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C programming cheatsheet
(preliminaries to follow the lecture)



These are basic concepts in C to follow the lecture. Please check books or online 
tutorials to gain familiarity with these concepts.

Suggestions for online tutorials:
- https://www.guru99.com/c-programming-tutorial.html
- https://www.learn-c.org/

Note that you do not need to learn to program in C, but you do need to understand 
concepts such as function calls, pointers, variable, types, etc.

2

C language 101: concepts for the lecture
(not a programming course)

Low-level general-purpose programming language
 very efficient
 very prevalent (Windows, iOS, IoT)

1. #include <stdio.h>

2. int print_hello()

3. {

4. printf("Hello, 

World!\n");

5. return 0;

6. }

7. x = print_hello()

Libraries included (other c 
functions that do not show in the 

program)Function 
header

Start function
Instruction within function 
(prints Hello World in the 

screen)Return value 
“0” 

End function

Call 
function

Store the
value 
returned by 
print_hello(
)

The 
function 
returns an 
int

https://www.guru99.com/c-programming-tutorial.html
https://www.learn-c.org/
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C language 101: concepts for the lecture
(not a programming course)

1. int addNumbers(int a, int b)
2. {
3. int result;
4. result = a+b;
5. return result; // return statement
6.}

Function receives 2 integers (a, 
b) and returns an integer

A local variable, only 
exists inside the 

function
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C language 101: concepts for the lecture
(not a programming course)

* Indicates a pointer: a pointer is a 
special variable that stores addresses 

rather than values
& Returns the address of 

a variable1. int* pc, c;
2. c = 5;
3. pc = &c;
4. 
printf("%d", 
*pc); 

Returns the content of in 
the address pointed by a 

pointer
(in this case, the content 

of the address pointed by pc 
is the address of the 

variable c)



In order to understand software vulnerabilities, it is necessary to know how the different 
variables and objects in a C program are laid out in memory. The figure illustrates where 
global, local, and dynamically allocated variables are placed in memory. 

In particular it is important to understand heap and stack. This link can help: 
https://www.gribblelab.org/CBootCamp/7_Memory_Stack_vs_Heap.html but there are 
many other resources online that can help improving your understanding of memory 
allocation.
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C language 101: concepts for the lecture
(not a programming course)
Layout of a C program

Executable instructions (code). It is 
under the heap and the stack with the 

goal of avoiding that it gets 
rewritten

global variables and static variables 
that are initialized by the programmer

global variables and static variables 
that are initialized to zero or do not 
have explicit initialization in source 

code

dynamic memory 
allocation 

(malloc, calloc,…)

LIFO structure
function variables, along with 
information that is saved each 

time a function is called

https://www.gribblelab.org/CBootCamp/7_Memory_Stack_vs_Heap.html


This figure illustrates the concepts of the previous slide and how different variables map 
to memory.

When a function is called, it reserves a “stack frame”: space in the stack for its variables. 

Stack frames are reserved “on top” of each other according to how the stack grows. 
Whether the stack grows upwards or downwards depends on the architecture, but 
within an architecture it is consistent. In most architectures, the stack grows 
downwards.

Within the stack frame, most architectures allocate space for the variables as they come 
(see lecture 7.2); but in some the order can be random. 
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C language 101: concepts for the lecture
(not a programming course)

char big_array[100]; 
char huge_array[1000];
int global = 0;

int useless() { return0; }

int main() {
void *p1, *p2, *p3;
int local = 0;
p1 = malloc(28); 
p2 = malloc(8); 
p3 = malloc(32);

}

Layout of a C program



Explanation about how C programs store the addresses and values of variables in the 
stack and in memory.

printf is a function that takes one or more parameters:

- The first parameter (written above the return address on the stack) is the address of 
a string to be printed in the screen. This string may contain format specifiers which 
indicate that subsequent parameters will be variables whose values will be plugged in 
the string when it is printed.

