

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK
Département fédéral de l'environnement, des transports, de l'énergie et de la communication DETEC
Dipartimento federale dell'ambiente, dei trasporti, dell'energia e delle comunicazioni DATEC

Bundesamt für Strassen Office fédéral des routes Ufficio federale delle Strade

Empfehlungen zur Qualitätskontrolle von Beton mit Luftpermeabilitätsmessungen

Recommandations pour le contrôle de la qualité du béton au moyen de mesures de perméabilité à l'air

Recommendations for the quality control of concrete with air permeability measurements

TFB, Technische Forschung und Beratung für Zement und Beton, Wildegg F. Jacobs, Dr. sc. techn., Dipl.-Geol. BDG/SIA

EMPA, Dübendorf A. Leemann, Dr. sc. nat.

EPFL, Laboratoire de Maintenance, Construction et Sécurité des ouvrages (MCS), Lausanne E. Denarié, Dr. sc. techn., Dipl. Bauing. EPFL/SIA

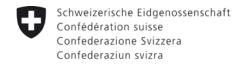
SUPSI, Istituto Materiali e Costruzioni, Canobbio T. Teruzzi, Dr. sc. nat., Dipl. Phys. ETHZ

Forschungsauftrag AGB 2007/007 auf Antrag der Arbeitsgruppe Brückenforschung (AGB)

Dezember 2009

641

Der Inhalt dieses Berichtes verpflichtet nur den (die) vom Bundesamt für Strassen beauftragten Autor(en). Bezug: Schweizerischer Verband der Strassen- und Verkehrsfachleute (VSS)


Le contenu de ce rapport n'engage que l' (les) auteur(s) mandaté(s) par l'Office fédéral des routes.

Diffusion: Association suisse des professionnels de la route et des transports (VSS)

Ordinazione: Associazione svizzera dei professionisti della strada e dei trasporti (VSS)

Il contenuto di questo rapporto impegna solamente l' (gli) autore(i) designato(i) dall'Ufficio federale delle strade.

The content of this report engages only the author(s) appointed by the Swiss federal roads office. Supply: Swiss Association of Road and Transportation Experts (VSS)

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK Département fédéral de l'environnement, des transports, de l'énergie et de la communication DETEC Dipartimento federale dell'ambiente, dei trasporti, dell'energia e delle comunicazioni DATEC

Bundesamt für Strassen Office fédéral des routes Ufficio federale delle Strade

Empfehlungen zur Qualitätskontrolle von Beton mit Luftpermeabilitätsmessungen

Recommandations pour le contrôle de la qualité du béton au moyen de mesures de perméabilité à l'air

Recommendations for the quality control of concrete with air permeability measurements

TFB, Technische Forschung und Beratung für Zement und Beton, Wildegg

F. Jacobs, Dr. sc. techn., Dipl.-Geol. BDG/SIA

EMPA, Dübendorf A. Leemann, Dr. sc. nat.

EPFL, Laboratoire de Maintenance, Construction et Sécurité des ouvrages (MCS), Lausanne E. Denarié, Dr. sc. techn., Dipl. Bauing. EPFL/SIA

SUPSI, Istituto Materiali e Costruzioni, Canobbio T. Teruzzi, Dr. sc. nat., Dipl. Phys. ETHZ

Forschungsauftrag AGB 2007/007auf Antrag der Arbeitsgruppe Brückenforschung (AGB)

Dezember 2009 641

Impressum

Forschungsstelle und Projektteam

Projektleitung

Dr. Frank Jacobs

Mitglieder

Dr. Emmanuel Denarié Dr. Andreas Leemann Dr. Tiziano Teruzzi

Begleitkommission

Präsident
Dr. Martin Käser
Mitglieder
Dr. Fritz Hunkeler
Dr. Walter Kaufmann
Prof. Dr. Albin Kenel

Antragsteller

Forschungsstelle mit Projektteam

Bezugsquelle

Das Dokument kann kostenlos von <u>www.astra.admin.ch</u> herunter geladen werden.

Inhaltsverzeichnis

Impressum	4
Zusammenfassung	
Résumé	6
Summary	
Riassunto	
1. Einleitung	1
1.1 Allgemeines	
1.2 Ziel des Projektes und Vorgehen	
,	
2. Empfehlungen zur Qualitätskontrolle mit Luftpermeabilitätsmessungen	nach
Norm SIA 262/1	
2.1 Vorbemerkung	
2.2 Auswahl und Vorbereitung der Messstellen	
2.3 Anforderungen an die Luftpermeabilitätswerte	
2.4 Konformitätsnachweis	
2.5 Alter, Temperatur und Feuchtigkeit des Betons	
2.6 Vorbereitung, Kalibrierung und Kontrolle des Messgerätes	
2.7 Durchführung der Messungen	
2.8 Ausschreibung	
3	
Anhang A: Informationen zum Bedarf für Luftpermeabilitätsmessungen	A-1
A-1. Vorbemerkung	
A-2. Norm SIA 262	
Anhang B: Hintergründe zur Methode der Luftpermeabilitätsmessung	B-1
B-1. Messmethode	
B-2. Einfluss von Betonfeuchte und Betontemperatur	B-2
B-3. Genauigkeit des Verfahrens	
B-4. Luftpermeabilität als Kenngrösse für die Dauerhaftigkeit	B-8
Anhang C: Ergebnisse der Luftpermeabilitätsmessungen	C-1
C-1. Trogbrücke	
C-2. Tagbautunnel	
Anhang D: Überlegungen zum Konformitätsnachweis	D-1
D-1. Frühere Vorschläge zum Konformitätsnachweis	
D-2. Überlegungen zum vorgeschlagenen Konformitätsnachweis	
D-3. Überlegungen zu den Grenzwerten	
Ahkürzungen	

Abkürzungen Literaturverzeichnis Projektabschluss

Verzeichnis der Berichte zur Forschung im Strassenwesen

Zusammenfassung

In den letzten Jahrzehnten ist erkannt worden, dass bei Bauwerken die häufigsten Schäden durch eine ungenügende Dauerhaftigkeit und nicht durch eine ungenügende Festigkeit verursacht wurden. Die Qualität und Dicke des Überdeckungsbetons bestimmt in den meisten Fällen die Dauerhaftigkeit der Bauwerke. Da die Betonqualität sowohl durch die Betonzusammensetzung als auch den Einbau und die Nachbehandlung beeinflusst werden kann, ist es zweckmässig, die erzielte Betonqualität am Bauteil und nicht an separat hergestellten Prüfkörpern zu bestimmen. Auch stellen der Zementgehalt und der w/z-Wert nicht immer ausreichende Grössen zur Beurteilung der Betonqualität dar.

Gemäss Norm SIA 262 ist die Dichtigkeit des Überdeckungsbetons zu überprüfen. Mit der Prüfung der Luftpermeabilität nach Norm SIA 262/1, Anhang E, steht eine zerstörungsfreie Prüfmethode zur Qualitätskontrolle des Betons zur Verfügung. Mit dieser Methode kann der allgemeine Widerstand des Betons gegenüber eindringenden Schadstoffen bestimmt werden.

Bisher wurden in der Schweiz über 100 Bauteile mit der Luftpermeabilität nach SIA 262/1 untersucht. Basierend auf dem aktuellen Wissenstand werden Empfehlungen zur Bestimmung der Luftpermeabilität präsentiert. Diese Empfehlungen enthalten Vorschläge zur Ausschreibung, Durchführung und Auswertung von Luftpermeabilitätsmessungen. Bei der Durchführung der Luftpermeabilitätsmessungen sind die Anforderungen an die Bauteiltemperatur und Bauteilfeuchte zu beachten.

Auf jeder Untersuchungsfläche sind 6 Luftpermeabilitätsmessungen vorzunehmen. Ist maximal 1 Messwert höher als der vorgeschlagene Grenzwert (kTs = $2.0 \cdot 10^{-16}$ m² für Betonsorten C, D und E nach SIA 118/262; kTs = $0.5 \cdot 10^{-16}$ m² für Betonsorten F und G nach SIA 118/262), erfüllt die Untersuchungsfläche die Anforderungen. Sind 2 der 6 Messwerte höher als der vorgeschlagene Grenzwert, können 6 weitere Messungen durchgeführt werden. Liegt von den 6 weiteren Messwerten maximal 1 Messwert über den Anforderungen, erfüllt die Untersuchungsfläche die Anforderungen. Werden die Anforderungen nicht erfüllt, sind weitere Untersuchungen durchzuführen bzw. das Bauteil instandzusetzen.

Wird zukünftig vermehrt die Bestimmung der Dichtigkeit des Betons im Bauteil gefordert, wird dies auch zu Änderungen im Bauprozess in der Form führen, dass dem Einbau und der Nachbehandlung mehr Sorge getragen werden und auch weitere Methoden Verwendung finden (z.B. saugende Schalungsbahnen, Vakuumentwässerung), die die Dichtigkeit des Überdeckungsbetons verbessern und somit die Nutzungsdauer verlängern.

Résumé

Les dernières décades ont révélé que les dégâts les plus fréquents dans les constructions étaient dûs à une durabilité insuffisante et non à une résistance insuffisante. La qualité et l'épaisseur du béton d'enrobage déterminent dans la plupart des cas la durabilité des constructions. Etant donné que la qualité du béton peut être influencée par sa composition comme par sa mise en place et sa cure, il est nécessaire de déterminer la qualité visée sur ouvrage et non sur des échantillons d'essai produits séparément. De plus, le dosage en ciment et le rapport Eau/Ciment ne sont pas toujours des indicateurs suffisants pour juger de la qualité du béton.

La norme SIA 262 exige de vérifier la compacité du béton d'enrobage. La mesure de perméabilité à l'air selon SIA 262/1, Annexe E met à disposition une méthode d'essai non destructive pour le contrôle de qualité du béton. La résistance générale du béton à la pénétration de substances délétères peut être déterminée avec cette méthode.

Jusqu'à présent, plus de 100 éléments d'ouvrages ont été examinés en Suisse, au moyen de la perméabilité à l'air selon SIA 262/1. Sur la base des connaissances actuelles, des recommandations pour la détermination de la perméabilité à l'air sur ouvrages, sont présentées. Ces recommandations contiennent des propositions pour la mise en soumission, l'exécution et l'évaluation de mesures de perméabilité à l'air sur ouvrages. Lors de l'exécution des mesures de perméabilité à l'air, on sera attentif aux exigences sur la température et l'humidité de l'élément de construction.

Sur chaque surface d'essai 6 mesures de perméabilité à l'air doivent être réalisées. Les exigences sont remplies si au plus une des mesures dépasse les valeurs limites kTs proposées (kTs = 2.0·10⁻¹⁶ m² pour les sortes de béton C, D et E selon SIA 118/262; kTs = 0.5·10⁻¹⁶ m² pour les sortes de béton F et G selon SIA 118/262). Si 2 parmi les 6 valeurs de mesure dépassent les valeurs limite proposées, 6 nouvelles mesures peuvent être réalisées. Si parmi les 6 nouvelles mesures, une seule au plus dépasse les exigences, la surface de mesure remplit les exigences. Dans le cas contraire, des essais complémentaires doivent être réalisés, et le cas échéant, l'élément de construction devra être réhabilité.

La multiplication des demandes de détermination de la compacité du béton d'enrobage sur ouvrages permettra à l'avenir de changer le processus de construction en consacrant plus d'attention à la mise en place et à la cure du béton et en développant l'usage de méthodes qui améliorent la compacité du béton d'enrobage et prolongent la durabilité (par exemple : membranes de coffrage drainantes, drainage sous vide).

Summary

Over the last decades it has been recognized that the damages to reinforced concrete structures are mainly caused by insufficient durability rather than by low strength. In most cases, the quality and thickness of the cover concrete determine the durability of the structure. Since the quality of the cover concrete is influenced not only by the mix composition but also by the placing and the curing conditions, it is appropriate to measure the achieved quality on the structure rather than on separately cast specimens. In addition, the cement content and the w/c ratio are not always suitable indicators for the concrete quality.

SIA Standard 262 requests to measure the "permeability" of the cover concrete. With the air-permeability test (SIA Standard 262/1, Annex E), a non-destructive method to assess the quality of concrete is available. With this method, it is possible to determine the general resistance of the concrete to the penetration of deleterious agents.

To date, over 100 construction elements have been examined with the SIA 262/1-E air-permeability test method in Switzerland. Based on the accumulated knowledge, recommendations for determining the air-permeability are presented. These recommendations cover proposals for the tendering, execution and evaluation of measurements of air-permeability. When conducting measurements of air-permeability, the required temperature and moisture conditions of the concrete elements must be observed and recorded.

On each surface under investigation, 6 measurements of air-permeability are conducted. If not more than 1 result exceeds the proposed limiting values (kTs = 2.0 10⁻¹⁶ m² for the concrete types C, D and E according to SIA 118/262; kTs = 0.5 10⁻¹⁶ m² for the concrete types F and G according to SIA 118/262), the surface complies with the requirements. If 2 results exceed the proposed limiting values, then 6 additional measurements should be performed. If not more than 1 of the additional measurements exceeds the limiting value, the surface under investigation complies with the requirements. In case of non conformity, further investigations should be performed or a protective treatment applied to the element(s).

The multiplication of requests to determine the air permeability of cover concrete on structures will eventually lead to changes in the construction process, towards more care being dedicated to the placing and curing of concrete. It will also foster the use of methods to improve the tightness of cover concrete (such as Controlled Permeability Formwork liners or vacuum dewatering) and thus extend the durability of structures.

Riassunto

Nel corso degli ultimi decenni si è preso coscienza del fatto che le cause più frequenti di danneggiamento delle costruzioni in calcestruzzo armato sono da attribuire a una loro insufficiente durabilità e non a una loro insufficiente resistenza meccanica. Nella maggior parte dei casi, la durabilità delle costruzioni è determinata dalla qualità e dallo spessore del copriferro. Poiché la qualità del calcestruzzo dipende non solo dalla sua composizione ma anche dalle modalità di posa in opera e di trattamento successive, è più appropriato accertare il livello di qualità raggiunto direttamente sul calcestruzzo in opera piuttosto che su provini confezionati separatamente. Inoltre, va sottolineato che talvolta grandezze quali il contenuto di legante e il rapporto acqua/legante del calcestruzzo non sono sufficienti per valutarne correttamente la qualità.

La norma SIA 262 raccomanda di procedere alla determinazione della compattezza del copriferro. La possibilità di controllare la qualità del calcestruzzo in opera in maniera non distruttiva è data dalla procedura di prova della permeabilità all'aria descritta nell'allegato E della norma SIA 262/1. Mediante questa prova è possibile determinare qual è la resistenza generale che il calcestruzzo oppone contro la penetrazione degli agenti di degrado.

Fino ad oggi in Svizzera misurazioni della permeabilità all'aria effettuate applicando la procedura descritta nella citata norma sono state eseguite su oltre 100 elementi costruttivi in calcestruzzo armato. Questo rapporto presenta una serie di raccomandazioni per la determinazione della permeabilità all'aria elaborate sulla base delle conoscenze così accumulate. Le raccomandazioni comprendono proposte concernenti le modalità di prescrizione in capitolato, di scelta delle superfici di prova, di esecuzione e di valutazione delle misurazioni di permeabilità all'aria. Il rapporto definisce pure le esigenze concernenti la temperatura e l'umidità dell'elemento costruttivo in esame che devono essere soddisfatte quando si procede alla misurazione della sua permeabilità all'aria.

Per ogni superficie di prova la procedura prevede la determinazione di 6 valori di permeabilità all'aria. Nel caso in cui non più di un valore è superiore al limite proposto per la classe di esposizione ambientale corrispondente al calcestruzzo in esame (kT $_{\rm s}$ = 2.0 x 10 $^{-16}$ m 2 per calcestruzzi di tipo C, D e E (designazione secondo norma SIA 118/262); kT $_{\rm s}$ = 0.5 x 10 $^{-16}$ m 2 per calcestruzzi di tipo F e G), la superficie esaminata è considerata conforme con il livello di qualità atteso. Se 2 dei 6 valori superano il limite, è possibile procedere alla determinazione di ulteriori 6 valori di permeabilità all'aria. Nel caso in cui non più di uno di questi valori supplementari giace al di sopra del limite, i requisiti di qualità sono pure considerati soddisfatti. Qualora i criteri di conformità non fossero soddisfatti si propongono due opzioni: l'approfondimento dello stato della costruzione mediante esami supplementari, oppure, l'applicazione di trattamenti superficiali protettivi.

La futura crescente richiesta di controllo della compattezza del calcestruzzo indurrà cambiamenti dei processi costruttivi. Stimolerà in particolare gli attori coinvolti nel processo costruttivo a prestare maggiore attenzione alla fase di posa in opera e di post-trattamento del calcestruzzo e ad adottare metodi costruttivi alternativi, come ad esempio l'impiego di casseforme a permeabilità controllata o di drenaggio sotto vuoto, in grado di migliorare la compattezza del copriferro e, conseguentemente, la durabilità dell'opera.

1 Einleitung

1.1 Allgemeines

In den letzten Jahrzehnten ist erkannt worden, dass bei Bauwerken die häufigsten Schäden durch eine ungenügende Dauerhaftigkeit und nicht durch eine ungenügende Festigkeit verursacht wurden. Die Qualität und Dicke des Überdeckungsbetons bestimmen in den meisten Fällen die Dauerhaftigkeit der Bauwerke. Die Eigenschaften des Überdeckungsbetons sind jedoch nicht nur von der Betonzusammensetzung sondern auch vom Einbau, den Umgebungstemperaturen und von der Nachbehandlung auf der Baustelle abhängig. Vor allem bei der Verwendung von relativ langsam reagierenden Zementen und Zusatzstoffen wie Flugaschen kann eine ungenügende Nachbehandlung zu einer erheblichen Verschlechterung der Qualität des Überdeckungsbetons führen. Die Bedeutung des w/z-Wertes zur Charakterisierung der Betonqualität schmälerte sich in letzter Zeit, da die Vielfalt an eingesetzten Zementarten und Zusatzstoffe zunahm. In Anhang A sind weitere Hinweise hierzu enthalten.

Die Qualität des eingebauten Betons ist idealerweise durch eine Untersuchung am Bauwerk zu bestimmen, da separat hergestellte Probekörper sich z.B. bei der Verdichtung und der Nachbehandlung unterscheiden. Gouws et al. (2001) untersuchten Bauteile und aus dem gleichen Beton auf der Baustelle separat hergestellte Probekörper und fanden, dass bei den Probekörpern im Schnitt die Wasseraufnahme etwa ¼ geringer und der Chloridwiderstand etwa ¹/₃ höher waren, als bei den entsprechenden Bauteilen. In der Norm SIA 262 wird zur Kontrolle der Qualität des Überdeckungsbetons die Bestimmung der Luftpermeabilität erwähnt (siehe Anhang A).

Wird in Zukunft vermehrt die Bestimmung der Dichtigkeit des Betons im Bauteil gefordert, wird dies auch zu Änderungen im Bauprozess in der Form führen, dass dem Einbau und der Nachbehandlung mehr Sorge getragen werden und auch Methoden vermehrt Verwendung finden (z.B. saugende Schalungsbahnen, Vakuumentwässerung), die die Dichtigkeit des Überdeckungsbetons verbessern und somit die Nutzungsdauer verlängern.

Idealerweise sollte die Untersuchung am Bauwerk möglichst frühzeitig und zerstörungsfrei erfolgen. Sollte sich dann zeigen, dass die Anforderungen an den Beton nicht erreicht wurden, können einerseits die Ursachen ermittelt und ggf. Korrekturmassnahmen für den weiteren Bauprozess eingeführt werden. Zudem kann andererseits zu diesem frühen Zeitpunkt, an dem noch kein Schaden vorliegt, festgelegt werden, mit welchen Massnahmen, z.B. weitere Untersuchungen, Auftrag eines Oberflächenschutzsystems, die geplante Nutzungsdauer des Bauwerks dennoch sichergestellt werden kann.

1.2 Ziel des Projektes und Vorgehen

Folgende Ziele wurden definiert:

- Ausarbeitung einer Empfehlung zur Bestimmung der Luftpermeabilität nach SIA 262/1
- Durchführung eines Ringversuchs an Betonbauteilen zur Bestimmung statistischer Kenngrössen für die Bestimmung der Luftpermeabilität am Bauwerk nach SIA 262/1

Kapitel 2 enthält Empfehlungen zur Bestimmung der Luftpermeabilität nach Norm SIA 262/1, von der Ausschreibung bis zum Konformitätsnachweis. In Anhang B werden die Methode zur Bestimmung der Luftpermeabilität sowie wichtige Einflussgrössen auf die Luftpermeabilität wie die Betontemperatur und Betonfeuchte genauer erläutert. Zudem sind Hinweise zur Genauigkeit der Methode gegeben. In Anhang C sind Ergebnisse von Luftpermeabilitätsmessungen an zwei Objekten dargestellt, die durchgeführt wurden, um u.a. statistische Kenngrössen (siehe Anhang B) für die Methode zu erhalten. Anhang D umfasst Hintergrundinformationen zum vorgeschlagenen Konformitätsnachweis.

.

2 Empfehlungen zur Qualitätskontrolle mit Luftpermeabilitätsmessungen nach Norm SIA 262/1

2.1 Vorbemerkung

Die hier festgehaltenen Empfehlungen basieren auf den bisherigen Erfahrungen der Mitglieder der Arbeitsgruppe mit der Messmethode Luftpermeabilität an Normalbeton nach SN EN 206-1 und Geräten der Firmen proceq und Materials Advanced Services. Die Empfehlungen beziehen sich auf "übliche" Messungen, d.h. je nach Fragestellung und Randbedingung kann es notwendig sein, davon abzuweichen.

Die Empfehlungen beinhalten Hinweise zur Auswahl und Vorbereitung der Messstellen (2.2), zum Nachweis, ob die Anforderungen erreicht wurden (Abschnitt 2.3), den notwendigen Randbedingungen (Abschnitt 2.5), der Vorbereitung des Messgerätes (Abschnitt 2.6), der Durchführung (Abschnitt 2.7) sowie der Ausschreibung der Messungen (Abschnitt 2.8).

2.2 Auswahl und Vorbereitung der Messstellen

Das zu untersuchende Bauwerk soll in <u>Gruppen</u> von Elementen eingeteilt werden, die jeweils Folgendes aufweisen:

- gleiche Anforderung an die Luftpermeabilität
- gleiche Betonsorte, d.h. gleiche Expositionsklassen, gleiche Druckfestigkeitsklasse, gleichem Grösstkorn
- gleicher Betoneinbau, d.h. Einbaumethode, Verdichtung, Nachbehandlung etc. sind im Wesentlichen gleich.

Für jedes zu untersuchende Bauwerk sind die Gruppen und die dazugehörigen Bauteile unter Angabe der Betoniertermine aufzulisten.

Jede Gruppe besteht zumeist aus mehreren Betonierabschnitten. Für jede Gruppe werden eine oder mehrere Untersuchungsflächen ausgewählt. Die <u>Anzahl</u> an <u>Untersuchungsflächen</u> kann wie folgt bestimmt werden:

- 1 Untersuchungsfläche pro 500 m² exponierter Betonoberfläche; jede angefangenen 500 m² ergeben ebenfalls eine Untersuchungsfläche
- 1 Untersuchungsfläche pro jedem dritten Arbeitstag mit Betoneinbau; jede angefangene Kadenz von 3 Arbeitstagen ergibt ebenfalls eine Untersuchungsfläche.

Das Kriterium, welches die höhere Anzahl an Untersuchungsflächen ergibt, ist anzuwenden.

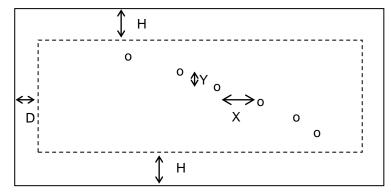

In der Abbildung 1 ist die Auswahl von Untersuchungsflächen beispielhaft dargestellt.

Abbildung 1: Beispielhafte Festlegung von Untersuchungsflächen an 7 Tunnelwandelementen (à 60 m²), die im Wochenrhythmus hergestellt wurden; die gestrichelt umrandeten Flächen stellen die gemäss o.g. Kriterien festgelegten Untersuchungsflächen dar

Auf jeder Untersuchungsfläche sind 6 Messstellen festzulegen. Folgendes wird dabei empfohlen:

Ein genügender horizontaler und vertikaler Abstand von Bauteil-, Arbeitsfugen und Öffnungen etc. ist vorzusehen (Abbildung 2). Dies erfolgt aus dem Grund, da die Qualität von Bauteilen im Randbereich beeinträchtigt sein kann und zumeist die Qualität der Untersuchungsfläche bestimmt werden soll. Soll gezielt die Qualität der Randbereich ermittelt werden, kann dies natürlich auch erfolgen. Messpunkte in jeweils einem vertikalen und horizontalen Abstand von mindestens 20 cm wählen; dadurch soll vermieden werden, dass eng abgegrenzte horizontale oder vertikale Schwachstellen (z.B. Risse, schlechte Betonierfugen) mehrfach untersucht werden. Sollen gezielt Schwachstellen untersucht werden, kann dies natürlich auch erfolgen.

