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=PFL  Objectives of today’s lecture

= To introduce:

* |terative techniques to solve systems of nonlinear equations
 Incremental approach to equilibrium
 Load-displacement constraint methods:

— Load control

— Displacement control
— Arc-length control
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ePFL  Motivation

* Finite element equilibrium equation for static (linear) analysis:

Foxt = Kstructure * V

= When considering geometric (and material) nonlinearities, the stiffness K
becomes a function of the displacements v of the structure. When considering
nonlinearities, the equilibrium equation for static analysis is written,

Foxt = Kstructure (v) v

= We need an iterative solution procedure to solve the equilibrium equations

= The imposed external forces and/or displacement are applied incrementally
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=PFL  Nonlinear equilibrium equations

= The basic problem in a general nonlinear analysis is to find the state of equilibrium of a
body corresponding to the applied loads. If the externally loads are applied incrementally,
the equilibrium condition of a system can be formulated as follows:

unb = Funp (V") = Fipe (V) — Flly = 0

Where the superscript n referrers to the load step and F,, denotes the unbalanced load
vector

= The response calculations are performed incrementally by dividing the total applied load
or displacement into several increments

= In an incremental solution, it is assumed that the solution for the step n — 1 is known and
that the solution for the step n is required

= This equilibrium condition can be solved using different iterative solution techniques
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=PFL  Newton-Raphson scheme

= The most frequently used scheme for the solution of nonlinear equations is the Newton-
Raphson iteration. The equilibrium condition of the system at the step n is given by

Ftrtlnb = Funp ") = Fint(vn) — Fénxt =0
= Assume that in the iterative solution, the quantity v**~1is known. The superscript i is the
iteration counter for the Newton-Raphson scheme, and is initialized with v™! = v"*~1,

where v™*~1 denotes the previous converged step

= Using a Taylor series expansion and neglecting the higher-order terms gives

. JdF .
n ny ~ gn n,i-1 unb ol _ oni-1Y) —
Funp (v = Funb (V ) + ov . (V v ) =0
Vn,l—l
With
OFyunp _ OFin¢ ni-1) — gni-1 n
ov  lyni-1 v yi-1 and Funp (V ) o Fint — Fext

Here, the external loads are assumed to be deformation independent
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EPFL  Newton-Raphson scheme (2)

= The Taylor series expansion can be rewritten as

aFint
ov

\"

n ni-1y — gn _ gpni-1
'(V -V )_Fext Fint

n,i—-1
= Therefore, the increment in displacement Av' = v* — v™»'~1can be computed by solving

i-1 - i
K?t;‘uctureAvl — F(;lxt - FZ;; ! (1)
Where K-t -1 is the current tangent stiffness matrix of the structure
) aFint
Kn,l—l

structure = aV

n,i—1

= Equation (1) can be solved using various classic approaches from linear algebra to handle
systems of equations of the form Ax = b (Gaussian elimination, LU decomposition, Cholesky
decomposition, iterative methods like the Jacobi, Gauss-Seidel, Conjugate Gradient methods)
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tPFL  Newton-Raphson scheme (3)
= Finally, the displacement at iteration i is given by
vl = yui—1 L Ayt

= At the first iteration of the Newton-Raphson iterative procedure, the following quantities are
initialized:

n,1 _ pn-1 n1l _ gn—1 nil _ on-1
Kstructure - Kstructurea Fint — Fint and v =V

= The iterations are carried out until appropriate convergence criteria (discussed later) are
satisfied
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EPFL  Newton-Raphson scheme (4)

= for a single degree of freedom system:

Load , Slope
Kn,l
strugture
n
Fext
n n,1
Foxe — Fint g

n—1.
Fext
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Fext —F

int

Slope
Kn,l

Sstructure

o
Displacement



EPFL  Newton-Raphson scheme (5)

= The following flow chart summarizes the process of the solution for the structure state determination