- If the string has format specifiers, these variables are given as parameters to the 
printf function, and as such are also on the stack.
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C language 101: concepts for the lecture
(not a programming course)
Calling a function

int __printf (const char *format, ...) {
Code to print things;

}

int main {
 /* code doing stuff */
printf(“You scored %d\n”, score)
 /* code doing stuff */
}

Return address
0x8048464

score

Stack

stuff from main function
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End C programming cheatsheet
(preliminaries to follow the lecture)
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Computer Security (COM-301)
Software security

Memory safety
Carmela Troncoso

SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Tuomas Aura, Yoshi Kohno, Trent Jaeger 



(This is an example for the purpose of illustrating the damage that an overflow – i.e., 
writing on a variable past is allocated length – can produce. Any resemblance with 
reality is pure coincidence)

Imagine a simple check-in form in which users of an airline input their data, and these 
data are shown to the desk staff when they are receiving their boarding passes.
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Why all the fuzz with overflows…



This form takes the information shown in the figure on the top left: the passenger First, 
Middle and Last name, and the passenger’s Gender and Date of Birth.

None of this information is sanitized (in particular, checked for length) when stored in 
the server

At the airport, this information is shown to the desk staff with the following format (see 
bottom right figure):
Line 1: some internal information about the flight number
Line 2: name of the passenger (extracted from the information the passenger provides 

in the form)
Line 3: ticket type (first class, business, coach, etc)
Line 4: [blank]
Line 5: Special requisites for this passenger formatted as the string “Special Instrux:” 

followed by the requisites – None if the passenger does not have any special treatment.
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The old screen at the desk allows 21 characters per line. After that, it starts overwriting 
the next line, as shown in the bottom right.
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If Alice knows that there is no length check, and also the configuration of the screen, 
instead of writing random characters she can overwrite the second line with something 
clever.

In particular if after her Last Name she writes 10 spaces, the next information will be 
written in the next line (line 3, where the ticket type appears)
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In fact given this knowledge Alice can go further and overwrite also the special 
instruction by introducing the adequate number of spaces after the ticket type.
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Memory corruption happens when a region of the memory that is not allocated to a 
program is modified by this program.  The C language does not check for this situation, 
so it can happen when the programmer misses a check, or does not check for all 
possible cases.
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Memory corruption

Unintended modification of memory location due to missing / faulty safety check

void vulnerable(int user1, int *array) {
 // missing bound check for user1
 array[user1] = 42;
}
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Temporal safety when accessing an object means that the pointed-to object is the same 
as when the pointer was created. When an object is freed (e.g., by calling free for heap 
objects or by returning from a function for stack objects), the underlying memory is no 
longer associated to the object and the pointer is no longer valid. 
Accessing the region of memory pointed by such an invalid pointer results in a temporal
memory safety error and undefined behavior.

void vulnerable(char *buf) {
 free(buf);
 buf[12] = 42;
}

Memory safety: temporal error
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Spatial memory safety is a property that ensures that all memory accesses in a program
are within the bounds of their pointers valid objects. A pointer references a specific 
address in an application’s address space. Memory objects are allocated explicitly by 
calling into the memory allocator (e.g., through malloc) or implicitly by calling a function 
for local variables. An object’s bounds are defined when the object is allocated and a 
pointer to the object is returned. 

Accessing memory using a pointer that points outside of the associated object results in 
a spatial memory safety error and undefined behavior.

In many cases a spatial memory safety error can result on a segmentation fault that 
causes the program to stop (see more about what is a segmentation fault and what 
causes it here: https://stackoverflow.com/questions/2346806/what-is-a-segmentation-
fault)

Memory safety: spatial error

void vulnerable() {
 char buf[12];
 char *ptr = buf[11];
 *ptr++ = 10;
 *ptr = 42;
}



Here is an example of a problem that can happen when the boundaries of the allocated 
memory are not checked.
The function gets just reads anything that the user inputs. However, it does not check 
the boundary of the memory reserved to buf. 