H > 15 cm D > 5 cm X, Y > 20 cmo: Messstelle

Abbildung 2: Empfehlungen zur Auswahl der Untersuchungsfläche und der Messstellen auf einer Betonwand

Bei der Auswahl der Messflächen und Messpunkte ist Folgendes zu beachten:

- Oberflächenschutzsystem: In einem ersten Schritt ist visuell zu prüfen, ob der Beton mit einem Oberflächenschutzsystem (OS) versehen ist. Ist ein OS vorhanden, ist dies wenn möglich lokal zu entfernen, eine Messfläche ohne OS zu suchen oder zu prüfen, ob das OS einen Einfluss auf die Luftpermeabilität hat (Messungen auf Flächen mit/ohne OS). Bestehen Zweifel am Vorhandensein und/oder Einfluss des OS auf die Luftpermeabilität sind keine Messungen durchzuführen oder die Messungen durchzuführen und dies im Prüfbericht zu vermerken (z.B. "OS auf Beton, Einfluss auf Luftpermeabilität nicht bekannt").
- 2. Bewehrungsüberdeckung: Die Messstellen sind zu kontrollieren, ob Bewehrung, Kabelrohre, Leitungen nahe der Oberfläche liegen (ca. < 2 cm). Kann dies nicht vermieden werden, ist dies auf dem Prüfbericht zu vermerken.
- 3. Betonoberfläche: Gemäss den heutigen, wenigen Erkenntnissen ist die Bestimmung der Luftpermeabilität z.B. an mit Schalungseinlagen erstellten Bauteilen oder abgezogenen Bauteiloberflächen möglich, sofern die Oberfläche ausreichend glatt ist. Weisen die Messstellen durch z.B. Grate eine zu grosse Rauigkeit auf, kann die Oberfläche vorsichtig manuell abgeschliffen werden.
- 4. Entstauben: Die Messstellen sind vor den Luftpermeabilitätsmessungen mit einer harten Bürste oder einem harten, trockenem Schwamm von anhaftendem Staub zu befreien.
- 5. Messstellen mit Rissen sind zu vermeiden, d.h. die Messstellen sind vorgängig auf Risse zu überprüfen, z.B. mit Aufsprühen einer Alkohollösung;
- 6. Die Messstellen sind zu markieren (z.B. Bleistift, Kreide), damit keine zwei Messungen an der gleichen Stelle erfolgen, an den Messstellen die Betonfeuchtigkeit bestimmt werden kann und die Messstellen nach der Messung noch (visuell) untersucht werden können, sofern Auffälligkeiten auftraten.

2.3 Anforderungen an die Luftpermeabilitätsmesswerte

In Abhängigkeit von der Betonsorte werden Grenzwerte von 0.50 und 2.0 10⁻¹⁶ m² der Luftpermeabilität für die Betone nach SIA 118/262 empfohlen (**Tabelle 1**). Für die Betonsorten A und B werden keine Luftpermeabilitätsgrenzwerte vorgeschlagen, da die Gefahr einer Bewehrungskorrosion zumeist gering ist. Für Betonsorten, die der Expositionsklasse XD2a genügen müssen, wird der Grenzwert von 2.0 10⁻¹⁶ m² und für Betone, die der Expositionsklasse XD2b genügen müssen, 0.50·10⁻¹⁶ m² empfohlen. Wie weiter unten aufgeführt und in Anhang D näher erläutert, handelt es sich bei den Luftpermeabilitätsgrenzwerten um keine absoluten Grenzwerte sondern um statistische Grössen.

Tabelle 1: Vorgeschlagene Luftpermeabilitätsgrenzwerte kTs in Abhängigkeit von den Be-
tonsorten der Norm SIA 118/262, Revision 2009

Bezeichnung	Α	В	С	D	E	F	G
Druckfestig- keitsklasse	C25/30	C25/30	C30/37	C25/30	C25/30	C30/37	C30/37
Expositions- klassen	XC1(CH) XC2(CH)	XC3(CH)	XC4(CH) XF1(CH)	XC4(CH) XD1(CH) XF2(CH)	XC4(CH) XD1(CH) XF4(CH)	XC4(CH) XD3(CH) XF2(CH)	XC4(CH) XD3(CH) XF4(CH)
Minimaler Zementgehalt [kg/m³]	280	280	300	300	300	320	320
Maximaler w/z-Wert	0.65	0.60	0.50	0.50	0.50	0.45	0.45
Empfohlener Luftpermeabi- litätsgrenzwert kTs [10 ⁻¹⁶ m ²]	-	-	2.0	2.0	2.0	0.50	0.50

2.4 Konformitätsnachweis

Jede Untersuchungsfläche muss folgenden Bedingungen genügen:

Bedingung 1: Von 6 Luftpermeabilitätsmesswerten kTi pro Untersuchungsfläche darf nicht mehr als 1 Luftpermeabilitätsmesswert kTi den geforderten Luftpermeabilitätsgrenzwert kTs überschreiten.

Überschreiten pro Untersuchungsfläche 2 von 6 Luftpermeabilitätsmesswerten den geforderten Luftpermeabilitätsgrenzwert kTs, können auf der gleichen Untersuchungsfläche noch einmal 6 weitere Luftpermeabilitätsmesswerte kTi an 6 neu zu bestimmenden Stellen (siehe Abschnitt 2.2) bestimmt werden.

Bedingung 2: Nicht mehr als 1 Luftpermeabilitätsmesswert kTi der 6 neu bestimmten Luftpermeabilitätsmesswerte darf den geforderten Luftpermeabilitätsgrenzwert kTs überschreiten.

Werden weder Bedingung 1 noch Bedingung 2 erfüllt, genügt die Untersuchungsfläche nicht den Anforderungen. In diesem Fall wird empfohlen wie folgt vorzugehen:

- Zusammenstellung und Auswertung aller vorhandenen Angaben zur Betonqualität und Beurteilung der Ergebnisse in Hinblick auf die geplante Nutzung; als Ergebnis kann z.B. eine weitere Untersuchung des Bauteils oder eine Instandsetzung vorgeschlagen werden.
- 2. Weitere Untersuchung des Bauteils wie z.B. zerstörungsfreie Messung der Bewehrungsüberdeckung und Beurteilung der Ergebnisse in Hinblick auf die geplante Nutzung; als Ergebnis kann z.B. eine weitere Untersuchung des Bauteils (z.B. Bohrkernentnahmen und deren Untersuchung) oder eine Instandsetzung vorgeschlagen werden.

2.5 Alter, Temperatur und Feuchtigkeit des Betons

Wenn Luftpermeabilitätsmessungen an Betonbauteilen durchgeführt werden sollen, wird Folgendes empfohlen:

Betonalter

Das Betonalter soll zwischen etwa 28 und 90 Tagen betragen. Insbesondere wenn langsam reagierende Zemente wie z.B. CEM III/B oder nennenswerte Mengen an langsam reagierenden Zusatzstoffen wie Flugasche verwendet werden, ist ein minimales Betonalter von eher 2 Monaten anzustreben.

Die Luftpermeabilität wird besonders stark durch den Feuchtigkeitsgehalt und untergeordnet die Temperatur des Betons beeinflusst (Anhang B-2). Deshalb sind bei beiden Eigenschaften die nachfolgend aufgeführten Randbedingungen einzuhalten:

Bauteiltemperatur

- Die Oberflächentemperatur des Betonbauteils, gemessen z.B. mit einem Infrarotthermometer, sollte mehr als 10 °C betragen. Erfahrene Anwender können je nach Situation auch bei Temperaturen zwischen 5 und 10 °C messen.
- Feuchtigkeitsgehalt des Betons, bestimmt gemäss einer der folgenden Methoden
 - Der Feuchtigkeitsgehalt soll nicht mehr als 5.5 M.-% betragen, bestimmt mit dem CME (Fa. Tramex, beruht auf Messung der elektrischen Impedanz).
 - Der spezifische elektrische Widerstand, gemessen mit der Wennersonde (Fa. proceq), soll bei 20 °C mindestens 10 20 kΩcm betragen.
 - Der niedrigere Wert gilt eher für Betone mit Zement, der nur aus Zementklinker und keinen reaktiven Zusatzstoffen gemäss SN EN 206-1 (z.B. Flugasche) besteht.
 - Liegt die Temperatur unterhalb von 15 °C oder oberhalb von 25 °C, ist der spezifische elektrische Widerstand für 20 °C zu berechnen. Ist für den zu untersuchenden Beton der Zusammenhang zwischen der Temperatur und dem spezifischen elektrischen Widerstand nicht bekannt, kann folgender Zusammenhang verwendet werden:
 - Im Bereich zwischen 5 und 40 °C halbiert sich in etwa der spezifische elektrische Widerstand bei einer Temperaturzunahme von 20 K.
 - Es wird empfohlen möglichst immer die gleiche Methode zur Bestimmung der Feuchtigkeit zu verwenden.

Die Einhaltung der oben angeführten Bedingungen an den Feuchtigkeitsgehalt des Betons hängt stark von den Umgebungsbedingungen (z.B. Lufttemperatur) ab und wird in der Regel erfüllt, wenn

- die Nachbehandlung vor ungefähr 3 4 Wochen endete
- mehr als 2 5 Tage seit dem letzten Eintrag von Feuchtigkeit durch z.B. Niederschlag, Spritzwasser, Tau vergangen sind.

2.6 Vorbereitung, Kalibrierung und Kontrolle des Messgerätes

Vor den Luftpermeabilitätsmessungen muss das Messgerät vorbereitet und kalibriert werden. Es wird empfohlen beides an jedem Messtag durchzuführen. Besteht ein Verdacht, dass das Messgerät nicht korrekt arbeitet, ist es ebenfalls erneut vorzubereiten und zu kalibrieren. Während Messpausen wird empfohlen die Messglocke auf ein undurchlässiges Material (z.B. Metall, Polycarbonat) zu setzen und das Messsystem unter Vakuum zu halten.

Unter der <u>Vorbereitung</u> wird verstanden, dass die Messglocke auf ein ausreichend undurchlässiges Material (z.B. Metall, Polycarbonat) gesetzt und das vollständige System während mindestens 15 Minuten evakuiert wird.

Bei der <u>Kalibrierung</u> wird die Messglocke auf ein ausreichend undurchlässiges Material (z.B. Metall, Polycarbonat) gesetzt und eine vollständige Kalibrierungsmessung durchgeführt. Es wird ein Druckanstieg in der Messglocke stattfinden, da immer geringste Undichtigkeiten und geringste Mengen an volatilen Stoffen im Messsystem vorhanden bleiben. Dieser Druckan-

stieg wird vom Messgerät bei den eigentlichen Messungen automatisch von den Messwerten abgezogen. Es sind mindestens zwei Kalibrierungen vorzunehmen und Folgendes ist einzuhalten:

- Bei der Kalibrierung darf der Druckanstieg nicht mehr als 5 mbar betragen.
- Die Differenz zwischen 2 aufeinanderfolgenden Kalibrierungen darf nicht mehr als 0.5 mbar betragen.
- Dies wird in der Regel nach einer ausreichenden Vorbereitung und 2 3 Kalibrierungen eingehalten.

Der Zeitbedarf für die Vorbereitung und Kalibrierung beträgt in der Regel weniger als eine Stunde.

In grösseren Abständen (Wochen – Monate) oder bei Zweifeln an den Messergebnissen sind zur Kontrolle Messungen auf porösen Inertstoffen mit bekannter Luftpermeabilität vorzunehmen, um die Funktionstüchtigkeit des Gerätes weitergehend zu kontrollieren. Als geeignete poröse Inertstoffe haben sich keramische Platten, alte Betonprüfkörper und Natursteine erwiesen.

2.7 Durchführung der Messungen

An den 6 gemäss Abschnitt 2.2 festgelegten Stellen ist die Luftpermeabilität sowie die Betonfeuchte zu bestimmen. Bei Bedarf ist die Bewehungsüberdeckung zu messen.

Die Lage und Ergebnisse der Messungen (Luftpermeabilität, Betonfeuchte) sind, u.a. neben Hinweisen zum Bauteil, in einem Prüfprotokoll festzuhalten. Ggf. kann eine Skizze zur Veranschaulichung der Lage der Messstellen vorteilhaft sein. Nachfolgend ist ein Beispiel für ein Prüfprotokoll dargestellt.

Werden an der gleichen Untersuchungsfläche weitere 6 Stellen zur Bestimmung der Luftpermeabilität ausgewählt, sind dabei ebenfalls die Hinweise in Abschnitt 2.2 zu beachten.

	Prüfprot	okoll Luftpern	neabilität nach	Norm SIA 2	262/1, A	nhang	gΕ	
Auftragg	eber:							
Bauwerk	α:							
Bauteil,	Etappe:							
Betonzu	sammens	etzung / Eigens	schaften					
Herstellu	ıngsdatum	des Bauteils:						
Bauteil V	Vitterung a	ausgesetzt (Exp	oosition)?:					
Wetter le	etzten 2 Ta	age:						
Wetter N	lesstag:							
Lufttemp	eratur	um	.Uhr °C	;	um .	l	Jhr	. °C
Bauteilte	mperatur	um	. Uhr °C	}	um .	l	Jhr	. °C
Messun	gam	von .	t	ois		Uhr		
Messun	g durchge	führt von		Firm:	a			
Luftperm	neabilitätsi	messgerät:						
Feuchter	messgerä	t:						
Behandl	ung der O	berfläche (z.B.	entgraten):					
Bemerku	ıngen (Vo	rhandensein vo	on Rissen, Ober	flächenschu	tzsyster	men, e	tc.):	
Ergebnis	sse der Ka	•	1: mbar; k					
Mess-	Zentrur	n Messkam-	Gerätemess-	Luftper-	spe		Beton-	Bemerkungen
stelle	Al - (1	mer	Nr. [-]	meabilität	elek		feuchte	
[-]	Abstand von	Höhe ab Boden [m]		kTi [10 ⁻¹⁶ m ²]	Widers [kΩo		[M%]	
	[m]	Boden [m]		[10 111]	[1320	,,,,		
Anzahl	Messwer	te > kTs:	kTs = 10 ⁻	¹⁶ m ²	Konfo	rm: Ja	□ Nein	
Anzahl	Messwer	te > kTs:			Konf	orm: J	a □ Neir	n 🗆
Randb	edingunge	en für Messung	en zulässig: Ja	□ Nein □ b	edingt C	⊒ wege	en	
Bemer	kungen					Unte	erschrift	

2.8 Ausschreibung

Der zeitliche Aufwand für die Messungen hängt stark von der Zugänglichkeit der einzelnen Messstellen ab. Folglich ist anzugeben, wie nahe (Distanz in Meter) an das zu untersuchende Bauteil gefahren werden kann, ob vom Abstellplatz des Fahrzeuges ein ungehinderter, ebenerdiger Zugang zum Bauteil besteht (bzw. falls dies nicht zutrifft, wie die Situation sonst aussieht), ob die Messflächen auf dem Bauteil vom Boden (d.h. max. 2 m Höhe) oder Gerüst etc. aus zugänglich sind und ob Strom (220 V für den Betrieb der Vakuumpumpe) vor Ort und in welcher Entfernung vorhanden ist.

Beispiel für Ausschreibungstext:

Am Bauwerk ist am Bauteil, Etappe (siehe beiliegende Skizze) die Luftpermeabilität nach SIA 262/1, Anhang E, zu bestimmen. An 6 Stellen ist die Luftpermeabilität am Bauteil zu messen, wobei die geometrischen Randbedingungen gemäss VSS-Bericht Nr. 641 "Empfehlungen zur Qualitätskontrolle von Beton mit Luftpermeabilitätsmessungen" (Forschungsauftrag AGB 2007/07) einzuhalten sind.

Zum Bauteil kann direkt mit einem Fahrzeug gefahren werden. Eine Leiter oder ein Gerüst sind für die Messungen nicht notwendig. Ein 220 V-Stromanschluss ist vor Ort innerhalb eines Radius von ... m vorhanden. Die Prüfflächen sind vor der Messung mit einer Bürste trocken abzubürsten. Die Messstellen sind auf mindestens 10 cm genau nachvollziehbar einzumessen.

Die Messungen dürfen nur ausgeführt werden, wenn die Randbedingungen bezüglich Temperatur und Betonfeuchte gemäss o.g. VSS-Bericht eingehalten werden. D.h. der Messtermin ist mit der Bauleitung abzusprechen und hat im Zeitraum von ... bis ... zu liegen.

An jeder Messstelle für die Luftpermeabilität ist die Betonfeuchte, z.B. mit einem Gerät zur Bestimmung des spezifischen elektrischen Widerstandes oder einem mit der Impedanzmessung arbeitenden Messgerät, zu bestimmen. Mindestens zu Beginn und am Ende der Messungen sind die Luft- und Betontemperatur zu bestimmen. Vor Ort müssen die Luftpermeabilitätsergebnisse ausgewertete werden, um zu beurteilen, ob 6 weitere Messungen notwendig sind.

Der Prüfbericht muss dem Muster gemäss o.g. VSS-Bericht entsprechen.

Pos.	Bezeichnung	Einheit	Ausmass	Einheitspreis	Betrag
1	Planung, Durchführung und Beurteilung der Luftpermeabilitätsmessungen gemäss VSS-Bericht 641 inkl. Messung der Luft- und Betontemperatur, des Feuchtegehaltes an 6 Stellen (=1 Serie), an denen die Luftpermeabilität bestimmt wird, die Vorbereitung und Kalibration des Luftpermeabilitätsmessgerätes sowie ein einfaches Vorbereiten der Messstellen (Abbürsten, etc.) sind in die Kosten der Messungen einzurechnen; inkl. Prüfbericht; Es ist anzugeben, wie nahe an die Messfläche gefahren werden kann und, ob die Messstellen vom Boden aus bzw. wie sonst zugänglich sind		7.40		20.1.49
1.1	Wegentschädigung und Gerätepauschale	St			
1.3	Aufwändigeres Vorbereitung von 6 Mess- stellen wie Entgraten, lokales Abschleifen von max. 0.5 mm	St			
1.4	1 Serie Luftpermeabilitäts- und Beton- feuchtemessungen;	St			
1.5	Bestimmung der Bewehrungsüberde- ckung an 6 Messstellen	St			_

Anhänge

Anhang A: Informationen zum Bedarf für Luftpermeabilitätsmessungen

Anhang B: Hintergründe zur Methode der Luftpermeabilitätsmessung

Anhang C: Ergebnisse zur Trogbrücke und zum Tagbautunnel

Anhang D: Überlegungen zum Konformitätsnachweis

Anhang A: Informationen zum Bedarf für Luftpermeabilitätsmessungen

A-1. Vorbemerkung

In den letzten Jahrzehnten ist erkannt worden, dass bei Bauwerken die häufigsten Schäden durch eine ungenügende Dauerhaftigkeit und nicht durch eine ungenügende Festigkeit verursacht wurden. Die Qualität und Dicke des Überdeckungsbetons bestimmen in den meisten Fällen die Dauerhaftigkeit der Bauwerke gegenüber dem heute dominierenden Schadensmechanismus: der Bewehrungskorrosion. Die Eigenschaften des Überdeckungsbetons sind jedoch nicht nur von der Betonzusammensetzung sondern auch vom Einbau, den Umgebungstemperaturen und von der Nachbehandlung auf der Baustelle abhängig. Insbesondere bei der Verwendung von relativ langsam reagierenden Zusatzstoffen wie Flugaschen oder manchen Zementarten wie Hochofenzementen oder normal reagierenden Bindemittel bei niedrigen Temperaturen kann eine ungenügende Nachbehandlung zu einer erheblichen Verschlechterung der Qualität des Überdeckungsbetons führen.

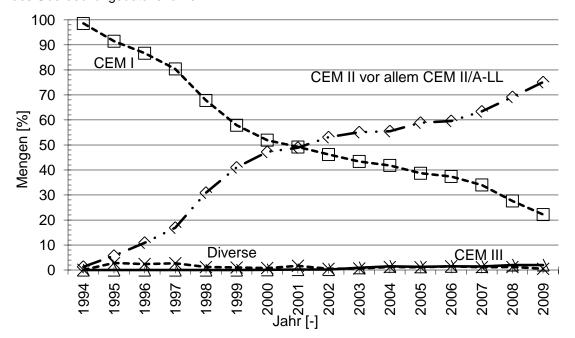


Abbildung A- 1: Verbrauch von verschiedenen Zementarten in der Schweiz über die Zeit

Durch den zunehmenden Einsatz von reaktiven Zusatzstoffen als auch verschiedenen Zementarten (**Abbildung A- 1**, **Tabelle A- 1**), die neben dem Zementklinker weitere reaktive Bestandteile (z.B. Flugasche, Hüttensand) enthalten, schmälert sich auch die Bedeutung des w/z- bzw. w/z_{eq}-Wertes zur Charakterisierung der Betonqualität. Dies zeigt sich beispielhaft an 605 Daten zum Chloridwiderstand von Beton (**Abbildung A- 2**), die von Betonwerken aus den meisten Teilen der Schweiz ermittelt wurden. Es ist kein klarer Zusammenhang zwischen dem w/z-Wert und dem Chloridwiderstand erkennbar.

Expositionsklassen	X0, XC1, XC2, XC3	XC4, XD1, XD2,	XF2, XF4		
		XD3, XF1, XF3,			
CEM I					
CEM II/A-LL		Zugelas	sen		
CEM II/B-LL		Nicht zugel	assen		
CEM II/A-M (A-D)					
CEM II/A-D					
CEM II/A-S	Zugelassen	7			
CEM II/A-M (V-LL	_	Zugelassen			
CEM II/B-M (V-LL)					
CEM II/B-T					
CEM III/A		Zugelassen	Nicht zugel.		
CEM III/B		Zua	elassen		

Tabelle A- 1: Zugelassene Zementarten in Abhängigkeit von den Expositionsklassen, aus Tab. NA.3 der SN EN 206-1, Stand 2009

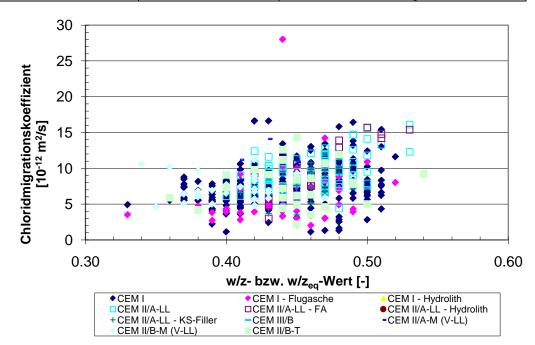
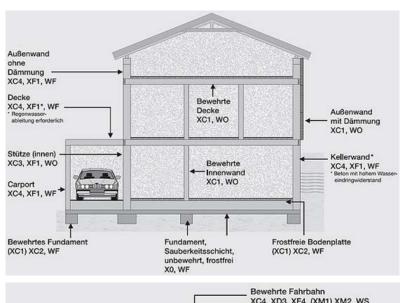


Abbildung A- 2: Chloridmigrationskoeffizient nach SIA 262/1, Anhang B, in Abhängigkeit vom w/z- bzw. w/z_{eq}-Wert und Bindemittel, aus Jacobs & Leemann, 2007.

Die Qualität des eingebauten Betons ist idealerweise durch eine Untersuchung am Bauwerk zu bestimmen, da separat hergestellte Probekörper sich z.B. bei der Verdichtung und der Nachbehandlung unterscheiden. Gouws et al. (2001) untersuchten Bauteile und aus dem gleichen Beton auf der Baustelle separat hergestellte Probekörper und fanden, dass bei den Probekörpern im Schnitt die Wasseraufnahme 23 % geringer und der Chloridwiderstand 29 % höher waren, als bei den entsprechenden Bauteilen. Zu einem ähnlichen Ergebnis wurde auch mit Luftpermeabilitätsmessungen gekommen. In *Abbildung B- 8*, unten, sind Ergebnisse von Messungen am separat hergestelltem "Prüfkörper Tunnel" und im "Tunnel" (Tunnelwand) selber dargestellt. Es zeigt sich ein teilweise beträchtlicher Unterschied.


Idealerweise sollte die Untersuchung am Bauwerk möglichst frühzeitig und zerstörungsfrei erfolgen. Bei der Bestimmung der Luftpermeabilität nach SIA 262/1 handelt es sich um eine zerstörungsfreie Prüfung, die in den 90er Jahren zur Qualitätskontrolle am Bauwerk im Rahmen von zwei ASTRA-Projekten (Torrent & Ebensperger 1993, Torrent & Frenzer 1995) entwickelt wurde. In weiteren ASTRA-Projekten wurde die Methode angewandt bzw. näher untersucht (Roelfstra et al. 2001, Brühwiler et al. 2005, Jacobs 2006).

Sollte sich bei Luftpermeabilitätsmessungen in einem frühen Betonalter zeigen, dass die Anforderungen an den Beton nicht erreicht wurden, können einerseits die Ursachen ermittelt und ggf.

Korrekturmassnahmen für den weiteren Bauprozess eingeführt werden. Zudem kann andererseits zu diesem frühen Zeitpunkt, an dem noch kein Schaden vorliegt, festgelegt werden, mit welchen Massnahmen, z.B. weitere Untersuchungen, Auftrag eines Oberflächenschutzsystems, die geplante Nutzungsdauer des Bauwerks dennoch sichergestellt werden kann.