Load increment n Next load increment
A
A
i = 1set AFL;t = AF,, Bl = FlL 2,
n,1 — -1 1 — -
Kstructure - K?tructure and Vn 1= Vn !
ni _ _pni-1
: v‘. Set AFext - unb
Solve AFgye = Kifycture AV i
For all elements: element state determination
v i+1 n+1
Assemble new structure tangent stiffness matrix 4 4
n,i Pt n,i
K¢iructure @nd structure resisting force vector F,;
A\ 4
Compute structure unbalanced force vector F,};, = F;; — Fit,
Newton-Raphson procedure has converged? » No
Yes
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=PFL  Newton-Raphson scheme

If the current solution iterate (v, F;‘x‘t) is sufficiently close to the solution (v, F7,;) and if
the consistent tangent stiffness matrix does not change abruptly, the convergence of the

Newton-Raphson scheme is quadratic

Quadratic convergence is guaranteed if the exact consistent tangent stiffness matrix is
used. This requires that
Kn,i—l B aFlnt

structure aV

VTL,l—l

If the current solution iterate (v”"',F;;"t) is not sufficiently close to the solution (v", FZ;
and/or if the tangent stiffness matrix is not consistent and/or changes abruptly, the

Newton-Raphson scheme may diverge

In an effective finite element program, the exact tangent stiffness matrix will be used, if
possible; hence, the primary procedure for reaching convergence (if convergence
difficulties are encountered) is to decrease the magnitude of the load step
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EPFL  Modified Newton scheme

= In the Newton-Raphson iteration, the major computational cost per iteration is the calculation and
factorization of the tangent stiffness matrix. Since these calculations can be expensive for large-order
systems, the use of a modification of the full Newton-Raphson algorithm can be effective

=  One modification could be to use the initial stiffness matrix Kl,,-,cture t0 SOIVe

_ Fn,i—l

1 i —§n
KstructureAV: = Fgxt int

In this case, only the initial stiffness matrix K}.,.,.wure N€€ds to be computed and factorized, thus avoiding
the computational cost of recomputing and factorizing the structure stiffness matrix

= Another approach could be to use a stiffness matrix K%, cture 10 SOIve
n,i-1

n* i _n
KstructureAv - Fext - Fint

Where K%, cture iS Updated only at several converged steps n* (for example n* = 1,5,10,20 ...)
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=PFL  Modified Newton scheme (2)

= The following figure illustrates the process of the solution when used for a single degree of freedom
system. In this example the initial structure tangent stiffness matrix KL, cwure is Used to iterate

F*, —F"3
LoadA Slope ext int
1 n n,2
o B U8t
n
Fext /
n n,1
F2. — F _Slope
Kl
structure
n—-14 ...
Fext
______________ - 3
N Av
n—1 . >
v vt Displacement

ol RESSLab

Iterative Techniques for Nonlinear Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL



=PFL  Example: Newton schemes

= For a single degree of freedom system, consider the following load step n = 2, with:
F52 =10, Fl', = 4+ 2Jvtand v™=1 = 1
Compare the Newton-Raphson and the modified Newton with initial tangent to compute v™=?2

= At each iteration i of the Newton schemes, the tangent stiffness matrix is given by
oFt 1

Kn,i _ int _

structure — Jpmni - ’_vn,i

= The iterations of the Newton schemes are obtained by solving

. _ . 1 . .
kvl Avt=FR, — FMT o Avt =10 — 4 — 24/t

structure int W
And
vn,i — vn,i—l 4+ Avi
And using K™~ = L for the Newton-Raphson iterati d K1 =gl =
n usmg structure — : or e Newion- ap son 1terations an structure — “‘structure —

Joni-1
the modified Newton with initial tangent
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EPFL  Example: Newton schemes (2)

= The following quantities are initialized for the first iteration of the Newton schemes:

21 — .1 2,1
v =V = 1’ Kstructure

=1and F>! =4+ 2\v21 =6

int

= The table summarizes the iterations of both iterative schemes

Newton-Raphson Modified Newton (Initial tangent)