If the value input by the user is too long, it may overwrite authenticated (which is 
stored), causing problems later when the program checks the authenticated value 
as if it has been modified and is different from zero the user will be considered as 
authenticated

[Note: This may not work on your computer as is, as it depends on the protections your 
OS has implemented, and on the concrete architecture that determines the order in 
which variables are stored on a function’s stack frame.
If you are interested in more Stack manipulations, you can learn about it in COM-402 at 
the masters]
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Memory safety: spatial error

void vulnerable() 
{
int authenticated = 0; 
char buf[80]; 

gets(buf); 
…
}

Gets(buf): reads a line from stdin and stores it into the string pointed to by buf

How can you exploit this?

Variable that stores 
whether the user is 
authenticated to 

call a function that 
reads secrets 

If we give more than 80 
characters from stdin, it will 
overwrite authenticated! 

(both are in the stack)

If the value is !=0 the user 
will be authenticated! 



In the code in the example, we are getting a string to print as an argument. The string 
can be anything. If in the string given as input there is a parameter, then it will be 
interpreted that the value of this parameter is in the next bytes of the stack (the number 
of bytes will be given by the specifier used in the string:

- %d, which prints and int, will print 4 positions from the stack
- %s, which prints a string, will print until it finds ‘\0’ the character that indicates end of 

string.

Note that particular format specifiers allow to read and write from positions beyond the 
next in the stack: 
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#include<stdio.h> 
int main(int argc, char** argv) { 

char buffer[100]; 
strncpy(buffer, argv[1]); 
printf(buffer); 

return 0; 
} 

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format_string_attack 

Uncontrolled Format String (CWE-134)

What would this print if argv[1] = “You scored %d\n”?

Return address
0x8048464

?????

stuff from main function

4 bytes from the stack!

And if it was printf(“You scored %d %d %d %d”)? 

And if it was printf(“You scored %s”)? 

Format string can read beyond the parameters
 e.g, if input = '%4$p” → Read from 4th parameter (even if it does not exist)

Format string can write to memory 
 e.g, if input = '%6$n” → Write to the address pointed to by 6th parameter

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format_string_attack


In order to avoid this problem, it is very important that the programmer defines the 
parameters, and does not let the user input them.
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#include<stdio.h> 
int main(int argc, char** argv) { 

char buffer[100]; 
strncpy(buffer, argv[1]); 
printf(“%s”, buffer); 

return 0; 
} 

SOLVING THE PROBLEM

The programmer should decide the format of the 
string. That ensures that no extra argument, read 
or write, can be used. 

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format_string_attack 

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format_string_attack


The goal of a code injection attack goal is to execute code (e.g. access a file) into a 
running process or modifying the program flow to execute unexpected commands. 
The means in injecting new code. 

Control flow attacks most common on current systems. In these attacks the adversary 
uses memory corruption to modify a code pointer and prepare data to be processed by 
system functions.
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Attack scenario: code injection

Force memory corruption to set up attack
Redirect control-flow to injected code

Code Heap Stack



When a function is called, the program prepares the stack. 

It reserves a new stack frame where the data of the function will be stored (check the 
cheatsheet at the beginning of the lecture for more information about frames and 
where they are store in relation with the memory layout of the program)
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Code injection attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Next stack frame



First, the argument of the function is pushed to the stack
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Code injection attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

1st argument: *u1
Next stack frame



Second, the return address for the program (where to go after the current function is 
finished) is pushed to the stack.
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Code injection attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
1st argument: *u1
Next stack frame



Before starting the function, we also reserve space for the local variables in the stack, in 
this case MAX bytes for the variable tmp.

There is also saved space for the so-called Base pointer ( 4 bytes in 32-bit operative 
systems / 8  bytes in 64-bit operative systems), which is irrelevant for this lecture.
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Code injection attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame



When executing strcpy, the program will start copying the content of u1 into tmp.