A-2. Norm SIA 262

In der Norm SIA 262 "Betonbau", die auf den Eurocode 2 basiert, sind Expositionsklassen zur Beschreibung der wichtigsten Umwelteinflüsse auf Beton enthalten (**Tabelle A- 2**). In der Norm SN EN 206-1 sind die Anforderungen an Beton in Abhängigkeit von den Expositionsklassen angegeben. In **Abbildung A- 3** sind die Expositionsklassen beispielhaft an Bauteilen dargestellt. Bei der Revision der Norm SIA 118/262 im Jahr 2009 wurden Betone definiert, die Anforderungen an die o.g. Expositionsklassen erfüllen (**Tabelle A- 3**).

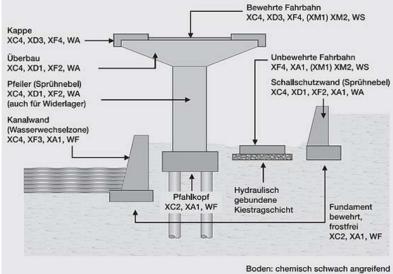


Abbildung A- 3: Beispielhafte Illustration der Expositionsklassen bei ausgewählten Bauteilen; XM: deutsche Expositionsklassen für Verschleiss, WA, WS, WF: deutsche Klassen zur Beurteilung des AAR-Risikos, aus HeidelbergCement

²⁾ siehe Norm SN EN 206-1.

Tabelle A- 2: Expositionsklassen zur Beschreibung der wichtigsten Umwelteinflüsse auf Beton, aus SIA 262

Expositions- klasse ¹⁾	Umwelteinflüsse	Beispiele von Bauteilen
1) keine Sch	nädigung	
Х0	sehr tiefe Luftfeuchtigkeit, keine Frost-Tau-Wechsel, kein chemischer Angriff	Unbewehrter Beton, bewehrter Beton bei sehr tiefer Luftfeuchtigkeit
2) Bewehrur	ngskorrosion in karbonatisiert	em Beton
XC1	trocken oder ständig nass	Bauteile im Gebäudeinnern bei geringer Luftfeuchtigkeit
XC2	nass, selten trocken	langzeitig wasserbenetzte Oberflächen
XC3	mässig feucht	Bauteile im Gebäudeinnern bei mässiger oder hoher Luftfeuchtigkeit (z.B Wäschereien), vor Regen geschützte Oberflächen im Freien
XC4	wechselnd nass und trocken	wasserbenetzte Oberflächen, die nicht der Klasse XC2 zuzuordnen sind
3) Bewehrur	ngskorrosion induziert durch (Chloride (z.B. von Taumitteln)
XD1	mässig feucht	Bauteile im Sprühnebelbereich von Strassenverkehrsflächen
XD2	nass, selten trocken	Schwimmbecken, Bauteile im Kontakt mit chloridhaltigen Industrieabwässern
XD3	wechselnd nass und trocken	Teile von Brücken, Parkdecks oder Stützmauern, die chloridhaltigem Spritzwasser ausgesetzt sind
4) Bewehrur	ngskorrosion bei Kontakt mit N	Meerwasser
XS1	salzhaltige Luft	Aussenbauteile in Küstennähe
XS2	ständig unter Wasser	Bauteile, die ständig unter Wasser liegen
XS3	wechselnd nass und trocken	Bauteile im Bereich wechselnder Wasserstände
5) Gefügesc	chädigung des Betons bei Fros	steinwirkung mit oder ohne Taumittel
XF1	mässige Wassersättigung, ohne Taumittel	vertikale Oberflächen, die Regen und Frost ausgesetzt sind
XF2	mässige Wassersättigung, mit Taumittel	vertikale Oberflächen im Bereich taumittelhaltigen Sprühnebels
XF3	hohe Wassersättigung, ohne Taumittel	horizontale Oberflächen, die Regen und Frost ausgesetzt sind
XF4	hohe Wassersättigung, mit Taumittel	Brückenplatten, die Taumitteln ausgesetzt sind; Oberflächen, die Sprühnebel oder Spritzwasser und Frost ausgesetzt sind
6) Chemisch	ner Angriff durch natürliche B	öden und Grundwasser ²⁾
	schwacher Angriff	siehe Norm SN EN 206-1
XA1		
XA1 XA2	mässiger Angriff	siehe Norm SN EN 206-1

Bezeichnung Anforderungen ¹⁾	Sorte A 2) (Anna)	Sorte B (Berta)	Sorte C (Cäsar)	Sorte D (T1)	Sorte E (T2)	Sorte F (T3)	Sorte G (T4)
Übereinstimmung 3)	Beton nach SN EN 206-1	Beton nach SN EN 206-1	Beton nach SN EN 206-1	Beton nach SN EN 206-1			
Druckfestigkeitsklasse	C25/30	C25/30	C30/37	C25/30	C25/30	C30/37	C30/37
Expositionsklasse (Kombination der aufgeführten Klassen)	XC2(CH)	XC3(CH)	XC4(CH), XF1(CH)	XC4(CH), XD1(CH), XF2(CH)	XC4(CH), XD1(CH), XF4(CH)	XC4(CH), XD3(CH), XF2(CH)	XC4(CH), XD3(CH), XF4(CH)
Nennwert des Grösst- korns	D _{max} 32	D _{max} 32	D _{max} 32	D _{max} 32	D _{max} 32	D _{max} 32	D _{max} 32
Klasse des Chloridge- halts	CI0,10	CI0,10	CI0,10	CI0,10	CI0,10	CI0,10	CI0,10
Konsistenzklasse	C3	C3	C3	C3	C3	C3	C3
Frost-Tausalz- widerstand ⁵⁾	nein	nein	nein	mittel	hoch	mittel	hoch

Tabelle A- 3: Betonsorten gemäss Norm SIA 118/262, Revision 2009, gültig ab 1.1.2010

- Es sind die Anforderungen aufgeführt, die gemäss der Norm SIA 262, Ziffer 3.1.1.2, festzulegen sind.
- 2) Die Sorte A deckt auch die Anforderungen der Expositionsklasse XC1(CH) ab.
- 3) Norm SN EN 206-1:2000 Beton Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität.
- 4) Die angegebene Klasse des Chloridgehalts ist für Stahl- und Spannbeton geeignet.
- Prüfungen gemäss Norm SIA 262/1 Betonbau Ergänzende Festlegungen, Anhang A, B und C für die Wasserleitfähigkeit (WL), Chloridwiderstand (CW) und Frost-Tausalzwiderstand (FT). Bei den Prüfungen gelten die Grenzwerte und Kriterien gemäss Neufassung der Ziffer 8.2.3.2 des nationalen Anhangs der Norm SN EN 206-1 (Mitteilung der NK 262 zum Beschluss vom 18.4.2008, www.sia.ch/206-1).

Zur <u>Gewährleistung der Dauerhaftigkeit</u> sind gemäss Norm SIA 262, Ziffer 2.4.3, abgestimmt auf die Expositionsklassen und die Nutzung, in der Regel verschiedene Massnahmen zu ergreifen, beispielsweise:

- Verwenden von Ausgangsstoffen, welche die Herstellung einer gleichbleibenden, genügenden Betonqualität ermöglichen
- Herstellen von Beton mit ausreichendem Widerstand gegen das Eindringen von Flüssigkeiten und schädlichen Stoffen
- o Herstellen eines dichten Überdeckungsbetons
- o Einhalten einer genügenden Bewehrungsüberdeckung
- Vorsehen einer wirksamen Entwässerung der Betonoberflächen
- Vorspannen des Tragwerks
- Vermeiden von Rissen
- o Begrenzen der Rissbreiten
- o Aufbringen eines Oberflächenschutzes
- Verwenden von Bewehrung mit erhöhtem Korrosionswiderstand
- Anwenden eines kathodischen Korrosionsschutzes.

In der Norm SIA 262, Ziffer 5.2.2, sind die Mindestwerte der <u>Bewehrungsüberdeckung</u> c_{nom} (inkl. Vorhaltemass) festgelegt, die, falls keine besonderen Schutzmassnahmen durch einen Oberflächenschutz getroffen werden oder keine besonderen Verhältnisse vorliegen, einzuhalten sind (**Tabelle A- 4**). Die zulässigen Masstoleranzen betragen +10 mm und -0 mm (gemeint ist hier wahrscheinlich die Bewehrungsüberdeckung ohne Vorhaltemass). In der Revision 2010 der Norm SIA 262 soll das Vorhaltemass mit voraussichtlich 10 mm spezifiziert werden.

Die Qualität des <u>Überdeckungsbetons</u> wird gemäss Norm SIA 262, Ziffer 6.4.2 unter anderem beeinflusst durch:

- Zusammensetzung des Betons
- Form und Abmessungen des Bauteils
- Bewehrungsgehalt und Bewehrungsanordnung
- Art und Vorbehandlung der Schalung
- Art der Verarbeitung des Betons
- Dauer und Art der Nachbehandlung
- Korrosionswiderstand der Bewehrung.

In Ziffer 6.4.2 der Norm SIA 262 wird zudem gefordert, dass "die erreichte Dichtigkeit des Überdeckungsbetons […] mit Durchlässigkeitsprüfungen (z.B. Luftpermeabilitätsmessungen) am Bauwerk oder an vom Bauwerk entnommenen Bohrkernen zu überprüfen" ist. Hinweise zur

Durchführung der Luftpermeabilitätsmessungen gibt die Norm SIA 262/1, Anhang E.

Tabelle A- 4: Mindestwerte der Bewehrungsüberdeckung (inkl. Vorhaltemass), aus Norm SIA 262;

Bewehrungsüberdeckung	Expositionsklasse gemäss Tabelle 1						
c _{nom} [mm]	Bewehrungskorrosion in karbonatisiertem Beton Bewehrungskorrosion induziert durch Chloride				ziert		
	XC1	XC2	XC3	XC4	XD1	XD2	XD3
Betonstahl	20	35		40	40	55	
Spannstahl bzw. Spannglied	30	45		50	50	65	

Anhang B: Hintergründe zur Methode der Luftpermeabilitätsmessung

In Kapitel B-1 wird die Messmethode näher erläutert. Kapitel B-2 beschreibt die Gründe zur Festlegung der maximalen Betonfeuchte und minimalen Betontemperatur. In Kapitel B-3 sind Daten zur Genauigkeit der Luftpermeabilität angegeben und Kapitel B-4 enthält Angaben zum Zusammenhang zwischen der Luftpermeabilität und weiteren Dauerhaftigkeitskenngrössen.

B-1. Messmethode

Bei dieser Messmethode werden mit der im Beton vorhandenen Luft Permeabilitätsmessungen vor Ort durchgeführt. In einer Prüfkammer ($\varnothing=50$ mm) und einem diese Kammer umgebenden Schutzring (**Abbildung B-1**), die beide zur Betonoberfläche hin geöffnet sind, wird mit einer Vakuumpumpe ein Unterdruck erzeugt; je nach Beton und Messgerät beträgt dieser ca. 10 - 40 mbar. In der Prüfkammer wird der Druckaufbau ab dem Zeitpunkt t_o (Beendigung der Evakuierung der Messkammer) durch die durch den Beton einströmende Luft in Abhängigkeit von der Zeit gemessen. Aus der zeitlichen Druckänderung und weiteren Kenngrössen wird die Luftpermeabilität berechnet. Der die Prüfkammer umgebende Schutzring bezweckt, dass die Luft nur eindimensional in die Prüfkammer hinein strömt, d.h. nur aus dem Bauteilinneren stammt (siehe Pfeile in **Abbildung B-1**).

Die Berechnung der Luftpermeabilität beruht auf folgender Gleichung (Torrent & Frenzer 1995):

$$k_T = \left(\frac{V_c}{A}\right)^2 \frac{\mu}{2 \varepsilon p_a} \left(\frac{\ln \left(\frac{p_a + \Delta p}{p_a - \Delta p}\right)}{\sqrt{t} - \sqrt{t_o}} \right)^2$$

k_T: Luftpermeabilität [m²]

V_c: Volumen der Messkammer [m³]

A: Querschnittsfläche der Messkammer [m²]

μ: dynamische Viskosität der Luft; als konstant mit 2.0·10⁻⁵ Ns/m² angenommen; liegt tatsächlich, je nach Temperatur bei 1.7 – 1.9·10⁻⁵ Ns/m²

ε: lufterfüllte Betonporosität [-], als konstant mit 0.15 angenommen; liegt bei Beton zumeist niedriger

t: Ende der Messung [s]

t_o: Beginn der Messung (nach der Evakuierung des Messkammer) [s]

p_a: Luftdruck [N/m²]

Δp: Druckdifferenz zwischen t_o und t (Ende der Messung) in der Messkammer [N/m²]

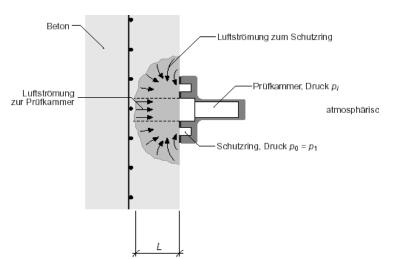


Abbildung B- 1: Skizze des Versuchsprinzips der Luftpermeabilitätsmessung vor Ort, aus Norm SIA 262/1

Die Luftpermeabilität kann je nach Betonzusammensetzung, Verdichtung, Nachbehandlung, Mikrorissen etc. über mehrere Zehnerpotenzen variieren (**Abbildung B- 2**). Im Rahmen der hier durchgeführten Untersuchungen wurden Messgeräte der Firmen proceq ("Torrent Permeability

Tester" TPT) und Materials Advanced Services ("Permea-TORR" PT) verwendet.

B-2. Einfluss von Betonfeuchte und Betontemperatur

Wird die Luftpermeabilität von Beton gemessen, ist der Wassergehalt des Betons von entscheidender Bedeutung, da sich das Wasser in den Poren befindet und den Luftfluss behindert. Verschiedene Untersuchungen wurden durchgeführt, um den Einfluss der Betonfeuchte auf die Luftpermeabilität zu studieren, von denen nachfolgend einige präsentiert werden.

Torrent & Ebensperger (1993) bestimmten die Luftpermeabilität und den spezifischen elektrischen Widerstand (Wenner-Methode) während der Trocknung von Beton mit Portlandzement nach mehrmonatiger Wasserlagerung. Sie ermittelten, dass nur durch die Trocknung sowohl die Luftpermeabilität als auch der spezifische elektrische Widerstand ansteigen. Um den Einfluss eines unterschiedlichen Wassergehaltes, angegeben als spezifischer elektrischer Widerstand, bei der Luftpermeabilität zu berücksichtigen, wurde das in **Abbildung B- 2** dargestellte Nomogramm entwickelt. Weist ein Beton eine hohe Luftpermeabilität und einen hohen spezifischen elektrischen Widerstand auf (Punkt A), ist der Beton einerseits trocken und andererseits von hoher Durchlässigkeit. Ist jedoch die Luftpermeabilität gering und der spezifische elektrische Widerstand hoch (Punkt B), liegt ein trockener Beton mit einer geringen Luftpermeabilität vor. Sind sowohl die Luftpermeabilität als auch der spezifische elektrische Widerstand niedrig (Punkt C), handelt es sich um einen relativ nassen Beton, dessen Durchlässigkeit mit einer Trocknung deutlich zunehmen würde.

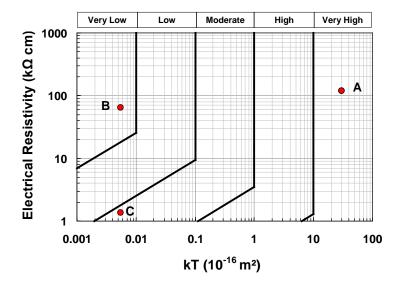


Abbildung B- 2: Nomogramm zur Darstellung des Einflusses der Betonfeuchte, dargestellt als spezifischer elektrischer Widerstand, auf die Luftpermeabilität für Beton mit Portlandzement, aus Torrent & Frenzer (2005)

Sollte die Luftpermeabilität um den Einfluss der Betonfeuchte korrigiert werden (korrigierte Luftpermeabilität kT'), wurde folgende Formel von Torrent & Frenzer (1995) vorgeschlagen, die auf den Zusammenhängen von **Abbildung B- 2** basiert:

$$kT' = Max \left[kT, \frac{3.5 kT^{0.57}}{ER} \right]$$

In Jacobs (2006) sowie Torrent & Luco (2007) sind die Grenzen dieses Ansatzes durch z.B. Zusatzstoffe des Typs II gemäss EN 206-1, Zemente CEM III oder auch eine Karbonatisierung bzw. einen Chlorideintrag in Beton aufgezeigt.

Romer (2005a) lagerte Betonwürfel mit w/z-Werten zwischen 0.35 und 0.62 bei Temperaturen zwischen 5 und 20 °C sowie relativen Luftfeuchtigkeiten zwischen 35 und 90 % und bestimmte daran nach 28 Tagen als auch nach 1 Jahr die Luftpermeabilität. Mit zunehmender Lagerungsdauer nahm die Betonfeuchtigkeit ab (**Abbildung B- 3**) und die Luftpermeabilität zu (**Abbildung**

B- 4). Bei den in der Praxis zumeist zu erwartenden relativen Luftfeuchten von 70 bis 90 % muss gemäss **Abbildung B- 4** mindestens 1 Monat nach Betonherstellung gewartet werden, bis sich die Luftpermeabilität einigermassen stabilisiert, d.h. sich kaum noch mit weiter zunehmender Lagerungsdauer (bis 1 Jahr) ändert.

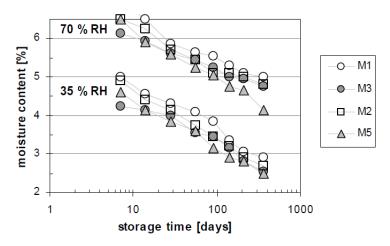


Abbildung B- 3: Mittels Impedanzmessung bestimmte Betonfeuchte in Abhängigkeit von der Lagerungsdauer für verschiedene bei 20°C gelagerte Betone (M1: w/z = 0.35; M2: w/z = 0.4, M3: w/z = 0.40; M5: w/z = 0.62), aus Romer (2005a)

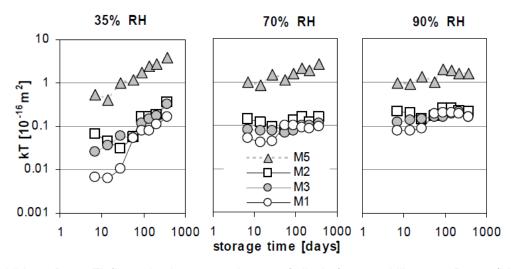


Abbildung B- 4: Einfluss der Lagerungsdauer auf die Luftpermeabilität von Beton (M1: w/z = 0.35; M2: w/z = 0.4, M3: w/z = 0.40; M5: w/z = 0.62), aus Romer (2005a)

Bei Beton mit einem w/z-Wert von 0.62, gelagert bei 20 °C, und relativen Feuchten zwischen 35 und 90 %, war der Druckanstieg erwartungsgemäss proportional zur Wurzel der Zeit. Demgegenüber wurde bei einem geringeren w/z-Wert beobachtet, dass der Druckanstieg nicht immer proportional zur Wurzel der Zeit verlief. In Abbildung B- 5 ist dies für einen Beton mit einem w/z-Wert von 0.48 dargestellt. Bei sehr trockener Lagerung (35 %) war der Druckanstieg linear, bei einer Lagerung bei 70 % und noch ausgeprägter bei 90 % war der Druckanstieg immer weniger linear. Als Erklärung hierfür wurde das Verdunsten von Wasser bei den in der Messkammer vorherrschenden niedrigen Luftdrücken angegeben. Daraus kann gefolgert werden, dass ein nicht linearer Druckanstieg auf einen hohen Wassergehalt im Beton hinweist und, dass es von Vorteil sein könnte, wenn die Messungen bei Drücken oberhalb des Wasserdampfdruckes (ca. 25 mbar bei 20 °C) durchgeführt werden könnten (was nicht mit dem TPT, jedoch dem PT möglich ist). Aus den mittels Impedanzmessung bestimmten Betonfeuchten in Abbildung B- 3 ergibt sich, dass die Betone mit einem Verlauf, der nicht proportional zur Wurzel der Zeit war, in Abbildung B- 5 eine mittels Impedanzmessung bestimmte Betonfeuchte von 5.5 M.-% und mehr aufwiesen. Wird somit oberhalb der Betonfeuchte von 5.5 M.-% gemessen, ergeben sich vor allem nicht lineare Druckanstiege und folglich Verfälschungen bei den Luftpermeabilitätsergebnissen. Besteht ein Verdacht auf zu hohe Betonfeuchten, ist der Druckanstieg in Funktion der Wurzel der Zeit darzustellen: Zeigt sich kein Zusammenhang, der ungefähr proportional zur Wurzel der Zeit ist, ist das Ergebnis der Luftpermeabilität mit Vorsicht zu betrachten.

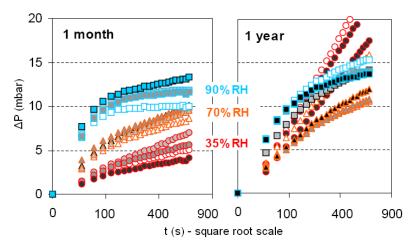
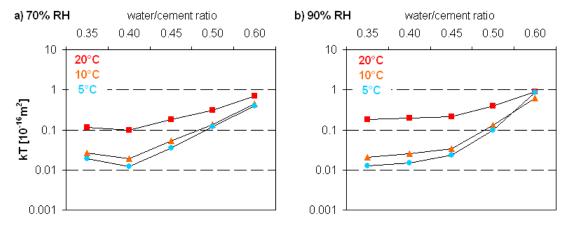
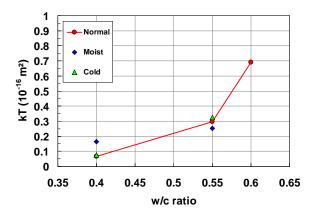


Abbildung B- 5: Druckanstieg in Abhängigkeit von der Wurzel der Messdauer für Beton mit einem w/z-Wert von 0.48, aus Romer (2005a)

Bei niedrigen Lagerungstemperaturen und hohen relativer Luftfeuchtigkeit wurde von Romer (2005a) ein starker Einfluss der Temperatur auf die Luftpermeabilität ermittelt (**Abbildung B-6**). Die Ursache hierfür ist nicht klar, könnte jedoch auch auf dem Wassergehalt (Verdunsten von Wasser während der Messung) im Beton beruhen. Je höher der w/z-Wert des Betons war, desto geringer war der Einfluss der Temperatur auf die Luftpermeabilität. Niedrigere Temperaturen führten fast immer zu einer geringeren Luftpermeabilität. Werden auch hier die bei 20 °C ermittelten Betonfeuchten (**Abbildung B-3**) betrachtet, sind bei dem Betonalter von 28 Tagen und einer Lagerung bei 70 oder 90 % r.F. Betonfeuchten von etwa 5.5 M.-% für den Beton M5 (w/z = 0.62) und von über 5.5 M.-% für die Betone mit niedrigerem w/z-Wert zu erwarten. D.h. alle Betone bis auf den mit w/z = 0.62 sind bei 20 °C nass, weshalb eine Bestimmung der Luftpermeabilität im Sinne dieser Empfehlung nicht möglich ist. Durch die Lagerung bei Temperaturen < 20 °C und eine entsprechend langsamere Austrocknung ergeben sich noch höhere Betonfeuchten. D.h. diese Betone sind nasser als (siehe weiter unten) für die Luftpermeabilitätsmessungen empfohlen wird.




Abbildung B- 6: Einfluss der Lagerungstemperatur und der Luftfeuchtigkeit auf die Luftpermeabilität von 28 Tage alten Beton mit einem unterschiedlichen w/z-Wert, die Messungen wurden bei den entsprechenden Temperaturen durchgeführt, aus Romer (2005a)

Im Rahmen der Untersuchungen des RILEM NEC (Torrent & Luco 2007) wurden Betonelemente mit w/z-Werten von 0.40, 0.55 und 0.60 hergestellt, 1 Woche bei 20 °C und 70 % r.F. sowie danach für etwa 2 Monate bei 20 °C und 70 % r.F. gelagert. An einem Teil der Betonelemente wurde dann die Luftpermeabilität bestimmt (= normale Lagerung). Andere Betonelemente wurden 7 Tage vor den Luftpermeabilitätsmessungen unterschiedlich behandelt:

Lagerung bei 10 °C (= kalte Lagerung "cold")

Lagerung während eines Tages unter Wasser und danach für 6 Tage bei 20 °C und 90 % r.F. (feuchte Lagerung "moist").