Kszt':;(l:ture F, ezxt —F i%if:_l v2,i Kszt’;;(l:ture F, ezxt —F ii’i_l vZ,i
=2 1.00 4 5 1.00 4 5
i=3 0.45 1.53 8.42 1.00 1.53 6.53
i =4 0.34 0.20 8.99 1.00 0.89 7.42
i=5 0.33 0.00 9.00 1.00 0.55 7.97
i=6 0.33 0.00 9.00 1.00 0.35 8.32
=19 0.33 0.00 9.00 1.00 0.00 9.00
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EPFL  Example: Newton schemes (3)

= The Newton-Raphson scheme converges in 4 iterations
= The modified Newton scheme with the initial tangent converges in 18 iterations

= Slower convergence rate; no need to compute the consistent tangent stiffness at every iteration
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=PFL  The Broyden-Fletcher-Goldfarb-Shanno method

= The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is a particular instance of quasi-Newton
methods (known as matrix update methods). These involve updating the coefficient matrix (i.e.,
its inverse) to provide a secant approximation to the stiffness matrix from iterationi — 1to i

= Step 1: Evaluate a displacement vector increment

87 = (Kifatare) (Flie = F
This displacement vector defines a ‘direction’ for the actual displacement vector
= Step 2: Perform a line search in the direction Av to satisfy ‘equilibrium’ in this direction. For this
line search, the following displacement vector is evaluated:

vivt = yitl 4 BAY

Where f is a scalar multiplier determined by the line search. The unbalanced loads corresponding
to this displacement vector (FZ, — F/}) are computed

= RESSLab Iterative Techniques for Nonlinear Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL 16



EPFL  The Broyden-Fletcher-Goldfarb-Shanno method (2)

= The parameter f is varied until the unbalanced loads in the direction Av, as defined by the inner

product A\‘I(ngt — Fl’,ll;) is small. This condition is satisfied when, for a convergence tolerance tol, the

following equation is satisfied:
AV(Fgye — Fiye) < tol - AV(Fg — Fine

The final value of v’ is obtained for the S for which this condition is satisfied. The following quantities are
then computed:

i — yni _ yni—-1 i —gphi _ pni-1
St=v % andy*=F,,, —F..

The variation of the parameter g (i.e. the line search) can be performed using different approaches such as
the bisection method. This step is not mandatory and 8 can be set to 1 and no line search is performed

= Step 3: The coefficient matrix is updated using

. -1 T . -1 .
(K?g‘ucture - (Al) (K?g‘u%:ture) A’

With
Al =1+ vi(wi)T
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EPFL  The Broyden-Fletcher-Goldfarb-Shanno method (3)

= The vectors v! and w! are computed from the known nodal point forces and displacements using

T .
. (89) v - S
vi=— ( n,i—1 ) K?g”ucturesl —-Y'

(8 i)TKstructuresl
And
. 8!
l = T T
VT BTy

= The line search approach presented for the BFGS method could also be used in the Newton-Raphson
and modified Newton approaches

= With the line search performed within an iteration i, the expense of the iteration increases, but fewer
iterations may be needed for convergence. Also, the line search may prevent divergence of the

iterations, and in practice, this increased robustness is the major reason why a line search can be
effective
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EPFL  Example: The BFGS Method

= Let’s consider the previous example: for a single degree of freedom system, assume the following load
step n = 2, with:

FI52 =10, Fl, =4+ 2Jv" and v™*"1 = 1

Perform the iteration of the BFGS method to compute v™*=2. Omit the line searches in the solution (i.e., use

B =1)
= The iterations of the BFGS scheme are obtained by solving

pt = piTl 4 AP
With

-1

a -1 . 1 |
Av = (Kg:,?l”uéture) (Fergct - Firyl{z Y= <W> (10 — 4 — 2\/an1_1 ,
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EPFL  Example: The BFGS Method

= The following quantities are initialized for the first iteration of the BFGS scheme:

v2l =yt =1, K2 =1land F} =4+ 2Vv21 =6

» rstructure int

= The table below summarizes the iterations of the BFGS scheme:

i e Y )
2 1.00 4.00 5.00 2.47 1.62
3 5.00 2.47 7.47 0.99 2.48
4 7.47 1.32 8.80 0.45 2.85
S 8.80 0.19 8.99 0.06 2.98
6 8.99 0.01 9.00 0.00 3.00