Let us consider that the content of u1 is some executable code that implements an 
attack.
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Code injection attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Shellcode
(executable attack code)



As there is no control on the size of u1, if this variable is longer than MAX bytes, it will 
overwrite the next value in the stack, the base pointer. (We do not care what value is 
written there as it will not be used)

At this point, there is a pointer that may point to memory that is no allocated for the 
program variable: there is a memory safety violation.
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Code injection attack

Memory safety Violation
void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Shellcode
(executable attack code)

Don't care



If the content of u1 is even longer, the program continues writing and will overwrite the 
return address.

At this point the program has violated the integrity of the return address pointer.
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Code injection attack

Memory safety

Integrity *C

Violation
void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Shellcode
(executable attack code)

Don't care
Points to shellcode



The return address is overwritten with a new address: the address where the executable 
attack code start (we change the location where the execution will go next)
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Code injection attack

Memory safety

Integrity *C

Violation
void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Shellcode
(executable attack code)

Don't care
Points to shellcode

Location &C



When the function ends, the program will use the corrupted return address to continue 
the program, i.e., the attack code.
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Memory safety

Integrity *C

Violation
void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Shellcode
(executable attack code)

Don't care
Points to shellcode

Location &C

Usage *&C

Code injection attack



At this point the adversary has succeeded in their attack: they can execute arbitrary 
code!
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Memory safety

Integrity *C

Violation
void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Shellcode
(executable attack code)

Don't care
Points to shellcode

Usage *&C

Location &C

Attack Code
injection

Code injection attack



A defense against code injection is Data Execution Prevention (DEP). This is a 
countermeasure enforced at the hardware level. It protects the memory at a page 
granularity. Every page on a program is assigned as writable OR executable. Thus, the 
stack, where the adversary can write, can never be executed.

A limitation of this countermeasure is that it prevents self-modifying code. This prevents 
many functionalities in applications offered as a service, where the user executes code 
supplied by the server on their machine (e.g., Javascript being executed on the browser).
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Data Execution Prevention

• Enforces code integrity on page granularity
• Execute code if eXecutable bit set

• W^X ensures write access or executable
• Mitigates against code corruption attacks
• Low overhead, hardware enforced, widely deployed

• Weaknesses and limitations
• No-self modifying code supported



In a code injection attack, the adversary first writes code, and then gets the OS to 
execute this code. 
If DEP is in place, however, executing writable memory becomes impossible.
Thus, this attack cannot be deployed.

To circumvent this protection, instead of executing injected code, the adversary can find 
pieces of code already that already exist in memory (and therefore are executable) and 
redirect the program flow to those pieces. 
These pieces are typically known as gadgets.
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Attack scenario: code reuse

• Find addresses of gadgets
• Force memory corruption to set up attack
• Redirect control-flow to gadget chain

Code Heap Stack



The attack starts as a code injection attack, when the OS prepares the stack for the 
function call.
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Control-flow hijack attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Next stack frame



The OS reserves space for the function argument
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Control-flow hijack attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

1st argument: *u1
Next stack frame



The OS then reserves space for the return address and the base pointer
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Control-flow hijack attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
1st argument: *u1
Next stack frame

Saved base pointer



And finally space for the variable tmp inside of the function
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Control-flow hijack attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame



The adversary exploits the same lack of check as in the code injection attack to write 
beyond the boundaries of tmp.  
However, as it is not possible to execute the code in the stack, the adversary now does 
not care about what is written in the first MAX bytes: this code will not be executed.
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Control-flow hijack attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Don't care



As before, a memory safety violation happens as soon as the adversary overwrites 
pointers that they are not allowed to write on. 
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Control-flow hijack attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Don't care

Don't care

Memory safety Violation



But now, instead of point to the start address of tmp, as it would happen in code 
injection, the adversary modifies the address pointed by the return pointer to be the 
location of an executable function somewhere in the memory, e.g., the system() 
function
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Control-flow hijack attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Don't care

Don't careDon't care
Points to &system()

Memory safety

Integrity

Location

*C

&C

Violation



As the adversary prepares to return to the new location  (system()), they also need to 
prepares the stack to be in the state that system() is expecting: they need to add the 
base pointer, the return address after system() is called…
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Control-flow hijack attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Don't care

Don't careDon't care
Points to &system()

Memory safety

Integrity

Location

*C

&C

Violation

Base pointer after system()
Return address after system



… and then the argument that system() will receive, i.e., the command that will be 
executed
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Control-flow hijack attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Don't care

Don't careDon't care
Points to &system()

Memory safety

Integrity

Location

*C

&C

Violation

Base pointer after system()

1st argument to system()
Return address after system



When the function vuln() ends, the program will continue its flow to system().
At this point in time, the adversary has hijacked the flow of the program to redirect to 
where they want.