Die Luftpermeabilitätsmessungen wurden bei verschiedenen Klimata (20 °C und 70 % r.F., 10 °C, 20 °C und 90 % r.F.) durchgeführt. Zwischen 6 und 8 Luftpermeabilitätsmessungen wurden an jedem Betonelement vorgenommen. Bei diesen Versuchen wurde nur ein geringer (vernachlässigbarer) Einfluss der Temperatur (10 statt 20 °C) und Betonfeuchte auf die Luftpermeabilität festgestellt (**Abbildung B- 7**). Die Betonfeuchte wurde u.a. in einem Bohrloch in 25 mm Tiefe gemessen und ist im rechten Teil der **Abbildung B- 7** dargestellt und lag zwischen 82 und 91 %. Die spezifischen elektrischen Widerstände (Wenner-Methode) lagen zwischen 11 und 41 k Ω cm. Werden die bei 10 °C gemessenen Werte von 15 und 18 k Ω cm um den Einfluss der Temperatur korrigiert, d.h für 20 °C mit der Faustformel (5 % pro 1 °C, siehe unten) berechnet, ergeben sich Werte von etwa 8 und 9 k Ω cm. Zwischen beiden Labors wurde eine sehr gute Übereinstimmung der Luftpermeabilitätsmesswerte festgestellt (**Abbildung B- 8**, oben), wobei die Messungen an verschiedenen Stelle erfolgten.

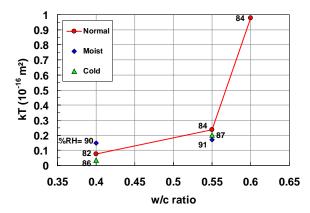


Abbildung B- 7: Luftpermeabilitäten (geometrische Mittelwerte), gemessen von TFB (links) und IETcc (rechts) beim RILEM Vergleichsversuch, aus Torrent & Luco (2007)

Basierend auf den o.g. Untersuchungsergebnissen und weiteren Erfahrungen (z.B. Jacobs 2006) wurden nachfolgende Randbedingungen für die Luftpermeabilitätsmessungen empfohlen. Vor allem bei Betonen mit niedriger Luftpermeabilität (kT < $0.2 \times 10^{-16} \text{ m}^2$) kann der Einfluss der Betonfeuchte und Betontemperatur sehr gross sein, wenn von den empfohlenen Randbedingungen abgewichen wird.

- Die Oberflächentemperatur des Betons sollte mehr als 10 °C betragen. Erfahrene Anwender können je nach Situation auch bei Temperaturen zwischen 5 und 10 °C messen.
- Es liegen keine Hinweise zu maximal zulässigen Temperaturen vor. Jedoch wird empfohlen das Messgerät (Druckregeleinheit, Messkammer) nicht der direkten Sonne auszusetzen.
- Der Feuchtigkeitsgehalt soll nicht mehr als 5.5 M.-% betragen, bestimmt mit dem CME (Fa. Tramex, Messung der elektrischen Impedanz).
- Der spezifische elektrische Widerstand, gemessen mit der Wennersonde (Fa. proceq), soll bei 20 °C mindestens 10 – 20 kΩcm betragen. Weicht die Temperatur um mehr als 5 K von 20 °C ab, ist der spezifische elektrische Widerstand bei 20 °C zu berechnen. Ist für den zu untersuchenden Beton der Zusammenhang zwischen der Temperatur und dem spezifischen elektrischen Widerstand nicht bekannt, kann folgender Zusammenhang verwendet werden:
 - Im Bereich zwischen 5 und 40 pro °C halbiert sich der spezifische elektrische Widerstand bei einer Temperaturerhöhung um 20 K.
- Die in einem zur Luft hin abgeschlossenem und etwa 25 mm tiefen Bohrloch gemessene relative Luftfeuchtigkeit soll nicht mehr als 90 % betragen.

B-3. Genauigkeit des Verfahrens

Beim RILEM NEC Vergleichsversuch (Torrent & Luco 2007) wurde im Labor an Laborbeton die Luftpermeabilität mit zwei TPT-Geräten von zwei Personen an verschiedenen Stellen bestimmt. Die Abweichung betrug im Mittel weniger als 10 % (Abbildung B- 8, oben). Bei Messungen an einer Wand im Naxbergtunnel durch zwei verschiedene Personen mit zwei TPT-Geräten in einem Abstand von 1 Jahr (TFB 1 Jahr später und bei einem Betonalter von 3 Jahren) wurde ein enger Zusammenhang gefunden. Die Abweichung betrug im Mittel etwa Faktor 2. Die von beiden Personen gemessenen spezifischen elektrischen Widerstände waren ähnlich, d.h. lassen auf ähnliche Feuchtigkeitsgehalte der Betone schliessen. Worauf die Unterschiede zurückzuführen sind (z.B. durch Zementhydratation, Karbonatisierung, Verschmutzungen, temperaturbedingter Einfluss auf Luftpermeabilität), kann nicht beurteilt werden.

In **Abbildung B- 8**, unten, ist bei den Messpunkten "Tunnel" ersichtlich, wie gering die Luftpermeabilitätsmesswerte variieren, wenn an den genau gleichen Stellen in einem Abstand von ca. 1 Stunde mit zwei Geräten (TPT, PT) die Luftpermeabilität gemessen wird. Die anderen Messungen mit PT und TPT wurden ebenfalls in einem Abstand von wenigen Stunden durchgeführt. Generell zeigt sich ein enger Zusammenhang. Mit dem PT (Fa. MAS) werden eher niedrigere Luftpermeabilitäten als mit dem TPT (Fa. proceq) gemessen; bei abnehmender Luftpermeabilität wird der Unterschied grösser und erreicht bei Luftpermeabilitäten von 0.1·10⁻¹⁶ m² und kleiner einen Unterschied von bis zu einen Faktor 2. Wird die Luftpermeabilität mit zwei Geräten desselben Herstellers gemessen, ist von einer geringeren Abweichung auszugehen, da die Durchführung der Messungen herstellerbedingt gering variieren¹.

Im Rahmen der Luftpermeabilitätsmessungen an zwei Bauwerken (Anhang C) wurden die in **Tabelle B- 1** dargestellten statistischen Kenngrössen ermittelt. Hierzu wurden die negativen dekadischen Logarithmen der Luftpermeabilitätsmesswerte berechnet und damit die Wiederholstandardabweichung und Vergleichsstandardabweichung gemäss ISO 5725 berechnet. Da sich die Wiederhol- und Vergleichsstandardabweichungen kaum unterscheiden, beruht die Streuung des Messverfahrens primär auf Betoninhomogenitäten und kaum auf dem die Methode anwendenden Labor (Prüfer, Prüfgerät). Die beim Tagbautunnel ermittelten höheren Standardabweichungen weisen auf die grössere Schwankung der Betonqualität als bei der Brücke hin.

Tabelle B- 1: Statistische Kenngrössen zur Bestimmung der Luftpermeabilität nach Norm SIA 262/1; bei der Brücke wurden 15 Messungen von 5 Teams mit dem TPT und beim Tagbautunnel mindestens 6 Messungen mit dem TPT und PT vorgenommen

Bauwerk	Bauteil	Wiederholstan-	Vergleichsstandard-	
		dardabweichung	abweichung	
Brücke	Trogwand Etappe XI	0.348	0.356	
	Trogwand Etappe D-E	0.541	0.541	
	Beide Trogwände	0.444	0.448	
Tagbau-	Element 41 E	0.709	0.761	
tunnel	Element 42 E	0.368	0.439	
	Element 41 W	0.789	0.789	
	Alle Elemente	0.622	0.663	

¹ Beim Torrent Permeability Tester wird bei Drücken zwischen 10 und 20 mbar die Messung gestartet, beim Permea-Torr wird die Messung bei 30 mbar gestartet.

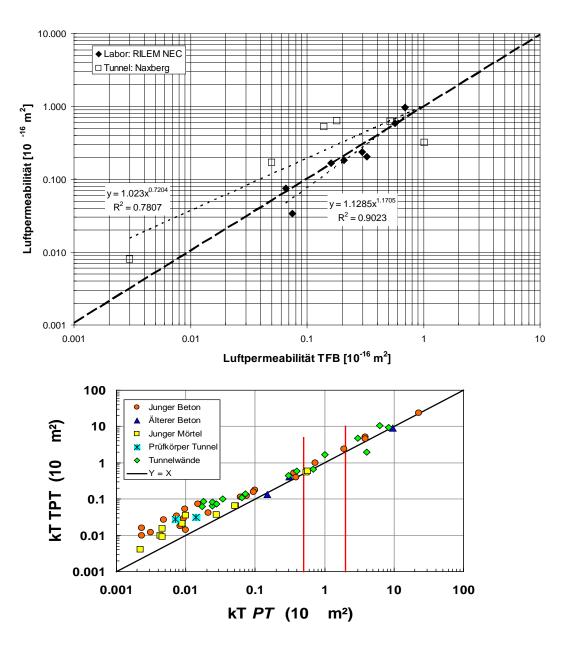


Abbildung B- 8: <u>oben</u>: Luftpermeabilitätsmessungen auf den gleichen Flächen und unterschiedlichen Stellen von jeweils zwei Labors mit TPT (TFB, Conciatori & Maitre 2002), in einem Abstand von einem Jahr gemessene Luftpermeabilitäten am Naxbergtunnel (Jacobs 2006) sowie beim Vergleichsversuch RILEM NEC (Torrent & Luco 2007) mit 2 TPT an den gleichen Prüfkörpern, jedoch verschiedenen Messstellen ermittelte Luftpermeabilitäten und <u>unten</u>: mit TPT und PT gemessene Luftpermeabilitäten an den gleichen Stellen (Torrent 2009b); die beide roten Linie stellen die zwei in Abschnitt 2.3 definierten Grenzwerte kTs dar; im Bereich der Grenzwerte ergeben beide Messgeräte im Rahmen der Messgenauigkeit gleiche Messwerte

B-4. Luftpermeabilität als Kenngrösse für die Dauerhaftigkeit

Verschiedene Untersuchungen gingen der Frage nach, ob die Luftpermeabilität zur Beurteilung der Dauerhaftigkeit herangezogen werden kann. Nachfolgend wird dies am Beispiel verschiedener Dauerhaftigkeitskenngrössen und dem geometrischen Mittelwert der Luftpermeabilität vorgestellt.

Immamoto et al. (2008) ermittelten einen engen Zusammenhang zwischen der Luftpermeabilität und der Dauer bis zu einer Karbonatisierungstiefe von 30 mm (**Abbildung B- 9**). Die Dauer bis zur Karbonatisierungstiefe von 30 mm wurde durch Extrapolation der Karbonatisierungstiefe nach 4 Jahren abgeschätzt.



Abbildung B- 9: Geschätztes Alter für eine Karbonatisierungstiefe von 30 mm in Abhängigkeit von der Luftpermeabilität kT_{gm} von Beton, nach Immamoto et al. (2008); AIJ: Japanische Karbonatisierungsklassen.

An älteren Schweizer Brücken wurde sowohl die Luftpermeabilität kTgm als auch die Karbonatisierungstiefe bestimmt (**Abbildung B- 10**). Es zeigt sich ein loser Zusammenhang; dies ist verständlich, da die Karbonatisierungstiefe nicht nur von der Materialeigenschaft Luftpermeabilität sondern auch stark von der Betonfeuchte (Exposition) abhängt. Mit der Luftpermeabilität kann somit nur das Potential für die Karbonatisierungsgeschwindigkeit ermittelt werden. Die nach mindestens 30 Jahren ermittelten Karbonatisierungstiefen stellen ungefähr die maximale Karbonatisierungstiefe des Betons dar. Bei einer Luftpermeabilität kTgm von maximal 0.5 x 10⁻¹⁶ m² liegt die Karbonatisierungstiefe bei zumeist maximal 10 mm während der Nutzungsdauer von 60 und mehr Jahren. Dies stimmt gut mit den Ergebnissen einer Untersuchung von Teruzzi (2009) an einem 35 Jahre alten Gebäude überein. Ebenfalls zeigt sich eine gute Übereinstimmung mit Mackechnie & Alexander (2002), wenn die Umrechnung der dort ermittelten Sauerstoffpermeabilitätswerte gemäss Angaben von Romer & Leemann (2005) in Luftpermeabilitätswerte erfolgt.

Abbildung B- 10: Zusammenhang zwischen der Karbonatisierungstiefe und der Luftpermeabilität kTgm bei Beton aus Schweizer Brücken, aus Torrent & Frenzer (1995) und Jacobs (2007)

Bei einer älteren Schweizer Brücke wurde der Chloridgehalt auf Bewehrungsniveau und die Luftpermeabilität kTgm an der Betonoberfläche bestimmt (**Abbildung B- 11**). Hier gewährleistet eine Luftpermeabilität kTgm von maximal etwa 0.1 x 10⁻¹⁶ m² einen zumeist noch akzeptablen Gehalt an Chloriden, um keine chloridindizierte Korrosion zu erhalten.

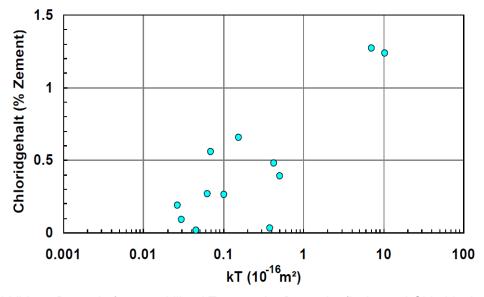


Abbildung B- 11: Luftpermeabilität kTgm an der Betonoberfläche und Chloridgehalt auf Bewehrungsniveau, aus Jacobs (2007)

Torrent (2009a) wertete verschiedene Literatur aus und fand zwischen dem im Labor ermittelten Chlorideintrag in Beton und der Luftpermeabilität einen engen Zusammenhang (**Abbildung B-12**)

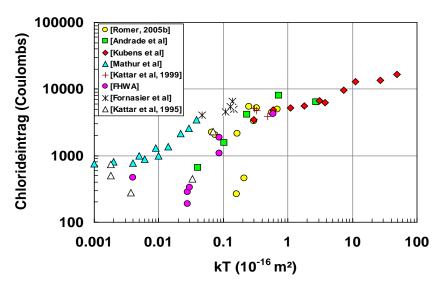


Abbildung B- 12: Zusammenhang zwischen der Luftpermeabilität und dem Chlorideintrag (ASTM C1202) in Beton, aus Torrent (2009)

Zwischen der mittleren Wassereindringtiefe und der Luftpermeabilität wurde ebenfalls ein Zusammenhang ermittelt (**Abbildung B- 13**). Beton mit einer Luftpermeabilität von nicht mehr als 0.1·10⁻¹⁶ m² (rote Linie) zeigte eine geringe mittlere Wassereindringtiefe (maximal 30 mm).

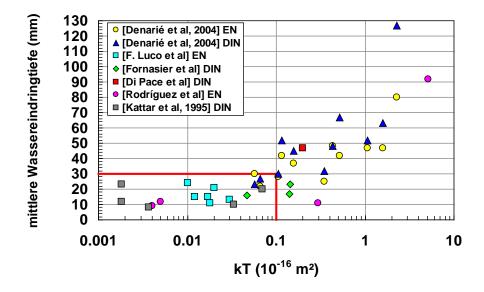


Abbildung B- 13: Luftpermeabilität kT und mittlere Wassereindringtiefe (geprüft nach EN 12390-8 oder DIN 1048) von Beton, aus Torrent (2009a);

Zusammenfassend kann festgehalten werden, dass sich zwischen der Luftpermeabilität und weiteren Dauerhaftigkeitseigenschaften nur teilweise enge Zusammenhänge zeigen (können). Dies hat folgende Gründe:

- Die Exposition eines Bauteils ist verschieden, d.h. bei Beton mit gleicher Luftpermeabilität wird je nach Exposition
 - mehr oder weniger Tausalz durch z.B. Spritzwasser in Beton eingetragen; dies hängt u.a. von der Geschwindigkeit der Fahrzeuge, dem Anstand des Bauteils von der Fahrbahn, der Menge des gestreuten Salzes ab
 - der Beton unterschiedlich nass, was z.B. den Karbonatisierungsfortschritt stark beeinflusst.
- Die chemischen Eigenschaften des Betons (z.B. Bindevemögen gegenüber Tausalzen) werden mit der Luftpermeabilität nicht erfasst.
- Die Eigenschaften werden an verschiedenen Betonvolumina (Tiefen, Flächen) bestimmt.

Zwischen der Luftpermeabilität kT, gemessen an der Betonoberfläche, und der Sauerstoffpermeabilität (Cembureau-Methode, oft als Referenzmethode für die Permeabilität gewählt), gemessen an Bohrkernen, zeigt sich ein enger Zusammenhang (**Abbildung B- 14**). Die Sauerstoffpermeabilität ist etwa halb so gross wie die Luftpermeabilität. Ursache hier sind die Annahmen bei der Luftpermeabilität (siehe hierzu auch Romer, 2005a, Jacobs, 2006).

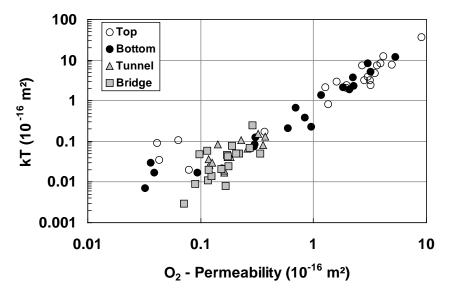


Abbildung B- 14: Zusammenhang zwischen der Luftpermeabilität kT und der Gaspermeabilität von Beton, Daten aus Torrent & Luco (2007)

In Brühwiler et al. (2005), Romer & Leemann (2005), Jacobs (2006), Teruzzi (2009) und weiteren Arbeiten (siehe Literaturliste) sind weitere Beispiele für eine enge Korrelation zwischen Dauerhaftigkeitseigenschaften und der Luftpermeabilität enthalten.

Anhang C: Ergebnisse der Luftpermeabilitätsmessungen

In Kapitel C-1 werden die Daten zur Trogbrücke und in Kapitel C-2 die zum Tagbautunnel dargestellt.

C-1. Trogbrücke

An der Trogbrücke wurden von 5 Teams Luftpermeabilitätsmessungen an zwei Bauteilen (Trogwände) und verschiedenen Messstellen vorgenommen, die zu verschiedenen Zeiten mit dem gleichen Beton hergestellt wurden. Die Messungen fanden am gleichen Tag und zwar im Betonalter von 43 und 167 Tagen statt. Um die Qualität der Betonbauteile möglichst genau zu kennen, wurden Daten von der Frischbetonkontrolle und Festbetonprüfung beider Bauwerke ausgewertet. Zur weiteren Information werden noch Ergebnisse von Untersuchungen ausserhalb dieses Projektes präsentiert, die im Alter von 35 Tagen vorgenommen wurden.

Die Trogbrücke wurde 2007/08 erbaut. An zwei Betonieretappen (D-E, XI) der Trogwände (**Abbildung C- 1**) die zu verschiedenen Zeiten mit Beton C 30/37, XD3(CH), XF3(CH), Dmax32, CI 0.10, C3 hergestellt wurden, wurde die Luftpermeabilität ermittelt. **Tabelle C- 1** enthält die Ergebnisse von Betonprüfungen. Gemäss diesen Angaben weist der Beton der Etappe D-E bei vergleichbaren Frischbetoneigenschaften eine deutlich höhere Druckfestigkeit als der Beton der Etappe XI auf.

Im <u>Betonalter von ca. 35 Tagen</u> wurde an 12 Bohrkernen aus der Ostwand der Etappe D-E eine Wasserleitfähigkeit nach SIA 262/1 von 4.1 bis 4.7 g/m²h ermittelt. Die 35 Tage-Luftpermeabilität wies einen geometrischen Mittelwert kTgm von $0.02 \cdot 10^{-16}$ m² bei einer gemessenen Betonfeuchte von zumeist > 5.5 M.-% (mittels Impedanzmessung bestimmt) bzw. einem spezifischen elektrischen Widerstand von ca. 12 k Ω cm auf. Die bei der Luftpermeabilitätsmessung ermittelte Betonfeuchte deutete darauf hin, dass der Beton so nass ist, dass viele Poren mit Wasser gefüllt sind und deshalb die Luftpermeabilitätsmesswerte nicht repräsentativ (zu niedrig) für den Beton sind. Gemäss den Ergebnissen der Frisch- und Festbetonprüfungen handelte es sich um einen Beton, dessen Eigenschaften der Zusammensetzung entsprechen.

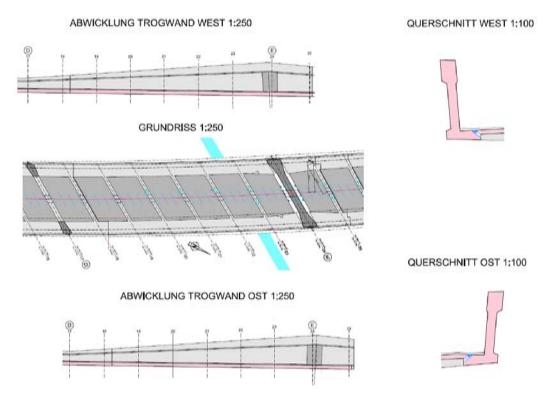


Abbildung C- 1: Planausschnitt der Trogbrücke bei Etappe D-E

Tabelle C- 1: Ergebnisse von Frisch- und Festbetonprüfungen

		Dri	iforgobnicoo E	riaabbatan		Würfel	Druckfestigkeiten		ukoiton
Bauteil, Datum		peratur °C]	üfergebnisse F Rohdichte	Luftgehalt	w/z	Rohdichte		ch T [N/mm	agen
	Luft	Be- ton	[kg/m ³]	[Vol%]	[-]	[kg/m ³]	3	5	28
	1	12	2441	0.1	0.43	2450			68
Trogwände,						2444			67
Etappe D-E:						2460			71
	2	14	2438	1.3	0.42				
am 10.1.2008 betoniert	2	13	2440	1.2	0.45	2441			67
						2438			68
						2442			69
Mittelwert	2	13	2440	0.9	0.43	2446			68
Standardabw.	0.6	1.0	1.5	0.67	0.015	8.0			1.4
	24	22	2436	1.6	0.44	2450	35		
						2445	34		
Trogwände,						2438	33		
Etappe XI,						2435		39	
						2439		39	
am 13.5.2008						2446		40	
betoniert						2444			47
						2436			45
						2439			47
Mittelwert	24	22	2436	1.6	0.44	2441			46
Standardabw.						5.1			1.3

Die Messungen der Luftpermeabilität im Rahmen dieses Projektes wurden im <u>Alter von 43 und 67 Tagen</u> vorgenommen. Weitere Angaben zu den Umgebungsbedingungen und dem Beton der Etappen am Messtag enthält **Tabelle C- 2**. Die Messwerte des spezifischen elektrischen Widerstandes deuten im Gegensatz zu denen der mittels Impedanzmessung bestimmten Betonfeuchte auf einen sehr feuchten Beton hin. Eine mögliche Erklärung für den Unterschied können die hohen Bewehrungsgehalte bei nicht sehr hoher Betonüberdeckung sein, die zu einer scheinbaren Erniedrigung des Betonwiderstands führen.

Tabelle C- 2: Angaben zu den Messungen am 25.6.2008; *mit "/" sind Daten verschiedener Labors getrennt angegeben;** zwei Teams konnten keinen spezifischen elektrischen Widerstand bestimmen.

Etappe		D-E, Ostwand	XI, Westwand	Bemerkung
Alter bei Messung	[d]	167	43	
Uhrzeit	[h]	9 - 12	13 - 18	
Lufttemperatur*	[°C]	24 - 29 /	32 -34 /	
·		23 - 26 /	30 - 32 /	
		26 - 34	32 - 35	
relative Luftfeuchtigkeit*	[%]	41 - 56 /	24 - 33 /	
		51 - 64 /	34 - 42 /	
		27 - 54	26 - 35	
Wetter	letzten zw	ei Tage vor Messtag: trocl	ken, z.T. bewölkt	
	Messtag:	trocken, sonnig, keine d	irekte Sonneneinstra	ahlung auf Messflä-
	chen währ	end Messung	•	
Luftdruck	[hPa]	963 - 965	963 - 965	
Betontemperatur	[°C]	26 - 28 /	30 - 32 /	
·		27 - 30	32 - 34	
Betonfeuchte	[kΩcm]	5 - 10	5 - 10	spezifischer elek-
				trischer Wider-
				stand**
Betonfeuchte*	[M%]	4.2 - 4.7 /	4.3 - 4.7 /	mittels Impedanz-
	_	4.7 - 5.0	4.6 - 4.9	messung bestimmt
Bewehrungsüberdeckung	[mm]	30 - 51	40 - 56	ohne Kontrolle an
				Sondage
Betonoberfläche		mit Spuren von Bluten;	z.T. mit sehr fei-	Risse durch Auf-
		z.T. mit sehr feinen	nen Rissen (w <	sprühen von Alko-
		Rissen (w < 0.1 mm)	0.1 mm)	hol sichtbar ge-
		•		macht

Abbildung C- 2 und **Abbildung C- 3** enthalten einen Überblick über die Etappen mit den etwa 0.3 x 0.3 m² grossen, durch Klebestreifen abgetrennten und mit Nummern markierten Messfelder. Die unterste Reihe mit Messfeldern wies einen Abstand von ca. 0.2 m ab Unterkante Wand auf. Innerhalb jedes Messfeldes konnte das Messteam die Stelle für die Messung frei wählen; ebenso war die Reihenfolge der Messungen an den Messfeldern freigestellt. Die Messungen erfolgten mit TPT-Messgeräten (**Abbildung C- 4**).

