current practice is branch coverage

58

In this example, for inputs:

elem=2
inp =[1, 2]
len=2

We would run all the statements. So statement coverage is complete.

However, the loop would never finish, so we would not find the bug that happens when
i>length(inp)

Fuzzing

A random testing technique that mutates input to improve test
coverage

State-of-art fuzzers use coverage as feedback to mutate the inputs

whe

Tests

\{

Coverage

59

Fuzzing input generation

Dumb Fuzzing is unaware of the input structure; randomly mutates input

Generation-based fuzzing has a model that describes inputs; input
generation produces new input seeds in each round

Mutation-based fuzzing leverages a set of valid seed inputs; input
generation modifies inputs based on feedback from previous rounds

Mutations can be informed by structure white-box, grey-box, black-box.

60

There are different criteria to create the list of inputs to be tested:

Dumb: generate the list of inputs at random, i.e., do not consider the relation between
inputs nor follow a model

Generation-based: use a model that constraints how the inputs are generated.
generates a new input each round according to the model.

Mutation-based: instead of generating new inputs according to a model, this approach
modifies the inputs according to some rules considering previous inputs and what the
results obtained by those inputs.

If the algorithm has information about the program, this information can be used to
design new inputs in a more effective way.

White box: In a white-box model, the fuzzer has full knowledge of the code. This can be
used to chose optimal mutations (e.g., find inputs that unblock hard checks)

Grey box: does not know all the instructions, but can use results from previous rounds
to infer information about the program and optimize the choices of inputs.

Black box: generates the inputs without knowledge of the program.

Sanitization

Test cases detect bugs through
Assertions
assert(var!=0x23 && "illegal value");
Segmentation faults
Division by zero traps
Uncaught exceptions
Mitigations triggering termination

How can we increase bug detection chances?

Sanitizers enforce some policy, detect bugs earlier and increase
effectiveness of testing.

61

Tests and fuzzing can find errors associated to operations, but only when the errors
happen.

Sanitizers try to catch these errors before they happen so that testing can be faster.

Address Sanitizer

AddressSanitizer (ASan) detects memory errors. It places red zones around objects and
checks those objects on trigger events.

The tool can detect the following types of bugs:
Out-of-bounds accesses to heap, stack and globals
Use-after-free
Use-after-return (configurable)

Use-after-scope (configurable)
Double-free, invalid free
Memory leaks (experimental)

Slowdown introduced by AddressSanitizer is 2x.

62

Every time a variable is defined AddressSanitizer (Asan) marks the memory locations
around this variable as “red zones”, i.e., zones that the program should not catch. It does

the same with parts of the memory that are freed and the program should not touch
again.

These records are stored in a “shadow memory” that is checked on runtime. If at any
point ASan detects that a red zone will be accessed it raises an alarm. As such, it detects

the error before it happens.

It is a quite light countermeasure, only doubles execution time.

Undefined behavior Sanitizer

UndefinedBehaviorSanitizer (UBSan) detects undefined behavior. It instruments code to
trap on typical undefined behavior in C/C++ programs.

Detectable errors are:
Unsigned/misaligned pointers
Signed integer overflow
Conversion between floating point types leading to overflow
Illegal use of NULL pointers
lllegal pointer arithmetic

Slowdown depends on the amount and frequency of checks. This is the only sanitizer that
can be used in production. For production use, a special minimal runtime library is used
with minimal attack surface. o

The idea behind the UndefinedBehaviorSanitizer (UBSan) is to detect problems that
happen as a consequence of race conditions or changes in runtime.

For instance, when two pointers read/write from the same location and they are not
synchronized, and executing an instruction of this location results on undefined
behavior.

UBSan records the location of pointers and checks that the memory they point to is in
the expected state when they access it.

If you want to learn more about sanitizers

. AddressSanitizer: https://clang.llvm.org/docs/AddressSanitizer.html

. LeakSanitizer: https://clang.llvm.org/docs/LeakSanitizer.html

. MemorySanitizer: https://clang.llvm.org/docs/MemorySanitizer.html

. UndefinedBehaviorSanitizer:
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

. ThreadSanitizer: https://clang.llvm.org/docs/ThreadSanitizer.html

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html

Software Security: summary

Two approaches: mitigation and testing

Mitigations stop unknown vulnerabilities
Make exploitation harder, not impossible

Testing discovers bugs during development

Automatically generate test cases through fuzzing
Make bug detection more likely through sanitization

64

