Modèles stochastiques pour les communications: examen

Faculté Informatique et Communications, 5ième semestre

NOM et prénom:

Si une page est dégraphée, veillez à indiquer votre nom dessus. Il y a 12 pages. Document autorisé: seulement le formulaire officiel.

Maximum: 80 points

Abréviations: v.a. (variable aléatoire), i.i.d. (indépendantes et identiquement distribuées).

Formules utiles: si -1 < a < 1,

$$\sum_{k=0}^{\infty} ka^{k} = \frac{a}{(1-a)^{2}}$$

$$\sum_{k=0}^{\infty} k^{2}a^{k} = \frac{a(1+a)}{(1-a)^{3}}$$

$$\sum_{k=0}^{n} C_{n}^{k} = 2^{n}.$$

Question 1 (8 points)

Soit X une v.a. gaussienne de moyenne $\mu_X = 0$ et variance $\sigma_x^2 = 2$. Une deuxième v.a. Y est définie comme suit: $Y = \min(X, 0)$.

1. Que vaut $\mathbb{P}(Y=0)$?

2. Déterminez la densité de probabilité $f_Y(y)$ de Y pour tout $y \in \mathbb{R}$.

Question 2 (10 points)

Votre voiture possède deux phares dont les durées de vie sont indépendantes et distribuées exponentiellement avec une moyenne de 5 ans chacune.

1. (5 pts) Sachant que les deux ampoules fonctionnent à un temps t, quelle est, en moyenne, le temps qui va s'écouler à partir de t avant que vous deviez aller chez le garagiste pour faire réparer au moins une des deux ampoules ?

2. (5 pts) Supposez qu'à un temps t, un ami vous affirme que votre phare gauche fontionne correctement (mais sans vous donner aucune information sur le phare droit). Soit T la v.a. mesurant le temps qui s'écoule à partir de t jusqu'à ce que l'un ou l'autre des phares soit en panne. Plus précisément, si le phare droit est déjà en panne au temps t, alors T=0; sinon, la panne survient à t+T.

Déterminez la fonction de répartition $F_T(\tau) = \mathbb{P}(T \leq \tau)$ de T pour tout $\tau \geq 0$.

Question 3 (16 points)

On considère m processus gaussiens $\{X_i(n), n \in \mathbb{Z}\}$, avec $1 \leq i \leq m$, dont la moyenne est $\mu = \mathbb{E}[X_i(n)] = 1$ et la fonction d'auto-corrélation est $R_X(k) = \mathbb{E}[X_i(n)X_i(n-k)] = 1 + 2^{-|k|}$ pour tout $n, k \in \mathbb{Z}$ et tout $1 \leq i \leq m$. Les processus sont indépendants, i.e., les v.a. $X_i(n)$ et $X_j(n')$ sont indépendantes pour tout $1 \leq i \neq j \leq m$ et pour tout $n, n' \in \mathbb{Z}$. On somme ces m processus le processus pour obtenir

$$Y(n) = \sum_{i=1}^{m} X_i(n). \tag{1}$$

1. (1 pt) Déterminez l'espérance $\mu_Y = \mathbb{E}[Y(n)]$ de Y(n).

2. (2 pts) Déterminez la fonction d'auto-corrélation $R_Y(k) = \mathbb{E}[Y(n)Y(n-k)]$ du processus $\{Y(n), n \in \mathbb{Z}\}$ pour tout $k \in \mathbb{N}$.

3.	(2 pts)	Déterminez la	a densité de	probabilité	marginale	du premier	ordre	$f_{V(n)}(y;n)$	de Y(n).

4. (2 pts) Le processus $\{Y(n), n \in \mathbb{Z}\}$ est-il stationnaire au sens strict? Justifiez complètement et rigoureusement votre réponse.

5. (2 pts) Le processus $\{Y(n), n \in \mathbb{Z}\}$ est-il ergodique par rapport à sa moyenne ? Justifiez complètement et rigoureusement votre réponse.

6. (3 pts) A présent, on remplace la constante $m \in \mathbb{Z}$ par une v.a. M géométrique de paramètre p=1/2 sur le domaine $\mathbb{N}^*=\{1,2,3,\ldots\}$ (i.e., $\mathbb{P}(M=m)=(1/2)^m$ pour tout $m\in\mathbb{N}^*$), de sorte que (1) est remplacé par

$$Z(n) = \sum_{i=1}^{M} X_i(n). \tag{2}$$

Déterminez l'espérance $\mu_Z = \mathbb{E}[Z(n)]$ de Z(n).

7. (3 pts) Déterminez la fonction d'auto-corrélation $R_Z(k)=\mathbb{E}[Z(n)Z(n-k)]$ du processus $\{Z(n),n\in\mathbb{Z}\}$ pour tout $k\in\mathbb{N}$.