Abbildung C-2: Messfelder der Etappe XI

Abbildung C- 3: Messfelder der Etappe D-E

Abbildung C- 4: Messungen an Etappe XI

Die Ergebnisse der Messungen sind tabellarisch in **Tabelle C- 5** sowie graphisch in **Abbildung C- 5** und **Abbildung C- 6** in Abhängigkeit von der Reihenfolge der Messung sowie von der Höhe des Messortes dargestellt. Bei Etappe XI nahm die Luftpermeabilität bei 3 von 5 Teams und bei Etappe D-E bei 4 von 5 tendenziell zu, je später die Messung erfolgte (**Abbildung C- 5**). Mit zunehmender Höhe der Messstelle nahm bei beiden Etappen bei 4 von 5 Teams die Luftpermeabilität tendenziell zu (**Abbildung C- 6**). Messstellen mit so feinen Rissen, dass diese erst durch das Aufsprühen einer Alkohollösung sichtbar wurden, zeigte nicht immer eine erhöhte Luftpermeabilität. Auch wiesen nicht alle Messstellen mit erhöhten Luftpermeabilitäten nachweislich (feine) Risse auf.

Bei der Kalibrierung der Messgeräte

- vor den ersten Messungen (Etappe D-E) betrug der Druckanstieg bei der Kalibrierung 2 bis 4 mbar
- nach den Messungen an der Etappe D-E bei der ersten Kalibrierung etwa 8 mbar
- nach den Messungen der Etappe XI bei der Kalibrierung etwa 5 mbar.

Warum der Druckanstieg zwischen der Kalibrierung vor der ersten Messung und nach den Messungen an Etappe D-E von maximal 4 mbar auf etwa 8 mbar erfolgte, ist nicht ganz klar. Als Ursachen kommen eventuell hohe Temperaturen der Regeleinheit (z.T. ca. 43 °C) und vor allem die Adsorption von Wasserdampf im Messgerät (Schläuchen) in Frage.

Aus den oben genannten Sachverhalten kann Folgendes abgeleitet werden:

- Die Durchlässigkeit des Betons beider Etappen nimmt tendenziell mit zunehmender Höhe der Messstelle zu; Jacobs (2006) fand gleiches aber auch konträres Verhalten.
- Es liegen keine klaren Hinweise vor, dass mit zunehmender Anzahl an Messungen Änderungen am Messgerät bzw. Messwert auftreten.

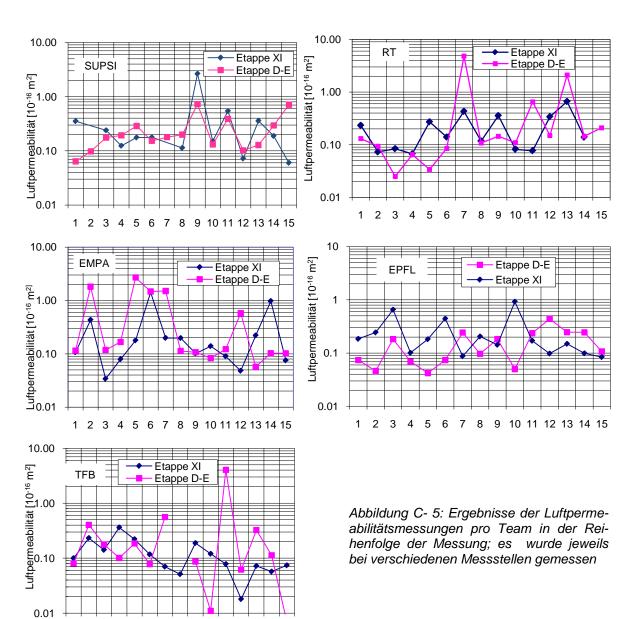
Tabelle C- 3 enthält einen Zusammenzug der Ergebnisse zur Luftpermeabilität. Danach liegen bei Etappe XI die geometrischen Mittelwerte der Labors zwischen 0.10 und 0.20·10⁻¹⁶ m² und bei Etappe D-E bei 0.12 bis 0.25·10⁻¹⁶ m². Die Standardabweichungen sLOG liegen bei Etappe XI zwischen 0.30 und 0.45 und bei Etappe D-E zwischen 0.32 und 0.68. Die Betonoberfläche von Etappe D-E mit sichtbaren Entmischungen weist bei ähnlicher Luftpermeabilität eine deutlich hö-

here Standardabweichung als Etappe XI (ohne sichtbare Entmischungen) auf. Die an Prüfkörpern ermittelte höhere 28 Tage-Druckfestigkeit des Betons der Etappe D-E und eine deshalb eventuell eher höhere Dichtigkeit des Betons konnte mit der Luftpermeabilitätsmessung nicht bestätigt werden. Dies zeigt eindrucksvoll den Unterschied zwischen der Untersuchung von separat hergestellten Prüfkörpern und dem Bauteil selber.

Gemäss der Auswertung nach ISO 5725 auf Basis der negativen logarithmierten Messwerte liegen keine Ausreisser bei den Luftpermeabilitätsmesswerten vor. Bei dieser Auswertung wurden auch die Wiederhol- und Vergleichsstandardabweichungen berechnet (**Tabelle C- 3**). Die Wiederholstandardabweichung gibt an, wie sehr sich zwei Messungen von einem Labor am gleichen Beton (verschiedene Messfelder) unterscheiden. Die Vergleichsstandardabweichung gibt an, wie sehr sich zwei Messungen von zwei Labors am gleichen Beton unterschieden. Danach beträgt für das Messverfahren die Wiederholstandardabweichung 0.444 und die Vergleichsstandardabweichung 0.448, d.h. der Unterschied zwischen beiden ist sehr gering. Dies weist darauf hin, dass die Luftpermeabilität sehr viel stärker durch Inhomogenitäten im Beton als Geräteeinflüsse bestimmt wird.

Tabelle C- 3: Geometrische Mittelwerte kT [10⁻¹⁶ m²] und Standardabweichungen sLOG der Luftpermeabilität, gemessen mit TPT;

	SUPSI	EMPA	RT	EPFL	TFB	Wiederhol- standardab- weichung	Vergleichs- standardab- weichung
Etappe XI							
Mittelwert	0.20	0.16	0.17	0.19	0.10		
Standardabweichung sLOG	0.30	0.45	0.33	0.32	0.32	0.348	0.356
Etappe D-E							
Mittelwert	0.22	0.25	0.17	0.12	0.13		
Standardabweichung sLOG	0.42	0.58	0.61	0.32	0.68	0.541	0.540
Etappen XI, D-E						0.444	0.448


Vor der ersten Kalibration wurde die Luftpermeabilitätsmessgeräte TPT mit auf der Stahlplatte aufgesetzter Saugglocke während etwa 30 Minuten evakuiert. Beim Umsetzen des Messgerätes von Etappe D-E zu Etappe XI wurden die Messgeräte für ca. 2 – 5 Minuten ausgeschaltet. Zumeist kurz nach dem Einschalten erfolgte dann die Kalibration. Die Ergebnisse sind in **Tabelle C- 4** dargestellt. Insbesondere die Kalibration zwischen beiden Messetappen aber auch diejenige nach Etappe XI führte zu deutlich höheren Druckanstiegen. Als Ursachen kommen die direkte Sonnenstrahlung auf die Regeleinheit sowie in das Messgerät aus dem Beton eingetragene Feuchtigkeit in Frage.

Nachfolgend sind die Ergebnisse der Luftpermeabilitätsmessungen, aufgetragen für jedes Team, in Abhängigkeit von der Reihenfolge (Nr. 1 bis 15) (**Abbildung C- 5)** und der Höhe des Messortes (**Abbildung C- 6**) aufgetragen.

Abbildung C- 7 zeigt, basierend auf den Messwerten der Brücke, den üblicherweise zu erwartenden Einfluss der Messwertanzahl auf den Standardfehler. Bei weniger als 6 Messungen nimmt der Standardfehler deutlich zu.

Tabelle C- 4: Ergebnisse der am 25.6.2008 vor Ort durchgeführten Kalibration der Luftpermeabilitätsgeräte

Kalibration	SUPSI	EMPA	RT	EPFL	TFB
vor Etappe D-E [mbar]	2.3	2.7	3.8	4.0	3.2
	2.6	2.7	2.8	3.3	3.8
				3.6	
vor Etappe XI [mbar]	7.9	7.6	2.9	1.4	8.9
	6.1	6.4	2.9	2.2	9.4
	4.6	5.4			8.3
	2.5	2.2			4
	2.3	2.3			3.1
					1.7
nach Etappe XI [mbar]	4.9	4.4	nicht ge-	4.6	6.6
			messen		
			•		·
Luftpermeabilitätsmessung an	0.93	nicht ge-	0.94	1.00	nicht ge-
der TFB-Keramikplatte [10 ⁻¹⁶ m ²]		messen			messen

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

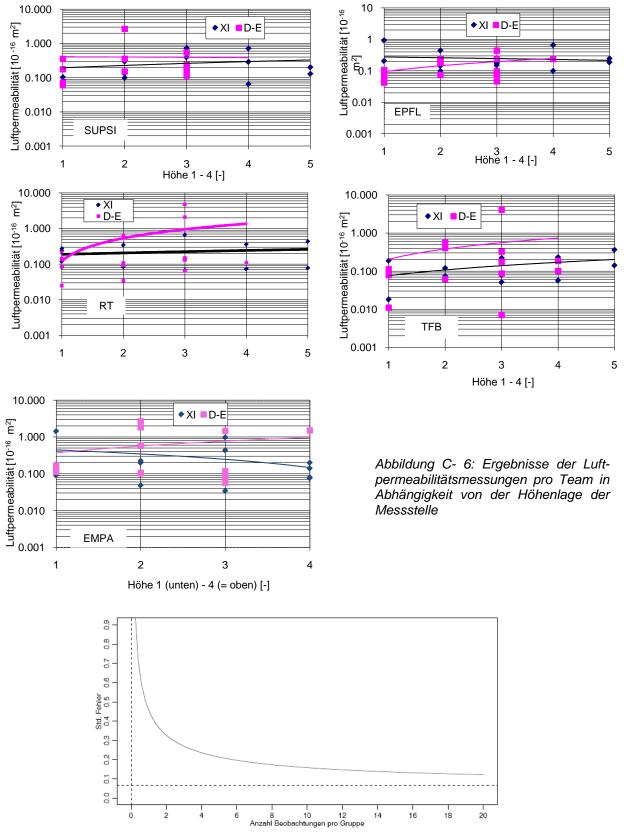


Abbildung C- 7: Standardfehler als Funktion der Anzahl Messwerte gemäss Merlini (2008)

Tabelle C- 5: Ergebnisse der Luftpermeabilitätsmessungen; Ort (Nummer des Rechtecks) und Luftpermeabilitätsmesswerte (kT) in 10^{-16} m²

SU	PSI	EM	PA		RT	E	PFL		TFB
Ort	kT	Ort	kT	Ort	kT	Ort	kT	Ort	kT
				tappe		1			
5	0.10	4	0.09	3	0.08	2	0.09	1	0.10
10	0.18*	9	0.18	8	0.12	7	0.21	6	0.12
15	0.18	14	1.43	13	0.23	12	0.93	11	0.19
20	0.29	19	0.05	18	0.27	17	0.08	16	0.02
25	0.13*	24	0.22	23	0.34	22	0.44	21	0.07
30	0.15*	29	0.11	28	0.08	27	0.14*	26	0.07
35	0.10*	34	0.20	33		32	0.10	31	0.12
40	0.39	39	0.98	38	0.66	37	0.10*	36	0.07
45	0.73*	44	0.03	43	0.14	42	0.18	41	0.22
50	0.19*	49	0.43	48	0.14	47	0.17*	46	0.05
55	0.71*	54	0.10	53	0.07	52	0.15	51	0.08
60	0.29	59	0.08	58	0.36	57	0.65	56	0.23
65	0.06*	64	0.14	63	0.07	62	0.10	61	0.06
70	0.13	69	0.08	68	0.08	67	0.19	66	0.14
75	0.20	74	0.20	73	0.43	72	0.24*	71	0.36
kTgm	0.20		0.16		0.17		0.19		0.10
sLOG	0.30		0.45		0.33		0.32		0.32
				appe D					
4	0.35*	2	0.11	1	0.21	3	0.11	5	0.08
9	0.18	7	0.12	6	0.15	8	0.05	10	0.078
14	0.07	12	0.17	11	0.09	13	0.04	15	0.011
19	0.06	17	0.12	16	0.03	18	0.07	20	0.113
24	n.m.	22	0.11	21	0.15	23	0.27	25	0.404
29	2.65*	27	1.81	26	0.65	28	0.18	30	0.561
34	0.15*	32	2.70	31	0.11	33	0.24	35	n.m.
39	0.36*	37	0.10	36	0.03	38	0.07	40	0.062
44	0.24*	42	0.58	41	0.09	43	0.18	45	0.177
49	0.18*	47	0.08	46	2.11	48	0.44	50	0.007
54	0.11	52	0.12	51	0.15	53	0.10	55	4.06
59	0.54*	57	1.47	56	4.81*	58	0.07	60	0.087
64	0.19	62	0.10	61	0.07	63	0.05	65	0.325
69	0.12*	67	0.06	66	0.13	68	0.25	70	0.101
74	n.m.	72	1.51	71	0.11	73	0.24	75	0.185
kTgm	0.22		0.25		0.17		0.12		0.13
sLÖG	0.42		0.58		0.61		0.32		0.68

n.m.: nicht messbar

kTgm: geometrischer Mittelwert der Luftpermeabilitätsmesswerte [10⁻¹⁶ m²]

sLOG: Standardabweichung der negativen dekadischen Logarithmen der Luftpermeabilitätsmesswerte

^{*:} Riss durch Aufsprühen von Alkohol gesehen

Anwendung des in Kapitel 2 vorgeschlagenen Konformitätsnachweisverfahrens

Der Beton wurde als XD3(CH), XF3(CH) ausgeschrieben. Gemäss SN EN 206-1 bedeutet XF3(CH) keine und XD3(CH) eine Anwesenheit von Tausalzen; d.h. diese Kombination ist nach SN EN 206-1 nicht möglich. Für XF3(CH) wird in Tabelle 1 kein Luftpermeabilitätsgrenzwert und für XD3(CH) einer von 0.50·10⁻¹⁶ m² vorgeschlagen.

Es sind drei Fälle zu unterscheiden:

- Nach Bedingung 1 darf maximal 1 von 6 Luftpermeabilitätsmesswerten den Luftpermeabilitätsgrenzwert überschreiten.
- II. Sind genau 2 Luftpermeabilitätsmesswerte höher als der Luftpermeabilitätsgrenzwert, dürfen erneut 6 Luftpermeabilitätsmessungen durchgeführt werden. Von den 6 neuen Messwerten darf nur 1 höher als der Luftpermeabilitätsgrenzwert sein. D.h. von 12 Luftpermeabilitätsmesswerten dürfen maximal 3 über dem Luftpermeabilitätsgrenzwert liegen.
- III. Sind mehr als 2 Luftpermeabilitätsmesswerte höher als der Luftpermeabilitätsgrenzwert, erfüllt das untersuchte Bauteil nicht die Anforderungen an die Luftpermeabilität.

Gemäss Tabelle C-5 wurde von den Teams eine unterschiedliche Anzahl an Luftpermeabilitätsmessungen durchgeführt. D.h. die o.g. Bedingungen sind auf die entsprechende Anzahl an Luftpermeabilitätsmessungen umzurechnen (Tabelle C-10). Sind 2 von 6 Messwerten höher als der Luftpermeabilitätsgrenzwert hätten 6 neue Messungen vorgenommen werden können; wurden keine weiteren Messungen vorgenommen, gilt die Anforderung als nicht erfüllt, da der Nachweis nicht erbracht wurde, dass maximal 1 der 6 neuen Messwerte oberhalb des Luftpermeabilitätsgrenzwerts liegt.

Für Etappe XI zeigt sich, dass die Anforderung von 0.5·10⁻¹⁶ m² von allen Teams erreicht wurde: d.h. der Beton in diesem Bauteil erfüllt die Anforderungen für XD3(CH).

Für Etappe D-E zeigt sich, dass die Anforderung von

- 0.5·10⁻¹⁶ m² von 4 Teams erreicht und von 1 Team nicht erreicht wurde. 2.0·10⁻¹⁶ m² von allen Teams erreicht wurde;

Insgesamt deuten die Luftpermeabilitätsergebnisse darauf hin, dass beide Bauteile die Anforderungen an die Expositionsklasse XD3(CH) mit 0.5·10⁻¹⁶ m² erfüllen.

Tabelle C- 6: Auswertung der Luftpermeabilitätsmesswerte des Tagbautunnels

Labor	SUPSI	EMPA	RT	EPFL	TFB
Etappe XI					
Anzahl > $0.5 \cdot 10^{-16} \text{ m}^2 \text{ [-]}$	2 von 15	2 von 15	1 von 14	2 von 12	0 von 15
Anforderung erfüllt	ja	ja	ja	ja	ja
Anzahl > $2.0 \cdot 10^{-16} \text{ m}^2 [-]$	0 von 15	0 von 15	0 von 14	0 von 12	0 von 15
Anforderung erfüllt	ja	ja	ja	ja	ja
Etappe D-E					
Anzahl > $0.5 \cdot 10^{-16} \text{ m}^2 [-]$	2 von 13	5 von 15	3 von 15	0 von 15	2 von 15
Anforderung erfüllt	ja	nein	ja	ja	ja
Anzahl > $2.0 \cdot 10^{-16} \text{ m}^2$ [-]	1 von 13	0 von 15	2 von 15	0 von 15	1 von 15
Anforderung erfüllt	ja	ja	ja	ja	ja

C-2. Luftpermeabilitätsmessungen Tagbautunnel

Beim Tagbautunnel wurden pro Woche im Schnitt 1 bis 1.5 Wandabschnitte betoniert (**Abbildung C-8**). Jede Etappe war etwa 12 m lang und mehr als 4 m hoch. An drei Wandetappen wurden von drei Teams und vier Messgeräten Luftpermeabilitätsmessungen auf den gleichen Flächen aber an verschiedenen Messstellen durchgeführt. Zu einem zweiten Zeitpunkt, etwa einen Monat später, wurden von zwei Teams mit zwei verschiedenen Luftpermeabilitätsmessgeräten (PT, TPT) erneut Messungen an den drei Wandetappen, diesmal jedoch an jeweils den gleichen Stellen durchgeführt. Um die Qualität der Betonbauteile möglichst genau zu kennen, wurden Daten von der Frischbetonkontrolle und Festbetonprüfung ausgewertet. In **Tabelle C-7** sind die Ergebnisse der Frisch- und Festbetonprüfungen der drei untersuchten Betonierabschnitte vom Tagbautunnel angegeben. Es wurde ein Beton C30/37, XD3(CH), XF1(CH), Cl0.1, CT 1.10 verwendet.

Im Alter von etwa 3 Monaten wurden aus den drei Etappen Bohrkerne (\emptyset = 50 mm) aus 0 – 5 cm Tiefe gezogen und daran die Wasserleitfähigkeit und der Chloridwiderstand, jeweils nach SIA 262/1, bestimmt. Es zeigten sich zwischen den Etappen kaum Unterschiede. Die mittleren Wasserleitfähigkeiten lagen bei 4 – 5 g/m² h und die mittleren Chloridwiderstände bei 14 – 16·10⁻¹² m²/s.

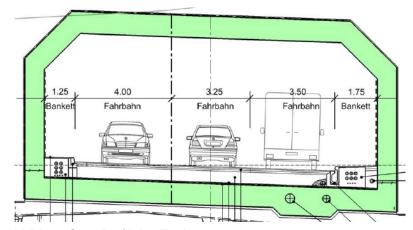


Abbildung C- 8: Profil des Tagbautunnels

Tabelle C- 7: Ergebnisse von Frisch- und Festbetonprüfungen

		Prüfer	gebnisse Frisc	hbeton		Festbeton		
Bauteil, Datum	Tempera	tur [°C]	D 1 11 1		,	Roh-	28 T-	
,	Luft	Beton	Rohdichte [kg/m³]	Luftgehalt [Vol%]	w/z [-]	dichte [kg/m³]	Druckfes- tigkeiten [MPa]	
Etappe 41E betoniert am 27.3.2009	13.4	15.1	2380	1.6	0.47	2380	47.3	
Etappe 42E betoniert am 3.4.2009	12.0	16.4	2370	2.6	0.45			
Etappe 42W	10.6	14.8	2400	1.2	0.49			
betoniert am 30.3.2009	11.0	15.2	2440	1.6	0.42			

Alle Luftpermeabilitätsmessungen wurden so durchgeführt, dass von den Bauteilfugen und der Arbeitsfuge zur Bodenplatte ein Mindestabstand von 0.5 m eingehalten wurde. Da unter Verkehr Spritzwasser vor allem im unteren Teil der Betonieretappen zu erwarten ist, wurde bis in eine Höhe von maximal ca. 2.5 m ab Arbeitsfuge zur Bodenplatte die Luftpermeabilität bestimmt.

Am 19.5.2009 wurde mit vier Messgeräten (3 TPT, 1 PT) die Luftpermeabilität bestimmt. Innerhalb der drei Untersuchungsflächen konnte jedes Team seine sechs Messstellen frei wählen.

[kΩcm]

Wenn sich grössere Schwankungen in den Luftpermeabilitätsergebnissen zeigten, konnte jedes Teams weitere Messungen durchführen. Alle Messstellen wurden markiert, damit nicht an der gleichen Messstelle mehrere Messungen erfolgten. Am 20.6.2009 wurden erneut von zwei Teams mit zwei verschiedenen Messgeräten (TPT, PT) Luftpermeabilitätsmessungen an jeweils mindestens 5 Stellen pro Untersuchungsfläche durchgeführt. Die Luftpermeabilitätsmessungen erfolgten diesmal an exakt den gleichen Messstellen in einem zeitlichen Abstand von ca. 1 Stunde. **Tabelle C- 8** enthält Angaben zu den Umgebungsbedingungen bei den Luftpermeabilitätsmessungen.

	Etapp betoniert am 2	e 41E	Etapp betoniert am 3	e 42E 8.4.2009	Etappe 41W betoniert am 30.3.2009		
Betonalter	53			78	50	82	
Lufttempera- tur [°C]	14.3 – 18.1	17.5 - 17.9	17.1 – 17.9	17.5 - 17.9	16.2	17.5 - 17.9	
Betontem- peratur [°C]	15.0 – 15.3	-	14.1 – 16.4	-	15.0 – 17.6	-	
Relative Luftfeuchtig- keit [%]	49	-	50	1	64	-	
Betonfeuch- te [M%]	4.4 – 5.0	3.8 – 4.2	4.2 – 4.8	4.0 – 4.7	4.0 – 4.7	3.7 – 4.0	
Spez. elektr. Widerstand	< 10	-	< 15	-	< 10	-	

Tabelle C- 8: Umgebungsbedingungen während der Luftpermeabilitätsmessungen

Abbildung C- 9 und **Tabelle C- 10** enthalten die bei beiden Messtagen ermittelten Luftpermeabilitäten sowie die geometrischen Mittelwerte pro Team und Etappe. In **Tabelle C- 9** sind die Einzelergebnisse der Luftpermeabilitätsmessungen tabellarisch zusammengestellt und die nach ISO 5725 ermittelte Wiederhol- und Vergleichsstandardabweichung angegeben. Bei den Luftpermeabilitätsergebnissen sowie den Standardabweichungen zeigen sich grössere Streuungen im Vergleich zur untersuchten Brücke (siehe vorne). Auch die Ergebnisse der Frischbetonkontrollen weisen auf grössere Schwankungen in der Betonqualität hin.