Typically, the adversary will try to use several gadgets in a row by exploiting bugs in 
different functions in order to be able to execute arbitrary chains of instructions.
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Control-flow hijack attack

void vuln(char *u1) {
 // strlen(u1) < MAX?
 char tmp[MAX];
 strcpy(tmp, u1);
 ...
}
vuln(&exploit);

Return address
1st argument: *u1
Next stack frame

Points to &system()

Memory safety

Integrity

Location

*C

&C

Violation

Base pointer after system()

Usage

Attack

*&C

Control-flow
hijack

1st argument to system()
Return address after system



Hijack attacks are enables by the fact that the adversary knows where system functions 
reside in memory.

A defense to avoid these attacks is to randomize the memory layout so that the 
adversary cannot know a priori where to redirect the function thus reducing the 
likelihood of the attack. This randomization depends on the capabilities of the operative 
system and the loader that maps OS functions in memory. As such, the defense is 
probabilistic. The adversary does not know where functions reside, but can guess (with 
lower or higher probability depending on the randomization implemented).

This defense has the following problems:
- The adversary can still redirect the program. This does not guarantee success of the 

attack, but also does not guarantee that nothing bad will happen. The adversary may 
end up triggering other unintended functionality and reading from memory.
- In runtime the OS needs to “undo” the randomization to execute the program. This 

slows down execution.
- Not all regions can be randomized. Due to the way in which CPUs and memory are 

constructed, some regions are always the same and ASLR can not not defend them.
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Address Space Layout Randomization

• Goal: prevent the attack from reaching a target address

• Randomizes locations of code and data regions
• Probabilistic defense
• Depends on loader and OS

• Weaknesses and limitations
• Undefined behavior: prone to information leaks
• Some regions remain static (on x86)
• Performance impact (~10%)
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Stack canaries



Stack canaries, like coal mine canaries, are a means to detect if something fishy is going 
on. Stack canaries are a value between the part of the stack writable by the program and 
the return address. The idea is that, if the canary value has changed (the canary ‘has 
died’) then it is not safe to use the return address, as it could have been compromised.

This mitigation is also probabilistic, in the sense that the adversary may be able to 
predict the canary and overwrite it.

Also, the fact that the adversary cannot write on the stack beyond the canary, does not 
mean she cannot read (e.g., exploiting an uncontrolled format string vulnerability). As 
such, it cannot prevent information leaks. Also, canaries do not protect against 
vulnerability exploits that can target a particular address.
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Stack canaries

• Protect return instruction pointer on stack
• Compiler modifies stack layout
• Probabilistic protection

• Weaknesses and limitations
• Prone to information leaks
• No protection against targeted writes / reads



The currently deployed defenses work as follows. (The three first are explained in the 
previous slides.)

- DEP: protects the memory making sure that the text part of the memory (i.e., the 
original program) is executable but cannot be overwritten; and that the data can be 
written but not executed.

- ASLR acts across the memory, effectively scrambling addresses (i.e., the two last 
bytes of the address are unknown to the adversary)

- Stack canaries are inserted in the stack, helping to detect overflow attacks.