= Convergence is achieved after 5 iterations
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£PFL  Convergence criteria

= The iterative schemes are performed until a convergence criterion is satisfied. Typically, this criterion is
satisfied when a certain quantity g reaches a predefined threshold. Mathematically,

g < tol
Where tol is an arbitrary tolerance value

= The following quantities are typically used to assess convergence at an iteration i:

+ The norm of the unbalanced force: ||F%; — F/i|| < tol

[[pee—ri |

 The relative norm of the unbalanced force: < tol

ext

»  The norm of the displacement increment: ||Av™!|| < tol

lav™|

« The relative norm of the displacement increment: e S tol
« The energy increment: (Av"‘) (F2 — FI'Y) < tol
« The relative energy increment: (v ) < tol

( n_l)T(F xt)
« Fixed number of iterations: A predetermined number of iterations are performed, after which the
final state is assumed to be converged. This approach does not guarantee convergence
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=PFL  Load-Displacement-Constraint methods

Load i
Softening response
—>
\ }\
Load increments
should be smaller
)  _
Load increments can be large Displacement

= To compute the load-displacement response, initially relatively large load increments can be used, but
as the peak load is approached, the load increments shall be smaller

= At the peak point, the stiffness matrix is singular (i.e., the slope of the load-displacement curve is zero)

= |n the softening path of the load-displacement curve, a special solution procedure is required which
allows for a decrease in load. An increase in displacement shall be used in this case
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=PFL  Load-Displacement-Constraint methods (2)

= For this purpose, a load-displacement-constraint method can be used

= The idea is to introduce a load multiplier that increases (or decreases) the intensity of the applied
loads, to obtain fast convergence per load step, to traverse the peak point and evaluate the softening
response

= A basic assumption is that the load vector varies proportionally during the response calculation. With
this assumption, the governing equation at a load step n is given by

Fl?;th - AnFext =0
Where,
« A"is a scalar load multiplier, unknown (to be determined);

- F,, is the reference load vector for the nDOFs degrees of freedom of the finite element model;
F/} . is the usual structure resisting force vector.

NOTE: The value of the load multiplier can increase or decrease, and the increment per step should in
general also change, depending on the structural response characteristics
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tPFL  Load-Displacement-Constraint methods (3)
= |n an incremental-iterative procedure, the loads and displacements are updated by adding the
incremental changes from the current iteration to the values obtained in the previous converged step
(n—1):
Vn,i — vn—l + Avn,i

Five = Fiig' + AFL;

= On each iteration i for an increment n, the incremental updates are computed by adding the contribution
of the previous iteration and the iterative updates at the current iteration:
Avt = Ay 4 Sy
i i1 ;

AFpy = AFgy + 0Fey

= The unbalanced force vector is then given by
| Ry = Bt — (Bl + ART)

Where the internal force F};;; corresponds to a displacement (v~ + Av™?)

= Finally, the equilibrium equation to be solved at the it" iteration of the n" increment is given by

n,i—1 ni — ghi _ gni-1 _
Kstructure(‘;V - Fext Fint

Where the stiffness matrix K?gﬂ;ﬁturecorresponds to the solution schemes previously discussed
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=PFL  Load-Displacement-Constraint methods (4)

= Introducing the load multiplier 2 and the reference load vector F,,;, the governing equations are
rewritten:

L., = ng_tl + AFen)’cl;:_l + 6/1n'iFext

ext —
n,i—1 ni — _phi-1 nig
Kstructuresv - Funb + 64 FBXt

= The unknowns are the vector of displacement increments §v™! and the load multiplier increment §A™*.
This system of equation represents nDOFs equations and nDOFs + 1 unknowns. Therefore, an
additional equation is required to solve the system

= The additional equation is a constraint equation between §v™! and §1™! of the form

(an,i)T5vn,i 4 prigqni — oni

Where a™!, b™ andc™ are parameters to be defined later depending on the control method (load,
displacement or arc-length control)
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EPFL  Load-Displacement-Constraint methods (5)

= The system can be written as follows:
n,i—1 ni _ nig — _rhi-1
Kstructuresv 64 Fext = Funb

(an,i)T5vn,i 4 prigont = cni

= And the system can be written in a matrix form,

n,i—1 = :
) . . _1
Kstructure Fext] SV"J] _ [Fn’l ]

T ) unb
(an,i) pmni AL n,i

—C
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EPFL  Load-Displacement-Constraint methods (6)

= The system of equations,

n,i—1 = . i
Kstructure —Fext 5 VTl,l] . [Fﬁ,’llb 1]

\T , n,i - .