Tabelle C- 9: Geometrische Mittelwerte kTgm (10⁻¹⁶ m²) und Standardabweichungen sLOG [-] der Luftpermeabilitätsmessungen sowie weitere statistische Kenngrössen gemäss ISO 5725

	SUPSI	RT	RT	TFB		TFB	RT	Alle Mes-	Wieder-	Ver-
Alter		46 – 53	Tage			78 – 8	5 Tage	sungen	holstan- dardab-	gleichs- standard-
Mess- gerät	TPT	TPT	PT	TPT		TPT	PT		weichung	abwei- chung
					Et	appe 41	=			
kTgm	0.25	1.0	0.10	0.20		0.20	0.08	0.19		
sLOG	0.41	1.36	0.56	0.68		0.57	0.73	0.74	0.48	0.51
					Et	appe 42				
kTgm	0.08	0.11	0.02	0.07		0.47	0.20	0.10		
sLOG	0.19	0.52	0.17	0.09		1.08	1.23	0.71	0.37	0.44
					Eta	appe 41V	V			
kTgm	0.36	0.14	0.53	0.14		0.90	0.85	0.32		
sLOG	0.64	0.31	1.17	0.88		0.72	0.85	0.84	0.79	0.79
					ΑII	e Etappe	n			
kTgm								0.19		
sLOG								0.79	0.55	0.58

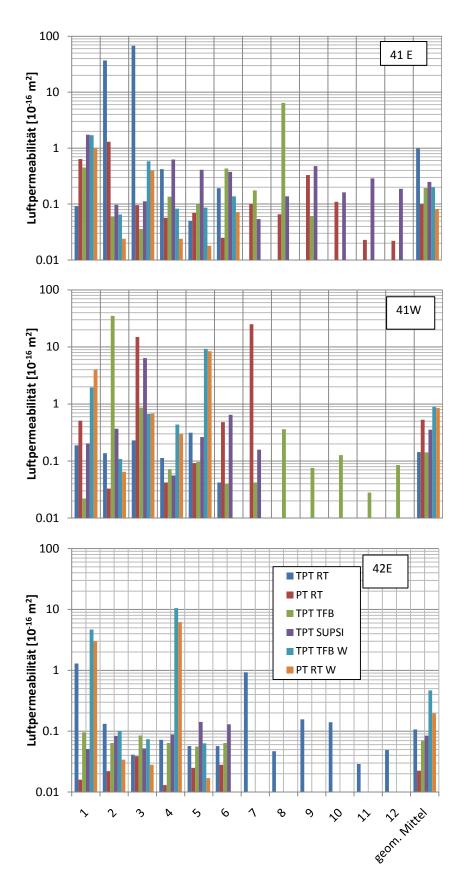


Abbildung C- 9: An drei Etappen gemessene Luftpermeabilitäten; TPT: Messgerät von proceq; PT: Messgerät von Materials Advanced Science; W: Durchführung von Messungen in einem Betonalter von 78 bis 85 Tagen; ansonsten Messungen nach 46 – 53 Tagen

Tabelle C- 10: Luftpermeabilitätsmesswerte kT (10⁻¹⁶ m²) der drei Etappen; W: Durchführung von Messungen in einem Betonalter von 78 bis 85 Tagen; ansonsten Messungen nach 46 – 53 Tagen

Labor	TPT RT	PT RT	TPT TFB	TPT SUPSI	TPT TFB W	PT RT W
Etappe		PINI	IPI IFD	171 30731	IPI IFB VV	PINIV
Ltappe	0.09	0.64	0.45	1.74	1.70	1.00
-	36.87	1.30	0.06	0.10	0.07	0.02
-	67.60	0.10	0.04	0.112	0.58	0.02
	0.42	0.06	0.136	0.63	0.08	0.02
te	0.05	0.07	0.10	0.41	0.09	0.02
Messwerte	0.19	0.03	0.43	0.38	0.14	0.07
ess		0.10	0.18	0.05		
Σ		0.07	6.44	0.14		
Ī		0.33	0.06	0.48		
Ī		0.11		0.16		
		0.03		0.29		
		0.02		0.19		
kTgm	0.99	0.10	0.19	0.25	0.20	0.08
sLOG	29	0.38	2.09	0.46	0.65	0.39
Etappe	42 E					
	1.29	0.02	0.10	0.05	4.67	3.00
	0.13	0.02	0.06	0.08	0.10	0.03
	0.04	0.04	0.09	0.05	0.07	0.03
	0.07	0.01	0.06	0.09	10.50	6.20
rte	0.06	0.03	0.06	0.14	0.06	0.02
we	0.06	0.03	0.06	0.13		
Messwerte	0.93					
2	0.05					
-	0.16					
-	0.14					
}	0.03					
l/Tana	0.049	0.00	0.07	0.00	0.47	0.00
kTgm	0.11	0.02	0.07	0.08	0.47	0.20
sLOG Etappe	0.41	0.01	0.02	0.04	4.59	2.75
Ltappe	0.19	0.51	0.02	0.20	1.96	4.00
-	0.19	0.03	35.01	0.20	0.11	0.07
ŀ	0.23	15.00	0.86	6.37	0.67	0.68
-	0.11	0.04	0.07	0.06	0.44	0.30
بو	0.31	0.09	0.10	0.26	9.24	8.40
veri	0.04	0.48	0.04	0.65	3.24	0.40
Messwerte	0.04	25	0.04	0.16		
Š			0.36	0.10		
			0.08			
			0.13			
ļ			0.03			
			0.09			
kTgm	0.14	0.53	0.14	0.36	0.90	0.85
sLOG	0.10	10	10	2.31	3.84	3.57

Anwendung des in Kapitel 2 vorgeschlagenen Konformitätsnachweisverfahrens

Der Beton wurde als XD3(CH), XF1(CH) ausgeschrieben. Gemäss SN EN 206-1 bedeutet XF1(CH) keine und XD3(CH) eine Anwesenheit von Tausalzen; d.h. diese Kombination ist nach SN EN 206-1 nicht möglich. Für XF1(CH) wird in Tabelle 1 ein Luftpermeabilitätsgrenzwert von 2.0·10⁻¹⁶ m² und für XD3(CH) einer von 0.50·10⁻¹⁶ m² vorgeschlagen.

Es sind drei Fälle zu unterscheiden:

- I. Nach Bedingung 1 darf maximal 1 von 6 Luftpermeabilitätsmesswerten den Luftpermeabilitätsgrenzwert überschreiten.
- II. Sind genau 2 Luftpermeabilitätsmesswerte h\u00f6her als der Luftpermeabilit\u00e4tsgrenzwert, d\u00fcr-fen erneut 6 Luftpermeabilit\u00e4tsmessungen durchgef\u00fchrt werden. Von den 6 neuen Messwerten darf nur 1 h\u00f6her als der Luftpermeabilit\u00e4tsgrenzwert sein. D.h. von 12 Luftpermeabilit\u00e4tsgrenzwert liegen.
- III. Sind mehr als 2 Luftpermeabilitätsmesswerte höher als der Luftpermeabilitätsgrenzwert, erfüllt das untersuchte Bauteil nicht die Anforderungen an die Luftpermeabilität.

Gemäss Tabelle C-9 wurde von den Teams eine unterschiedliche Anzahl an Luftpermeabilitätsmessungen durchgeführt. D.h. die o.g. Bedingungen sind auf die entsprechende Anzahl an Luftpermeabilitätsmessungen umzurechnen (Tabelle C-10). Sind 2 von 6 Messwerten höher als der Luftpermeabilitätsgrenzwert hätten 6 neue Messungen vorgenommen werden können; wurden keine weiteren Messungen vorgenommen, gilt die Anforderung als nicht erfüllt, da der Nachweis nicht erbracht wurde, dass maximal 1 der 6 neuen Messwerte oberhalb des Luftpermeabilitätsgrenzwerts liegt.

Für Etappe 41 E zeigt sich, dass die Anforderung von

- 0.5·10⁻¹⁶ m² von 4 Teams erreicht und von 2 Teams nicht erreicht wurde; die 2 Teams hätten weitere 6 Messungen durchführen können, d.h. es besteht die Chance, dass auch diese 2 Teams die Anforderungen erreicht hätten.
- 2.0·10⁻¹⁶ m² von 5 Teams erreicht und von 1 Team nicht erreicht wurde; das 1 Team hätten weitere 6 Messungen durchführen können, d.h. es besteht die Chance, dass auch dieses Team die Anforderungen erreicht hätten.

Für Etappe 42 E zeigt sich, dass die Anforderung von

- 0.5·10⁻¹⁶ m² von 4 Teams erreicht und von 2 Teams nicht erreicht wurde.
- 2.0·10⁻¹⁶ m² von 4 Teams erreicht und von 2 Teams nicht erreicht wurde:

Für Etappe 41 W zeigt sich, dass die Anforderung von

- 0.5·10⁻¹⁶ m² von 2 Teams erreicht und von 4 Teams nicht erreicht wurde; 2 Teams hätten weitere 6 Messungen durchführen können.
- 2.0·10⁻¹⁶ m² von 4 Teams erreicht und von 2 Teams nicht erreicht wurde; die 2 Teams hätten weitere 6 Messungen durchführen können, d.h. es besteht die Chance, dass auch diese Teams die Anforderungen erreicht hätten.

Insgesamt deuten die Luftpermeabilitätsergebnisse darauf hin, dass kein Bauteil die Anforderungen weder an die Expositionsklasse XD3(CH) mit 0.5·10⁻¹⁶ m² noch an XF1(CH) mit 2.0·10⁻¹⁶ m² klar erfüllt. Da sich kaum ein Unterschied in der Beurteilung für XD3(CH) und XF1(CH) zeigt, deutet auf nicht sehr wenige hohe Luftpermeabilitätsmesswerte hin.

Tabelle C- 11: Auswertung der Luftpermeabilitätsmesswerte des Tagbautunnels

Labor	TPT RT	PT RT	TPT TFB	TPT SUPSI	TPT TFB W	PT RT W
Etappe 41 E						
Anzahl > $0.5 \cdot 10^{-16} \text{ m}^2$ [-]	2 von 6	2 von 12	1 von 9	2 von 12	2 von 6	1 von 6
Anforderung erfüllt	nein	ja	ja	ja	nein	ja
Anzahl > $2.0 \cdot 10^{-16} \text{ m}^2 [-]$	2 von 6	0 von 12	1 von 9	0 von 12	0 von 6	0 von 6
Anforderung erfüllt	nein	ja	ja	ja	ja	ja
Etappe 42 E						
Anzahl > $0.5 \cdot 10^{-16} \text{ m}^2$ [-]	2 von 12	0 von 6	0 von 6	0 von 6	2 von 5	2 von 5
Anforderung erfüllt	ja	ja	ja	ja	nein	nein
Anzahl > $2.0 \cdot 10^{-16} \text{ m}^2$ [-]	0 von 12	0 von 6	0 von 6	0 von 6	2 von 5	2 von 5
Anforderung erfüllt	ja	ja	ja	ja	nein	nein
Etappe 41 W						
Anzahl > $0.5 \cdot 10^{-16} \text{ m}^2$ [-]	0 von 6	2 von 7	2 von 12	2 von 7	3 von 6	3 von 6
Anforderung erfüllt	ja	nein	ja	nein	nein	nein
Anzahl > $2.0 \cdot 10^{-16} \text{ m}^2 [-]$	0 von 6	2 von 7	1 von 12	1 von 7	1 von 6	2 von 6
Anforderung erfüllt	Ja	nein	Ja	ja	Ja	nein

Anhang D: Überlegungen zum Konformitätsnachweis

Nachfolgend werden zuerst in Kapitel D-1 frühere Vorschläge zum Konformitätsnachweis allgemein vorgestellt und erläutert. Anschliessend werden in Kapitel D-2 Hintergründe zum vorgeschlagenen Konformitätsnachweis dargelegt und abschliessend werden in Kapitel D-3 die Grenzwerte kurz erläutert.

D-1. Frühere Vorschläge zum Konformitätsnachweis

Verschiedene Forscher zeigten, dass die Luftpermeabilitätsmesswerte kTi einer log-normal Verteilung folgen (Torrent, 2001; Brühwiler et al. 2005, Conciatori 2005, Denarie et al., 2005, Quoc et al. 2006, Misak et al. 2008) (**Abbildung D- 1**). Jacobs & Hunkeler (2006) fanden manchmal eine multimodale log-normale Verteilung. Deshalb basierten die Konformitätsnachweise auf den logarithmierten Messwerten und nicht den Messwerten selber. Zu untersuchende Flächen wurden mit dem geometrischen Mittelwert charakterisiert, wodurch sich wenige Extremwerte kaum auf den Mittelwert auswirkten.

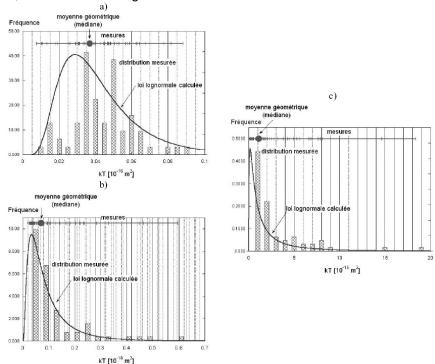


Abbildung D- 1: Verteilung von Luftpermeabilitätsmesswerten an drei Bauteilen mit w/z-Werten von a) 0.42, b) 0.52 und c) 0.73, Conciatori (2005)

Zwei Ansätze zum Konformitätsnachweis wurden näher betrachtet:

- Anforderung an den geometrischen Mittelwert (Torrent & Frenzer 1995)
 - Hier musste der geometrische Mittelwert einer Untersuchungsfläche gleich gross oder niedriger als die geforderte Luftpermeabilität kTs sein.
- Anforderung an einen charakteristischen Wert (Brühwiler et al. 2005, Denarie et al. 2005, Jacobs 2006):

 $log_{10}(kT_{gm}) + \lambda(p,N) \cdot sLOG \le log_{10}(kT_s)$ mit:

kT_{gm}: Geometrischer Mittelwert von N Luftpermeabilitätsmessungen kTi [10⁻¹⁶ m²]

 $\lambda(p,N)$: Faktor zur Berücksichtigung einer Anzahl an "Fehlstellen" p (kTi > kTs) und der Anzahl kTi; Jacobs (2006) schlug $\lambda = 1$ vor.

sLOG: Standardabweichung der logarithmierten kTi [-]

kT_s: Grenzwert kTs [10⁻¹⁶ m²]

In Jacobs (2006) wurden bei 52 untersuchten Bauteilen (Alter zumeist < 1 Jahr) Standardabweichungen sLOG zwischen 0.09 und 1.13 und im Mittel von 0.43 ermittelt (**Abbildung D- 2**).

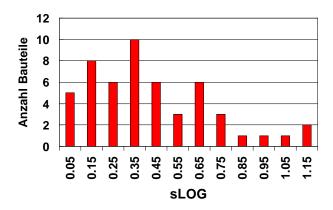


Abbildung D- 2: Standardabweichung sLOG von 52 Bauteilen, Daten aus Jacobs (2006)

Der Ansatz mit der Anforderung an den geometrischen Mittelwert hat den Nachteil, dass keine Anforderungen an die Streuung der Luftpermeabilitätsmesswerte gestellt werden. Dies führt dazu, dass akzeptiert wird, wenn etwa 50 % der Messwerte höher als der geforderte geometrische Mittelwert sind. Somit wird die Bauteilqualität nur ungenügend beurteilt.

Der Konformitätsnachweis auf Basis eines charakteristischen Wertes wird in der EN 206-1 für den Druckfestigkeitsnachweis und von Alexander et al. (2008) für verschiedene Dauerhaftigkeitseigenschaften verwendet. Die Anforderung an den charakteristischen Wert ist theoretisch ideal, da vorgängig klar definiert ist, wie viele Fehlstellen (zu hohe Luftpermeabilitätsmesswerte) akzeptiert werden. Als Nachteile sind zu sehen:

- Die Festlegung des Faktors λ ist nicht einfach
- Das Verständnis zu dem Vorgehen wird in der Praxis auf Schwierigkeiten stossen, da die Berechnung des geometrischen Mittelwertes und der Standardabweichung, beruhend auf den logarithmierten Messwerten, erfolgt.

D-2. Überlegungen zum vorgeschlagenen Konformitätsnachweis

Bei dem vorgeschlagenen Konformitätsnachweis handelt es sich um eine Doppel-Stichprobenprüfung. Dabei werden der Stichprobenumfang der ersten und gegebenenfalls der zweiter Stichprobe, die Annahmezahl für die erste Stichprobe und die kumulative Annahmezahl definiert. In **Abbildung D- 3** ist eine Normalverteilung dargestellt und der geometrische Mittelwert kTgm sowie der Grenzwert kTs angegeben. Der Anteil an "Fehlstellen", d.h. Messstellen mit kTi > kTs, ist durch p_D angegeben, die Überschreitungswahrscheinlichkeit von kTs.

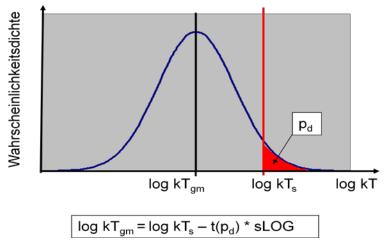


Abbildung D- 3: Normalverteilung von logarithmierten kT mit einem Anteil p_D an "Fehlstellen" (kTi > kTs)

Um die Wahrscheinlichkeit zu berechnen, mit der eine Untersuchungsfläche akzeptiert wird, wird eine binomiale Verteilung der Messwerte zugrunde gelegt. Bei einer binomialen Verteilung ist die Wahrscheinlichkeit P(k), dass bei 6 Messwerten (Stichprobenumfang) k Messwerte von kTi grösser als kTs sind, mit k = 0, 1, 2, 3, 4, 5, 6 gegeben durch:

$$P(k) = {6 \choose k} p_d^k (1 - p_d)^{6-k}$$

In **Abbildung D- 4** ist die binomiale Verteilung für verschiedene Anteile an "Fehlstellen" ($p_D = 5$, 16, 50 und 80 %) dargestellt. Erwartungsgemäss ist die Wahrscheinlichkeit zwei oder mehr Messwerte mit kTi > kTs zu erhalten, umso grösser desto höher p_D ist. Für den Konformitätsnachweis wurde vorgeschlagen, dass in der ersten Stichprobe maximal 1 Messwert (von 6 Messwerten) grösser als kTs sein darf. Die Wahrscheinlichkeit dafür beträgt P1 = P(0) + P(1). In **Abbildung D- 4** wird dieser Wert (P1) durch die schwarz umrandeten weissen Flächen dargestellt; zusätzlich sind die Werte angegeben. Danach nimmt die Wahrscheinlichkeit von 96.7 % für $p_D = 5$ % auf 0.2 für $p_D = 80$ % ab, dass nicht mehr als 1 von 6 Messwerten höher als kTs ist.

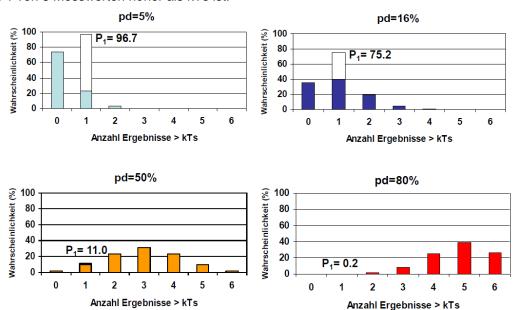


Abbildung D- 4: Binomiale Verteilung für 6 Messwerte mit unterschiedlichem Anteil "Fehlstellen" p_D

Die 2. Bedingung für den Konformitätsnachweis lautet: Wenn mehr als einer und nicht mehr als 2 Messwerte kTi höher als kTs sind, dürfen 6 weitere Messungen vorgenommen werden und maximal 1 Messwert der 6 neuen darf höher als kTs sein. Wird die binomiale Verteilung wieder herangezogen, ergibt sich die Wahrscheinlichkeit, dass Bedingung 2 erfüllt wird zu

$$P2 = P(2) \times [P(0) + P(1)]$$

Somit beträgt die Wahrscheinlichkeit eine Untersuchungsfläche als konform zu beurteilen:

$$Pa = P1 + P2 = [P(0) + P(1)] + P(2) \times [P(0) + P(1)]$$

In **Abbildung D- 5** sind P1 sowie Pa dargestellt. Die gestrichelte Linie zeigt die Wahrscheinlichkeit eine Untersuchungsfläche bei der ersten Stichprobe zu akzeptieren. Die rote, durchgezogene Linie zeigt die Annahmewahrscheinlichkeit bei einer zweiten Stichprobe. Wird eine Wahrscheinlichkeit von z.B. 95 % für die Bedingung 2 gefordert, dürfen maximal etwa 10 % "Fehlstellen" vorhanden sein.

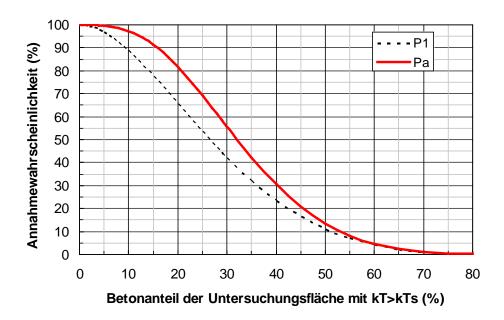


Abbildung D- 5: Wahrscheinlichkeitskurven der Annahmewahrscheinlichkeiten für das vorgeschlagene Konformitätskriterium

In **Abbildung D- 6** ist die Annahmewahrscheinlichkeit in Abhängigkeit vom Verhältnis kTgm zu kTs für verschiedene Standardabweichungen sLOG aufgetragen. Ist kTgm halb so gross wie kTs, beträgt die Annahmewahrscheinlichkeit bei einer Standardabweichung von 1.0 etwa 35 % und bei einer Standardabweichung von 0.4 etwa 75 %. In **Tabelle D- 1** sind die Quotienten aus kTgm und kTs für verschiedene Wahrscheinlichkeiten einer Akzeptanz (80 %, 90 %, 95 %, 99 %) aufgeführt. Der fettgedruckte Wert von 0.34 entspricht einer typischen Standardabweichung von etwa 0.4 (siehe **Abbildung D- 2**). Dies bedeutet, dass mit dieser Standardabweichung und einem Quotienten von 0.34 aus kTgm und kTs die Wahrscheinlichkeit bei 95 % liegt, dass eine Untersuchungsfläche als konform beurteilt wird. In anderen Worten bedeutet dies, dass in 1 von 20 Fällen die Untersuchungsfläche als nicht konform und in 19 Fällen als konform beurteilt wird.

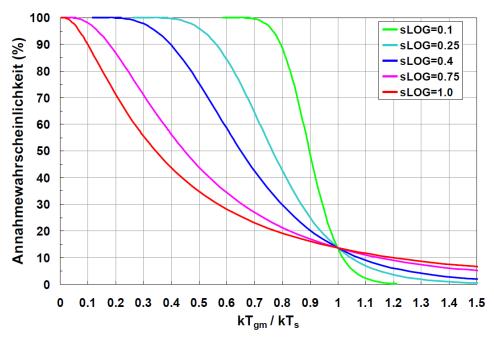


Abbildung D- 6: Annahmewahrscheinlichkeiten in Abhängigkeit vom Verhältnis kTgm/kTs und der Standardabweichung sLOG

Tabelle D- 1: Quotient aus kTgm und kTs für verschiedene Annahmewahrscheinlichkeiten einer Akzeptanz und unterschiedliche Standardabweichungen

Annahmewahr-	kTgm/KTs für sLOG=				
scheinlichkeit (%)	0.10	0.25	0.40	0.75	1.00
99	0.71	0.43	0.26	0.081	0.035
95	0.77	0.51	0.34	0.13	0.069
90	0.79	0.56	0.40	0.18	0.10
80	0.83	0.62	0.47	0.24	0.15

Die entsprechende Wahrscheinlichkeitsverteilung für kTs = $1.0 \times 10^{-16} \text{ m}^2$ ist in **Abbildung D-7** dargestellt.

Die Anzahl von 6 Messwerten zur Beurteilung einer Untersuchungsfläche wurde gewählt, da sich dies als geeignet bei bisherigen Luftpermeabilitätsmessungen erwies, um verschiedene Betonqualitäten zu unterscheiden (siehe z.B. RILEM-Vergleichsversuch Torrent & Luco) und sich auch bei der Brücke (siehe Abbildung C- 7) eine nicht zu hohe Streuung ergab.

Da ein Messwert über dem Grenzwert kTs liegen darf, stellt kTs eine charakteristische (statistische) Kenngrösse (nicht Maximum) dar. Wie in **Abbildung D- 7** gezeigt wird, bedeutet eine Annahmewahrscheinlichkeit von 95 %, dass auf der Untersuchungsfläche mit einer Standardabweichung sLOG von 0.40 nicht mehr als 12 % Fehlstellen (kTi > kTs) sein dürfen. Dies ist höher als die 5 %, die bei der Druckfestigkeit nach EN 206-1 zulässig sind. Da jedoch eine ungenügende Festigkeit schwerwiegendere Konsequenzen als eine ungenügende Dauerhaftigkeit nach sich zieht, erscheint dies als akzeptabel. Zudem ist anzumerken, dass Stellen mit kTi > kTs nicht zwangsläufig die Dauerhaftigkeit beeinträchtigen, da es sich um feinste Risse oder Entmischungen beim Beton handeln kann, die nicht notwendigerweise die Dauerhaftigkeit signifikant beeinflussen.