Question 4 (8 points)

La journée de Madame Dal Mas se termine par la visite de deux étudiants, Alice et Bob, qui viennent lui demander conseil pour leurs choix d'options – ce sont ses deux derniers rendez-vous prévus ce jour-là. Alice arrive au bureau de Madame Dal Mas à 17h30, et y reste pendant une durée distribuée exponentiellement avec une moyenne de 20 minutes. Bob arrive à 17h45, et entre dans le bureau si Alice a terminé son entretien. Il y reste pendant une durée distribuée exponentiellement avec une moyenne de 20 minutes, indépendamment de la durée de l'entretien d'Alice. Par contre, si Madame Dal Mas et Alice sont toujours occupées à 17h45, Bob n'attend pas et s'en va.

1. (6 pts) Quelle est l'espérance de l'heure à laquelle Madame Dal Mas peut quitter l'EPFL, ayant terminé sa journée ? Justifiez votre réponse.

2. (2 pts) Votre réponse dépend-elle du fait que les entretiens ont une durée distribuée exponentiellement ? Justifiez votre réponse.

Question 5 (12 points)

Une urne contient N boules, qui sont soit noires, soit blanches. A chaque instant $n \ge 1$, une boule est tirée au hasard dans l'urne, et est remplacée par une boule de couleur différente (le nombre total de boules dans l'urne est donc N pour tout $n \in \mathbb{N}$).

1. (6 pts) Quelle est la probabilité que toutes les boules de l'urne soient blanches, au bout d'un temps infini (i.e. lorsque $n \to \infty$)? Justifiez votre réponse.

2.	(3 pts) Qu	ie vaut	l'espérance	du	${\rm nombre}$	de	boules	blanches	dans	l'urne	lorsque	n	\rightarrow	∞	?
	Justifiez vo	otre rép	onse.												

3. (3 pts) Que vaut la variance du nombre de boules blanches dans l'urne lorsque $n \to \infty$? Justifiez votre réponse.

Question 6 (14 points)

Soit donnée une chaîne de Markov à temps continu $\{X(t), t \in \mathbb{R}^+\}$, dont le diagramme des transitions forme un arbre binaire complet de profondeur h = 2. Chaque lien (i, j) de l'arbre est muni d'un taux de transition de λ dans les deux sens (c.à.d., $q_{ij} = q_{ji} = \lambda$). La chaîne démarre à la racine (X(0) = 0). La Figure 1 illustre le diagramme des transitions de $\{X(t), t \in \mathbb{R}^+\}$.

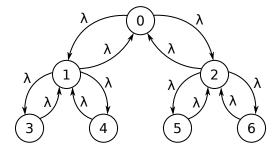


Figure 1: Diagramme des transitions de la chaîne $\{X(t), t \in \mathbb{R}^+\}$.

1. (2 pts) Ecrivez l'équation de balance globale de l'état 0 (racine), c.à.d., l'équation correspondant à l'état 0 du système d'équations $\pi^*Q=0$.

2. (2 pts) Ecrivez l'équation de balance globale de l'état 2 (noeud intérieur).

3. (2 pts) Ecrivez l'équation de balance globale de l'état 6 (feuille).

4.	(4 pts) Trouvez la distribution stationnaire π^* de la chaîne $\{X(t), t \in \mathbb{R}^+\}$, et montrez qu'elle satisfait les équations de balance des trois questions précédentes.
5.	(2 pts) Cette chaîne est-elle réversible ? Une justification intuitive sans calcul suffit.
6.	(Bonus) (3 pts) On diminue le taux de transition de l'état 2 à l'état 0 pour avoir $q_{20} = \frac{\lambda}{2}$ Tous les autres taux restent inchangés. Soit π^* la distribution stationnaire de cette nouvelle chaîne. Complétez les trois affirmations suivantes en cochant les termes corrects (une seule réponse correcte par phrase) : • π_5^* est \square plus grand que / \square égal à / \square plus petit que π_4^* . • π_5^* est \square plus grand que / \square égal à / \square plus petit que π_0^* . • π_4^* est \square plus grand que / \square égal à / \square plus petit que π_0^* .

Question 7 (12 points)

Nous considérons un bureau de poste dont les clients arrivent selon un processus de Poisson de taux λ , et qui est composé de deux guichets A et B. Chaque client, en arrivant au bureau de poste, choisit de manière aléatoire (i.i.d.) de rejoindre la file d'attente du guichet A avec probabilité p, ou celle de B avec probabilité 1-p. Les temps de service de chaque guichet sont i.i.d., et suivent des lois exponentielles de taux μ_A et μ_B , respectivement.

1. (2 pts) Si on regarde les files d'attente de A et de B séparément, de quel type de file d'attente s'agit-il ? Quels sont leurs taux d'arrivées λ_A et λ_B ?

2. (4 pts) Quelle est la condition de stabilité de ce système ? (Hint: le système est stable si les deux files individuelles sont stables).

3.	3. (3 pts) Calculez la probabilité qu'il n'y air d'attente, ni aux guichets).	aucun client dans le système (ni dans les files
4.	4. (3 pts) Caractérisez le processus de départ Justifiez.	à l'unique porte de sortie du bureau de poste.