# Modèles stochastiques pour les communications : examen

Faculté Informatique et Communications, 5ième semestre

# NOM et prénom :

Si une page est dégraphée, veillez à indiquer votre nom dessus. Il y a 10 pages. Document autorisé : seulement le formulaire officiel.

Maximum: 60 points

## Question 1 (8 points)

Soit P un point tiré aléatoirement et uniformément à l'intérieur d'un cercle de rayon unité, et soit X la distance entre le centre de ce cercle et ce point P.

1. (5 pts) Déterminez la densité de probabilité  $f_X(x)$  de X pour tout  $0 \le x \le 1$ . Expliquez votre calcul.

2. (3 pts) Déterminez l'espérance  $\mathbb{E}[X]$  de X. Expliquez votre calcul.

#### Question 2 (11 points)

On tire aléatoirement n points  $P_1, P_2, \ldots, P_n$ , uniformément et indépendamment sur la circonférence d'un cercle. On cherche la probabilité qu'ils se trouvent tous sur le même demi-cercle. En d'autres mots, on cherche la probabilité P(A), où A est l'évènement qu'il y ait un diamètre du cercle tel que tous les n points  $P_1, P_2, \ldots, P_n$  se trouvent du même côté de ce diamètre, comme illustré à la Figure 1. Les sous-questions suivantes ont pour but de faciliter votre calcul. Soit  $A_i$  l'évènement "tous les points se trouvent sur le demi-cercle délimité par le diamètre passant par le point  $P_i$  et par la demi-circonférence partant du point  $P_i$  dans le sens des aiguilles d'une montre jusqu'à rencontrer l'autre intersection du cercle avec le diamètre".

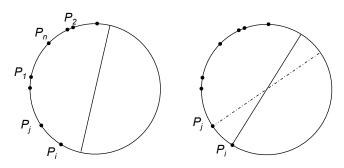


Figure 1: Sur la figure de gauche, une configuration de points  $P_1, P_2, \ldots, P_n$  qui réalise l'évènement A. Sur la figure de droite, observez que cette configuration réalise l'évènement  $A_i$  mais pas  $A_j$ .

1. (4 pts) Que vaut la probabilité  $\mathbb{P}(A_i)$  pour tout  $1 \leq i \leq n$ ? Expliquez votre réponse.

| 2. | (3 pts) Est-il possible d'avoir simultanément la réalisation des évènements $A_i$ et $A_j$ si $i \neq j$ ?         |
|----|--------------------------------------------------------------------------------------------------------------------|
|    | Expliquez votre réponse et déduisez-en la probabilité $\mathbb{P}(A_i \cap A_i)$ pour tout $1 \le i \ne j \le n$ . |

3. (4 pts) Exprimez l'évènement A en termes des évènements  $A_i, 1 \le i \le n$ , et déduisez-en la probabilité  $\mathbb{P}(A)$ . Expliquez votre calcul.

## Question 3 (8 points)

Les étudiants de l'EPFL arrivent pour un entretien au bureau de Madame Dal Mas, adjointe des sections IC, suivant un processus de Poisson homogène de taux  $\lambda > 0$  étudiant(e)s par heure. La durée d'un entretien est distribuée exponentiellement, avec une moyenne de  $1/(2\lambda)$  heure(s). Soit N le nombre d'étudiant(e)s arrivant entre le moment où un(e) étudiant(e) entre dans le bureau de Madame Dal Mas pour son entretien, et le moment où il (elle) en sort, son entretien étant terminé.

1. (4 pts) Calculez la loi de probabilité  $\mathbb{P}(N=n)$  pour tout  $n \in \mathbb{N}$ . Justifiez votre réponse.

2. (4 pts) Déterminez l'espérance  $\mathbb{E}[N]$  de N. Votre réponse serait-elle différente si la durée de l'entretien suivait une distribution autre qu'exponentielle, mais toujours avec la même moyenne  $1/(2\lambda)$ ? Justifiez votre réponse.

#### Question 4 (12 points)

On considère un modèle simplifié de croisement de génotypes de deux individus. Le génotype est l'information génétique d'un individu, qu'on suppose ici être une paire (non ordonnée) dont les deux composantes, appelées allèles, sont notées A et a. Chaque individu est donc caractérisé par un génotype AA, aa ou Aa.

Le génotype d'un descendant d'un croisement de deux génotypes est une paire d'allèles, dont une est choisie au hasard parmi les deux allèles du génotype du premier individu, avec la même probabilité 1/2, et l'autre est choisie indépendamment parmi les deux allèles du génotype du second individu, avec la même probabilité 1/2. Par exemple, si les deux génotypes des individus de la première génération sont  $\{AA, Aa\}$ , le génotype de leur descendant sera AA avec probabilité 1/2 et Aa avec probabilité 1/2. Prenons un deuxième exemple: si les deux génotypes des individus de la première génération sont  $\{Aa, Aa\}$ , le génotype de leur descendant sera AA avec probabilité 1/4, aa avec probabilité 1/4 et Aa avec probabilité 1/2.