- Windows also uses safe exception handlers, which aim at keeping the system safe 
even after errors. This countermeasure makes sure that, after an error there is no 
undefined behavior, but the system only can execute a pre-defined set of error 
handling functions.
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Status of deployed defenses

• Data Execution Prevention (DEP)
• Address Space Layout Randomization 

(ASLR)
• Stack canaries
• Safe exception handlers

• Pre-defined set of handler addresses

Memory

text

data

stack

0x400      RWX

0x800      RWX

0xfff      RWX

0x400      R-X

0x800      RW-

0xfff      RW-

0x4??      R-X

0x8??      RW-

0xf??      RW-



Software testing executes code under different circumstances with the goal of finding 
configurations that raise an error. An error is a deviation between how we expect the 
program would function and what actually happens. This can be:
- an error regarding functionality: the program does not provide the expected result
- and error regarding operation: the program crashes, is too slow (even never 

terminating)

But what about security? Testing for security is hard. We cannot ensure that we have 
found all bugs that matter (the adversary will do things that have not or cannot be 
tested). Therefore, we cannot prove the absence of security-critical bugs using testing. 
Still, finding as many bugs as possible helps increasing the safety of software.

Software testing

Testing is the process of executing a program to find errors

Error: deviation between observed behavior and specified 
behavior (a violation of the underlying specification)

Functional requirements 
Operational requirements 
Security requirements?
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Ideally, we would like to test all possible
Control-flows: all possible paths through the program, i.e., all possible outcomes of  

branches in a program (if-else clauses, for clauses, while clauses, etc).
Data-flows: all possible values for the variables / locations that are used by the 

program.

Of course, testing all possible paths and data values is impossible, these are too many 
states.

The Halting problem is a hard problem in Computation Theory: given a certain input, can 
we have an algorithm that can predict whether the a program will terminate ? The 
answer is no, a general algorithm does not exist. The only solution is to run.

Security testing
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Complete testing of all
Control-flows: test all path through the program
Data-flow: test all values used at each location

Achieving this would be equivalent to solving the “halting problem”
 Practical testing is limited by state explosion

“Testing can only show the presence
of bugs, never their absence.”
   (Edsger W. Dijkstra)



The difference between control-flow and data-flow”.
Consider this example program.

The values a=12 and a=101 cover all flows:
When  a= 12, (a>=0 && a<=100) is True, and the instruction within the if (x[a]=42) is 

executed. 
When a=101, (a>=0 && a<=100) is False and the instruction within the if is not 

executed.

However, even all statements are executed, and both flows are explored, not all data-
flows are considered, i.e., we did not consider all possible values of variables in each 
instruction.

This may be very relevant. For instance, for this program, the data-flow a=100 would 
raise a bug. In this case (a>=0 && a<=100)  would be True, but x[100] is not reserved for 
the program (x has 100 positions starting in position 0). Thus, when arriving to the 
instruction x[a] = 42, the program would crash trying to access x[100]

Control-Flow vs. Data-Flow
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void program() {
 int a = read();
 int x[100] = read();
 
 if (a >=0 && a <= 100) {
  x[a] = 42;
 }
 ...
}



There are two ways of testing for security properties:

Manual testing in which the tests to be carried out are defined by a human, trying to 
identify corner cases that may appear in reality. Whether these corner cases could 
trigger a bug is typically done via code reviews, in which humans read each others’ code 
to search for programming errors; or by implementing test cases so that the checks can 
be performed in runtime.

Automated testing in which the tests are not defined directly by a human, but the 
human designs an algorithm to create these tests in an automated manner. The 
capabilities of these automated tests to find bugs can be enhanced by having means to 
detect in runtime when security properties may be violated.

How to test security properties

Manual Testing: testing is designed by a human
 - Code review
 - Heuristic test cases

Automated testing: testing is decided algorithmically
 - Algorithms designed to run the program and find bugs
 - Algorithms enhanced by means to enforce properties
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When manual tests are defined by humans, they can be guided by the following 
principles:

- One can try to cover all inputs. This is unfeasible as the number of inputs grows 
exponentially with the number of new variables and branch conditions

- One can try to cover all requirements, extracting those from the specification. This 
requires that the specification is available, and that all requirements can be well 
identified from the spec itself. 

