COM-301 Computer Security
Exercise 7: Software Security

November 17, 2023

Software Security

1. Suppose we are building a web application that asks the user for their
email address and stores it in a variable m. We want to invoke the shell
to send an email message to the email address m, like this:

void sendemail (char sm) {
char cmd[1024];
sprintf (cmd,”%s” ;m);
f = popen(cmd, "w”);

(a) Is this code secure in terms of memory safety?
(b) What checks would you do on m to ensure that no other problem can
happen?

2. In the following code, what is the condition on the lengths of s1 and s2
for it to be safe?:

char xconcat (char xsl, char *s2) {
char result [1024];

for (i=0; sl1[i] != ’\0’; ++4+i)
result [i] = s1[i];

for (j=0; s2[j] != ’\0’; ++j)
result [i+j] = s2[j];

result [i+j] = ’\0’

}

3. Find the vulnerabilities in the following code:



int main (int arge, char sxargv) {

char xitems[] = {"boat”, "car”, ”"truck”, 7train”};
char xnewitems;
newitems = malloc (100);

int index = GetUntrustedOffset ();

printf(”You selected %s\n”, items[index —1]);

free (newitems);

printf(”The next item in the list is %s \n”, items[index]);
xnewitems = items [0];

}

. What are the three properties that a mitigation must have?
. Are each of the following approaches a mitigation mechanism? Justify.

(a) Inexecutable stack

(b) Dynamic library linking: Allowing a program to load an external
library

(c¢) Sandboxing: Running the process in a isolated space

(d) Compiling with different optimization flags

. Symbolic execution and dynamic analysis (fuzzing) are two approaches to
automatically find bugs. Symbolic execution provides a full path coverage
while fuzzing gives partial coverage. Fuzzing may hit a coverage wall and
cannot find samples which lead to new coverage. So why is fuzzing more
popular in practice? Is there a way to leverage symbolic execution to get
better coverage in fuzzing?

. Branch coverage is a metric to measure how much of the code was exe-
cuted. Compared to statement coverage which measures if a statement is
executed, branch coverage measures if an edge in the control-flow graph
is executed. For each conditional jump, branch coverage measures the
outgoing edges that are taken (e.g., for an if condition, branch coverage
captures if the if or the else branch was executed). Note that branch
coverage is stateless: this means that each branch only remembers if it
has been executed or not.

(a) Branch coverage is incomplete and does not cover all possible exe-
cution paths. Explain why branch coverage cannot cover all paths
(hint: branch coverage is stateless, reason about paths, not about
individual branches).

(b) Complete the ? instructions in the example below, of a program
that has full branch coverage but incomplete path coverage. Add a
memory safety bug (e.g., a buffer overflow or an illegal de-reference
such as buffusrl] = usr2) to the program and provide inputs to the
program that result in full branch coverage but do not trigger the
bug.



int example(bool bl, bool b2) {
int a = 0;
char c[2];
?
?
return clal;

}

8. Fuzzing is an efficient automatic testing technique that scales to large code
bases. Modern fuzzing mechanisms leverage branch coverage to record
which parts of the program have been executed, mapping fuzzing inputs
to coverage. Coverage-guided fuzzers add any input that triggers new
coverage to the pool of inputs to perform a mutation. Additionally, these
fuzzers record any input that crashes or hangs the program.

(a) Assume a new seed covers a new path. Fuzzing will continuously
mutate this input to trigger different paths and different data-flow
along that path. Why is it necessary to generate alternate data-
flows to trigger bugs, i.e., why does it not suffice to only generate
new paths? (hint: what is the difference between control-flow and
data-flow?)

(b) Fuzzing frequently hits a so-called “coverage wall” where it no
longer makes progress (i.e., random mutations do not trigger new
coverage). What could be the reason for this limitation? (hint: what
types of conditions are hard to satisfy for randomly generated input)

(c) Fuzzing struggles to find crashes in libraries. What could be the
reason for the lack of deep coverage when fuzzing the set of exported
library functions? (hint: think about a file I/O library that offers
open/read/write/close functions; what happens if you only fuzz the
read function without prior calls to open?)

9. Sanitization makes bug detection more likely by enforcing certain policies.
Commonly used sanitizers enforce memory safety and detect undefined
behavior.

(a) Is sanitization instrumentation helpful to find all types of bugs? Un-
der what circumstances will sanitization be counterproductive?

(b) Why is address sanitizer needed to detect memory corruption? Ex-
plain why and how buffer overflows can be missed without address
sanitizer.

(¢) Address sanitizer detects memory corruption by detecting writes to
red-zones (8 byte areas directly adjacent to allocated memory with
static data). Why is address sanitizer not a mitigation?

10. Several mitigations exist to make exploitation harder. Mitigations must
adhere to strict performance criteria as they are always enabled.



()

ASLR shuffles the address space for each execution. Why can the
address space not easily be reshuffled during execution (e.g., after
each system call)? Why would it be useful to reshuffle after each
system call (think how many stages an attack will have)?

Data Execution Prevention stops code injection attacks. Initial im-
plementations of data execution prevention leveraged segmentation
registers and expensive checks to test if a memory region was exe-
cutable or not. Modern implementations use a page-based mecha-
nism that leverages a bit in the page table to encode execute permis-
sions. Discuss the key advantage and disadvantage of a page-based
solution

Stack canaries protect against buffer overflows on the stack and are
prone to information leaks. How could an attacker bypass stack ca-
naries in an exploit?