On enregistre le génotype de deux individus à chaque génération selon le processus itératif suivant. Les génotypes des deux individus à la n-ième génération sont croisés deux fois indépendamment, donnant deux descendants à la (n+1)-ième génération, dont le génotype est obtenu comme expliqué ci-dessus. De ce fait, si X(n) dénote les deux génotypes des deux individus de la n-ième génération, alors  $\{X(n), n \in \mathbb{N}\}$  est une chaîne de Markov pouvant prendre un des six états dans  $S = \{1, 2, 3, 4, 5, 6\}$  où

$$1 = \{AA, AA\}, 2 = \{AA, Aa\}, 3 = \{Aa, Aa\}, 4 = \{AA, aa\}, 5 = \{Aa, aa\}, 6 = \{aa, aa\}.$$

1. (6 pts) Dessinez le diagramme des transitions d'états de cette chaîne. Indiquez-y clairement les valeurs de toutes les probabilités de transition non nulles. Remarque: Observez que les deux états 1 et 6 sont absorbants.

2. (6 pts) Soit  $h_{i1} = \mathbb{P}(X(n) = 1 \text{ pour un certain } n \in \mathbb{N} \mid X(0) = i)$  la probabilité d'absorption dans l'état  $1 = \{AA, AA\}$  à partir de l'état  $i \in \mathcal{S}$ . Calculez la probabilité d'absorption  $h_{i1}$  à partir de chaque état  $i \in \mathcal{S} = \{1, 2, 3, 4, 5, 6\}$ . Justifiez vos réponses.

## Question 5 (14 points)

Soit  $\{X(n), n \in \mathbb{N}\}$  la chaîne de Markov à deux états  $S = \{0, 1\}$ , à l'état stationnaire, dont la matrice des probabilités des transitions d'état est

$$P = \left[ \begin{array}{cc} p_{00} & p_{01} \\ p_{10} & p_{11} \end{array} \right] = \left[ \begin{array}{cc} 1-p & p \\ q & 1-q \end{array} \right].$$

où 0 < p, q < 1 (et  $p_{ij} = \mathbb{P}(X(n+1) = j \mid X(n) = i)$  avec  $i, j \in \mathcal{S} = \{0, 1\}$ ). Soit A une v.a. normale (i.e., gaussienne de moyenne nulle et de variance unité), indépendante du processus  $\{X(n), n \in \mathbb{N}\}$ . Soit enfin le processus  $\{Y(n), n \in \mathbb{N}\}$  donné par

$$Y(n) = AX(n).$$

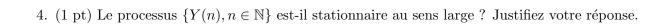
Formule utile: pour tout  $k \in \mathbb{N}$ ,

$$P^k = \frac{1}{p+q} \left[ \begin{array}{cc} q & p \\ q & p \end{array} \right] + \frac{(1-p-q)^k}{p+q} \left[ \begin{array}{cc} p & -p \\ -q & q \end{array} \right].$$

1. (2 pts) Déterminez l'espérance  $\mathbb{E}[Y(n)]$  de Y(n) pour tout  $n \in \mathbb{N}$ . Justifiez votre réponse.

2. (3 pts) Que vaut la probabilité  $\mathbb{P}(Y(n) = 0)$ ? Justifiez votre réponse.

3. (5 pts) Déterminez la fonction d'auto-corrélation  $R_Y(n,m)=\mathbb{E}[Y(n)Y(m)]$  du processus  $\{Y(n),n\in\mathbb{N}\}$  pour tout  $n,m\in\mathbb{N}$ . Expliquez votre calcul.



5. (1 pt) Le processus  $\{Y(n), n \in \mathbb{N}\}$  est-il gaussien ? Justifiez votre réponse.

6. (2 pts) Le processus  $\{Y(n), n \in \mathbb{N}\}$  est-il stationnaire au sens strict ? Justifiez votre réponse.

## Question 6 (7 points)

En ce moment, le gouvernement britannique simule l'effet du Brexit (départ du Royaume Uni de l'Union Européenne) sur les délais supplémentaires subis par les camions à Douvres lors du processus de dédouanement de leur cargaison. Pour cet exercice, on prend un modèle simple dans lequel les camions arrivent au poste de douane suivant un processus de Poisson homogène avec un taux de 1/5 = 0.2 camion par minute, avec un seul serveur (qui est le poste de douane) et un parking d'attente de taille non limitée. Les camions sont servis dans l'ordre normal premier arrivé, premier servi. Dans la situation actuelle sans Brexit, le temps de dédouanement d'un camion est exactement 1 minute pour chaque camion. Dans la situation avec Brexit, on estime que le temps de dédouanement d'un camion sera augmenté d'un délai aléatoire uniformément distribué entre 0 et 6 minutes (le délai sera donc compris entre 1 et 7 minutes).

1. (3 pts) Calculez le temps moyen total passé par un camion pour le dédouanement de ses marchandises, y compris l'attente avant d'accéder au poste de douane, pour la situation actuelle sans Brexit. Expliquez votre calcul.

2. (4 pts) Calculez le temps moyen total passé par un camion pour le dédouanement de ses marchandises, y compris l'attente avant d'accéder au poste de douane, pour la situation avec Brexit. Expliquez votre calcul.