- One can perform random checks by generating them automatically. It is difficult that 
completely random checks achieve good code coverage, as they will never pass hard 
checks in which the program checks for a particular value. For instance:

if (a = sha256(“Hello World”)) 

- Finally we can try to cover all code, but this only works for small code bases (e.g., for 
unit tests)

Manual testing

Exhaustive: cover all inputs
Not feasible due to massive state space

Functional: cover all requirements
Depends on specification

Random: automate test generation
Incomplete (what about that hard check?)

Structural: cover all code
Works for unit testing
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On the other hand, one can design algorithms to define the tests to run.

These algorithms can be based on one of these three approaches:

Static analysis: this type of analysis analyzes the code without executing it. Static 
analysis can find basic errors. This method is limited by its incapability to know what the 
values of variables are going to be in runtime. It can also not catch race conditions that 
happen when an address is pointed by more than one variable (this phenomenon is also 
called “aliasing”).

Symbolic analysis: this analysis computes an approximation of what the program 
actually does by constructing formulas representing the program state at various points. 
It is called "symbolic" because the approximation relies on representing the program, 
and its different branches, as logic formulas. 
Symbolic execution identifies decision points (e.g., if statements) and associates them 
with logical variables that can be met or not.
This approach is extremely effective, as it can consider all paths, but it requires to keep 
an enormous amount of state (remember all options for all decision points). It cannot 
scale to large pieces of code.
Symbolic execution will also perform poorly when the program includes calls to 
components that are not under the control of the program itself (e.g., calls to the 

Automated testing

Static analysis
Analyze the program without executing it
Imprecision by lack of runtime information, e.g. aliasing

Symbolic analysis
Execute the program symbolically
Keeping track of branch conditions
Not scalable

Dynamic analysis (e.g., fuzzing)
Inspect the program by executing it
Challenging to cover all paths

 
56



system); or when memory regions are accessed using different names.

Dynamic analysis: this analysis consists on executing the code with diverse inputs. The 
main challenge is to cover all the paths (control- and data-flows).
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To measure how complete a set of tests is we use the concept of coverage with aims at 
quantifying how many statements of the program are executed by the tests.

Coverage can be measured with respect to different elements:

Statement coverage: measures how many statements (e.g., an assignment, a 
comparison, etc.)  in the program have been executed.
Statement coverage does not mean full coverage. All statements may be executed at 
least once, but if the values of the variables are limited, some errors may not be found.

Branch coverage: measures how many branches among all possible paths have been 
executed. In other words, for each branch in the program (e.g., if statements, loops), 
how many branches have been executed at least once during testing.
Branch coverage is neither complete. All branches may be executed, but that does not 
mean we have tested all the values of the variables.

Coverage: testing needs a metric

Why use Coverage?
Intuition: A software flaw is only detected if the flawed statement is executed!
Effectiveness of test suite therefore depends on how many statements are executed.

Statement coverage
how many statements (e.g., an assignment, a comparison, etc.)  in the program 
have been executed

Branch coverage
how many branches among all possible paths have been executed
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In this example, for inputs:
elem = 2
inp = [1, 2]
len = 2 

We would run all the statements. So statement coverage is complete. 

However, the loop would never finish, so we would not find the bug that happens when 
i>length(inp)

Coverage: testing needs a metric

int func(int elem, int *inp, int len) {
  int ret = -1;
  for (int i = 0; i <= len; ++i) {
    if (inp[i] == elem) { ret = i; break; }
  }
  return ret;
}
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Test input: elem = 2, inp = [1, 2], len = 2 results in full statement coverage.

Loop is never executed to termination, where the out of bounds access happens.
 Statement coverage does not imply full coverage. 

Current practice is branch coverage



Fuzzing

A random testing technique that mutates input to improve test 
coverage
 
State-of-art fuzzers use coverage as feedback to mutate the inputs
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Input Generation

Tests

Debug
Exe Coverage



There are different criteria to create the list of inputs to be tested:

Dumb: generate the list of inputs at random, i.e., do not consider the relation between 
inputs nor follow a model

Generation-based: use a model that constraints how the inputs are generated. 
generates a new input each round according to the model.

