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Exercise #9: Eigenvalue analysis 
 
Problem 1 
 
For the two-storey shear building shown in Figure 1.1, determine the following: 
 

1. The mass and stiffness matrices of the building. 
2. Determine the natural vibration frequencies and modes. Express the frequencies in 

terms of 𝑚, 𝐸𝐼, and ℎ. 
3. Verify that the modes satisfy the orthogonality properties. 
4. Normalize each mode so that the roof displacement is unity. Sketch the modes and 

identify the associated natural frequencies. 
5. Normalize each mode so that the modal mass Mn has unit value. Compare these 

modes with those obtained in part (4) and comment on the differences. 

 
 

Figure 1.1 
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Solution 
 
Question 1: 
 
Determine the mass matrix:  
 
Apply 𝑢̈! = 1, 𝑢̈" = 0 
 
Therefore, from the figure below, 𝑚!! = 𝑚 and 𝑚"! = 0 

 
 

Apply 𝑢̈" = 1, 𝑢̈! = 0 
 
Therefore, from the figure below, 𝑚"" =

#
"

 and 𝑚!" = 0 

 
Therefore, the mass matrix is as follows: 
 

𝐦 = 𝑚 ,1 0
0 0.5/ 

 
Concerning the stiffness matrix: 
 
The storey stiffness is as follows: 
 

𝑘 = 22
12𝐸𝐼
ℎ$ 3 =

24𝐸𝐼
ℎ$  

 
Apply 𝑢! = 1, 𝑢" = 0 and determine 𝑘%! 
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Apply 𝑢" = 1, 𝑢! = 0 and determine 𝑘%" 

 
Therefore, the stiffness matrix is as follows: 
 

𝑘 = 𝑘 , 2 −1
−1 1 / =

24𝐸𝐼
ℎ$ , 2 −1

−1 1 / 
 
Question 2: 
 
Determine the natural frequencies and modes: 
 

det[𝐤 − 𝜔&"𝐦] = 0 ⟹ 
 

det >𝑘 , 2 −1
−1 1 / − 𝜔&

"𝑚 ,1 0
0 0.5/? = 0 ⟹ 

 

det 2@2𝑘 − 𝜔&
"𝑚 −𝑘

−𝑘 𝑘 − 0.5𝜔&"𝑚
A3 = 0 ⟹ 

 
2𝑘" − 2𝑘𝑚𝜔&" + 0.5𝑚"𝜔&' − 𝑘" = 0 ⟹ 

 
𝑘" − 2𝑘𝑚𝜔&" + 0.5𝑚"𝜔&' = 0 ⟹ 

 

𝜔&" =
𝑘
𝑚 C2 ± √2F ⟹ 

 

𝜔! = 0.765I
𝑘
𝑚,				𝜔" = 1.848I

𝑘
𝑚 

 
First mode: 
 

[𝐤 − 𝜔!"𝐦]𝜙! = 𝟎 
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𝑘 N√2 −1
−1 1 √2⁄

P Q𝜙!!𝜙"!
R = S00T 

 
Select, 𝜙!! = 1 ⟹ 𝜙"! = √2 
 

𝜙! = Q 1
√2
R 

 
Second Mode: 
 

[𝐤 − 𝜔""𝐦]𝜙" = 𝟎 
 

𝑘 N−√2 −1
−1 −1 √2⁄

P Q𝜙!"𝜙""
R = S00T 

 
Select, 𝜙!" = 1 ⟹ 𝜙"! = −√2 
 

𝜙" = Q 1
−√2

R 
 
Question 3: 
 
Verify orthogonality of modes: 
 

𝜙!(𝐦𝜙" = 〈1 √2〉 ∙ 𝑚 ∙ X
1 0

0
1
2
Y ∙ Q 1

−√2
R = 𝑚〈1 √2〉 ∙ Q

1
−√2

R = 0 

 

𝜙!(𝐤𝜙" = 〈1 √2〉 ∙ 𝑘 ∙ ,
2 −1
−1 1 / ∙ Q

1
−√2

R = 𝑘〈1 √2〉 ∙ Q
2 + √2
−1 − √2

R = 0 

 
Question 4: 
 
Normalize modes to unit value at roof 
 

𝜙! = Q1/√2
1

R and 𝜙" = Q−1/√2
1

R 

 
Therefore, 
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Question 5: 
 
Normalize modes so that 𝑀& = 1. 
 

𝑀! = 𝜙!(𝐦𝜙! = 〈1 √2〉 ∙ 𝑚 ∙ X
1 0

0
1
2
Y ∙ Q 1

√2
R = 2𝑚 

 

𝑀" = 𝜙"(𝐦𝜙" = 〈1 −√2〉 ∙ 𝑚 ∙ X
1 0

0
1
2
Y ∙ Q 1

−√2
R = 2𝑚 

 
Divide 𝜙! from Question 2 by √2𝑚 and 𝜙" from Question 2 by √2𝑚 to obtain the 
normalized modes: 
 

𝜙! =
1
√𝑚

Q1/√2
1

R , 			𝜙" =
1
√𝑚

Q1/√2
−1

R 

 
These modes differ from these obtained in Question 4, only by a scale factor; the shapes of 
the two sets of modes are the same. 


