EPFL

Laboratoire des Structures Métalliques Résilientes RESSLab

Téléphone: +41 21 693 24 27
Fax: +41 21 693 28 68
E-mail: dimitrios.lignos@epfl.ch
Site web: http://resslab.epfl.ch
Address: EPFL ENAC IIC RESSLAB
GC B3 485, Station 18,
CH-1015, Lausanne

Exercise #6: Inelastic SDF systems and their seismic design for ductility

Problem 1

Consider a long reinforced-concrete bridge. The total weight of the superstructure, $20,000 \, kg/m$, is supported on identical bents $10 \, m$ high, uniformly spaced at $40 \, m$. Each bent consists of a single circular column $1.5 \, m$ in diameter (see Fig. 1.1). The anticipated period of a bridge bent is, $T_n = 1 \, s$. Design the longitudinal reinforcement ratio, ρ_t , of the column under the El Centro ground motion (see Fig. 1.2 the response spectra) for 2% damping ratio for the following two cases:

- 1. to remain elastic; and
- 2. for an allowable ductility factor of $\mu = 5$ (assume, $R_{\nu} = \mu = 5$)
- 3. For the reinforcement ratio, ρ_t you estimated check if the bridge bent will exceed a maximum inelastic displacement of $u_m = 500mm$.

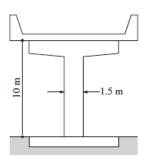


Figure 1.1

Notes:

a) A simplified formula for calculating the flexural resistance of a circular column pier is as follows:

$$M_{Rd} = \frac{2}{3}r^3 \sin^3 \theta \, f'_{cd} + \frac{2}{\pi}(r-c)A_s \sin\theta f_{yd}$$

r: radius of column bent cross section.

 $f'_{cd} = 30MPa; f_{vd} = 420MPa$

c: concrete cover (assume 50mm in this case)

 θ : is the angle defining the extension of compression zone (assume $26^{\circ} \cong \pi/7$ in this case)

 A_s : is the steel reinforcement area.

The longitudinal steel reinforcement ratio can be calculated as follows, $\rho_t = \frac{A_s f_{yd}}{\pi r^2 f_{cd}'}$

b) According to ACI-318-05, the effective stiffness *EI* for circular columns under lateral load is given by,

$$EI = E_c I_g \left(0.2 + 2\rho_t \gamma^2 \frac{E_s}{E_c} \right)$$

Where:

 I_g is the second moment of area of the gross cross section;

 E_c and E_s are the elastic moduli of concrete and reinforcing steel, respectively; assume $E_c = 30GPa$ and $E_s = 200GPa$;

 ρ_t is the longitudinal reinforcement ratio;

 γ is the ratio of the distances from the center of the column to the center of the outermost reinforcing bars and to the column edge; assume $\gamma = 0.9$ for this problem.

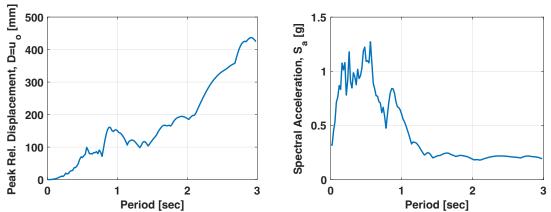


Figure 1.2 response spectra for ElCentro ground motion (2% damping ratio)