Mutation-based: instead of generating new inputs according to a model, this approach 
modifies the inputs according to some rules considering previous inputs and what the 
results obtained by those inputs.

If the algorithm has information about the program, this information can be used to 
design new inputs in a more effective way.

White box: In a white-box model, the fuzzer has full knowledge of the code. This can be 
used to chose optimal mutations (e.g., find inputs that unblock hard checks)
Grey box: does not know all the instructions, but can use results from previous rounds 
to infer information about the program and optimize the choices of inputs.
Black box: generates the inputs without knowledge of the program.

Fuzzing input generation

Dumb Fuzzing is unaware of the input structure; randomly mutates input

Generation-based fuzzing has a model that describes inputs; input 
generation produces new input seeds in each round

Mutation-based fuzzing leverages a set of valid seed inputs; input 
generation modifies inputs based on feedback from previous rounds

Mutations can be informed by structure white-box, grey-box, black-box.
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Tests and fuzzing can find errors associated to operations, but only when the errors 
happen.

Sanitizers try to catch these errors before they happen so that testing can be faster.

Sanitization

Test cases detect bugs through
Assertions
 assert(var!=0x23 && "illegal value");
Segmentation faults
Division by zero traps
Uncaught exceptions
Mitigations triggering termination

How can we increase bug detection chances?
Sanitizers enforce some policy, detect bugs earlier and increase 
effectiveness of testing.
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Every time a variable is defined AddressSanitizer (Asan) marks the memory locations 
around this variable as “red zones”, i.e., zones that the program should not catch. It does 
the same with parts of the memory that are freed and the program should not touch 
again.

These records are stored in a “shadow memory” that is checked on runtime. If at any 
point ASan detects that a red zone will be accessed it raises an alarm. As such, it detects 
the error before it happens.

It is a quite light countermeasure, only doubles execution time.

Address Sanitizer

AddressSanitizer (ASan) detects memory errors. It places red zones around objects and 
checks those objects on trigger events. 

The tool can detect the following types of bugs:
Out-of-bounds accesses to heap, stack and globals
Use-after-free
Use-after-return (configurable)
Use-after-scope (configurable)
Double-free, invalid free
Memory leaks (experimental)

Slowdown introduced by AddressSanitizer is 2x.
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The idea behind the UndefinedBehaviorSanitizer (UBSan) is to detect problems that 
happen as a consequence of race conditions or changes in runtime.
For instance, when two pointers read/write from the same location and they are not 
synchronized, and executing an instruction of this location results on undefined 
behavior.

UBSan records the location of pointers and checks that the memory they point to is in 
the expected state when they access it.

If you want to learn more about sanitizers
• AddressSanitizer: https://clang.llvm.org/docs/AddressSanitizer.html
• LeakSanitizer: https://clang.llvm.org/docs/LeakSanitizer.html
• MemorySanitizer: https://clang.llvm.org/docs/MemorySanitizer.html
• UndefinedBehaviorSanitizer: 

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
• ThreadSanitizer: https://clang.llvm.org/docs/ThreadSanitizer.html

Undefined behavior Sanitizer

UndefinedBehaviorSanitizer (UBSan) detects undefined behavior. It instruments code to 
trap on typical undefined behavior in C/C++ programs. 

Detectable errors are:
Unsigned/misaligned pointers
Signed integer overflow
Conversion between floating point types leading to overflow
Illegal use of NULL pointers
Illegal pointer arithmetic
...

Slowdown depends on the amount and frequency of checks. This is the only sanitizer that 
can be used in production. For production use, a special minimal runtime library is used 
with minimal attack surface. 63

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html


Software Security: summary

Two approaches: mitigation and testing

Mitigations stop unknown vulnerabilities
Make exploitation harder, not impossible

Testing discovers bugs during development
Automatically generate test cases through fuzzing
Make bug detection more likely through sanitization
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