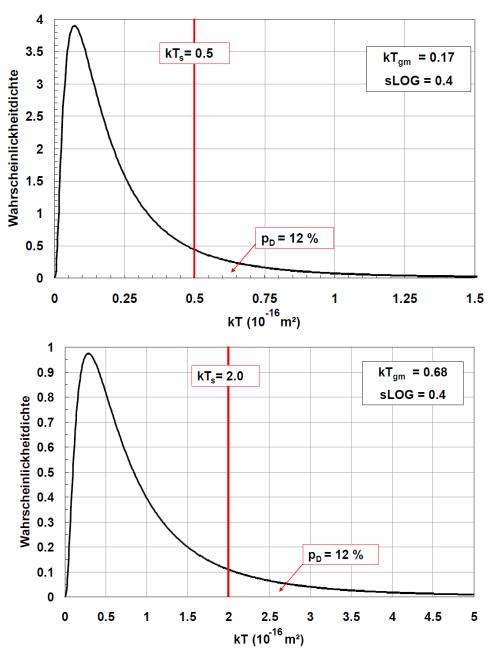


Abbildung D- 7: Wahrscheinlichkeitsdichten [10^{-16}] von kT bei einer Annahmewahrscheinlichkeit von 95 % und <u>oben</u> einem kTs = $0.5 \cdot 0^{-16}$ m² und <u>unten</u> einem kTs = $2.0 \cdot 10^{-16}$ m²

D-3. Überlegungen zu den Grenzwerten

Basierend auf den bisherigen Erfahrungen von Luftpermeabilitätsmessungen an im Labor hergestellten Beton und Bauteilen in der Praxis wurden Grenzwerte in Abhängigkeit von den Betonsorten nach Norm SIA 118/262 (Revision 2009) bzw. den Expositionsklassen vorgeschlagen. Wie beispielsweise in Abbildung B- 11 gezeigt, wies Beton der Expositionsklasse XD3 mit einer Luftpermeabilität von 0.1·10⁻¹⁶ m² (geometrischer Mittelwert nach Jahrzehnten gemessen) zumeist akzeptable Chlorideinträge auf. Brühwiler (2008) schlägt den gleichen Luftpermeabilitätswert vor. Gemäss Abbildung B- 10 gewährleistet in der Regel eine Luftpermeabilität (geometrischer Mittelwert nach Jahrzehnten gemessen) von maximal 0.5·10⁻¹⁶ m² eine tolerierbare Karbonatisierungstiefe. Teruzzi (2009) kam zu einem ähnlichen Wert auf Grund von Untersuchungen der Karbonatisierungstiefen an einem Gebäude. Um aus diesen mittleren Luftpermeabilitätswerten einen Luftpermeabilitätsgrenzwert zu erhalten, müssen die Werte bei einer mittleren Standardabweichung von 0.40 (und einer Annahmewahrscheinlichkeit von 95 %) mit dem Faktor 3 multipliziert werden (Abbildung D- 6). Somit ergeben sich für die Expositionsklassen XC4 und XD1 – 2 ein Luftpermeabilitätsgrenzwert kTs von 2.0·10⁻¹⁶ m² und für XD3 einer von 0.5·10⁻¹⁶ m². Bei einer grösseren Standardabweichung (Streuung der Bauteilqualität) muss der geometrische Mittelwert der Luftpermeabilität niedriger liegen.

Abbildung D- 8 zeigt die vorgeschlagenen Grenzwerte kTs und Luftpermeabilitätsmesswerte (geometrischen Mittelwerte). Zum besseren Vergleich wurde aus den vorgeschlagenen Grenzwerten der geometrische Mittelwert bei einer mittleren Standardabweichung sLOG = 0.4 abgeschätzt (kTs = 3 x kTgm). Es zeigt sich, dass die meisten Ergebnisse die Anforderungen der Grenzwerte (gestrichelte Linie) einhalten. Bei Laborbetonen werden die Anforderungen fast immer eingehalten (bei 3 von 24 Betonen mit $w/z \le 0.50$ nicht erreicht). Bei Beton aus der Praxis zeigt sich demgegenüber eine etwas häufigere Überschreitung der Grenzwerte (16 von 52 Betonen mit $w/z \le 0.50$). Sofern die Ergebnisse weiterer Prüfungen vorlagen, wurde die im Vergleich zum w/z-Wert zu geringe Betonqualität bestätigt. Es zeigt sich auch, dass bei Betonen mit w/z-Werten über 0.50 der Luftpermeabilitätsgrenzwert für w/z-Werte von 0.50 häufig eingehalten wurde (bei 11 von 15 Laborbetonen und 3 von 5 Praxisbetonen).

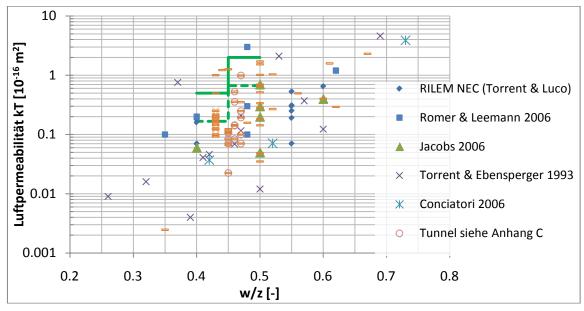
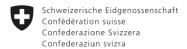


Abbildung D- 8: Vorgeschlagene Grenzwerte und geometrische Mittelwerte aus publizierten Untersuchungen; Messwerte von Praxisobjekten (nicht Laborbeton) sind orange dargestellt

Abkürzungen

Begriff	Bedeutung
kT	Luftpermeabilität, bestimmt nach SIA 262/1, Anhang E; übliche Einheit: [10 ⁻¹⁶ m²]
kT'	Basierend auf dem spezifischen elektrischen Widerstand (Einfluss der Betonfeuchte) korrigierte Luftpermeabilität; übliche Einheit: [10 ⁻¹⁶ m²]
kTgm	Geometrischer Mittelwert der Luftpermeabilität, bestimmt nach SIA 262/1, Anhang E; übliche Einheit: [10 ⁻¹⁶ m²]
kTi	Einzelwert der Luftpermeabilität, bestimmt nach SIA 262/1, Anhang E; übliche Einheit: [10 ⁻¹⁶ m ²]
kTs	Grenzwert der Luftpermeabilität, bestimmt nach SIA 262/1, Anhang E; übliche Einheit: [10 ⁻¹⁶ m ²]
PT	Permea-TORR (Fa. Materials Advanced Science) zur Bestimmung der Luftpermeabilität nach SIA 262/1, Anhang E
sLOG	Standardabweichung der logarithmierten Luftpermeabilitätsmesswerte; übliche Einheit [-]
Т	Temperatur; übliche Einheit: [°C] oder [K]
TPT	Torrent Permeability Tester (Fa. proceq) zur Bestimmung der Luftpermeabilität nach SIA 262/1, Anhang E
W/Z, W/Z _{eq}	Massenverhältnis Wasser zu Zement und ggf. auf den Zementgehalt anrechenbare Zusatzstoffe; siehe unter Begriffe w/z-Wert, w/z _{eq} -Wert.
ρ	spezifischer elektrischer Widerstand; übliche Einheit [Ω m] oder [$k\Omega$ cm]; [10Ω m = 1 $k\Omega$ cm]
σ	Standardabweichung; übliche Einheit: je nach Messgrösse
Ø	Durchmesser; übliche Einheit: [mm] oder [cm] oder [m]


Literaturverzeichnis

	A framework for use of durability indexes in performance based design and specifications for reinforced concrete structures Mater. & Struct., 41: 921-936.
(2008)	tions for reinforced concrete structures Mater. & Struct., 41. 921-930.
	The suitability of the 'TPT' to measure the air permeability of the covercrete 5th CAN-MET/ACI Intern. Conf. on Durability of Concr., Barcelona, June 4-9
Brühwiler, E., E. Denarie, Th. Wälchli, M. Maitre & D. Conciatori (2005)	Dauerhafte Kunstbauten bei geringem Unterhalt Ausge wählte Kapitel VSS-Bericht Nr. 587, 122 S.
Brühwiler, E. (2008)	Dauerhafter Stahlbeton.TEC21, Nr. 48, 21
Bungey, J.H. & S.G. Millard (1996)	Testing of Concrete Structures.Blackie Academic & Professional, Glasgow
Conciatori, D. & M. Maître (2002)	Perméabilité à l'air du béton d'enrobage (méthode Torrent) Rapport d'essais No. MCS 02.09-01, MCS - IS - ENAC - EPFL.
Conciatori, D. (2005)	Effet du microclimat sur l'initiation de la corrosion des aciers d'armature dans les ouvrages en béton armé.Thèse No. 3408, EPFL Lausanne
Denarié E., M. Maître, D. Conciatori & E. Brühwiler (2005)	Air permeability measurements for the assessment of the in situ permeability of cover concrete.in Proceedings International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2005), 21.
Denarie, E. (2004)	Essais comparative de caractérisation de bétons d'enrobage - phase I: béton de laboratoire rapport d'essais MCS 02.12.7-1 EPFL
Denariè, E., M. Maitre & Th. Wälchli (2004)	Application de la mesure de perméabilité à l'air selon Torrent pour le contrôle de la qualité du béton d'enrobage, in-situ EPFL Rapport Interne, Lausanne, Avril 2004, 53 p.
Di Pace G., D. Calo & R. Torrent (2008) Assessment of concrete permeability in tunnels.	SACoMaTIS 2008, Proc. of Intern. RILEM Confer. (Eds. L. Binda, M. di Prisco and R. Felicetti), Varenna, Italy, 1
Fernández Luco, L. & D. Revuelta Crespo (2005).	Ensayo de penetración de agua bajo presión y Ensayo de permeabilidad al aire, método de Torrent, sobre probetas de hormigón de 150x300mm Informe N° 18'728, Instituto Eduardo Torroja, Madrid, Julio 2005, 8 p.
FHWA (2000)	The Effects of Higher Strength and Associated Concrete Properties on Pavement Performance FHWA-RD-00-161 Report, Chapter 5 'Concrete Properties', Fed. Highway Admin., USDoT, pp. 143-182.
	Diseño por Durabilidad de Hormigones Autocompactantes. Aspectos a Considerar desde el Punto de Vista Reglamentario http://www.lomanegra.com.ar/pdf/trabajos/T-23.pdf.
	Use of durability index tests for the assessment and control of concrete quality on site Concr. Beton 98, pp 5 - 16
HeidelbergCement (2008)	Betontechnische Daten Ausgabe 2008
mozawa, M. Na-	Threshold values of air permeability of concrete cover – a case study in Japan SACo-MaTIS 2008, Proc. of Intern. RILEM Confer. (Eds. L. Binda, M. di Prisco and R. Felicetti), Varenna, Italy, Vol. 1, pp. 169-177.
ISO 5725 (1994)	Genauigkeit (Richtigkeit und Präzision) von Messverfahren und Messergebnissen International Organization for Standardization
Jacobs, F. & A. Lee- mann (2007)	Betoneigenschaften nach SN EN 206-1 VSS-Bericht Nr. 615, 27 S.
Jacobs, F. & F. Hunkeler (2006)	Non destructive testing of the concrete cover - evaluation of permeability test data in RILEM (2006) International RILEM Workshop on Performance based evaluation and indicators for concrete durability, Madrid.
Jacobs, F. (2006)	Luftpermeabilität als Kenngrösse für die Qualität des Überdeckungsbetons von Betonbauwerken VSS-Bericht Nr. 604, 85 S.
Jacobs, F. (2007)	Beton zerstörungsfrei untersuchen baublatt, Nr. 48, 30.11.2007, 20 - 22

Jacobs, F. and Torrent, R. (2009)	Swiss Standard SIA 262: 2003, a step towards performance-based specifications for durability RILEM Conference Concrete in aggressive aqueous environments - Performance, Testing, and Modeling, Toulouse, France, 3-5 June 2009.
Kattar, J., J. V. Abreu & C. E. X. Regattieri (1999)	Inovações na metodologia para avaliação da permeabilidade por difusão ao ar 41° Congresso Brasileiro do Concreto, Ibracon, Salvador, Bahia, 1999.
	Concreto de alto desempenho modificado con polímero para pisos industriais 37ª Reunião Anual do IBRACON, Goiânia, 3-7 Julho, 1995.
Kollek, J. J. (1996)	The determination of permeability of concrete by Cembureau Method Materials & Structures, 22, 225 - 230.
Kubens, S., Wassermann, R. & Bentur, A. (2003)	Non destructive air permeability tests to assess the performance of the concrete cover.15th ibausil Intern. Baustofftagung, Bauhaus, Univ. Weimar, 24-27 September 2003.
	 Assessment of destructive test methods to determine the covercrete quality of structures in RILEM (2006) International RILEM Workshop on Performance based evaluation and indicators for concrete durability, Madrid.
	Durability predictions using early-age durability index testing Proceedings 9th durability and building materials conference, Australian Corosion Association, Brisbane, 11 pp.
	Use of High Volume Fly Ash in Concrete for Building Sector Report No. T(S)006, Central Build. Res. Inst., Roorkee, Jan. 2005, 35 p.
Merlini, M. (2008)	Schätzung der Genauigkeit bei Luftpermeabilität Kurzbericht, Seminar für Statistik der ETH Zürich, 3 p.
	Evaluation of permeability of concrete by using instrument Torrent JUNIORSTAV 2008, Brno, 23 Jan. 2008, 3p.
Quoc P.H.D. & T. Kishi (2006)	Measurement of air permeation property of cover concrete Proc. JSCE Annual Meeting, v. 61, Disk 2, 2006, 2 p.
RILI SIB (2001)	Richtlinie Schutz und Instandsetzung von Betonbauteilen Deutscher Ausschuss für Stahlbeton
Rodríguez de Sensa- le, G., B.S. Sabalsa- garay, J. Cabrera, L. Marziotte & C. Ro- may (2005)	Effect of the Constituents on the Properties of SCC in Fresh and Hardened State fib Symposium "Structural Concrete and Time", La Plata, Argentina, Sept. 2005.
Roelfstra, G. (2001)	Modèle d'évolution de l'état de ponts-routes en béton Dissertation 2310, EPFL.
Roelfstra, G., R. Haj- din & E. Brühwiler (2001)	Modèle d'évoltution de l'état des ponts-routes en béton armé VSS-Bericht Nr. 560, 160 S.
Romer, M. & A. Leemann (2005)	Sensitivity of a non-destructive vacuum test method to characterize concrete permeability in Concrete Repair, Rehabilitation and Retrofitting (ed Alexander), South Africa, 177 - 179.
Romer, M. & A. Leemann (2006)	Sensitivity of a non-destructive test permeability test method for concrete Empa Activities 2005, S. 36.
Romer, M. (2005a)	Effect of moisture and concrete composition on the Torrent permeability measurement Materials and Structures, 38, 541 - 547.
Romer M. (2005b)	RILEM TC 189-NEC "Comparative test - Part I - Comparative test of penetrability methods Materials & Structures, v38, Dec 2005, pp. 895 - 906.
SIA 118/262 (2004)	Allgemeine Bedingungen für Betonbau Schweizerischer Ingenieur- und Architektenverein
SIA 262 (2003)	Betonbau Schweizerischer Ingenieur- und Architektenverein
SIA 262-1 (2003)	Betonbau – Ergänzende Festlegungen Schweizerischer Ingenieur- und Architektenverein
Simon, N., JP. Jac- coud & M. Badoux (2001)	Anwendung von Hochleistungsbeton – Der Tagbautunnel von Champ Baly Bundesamt für Strassenbau, Forschungsauftrag Nr. 2001/483 auf Antrag der Arbeitsgruppe für Brückenunterhaltsforschung, Bundesamt für Strassenbau, Nr. 559.
Teruzzi, T. (2009)	Estimating the service-life of concrete structures subjected to carbonation on the basis of the air permeability of the concrete cover Proceedings of the Euroinfra 2009 International ECCE Conference, 15 – 16 October, Helsinki

Torrent, R. & G. Frenzer (1995)	Studie über Methoden zur Messung und Beurteilung der Kennwerte des Überdeckungsbetons auf der Baustelle VSS-Bericht Nr. Nr. 516	
Torrent, R. & L. Studie über Methoden zur Messung und Beurteilung der Kennwer Ebensperger (1993) ckungsbetons auf der Baustelle VSS-Bericht Nr. Nr. 506		
Torrent, R. & L. F. Luco (2007)	Non-destructive evaluation of the penetrability and thickness of the concrete coverRILEM Report 40, Springer Verlag	
Torrent, R. (2000)	On the tracks of the durability-meter L'industria Italiana del Cemento, Nr. 752, März, 262-269	
Torrent, R. (2001)	Diseño por Durabilidad - Técnicas de Ensayo y su Aplicación CENCO Seminar on Durability of Concrete and Evaluation of Corroded Structures, Instituto Eduardo Torroja, Madrid, 17-19 April, 2001.	
Torrent, R. (2009a)	Non-destructive Site Air-Permeability Test – Relation with other transport test methods Materials Advanced Services Ltd., Buenos Aires, May 2009.	
Torrent, R. (2009b)	Comparison of the operation and air-permeability test results of the TPT and the Permea-TORR Materials Advanced Services Ltd., Buenos Aires, September 2009.	

Projektabschluss

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK

Bundesamt für Strassen ASTRA

FORSCHUNG IM STRASSENWESEN DES UVEK

ARAMIS SBT

Formular Nr. 3: Projektabschluss

erstellt / geändert am:	20.1.2010	
Grunddaten		
Projekt-Nr.:	AGB 2007/007	
Projekttitel:	Empfehlungen zur Qualitätskontrolle von Be	eton mit Luftpermeabilitätsmessungen

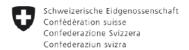
Enddatum: 20.01.2010

Texte:

Zusammenfassung der Projektresultate: In den letzten Jahrzehnten ist erkannt worden, dass bei Bauwerken die häufigsten Schäden durch eine ungenügende Dauerhaftigkeit und nicht durch eine ungenügende Festigkeit verursacht wurden. Die Qualität und Dicke des Überdeckungsbetons bestimmt in den meisten Fällen die Dauerhaftigkeit der Bauwerke. Da die Betonqualität sowohl durch die Betonzusammensetzung als auch den Einbau und die Nachbehandlung beeinflusst werden kann, ist es zweckmässig, die erzielte Betonqualität am Bauteil zu bestimmen.

Gemäss Norm SIA 262 ist die Dichtigkeit des Überdeckungsbetons zu überprüfen. Mit der Prüfung der Luftpermeabilität nach Norm SIA 262/1, Anhang E, steht eine zerstörungsfreie Prüfmethode zur Qualitätskontrolle des Betons zur Verfügung.

Diese Empfehlungen enthalten Vorschläge zur Ausschreibung, Durchführung und Auswertung von Luftpermeabilitätsmessungen. Bei der Durchführung der Luftpermeabilitätsmessungen sind die Anforderungen an die Bauteiltemperatur und Bauteilfeuchte zu beachten.


Auf jeder Untersuchungsfläche sind 6 Luftpermeabilitätsmessungen vorzunehmen. Ist maximal 1 Messwert höher als der vorgeschlagene Grenzwert (kTs = $2.0\cdot10^{-16}$ m² für Betonsorten C, D und E nach SIA 118/262; kTs = $0.5\cdot10^{-16}$ m² für Betonsorten F und G nach SIA 118/262), erfüllt die Untersuchungsfläche die Anforderungen. Sind genau 2 der 6 Messwerte höher als der vorgeschlagene Grenzwert, können 6 weitere Messungen durchgeführt werden. Liegt von den 6 weiteren Messwerten maximal 1 Messwert über den Anforderungen, erfüllt die Untersuchungsfläche die Anforderungen. Werden die Anforderungen nicht erfüllt, sind weitere Untersuchungen durchzuführen bzw. das Bauteil instandzusetzen.

Zielerreichung: Das Ziel wurde erreicht.

Folgerungen und Empfehlungen: Die Empfehlungen werden zur Anwendung in der Praxis empfohlen.

Publikationen: ASTRA-Berich

Bei der Revision der Norm SIA 262/1 fliessen die Erkenntnisse des Projektes ein (Beschluss Normenkommission SIA 262 vom 1.10.2009.

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK Bundesamt für Strassen ASTRA

Beurteilung der Begleitkommission:

M. Las

Diese Beurteilung der Begleitkommission ersetzt die bisherige separate fachliche Auswertung.

Beurteilung:	Die Ziele des Forschungsprojektes wurden erreicht. Zur Methode zur Bestimmung der Luftpermeabilität liegen ausreichende, praxistaugliche Informationen vor, sodass die Methode in der Praxis eingesetzt werden kann. Die Erfahrungen mit der Methode sollten gesammelt und ausgewertet werden, um die in diesem Forschungsprojekt gewonnenen Erfahrungen erweitert werden.			
Umsetzung:	Die wesentlichen Punkte des Forschungsprojektes werden bei der Überarbeitung der Norm SIA 262/1, Anhang E, einfliessen.			
weitergehender For- schungsbedarf:	Im Moment ist kein dringender, weiterer Forschungsbedarf gegeben.			
Einfluss auf Normenwerk:	Die Norm SIA 262/1 wird entsprechend den Erkenntnissen von diesem Projekt ergänzt.			
Präsident Begleitkommission:				
Name:	Dr. Käser	Vorname:	Martin	
Amt, Firma, Institut:	Baudirektion des Kanton Zürich, Tiefbauamt			
Strasse, Nr.:	Walcheplatz 2, Postfach			
PLZ:	8090	Email:	martin.kaeser@vd.zh.ch	
Ort:	Zürich	Telefon:	043 259 3118	
Kanton, Land:	Zürich	Fax:	043 259 5156	
Unterschrift Präsident Begleitkommission:				

Verzeichnis der Berichte der Forschung im Strassenwesen

Brückenforschung, Forschungsberichte ab Nr. 501

Bericht-Nr.	Projekt Nr.	Alte Nr.	Titel	Datum
501	AGB	82/89	Mise au point d'une méthode pour localiser les défauts d'étanchéité et rechercher divers défauts dans le béton des tabliers des ponts par voie non-destructive	1991
			Ausarbeitung einer zerstörungsfreien Methode, um Abdichtungs- und verschiedene Betonschäden der Brückenfahrbahnplatte zu lokalisieren	
502	AGB	81/90	Integritäts- und Korrosionsprüfungen an Vorspannkabeln in Brückenbauwerken; die reflektometrische Impulsmessung	1992
			Analyse d'intégrité et de corrosion des câbles de précontrainte; la méthode RIMT	
503	AGB	88/90	Kathodischer Korrosionsschutz von Bewehrungsstählen; Langzeitbeständigkeit von Anodenmaterialien und Mörteln	1992
			Protection cathodique des armatures du béton; durée de vie des anodes et des mortiers	
504	AGB	89/88	Verbesserung von Reparaturmörteln Amélioration des mortiers de réparation	1992
505	AGB	82/90	Zustandsermittlung, Zustandsbeurteilung und Verstärkung bei Stahlbetonbrücken; Teil 1: Verbindung von altem und neuem Beton Auscultation, évaluation et renforcement des ponts en béton armé; partie 1: adhérence de bétons d'âges différents	1993
506	AGB	89/89	Studie über «Methoden zur Messung und Beurteilung der Kennwerte des Überdeckungsbetons auf der Baustelle»	1993
			Etude des méthodes de mesure et d'évaluation des caractéristiques du béton de recouvrement sur site	
507	AGB	97/92	Elektrochemische Chloridentfernung an Stahlbetonbauwerken Extraction électrochimique des chlorures dans les structures en béton armé	1993
508	AGB	84/93	Untersuchungen zum kathodischen Korrosionsschutz von Stahlbeton im Tunnel San Bernardino Etudes de la protection cathodique du béton armé dans le tunnel San Bernardino	1992
509	AGB	86/93	Stand der Technik von Fahrbahnübergängen aus Polymerbitumen	1994
510	AGB	86/90	Etat de la technique des joints bitume-élastomère Grundlagen der Korrosion und der Potentialmessung bei Stahlbetonbauten Bases de la corrosion et de la mesure de potentiel des structures en béton armé	1994

Bericht-Nr.	Projekt Nr.	Alte Nr.	Titel	Datum
511	AGB	87/88	Schutz von Beton durch Beschichtungen; Auswirkungen auf den Feuchtigkeitsund Chloridtransport	1994
			Protection du béton armé par des couches de protection; l'influence sur le transport d'humidité et des ions de chlorure	
512	AGB	90/88	Grundlagen einer nahtlosen bituminösen Brückenabdichtung Bases d'une étanchéité de ponts sans recouvrements	1994
513	AGB	82/90	Zustandserfassung, Zustandsbeurteilung und Verstärkungsmassnahmen bei Betonbrücken; Teil 3: Zustandserfassung und Zustandsbeurteilung bei Betonbrücken Auscultation, évaluation et renforcement des ponts en béton armé; partie 3: auscultation et évaluation des ponts en béton	1994
514	AGB	83/90	Enseignements tirés d'essais de charge et d'observations à long terme pour l'évaluation de ponts en béton et le choix de la précontrainte	1995
			Beurteilung des Gebrauchszustandes von Brücken aufgrund von Belastungsversuchen und Langzeitbeobachtungen; Empfehlung für die Vorspannung	
515	AGB	90/90	Modèles de charge actualisés pour l'évaluation de la sécurité structurale de ponts-routes existants Aktualisierte Lastmodelle zur Beurteilung der Tragsicherheit bestehender Strassenbrücken	1995
516	AGB	90/94	Studie über «Methoden zur Messung und Beurteilung der Kennwerte des Überdeckungsbetons auf der Baustelle» Etude des méthodes de mesure et d'évaluation des caractéristiques du béton d'enrobage sur site	1995
517	AGB	87/90	Schadens- und Sicherheitsanalyse an betriebsgeschädigten Stahlrollen von Brückenlagern Analyse des dommages et de la sécurité de rouleaux en acier d'appuis de ponts endommagés en service	1995
518	AGB	85/94	The Strategic Highway Research Program (SHRP) Das strategische Strassenforschungsprogramm (SHRP)	1995
519	AGB	84/88	Die kontinuierliche elektrische Überwachung von Korrosionsvorgängen am Armierungsstahl im Beton La surveillance électrique des processus de corrosion relatives à l'acier d'armature	1995
520	AGB	82/88	Chloride im Beton: Transport und Erfassung Chlorures dans le béton: transport et détermination	1996
521	AGB	85/88	Methoden zur Erfassung der Korrosion von Stahl in Beton Méthodes d'évaluation de la corrosion dans le béton armé	1996