(an,L) pmut Yy —c™t

can be solved using the iterative schemes discussed previously. However, this approach may not be
optimal because the augmented stiffness matrix on the left-hand side is neither symmetric nor banded,
unlike the original structure stiffness matrix. This increases the computational cost associated with storing
and inverting the matrix
= Another approach to solve the same system is as follows:

= From the first equation of the linear system:

. . _ . . . . -1 _ . -
Ko raetureOVY — Fore AV = —Fioi ™t = 6V = (Kiorure)  (FextSA™ — Bt

structure unb structure unb
5 ni_ (Kn,i—l )_1F and & ni __ _(Kn,i—l )_1Fn,i—1
Vp - structure ext Vi = structure unb

= We can now decompose the displacement iteration update as follows:
SV = A vyt 4 Svyt
sA™ is computed from the constraint equation after substituting sv™* with the expression above
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=PrL

Load-Displacement-Constraint methods (7)

The iterative update in the load multiplier is then computed by solving the constraint equation:

ci—(al) syl

A =

(an'i)TSVZ}‘i+bn'i

The benefit of using this approach is that at each iteration, the Jacobian of the problem corresponds to

ni—1

the stiffness matrix K/,..,--.re» Which is banded and symmetric, enabling the use of optimized solvers
when inverting and storing the matrix when solving for the unknown displacements

NOTE: from linear algebra, a banded matrix is a sparse
matrix whose non-zero entries are confined to a diagonal
band, comprising the main diagonal and zero or more
diagonals on either side

Iterative Techniques for Nonlinear Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL
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EPFL  Load-Displacement-Constraint methods (8)

= The flow chart gives the solution process for the general load-displacement constraint methods

Incrementn [« Next increment
A
i = Liset A=t = L FLt = Bt — gt vvist =yl
ni=1 __ -1
and Kstruct - K?truct 1
< nl __ pgni-1
\ 2 Set Funb = Fp
Determine §v,"*and év,," > compute §1™' and §v’*'-> update 2™, v*** and F,; T
A 4
For all elements: element state determination
v i+1 n+1
Assemble the new structure tangent stiffness matrix 4 4
n,i f n,i
K¢ ucture @Nd structure resisting force vector F,;
A 4
ni _ pni ni
Compute the structure unbalanced force vector E,;;,, = F;;; — F,..
Has the procedure converged? > No
Yes
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EPFL  Load control

In load control, the vector of applied external forces is known at every step. The load multiplier is
therefore also known. The external forces are computed at the first iteration (i = 1) of each increment

n and held constant in the remaining iterations,

The constraint equation between §v™! and §A™! is given by the following:

AAVifi =1

07 - v + 164 =
0 else

Where AA™ denotes the prescribed increment in load multiplier

In this case, the constants defining the general form of the constraints are given by

a™ =0, b =1and c™ = ATifi =1
’ 0 else

Therefore, for iteration i of the increment n, the iterative update to the load multiplier 5A™! is given by

. T ;
symi = S (@) v (adnifi =1
(an,i)Té‘Vgll 4+ pni 0 else
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£PFL  Load control (2)

= The following figure schematically illustrates the solution process for a step, in load control

Load multiplier /17

/ Constraint surface

n,3
vt
n . >
U Displacement
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tPFL  Load control (3)

= Load control fails to converge in a load-displacement equilibrium path which exhibits snap-through

Load Multiple solutions

snap-through

e
Displacement

= RESSLab Iterative Techniques for Nonlinear Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

32



=PFL  Load control (4): Instability of steel columns

Source: Suzuki and Lignos (2021)
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Source: Suzuki and Lignos (2021)
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=PrL