Bericht-Nr.	Projekt Nr.	Alte Nr.	Titel	Datum
522	AGB	91/95	Beurteilung von Massivbrücken aufgrund von Belastungsversuchen und Langzeitbeobachtungen; Empfehlung für die Vorspannung	1996
			Enseignements tirés d'essais de charge et d'observations à long terme pour l'évaluation des ponts en béton et le choix de la précontrainte	
523	AGB	85/92	Beständigkeit einer Hydrophobierung; Ergebnisse einer Bestandsaufnahme Durabilité d'un traitement par un produit hydrofuge; résultats d'une analyse de l'état des bétons d'ouvrages	1996
524	AGB	92/95	Etude expérimentale de la chute de blocs impactant une dalle en béton armé recouverte par des matériaux amortissants Experimentelle Studie von Steinschlägen auf eine mit Dämpfmaterialien überdeckte armierte Betondecke	1996
525	AGB	82/90	Zustandsermittlung, Zustandsbeurteilung und Verstärkung bei Stahlbetonbrücken; Teil 2: Vorspannung ohne Verbund Auscultation, évaluation et renforcement des ponts en béton armé; partie 2: précontrainte sans adhérence	1996
526	AGB	83/97	Schubtragverhalten; Nachrechnung und Beurteilung der Tragsicherheit bestehender Stahlbeton- und Spannbetonbrücken Comportement sous l'effet des efforts tranchants; vérification et évaluation de la sécurité structurale de ponts existants en béton armé et précontraint	1997
527	AGB	56/86	Le comportement dans le temps des ponts mixtes continus	1997
528	AGB	81/93	Langzeitverhalten durchlaufender Verbundbrücken Zerstörungsfreie Spannkabelprüfung mit reflektometrischer Impulsmessung Contrôle non-destructif des câbles de précontrainte par mesures réflectométriques d'impulsions	1997
529	AGB	82/95	Mindestbewehrung von Betonbauten Armature minimale des structures en béton	1997
530	AGB	86/94	Lastfaktoren für Eigenlast und Auflast zur Beurteilung der Tragsicherheit bestehender Strassenbrücken Facteurs de charge à appliquer aux poids propres pour l'évaluation de la sécurité structurale des ponts-routes existants	1998
531	AGB	98/98	Valorisation des résultats des essais et des analyses liés au pont haubané courbe sur le Rhin à Schaffhouse Bewertung der Ergebnisse aus den Untersuchungen für die gekrümmte Schrägseilbrücke über den Rhein bei Schaffhausen	1998
532	AGB	86/96	Erhebung von Daten an Strassenbrücken zur Festlegung von aktualisierten Lastfaktoren Relevé de données sur des ponts routes pour la détermination des facteurs de charge actualisés	1998
533	AGB	87/94	Etude de l'effet de la normalisation européenne sur le dimensionnement des ponts-routes en Suisse Studie zu den Auswirkungen der Europäischen Normung auf die Dimensionierung von Strassenbrücken in der Schweiz	1998

Bericht-Nr.	Projekt Nr.	Alte Nr.	Titel	Datum
534	AGB	86/95	Korrosionsschäden an Spannstählen in Spanngliedern und	1999
, I			vorgespannten Boden- und Felsankern	
			Dégradation des aciers de précontrainte due à la corrosion	
			dans des câbles de précontrainte et des tirants	
			précontraints en sol et en rocher	
535	AGB	88/88	Amélioration des mortiers de réfection	1999
			Verbesserung von Reparaturmörteln	
536	AGB	82/93	Einfluss des Eindringens von Chloriden auf die	1999
			wartungsfreie Nutzungsdauer von Stahlbetontragwerken	
			Influence de la pénétration des chlorures sur la durée de	
		00104	service de constructions en béton armé	
537	AGB	88/94	Influence des actions variables sur l'état permanent des	1999
			ponts en béton précontraint	
			Einfluss der variablen Einwirkungen auf den Dauerzustand	
500		05100	von vorgespannten Betonbrücken	4000
538	AGB	85/90	Feuchtigkeits- und Ionentransport in gerissenen	1999
			Stahlbetonteilen	
500	4.00	07/00	Transport d'humidité et des ions dans le béton fissuré	4000
539	AGB	87/89	Télésurveillance sur les ouvrages d'art, application à la	1999
			protection cathodique	
			Fernüberwachung auf Kunstbauwerken, Durchführung für	
540	ACD	07/05	kathodischen Korrosionsschutz	4000
540	AGB	87/95	Zustandsbeurteilung von Stahlbetontragwerken; Erkennen	1999
			von potentiell spröden und plötzlichen Versagen bei	
			Stahlbeton-Strassenbrücken	
			Evaluation de l'état des structures en béton; Détection de	
			potentielles défaillances soudaines et fragiles de ponts routiers en béton	
541	AGB	93/97	Auswirkungen der CEN-Normen auf Projektierung und	1999
341	AGB	93/91	Ausführung von Kunstbauten in der Schweiz	1999
			Conséquences des normes CEN sur l'élaboration du projet	
			et l'exécution d'ouvrages d'art	
542	AGB	83/89	Localisation des chlorures dans le béton; détermination de	1999
042	AOD	00/00	leur répartition	1000
			Lokalisierung der Chloride im Beton; Bestimmung ihrer	
			Verteilung	
543	AGB	89/00	Einsatz von nichtrostenden Bewehrungsstählen im	2000
			Betonbau	
			Utilisation d'aciers d'armature inoxydables dans les	
			ouvrages en béton	
544	AGB	87/00	Zustandsüberprüfung von Fundationen bestehender	2000
			Kunstbauten	
			Contrôle de l'état des fondations d'ouvrages d'art existants	
545	AGB 1998/107	(94/98)	Précontrainte extérieure des ponts	2000
			Externe Vorspannung von Brücken	
546	AGB 1997/067	(88/97)	Untersuchungen zur Chloridbestimmung im Beton und	2000
			Durchführung eines 2-stufigen Ringversuchs	
			Détermination des chlorures dans le béton et organisation	
			d'un essai interlaboratoire en deux étapes	
547	AGB	83/93	Anforderungen an zementgebundene Beschichtungen	2000
			Exigences aux recouvrements à base de ciment	

Bericht-Nr.	Projekt Nr.	Alte Nr.	Titel	Datum
548	AGB	81/95	Schadensmechanismen bei der Frost-Tausalz- Beanspruchung von Beton	2000
			Mécanismes d'endommagement du béton sous l'action de	
			cycles de gel-dégel en présence de sels	
549	AGB 1999/158	(86/99)	Anwendung von Faserverbundmaterialien im Brückenbau	2001
			Sachstand mit Anwendungs- und	
			Forschungsempfehlungen	
			Utilisation de matériaux composites dans la construction	
			des ponts Rapport de synthèse avec recommandations pour l'application et la recherche	
550	AGB 1997/065	(85/97)	Applicabilité de la méthode Impact-Echo	2001
000	10011000	(00/01)	Anwendbarkeit der zerstörungsfreien Prüfmethode Impact-	2001
			Echo	
551	AGB 1999/157	(85/99)	Untersuchungstechniken im Tief- und Ingenieurbau	2000
			Techniques d'auscultation des ouvrages de génie civil	
552	AGB 1999/157	(85/99)	Techniques d'auscultation des ouvrages de génie civil	2000
			Untersuchungstechniken im Tief- und Ingenieurbau	
553	AGB 1998/100	(85/98)	Erfassung massgebender Einflussfaktoren bei	2000
			Brückenabdichtungssystemen mit Polymerbitumen-	
			Dichtungsbahnen (PBD)	
			Recensement des facteurs d'influence sur les étanchéités	
			des ponts avec les bitume-polymères (LBP)	
554	Objektbezogen	+		2001
	,		Eignung zweier Inhibitoren (MFP und Sika FerroGard-903)	
			zur Instandsetzung von chloridbelasteten Stahlbetonbauten	
			Qualification de deux inhibiteurs (MFP et Sika FerroGard-	
			903) pour la remise en état d'ouvrages en béton armé	
			contaminés par des chlorures	
555	AGB 1999/158	(86/99)	Use of Fibre Reinforced Polymers in Bridge Construction	2001
			State-of-the-Art Report with Application and Research	
			Recommendations	
556	AGB 1999/154	(81/99)	Modèle de charge (trafic 40 t) pour l'évaluation des ponts-	2001
			routes à deux voies avec trafic bidirectionnel	
			Lastmodell (40-t-Verkehr) zur Beurteilung zweispuriger	
557	AGB 1999/159	(87/99)	Strassenbrücken mit Gegenverkehr	2001
551	MOD 1999/109	(01/99)	Einsatz von epoxidharzbeschichteten Bewehrungsstählen im Betonbau	2001
			Utilisation des aciers d'armature revêtus de résine époxyde	
			dans la construction en béton	
558	AGB 2000/556	(95/00)	Utilisation d'aciers d'armature inoxydables dans les	2001
			ouvrages en béton	
			Einsatz von nichtrostenden Bewehrungsstählen im	
		1	Betonbau	
559	AGB	2001/48 3	Utilisation des bétons à hautes performances – La tranchée couverte de Champ Baly	2001
			Anwendung von Hochleistungsbeton – Der Tagbautunnel von Champ Baly	
560	AGB 1996/043	(84/96)	Modèle d'évolution de l'état des ponts-routes en béton	2001
			armé .	
			Modell für die Zustandsentwicklung von Strassenbrücken	
			aus Stahlbeton	

Bericht-Nr.	Projekt Nr.	Alte Nr.	Titel	Datum
561	AGB 1999/160	(89/99)	Auswertung der Umsetzung der Forschungsarbeiten im Bereich der Brückenforschung Evaluation de la mise en pratique des travaux de recherche dans le domaine de la recherche en matière de ponts	2001
562	AGB 1998/102	(87/98)	Brücken aus wetterfestem Stahl Ponts en acier patinable	2001
563	AGB 1997/064	(82/97)	Comportement au jeune âge du béton et limitation de la fissuration traversante des structures hybrides Betonverhalten in jungem Alter und Begrenzung der Trennrissbildung in Verbundbauteilen	2001
564	AGB 1998/105	(90/98)	Überprüfen des Korrosionsschutzes von Spanngliedern mit Kunststoffhüllrohren Contrôle non-destructif de la protection contre la corrosion des câbles de précontrainte avec gaine en matière plastique	2002
565	AGB 1999/161	(91/99)	Konstruktive Ausführung von Brückenrändern; Stand und Entwicklung Dispositions constructives des bordures de ponts; Etat des connaissances et des développements	2002
566	AGB 1999/156	(84/99)	Niveau de sécurité requis pour l'évaluation de ponts-routes existants Erforderliches Sicherheitsniveau für die Überprüfung bestehender Brücken	2002
567	AGB 2000/554	(91/00)	Ponts mixtes à construction rapide Verbundbrücken mit kurzer Bauzeit	2002
568	AGB 1998/097	(82/98)	Vergleichende Untersuchungen zum Chloridwiderstand von Betonen Etudes comparatives de la résistance aux chlorures des bétons	2002
569	AGB 1999/163	(93/99)	Beurteilung der Tragsicherheit bestehender Strassenbrücken Vorfabrizierte Spannbetonträger als einfache Balken Evaluation de la sécurité structurale des ponts-routes existants Poutres simples préfabriquées en béton précontraint	2003
570	AGB 2000/405	(81/01)	Fahrbahnübergänge aus Stahl und Brückenlager Stand der Technik Joints de chaussée en acier et appuis de ponts Etat des connaissances	2004
571	AGB 1998/104	(89/98)	Vergrösserungsfaktoren für die Wirkung von Strassenverkehr auf bestehende Brücken Coefficients d'amplification pour l'effet du trafic routier sur les ponts existants	2004
572	AGB 2000/481	(84/00)	Selbstverdichtender Beton (Teil 1) Herstellung, Anwendung und Dauerhaftigkeit von selbstverdichtendem Beton Béton autocompactant (partie 1) Fabrication, utilsation et durabilité du béton autocompactant	2004

Bericht-Nr.	Projekt Nr.	Alte Nr.	Titel	Datum
573	AGB 1998/106		Langzeitverhalten von Abdichtungssystemen für Tagbautunnel (LABSY—TBT) Zur Frage der Dichtheit von Tagbautunneln Eine Untersuchung an 63 Objekten eingeteilt nach der Materialkategorie des Abdichtungssystems	2004
	AGB 1998/202		Le comportement à long terme des systèmes d'étanchéité de tranchées couvertes (LABSY—TBT) La question de l'étanchéité des tranchées couvertes Une étude portant sur 63 objects classifiés selon les matériaux employés pour le système d'étanchéité	
574	AGB 2000/428	(93/00)	Zerstörungsfreie Untersuchung grosser Stahlseile bei Schrägseilbrücken Inspection non destructive de câbles d'acier de grand diamètre pour ponts haubanés	2004
575	AGB 1998/098	(83/98)	Hydrophobierung von Stahlbetonbauwerken Traitement de structures en béton armé avec des produits hydrofuges	2004
576	AGB 2000/398	(81/00)	Selbstverdichtender Beton (Teil 2) Optimieren der Eigenschaften des selbsverdichtenden Betons Béton autocompactant (partie 2) Optimisation des propriétés du béton autocompactant	2004
577	AGB 2001/477		Schädigungsmechanismen beim Aufflämmen von Polymer—Dichtungsbahnen Mécanisme d'endommagement lors de la pose des lés d'étanchéité de bitume Polymère par soudage à la flamme	2004
578	AGB 1998/103	(88/98)	Ermüdungsbemessung von Brücken mit geschweissten kreisförmigen Hohlprofilverbindungen Etude de la fatique des ponts avec noeuds tubulaires soudés	2004
579	AGB 1995/001		Fahrbahnübergänge aus Polymerbitumen Einbau und Langzeiterfassung am Objekt Joints de chaussée en bitume—polymère Installation et suivi du comportement à long terme	2005
580	AGB 2001/475		Effets de la température dans le dimensionnement des ponts Einflüsse der Temperatur auf die Bemessung von Brücken	2005
581	AGB 1996/042	(82/96)	Online-Monitoring zur Erfassung der Korrosion der Bewehrung von Stahlbetonbauten Exposition, Transportzone und Korrosionsgeschwindigkeit Surveillance automatique de la corrosion des armatures dans les structure en béton armé	2004
582	AGB 2000/553	(90/00)	Zuverlässigkeit und Genauigkeit von Georadar- Ergebnissen auf Betonbrücken Détermination de la précision et de la fiabilité des mesures par radar sur les ponts	2005
583	AGB 2001/488		Teilhaftverbund Eine neue Technik im Verbundbrückenbau Adhérance partielle Une nouvelle technique pour la construction de ponts mixtes	2005

Bericht-Nr.	Projekt Nr.	Alte Nr.	Titel	Datum
584	AGB 2002/030		Tragverhalten von Kunstbauten mit Alkali-Aggregat- Reaktion (AAR) Sachstandbericht	2005
			Comportement structural des ouvrages d'art en béton armé	
			soumis à la réaction alcali-granulat (RAG) Rapport sur	
			l'etat des connaissances	
585	AGB 2001/481		Elektrisch isolierte Spannglieder: Einsatz in Gegenden mit Streuströmen und Lokalisierung von Kurzschlüssen und	2005
			Fehlstellen	
			Câbles de précontrainte isolés électriquement: Utilisation	
			dans des zones de courants vagabonds et localisation des	
586	AGB 2001/479 u.		courts-circuits et défauts Adhesive Bond between Fiber.Reinforcef Polymer Bridge	2005
300	AGB 2001/479 u.		Decks and Steel Girders	2005
			Klebeverbund zwischen FRP-Fahrbahnplatten und	
			Stahlträgern	
			Adhérence par collage entre tabliers de ponts en matériaux	
			composites et poutres en acier	
587	AGB 2000/173	(88/00)	Dauerhafte Kunstbauten bei geringem Unterhalt-	2005
			Ausgewählte Kapitel	
			Ouvrage d'art durables à faible entretien - Chapitres	
588	AGB 2000/470		choisis	2005
000	AOD 2000/470		Spannglieder, Schrägseile und Anker - Beschreibung der	2000
			Systeme und Erkenntnisse aus Korrrossionsschäden	
			Câbles de précontrainte, haubans et tirants d'ancrage -	
			Description des systèmes et leçons tirées des dégâts dus	
			à la corrosion	
589	AGB 1994/018	81/94	Chlorinduzierte Korrosion von Stahl in Beton-	2005
			Einfluss von Temperaturen und elektrischem Betonwiederstand	
			Corrosion des aciers dans le béton due aux chlorures -	
			Effet de la température et de la résistance électrique du	
			béton	
590	AGB 2001/090	90/01	Renforcement de piles de ponts contre l'impact de	2005
			véhicules lourds	
			Essais sur des colonnes en béton renforcées par des	
			tissus en aramide.	
			Verstärkung von Brückenpfeilern gegen den Aufprall von	
			Lastfahrzeugen Versuche an Stahlberon-Stützen verstärkt durch Gelege	
			aus Aramid.	
591	AGB 2002/029		Hydrophobieren von Betonoberflächen -	2005
			Empfehlungen für Planung und Applikation	
			Traitement de la surface des structures en béton -	
			Recommandations pour la planification et l'exécution	
592	AGB 2002/011		A Probalistic study of fatigue in post-weld	2006
			treated tubular bridge structures	
593	AGB 1999/155	 	Une étude probabiliste de la fatique des ponts tubulaires Spannsystem für CFK-Lamellen	2006
383	VOD 1999/199		Système de précontrainte pour bandes en PRFC	2000
594	AGB 2002/005	 	Evaluation de ponts routiers existants avec un modèle	2006
			de charge de trafic actualisé	2000
			Überprüfung bestehender Strassenbrücken mit	
	1		aktualisierten Strassenlasten	

Bericht-Nr.	Projekt Nr.	Alte Nr.	Titel	Datum
595	AGB 2003/013		Suizidprävention bei Brücken: Grundlagen	2006
			Prévention des suicides sur les ponts: données de base	
596	AGB 2002/033		Untersuchung der Wirkung unterschiedlicher	2006
			Oberflächenschutzkonzepte	
			Etude de l'effet de différents systèmes de protection de	
			surface	
597	AGB 1998/201		Erfassung massgebender Einflussfaktoren bei	2006
			Brückenabdichtungssystemen mit Bitumenbahnen	
			Laboruntersuchungen	
			Détermination des facteurs d'influence décisifs	
			sur les systèmes d'étanchéitié de ponts en lés de	
			bitume-polymère, Essai de Laboratoire	
598	AGB 2002/022		Brückenabdichtungen mit Flüssigkunststoff	2006
			Sachstandbericht	
			Systèmes d'étanchéité de ponts en polymères liquides	
			Rapport sur l'état des connaissances	
599	AGB 2001/471		Schaden durch Alkali-Aggregat-Reaktion an	2006
			Betonbauten in der Schweiz	
			Dégâts dus à la réaction alcali-granulats dans les	
			ouvrages en béton en Suisse	
600 AGB 2002/031	AGB 2002/031		Massnahmen zur Durchsetzung der Qualitätsanforde-	2006
			rungen bei Kunstbauten (Bau, Erhaltung)	
			Mesures destinées à mettre en oeuvre les exigences	
			de qualité pour les ouvrages d'art	
			(nouvelles constructions, conservation).	
601	AGB 2001/472		Remplacement de ponts sous trafic	2006
			Brücknersatz unter Verkehr	
602	AGB 2001/485		Laboruntersuchungen an fünf ausgebauten	2006
			Trägern der Autobahnbrücke	
			"Viadotto delle Cantine a Capolago"	
			Etude expérimentale de cinq poutres prélevées sur le	
			pont autoroutier "Viadotto delle Cantine a Capolago"	
603	AGB 2002/015		Risiko von Betonabplatzungen infolge	2006
			Bewehrungskorrosion	
			Risque d'éclatements du béton dû à la corrosion de	
			l'armature	
604	AGB 2002/003		Luftpermeabilität als Kenngrösse für die Qualität des	2006
			Überdeckungsbetons von Betonwerken	
			Perméabilité à l'air en tant que paramètre caractéristique	
			de la qualité du béton d'enrobage des ouvrages en	
			béton	
605	AGB 2000/401		Comportement, Calcul et dimensionnement des	2006
			tranchées couvertes	
			Verhalten, Berechnung und Bemessung von	
			Tagbautunneln	
606	AGB 2001/486		Résistance à l'effort tranchant des poutres	2006
			précontraintes à âme mince	
			Querkraftwiderstand von vorgespannten Trägern mit	
			dünnen Stegen	

Bericht-Nr.	Projekt Nr.	Alte Nr.	Titel	Datum
607	AGB 2003/017		Evaluation des systèmes existants pour le suivi à long	2006
			terme des déformations des ponts	
			Beurteilung bestehender Messsysteme für die Langzeit-	
			erfassung der Verformungen von Brücken	
608	AGB 1998/101		Zustandserfassung von Brücken bei deren Abbruch	2006
			(ZEBRA)	
			Evaluation de l'état de ponts pendant leur démolition	
			(ZEBRA)	
609	AGB 2002/009		Feldversuche mit dem akustischen Überwachungssystem	2007
			Essai in situ avec le système de surveillance acoustique	
			SoundPrint	
610	AGB 2005/025		Instandsetzung von Galerien - Wirkung und Wirksamkeit	2007
			der ergriffenen Massnahmen	
			Remise en état de galeries - effet et efficacité des mesures	
			réalisées	
611	AGB 2002/027		Streuung der Betoneigenschaften in Bauwerken	2006
			Variabilité des caractéristiques du béton dans les	
			ouvrages	
612	AGB 2001/489		Permanente, vorgespannte Boden- und Felsanker:	2007
			Fluktuationen des eletrischen Widerstands	
			Tirants d'ancrage précontraints en sol et en rocher:	
			Fluctuations de la résistance electrique	
613	AGB 1997/068 +		Experimentelle Untersuchung der Lawinenkräfte auf	2007
	AGB 2001/480		Galeriedächer	
			Recherche expérimentale sur les forces d'avalanches	
			agissant sur les galeries de protection	
614	AGB 2002/026		Temporärer Korrosionsschutz von Spanngliedern	2007
			(TEKplus) - Wissenschaftlich, technische Begleitung	
			der Umsetzung in die Praxis	
			Protection temporaire des câbles de précontrainte	
			contre la corrosion (TEKplus) - documentation scientifique et technique de la tranposition à la	
			pratique	
615	AGB 2002/004		Betoneigenschaften nach SN EN 206-1	2007
013	AGB 2002/004		Propriétés de Béton selon SN EN 206-1	2001
616	AGB 2002/020		Beurteilung von Risiken und Kriterien zur Festlegung	2009
0.0	7100 2002/020		akzeptierter Risiken in Folge aussergewöhnlicher	2000
			Einwirkungen bei Kunstbauten	
			Appréciation et critères d'acceptation des risques dus	
			aux actions extraordinaires pour les ouvrages d'art	
627	AGB 2002/002		Eigenschaften von normalbreiten und überbreiten	2008
			Fahrbahnübergängen aus Polymerbitumen nach	
			starker Verkehrsbelastung	
			Caractéristiques des joints de chaussée en bitume-	
			polymère de largeur normale et de grande largeur après	
			forte sollicitation par le trafic	
628	AGB 2005/026		Massnahmen gegen chloridinduzierte Korrosion	2008
			und zur Erhöhung der Dauerhaftigkeit	
			Mesures contre la corrosion induite par les chlorures	
			pour augmenter la durabilité	
629	AGB 2003/001 &		Integrale Brücken- Sachstandsbericht	2008
	AGB 2005/019		Ponts à culée intégrée	

Bericht-Nr.	Projekt Nr.	Alte Nr.	Titel	Datum
631	AGB 2000/555		Applications structurales du Béton Fibré à Ultra-Hautes	2008
			Performances aux ponts	
			Anwendungen von Ultra-Hochleistung Faserbeton im	
			Brückenbau	
633	AGB 2002/014		Oberflächenschutzsysteme für Betontragwerke	2008
			Systèmes de protection de surface pour les structures	
			en béton	
			Untersuchungen zur Potentialfeldmessung an Stahlbeton-	
634	AGB 2002/007			2008
			bauten	
			Recherches relatives à la mesure de potentiel sur des structures en béton armé	
635	AGB 2004/002	<u> </u>	Applicabilité de l'enrobé drainant sur les ouvrages d'art	2008
635	AGB 2004/002		du réseau des routes nationales	2008
			Anwendbarkeit von offenporigen Asphaltdeckschichten	
			auf Kunstbauten des nationalen Strassennetzes	
636	AGB 2002/028		Dimensionnement et vérification des dalles de roulement	2009
			des ponts routiers	
			Bemessung und Nachweis der Fahrbahnplatten	
			von Strassenbrücken	
637	AGB 2005/009		Détermination de la présence de chlorures à l'aide du	2009
			géoradar	
			Géoradar zur Auffindung von Chloriden	