= Three truss elements, each with the same undeformed length [, have axial stiffness k; = 24

Example: Load control

Consider the following example:

ka Lo

lo

Iterative Techniques for Nonlinear Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL
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=PFL  Example: Load control (2)

= The deformation of the vertical truss element is given by e, = 22 = q, — a,

lo

= where a,; and a, are the normalized displacements
= The internal force N, inside the vertical truss element is given by N, = k,l,(a; — a4)

= The internal force N; inside the inclined truss elements is given by N; = k4 (I, — ;) where [; is the
deformed length of the element

= By considering force equilibrium at both extremities of the vertical truss element, the following relations
are obtained:
N, = 2N; sin(0)
NZ =P

NOTE: here the equalities are in terms of absolute value (not vectoral). This is also the reason why we
have used [, — [; > 0 in the definition of Ny(and notl; — [, < 0)
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£PFL  Example: Load control (3)

= Consider the following figure

M T e

= Using Pythagoras theorem, we have

15 = (Lo sin(8p) — u1)* + (I, cos(6p))? — e = \/1 — ﬁsin(QO) + (

Lo

l,sin(6y) — uy

Lo

sin(@) = l
d

= Thus
[,sin(6,) —u [
Ny sin(8) = k1 (I, — lg) - (10) L = kq (i - 1) (o sin(8p) — uq) = kql, (
d
Where

B(a,) = 1 — 2ay sin(8,) + a?

= RESSLab Iterative Techniques for Nonlinear Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL
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=PFL  Example: Load control (4)

= The force equilibrium conditions can be rewritten as follows

1
2kql, (\/m - 1) (sin(8y) — ay) — kzly(a; — aq)
kalo(az —a;) =P =0

= Defining the load multiplier as 4 = and the stiffness ratio between the truss members as w =

2kllo
the above system of equations can be rewritten as

- 1) (sin(8p) — a;) —w(a; —ay)

1
<\/ B(a,)

wla, —a)) —1=0
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£PFL  Example: Load control (5)

= The system of equations has the form F;,,;(v) — AF,,; with

1 .
Fi,: (V) = Fp(aq,ay) = [28123 — <m_ 1) (sin(6y) — ay) —w(a; —ay)

w(a, —aq)
And

Fext - [(1)]

= The structure stiffness matrix (i.e. the Jacobian) of the problem is given by

0F, O0F;T
- - 1 — si 2
_[9a1r daz| _[(1+w) _ ! 31113(90) ) —w
Kstructure = oF, 0F,|” B2
_aaz aaz_ W w

= RESSLab Iterative Techniques for Nonlinear Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL
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£PFL  Example: Load control (6)

= The system is solved for w = I;—Z = 50 using load control with a Newton-Raphson algorithm
1

2.5 ! T T T

2

= Load control
Exact

0 1 2 3 4 5
a, []

» The load control algorithm cannot capture the snap-trough response
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=PFL  Displacement control

= Displacement control is an efficient method in solving systems which exhibit snap-through behavior. The
value of the displacement at a specific dof is prescribed in this case.

= The constraint equation between §v™' and §A™! is therefore given by
n,i LSl — AVifi =1
ovy” +0-64 { 0 else
Where the subscript g denotes the selected dof g at which the control displacement is imposed and Av"
denotes the prescribed increment in displacement

» |Inthis case, the constants defining the general form of the constraints are given by
ni — T pni — ni _ JAV'Iifi=1
a™ =10,0,..,1,..,0,0]", b™ =0 and c™t =
0 else

Where the where the entry 1 in a™* corresponds to the dof g _
= Therefore, for iteration i of the increment n, the iterative update to the load multiplier §A™* is given by

fA\—,Tl
_ . —ifi = 1 (note, 5v,"" = 0)
SATE c™ —(a™) §v! ovp'
 (@r)Tev + pni v
—— else
\ ovy’
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=PrL

Displacement control (2)

The following figure schematically illustrates the solution process for a step in displacement control
Load multiplier 1}

Constraint surface
N
fd
~
VYm
— Ac
= S '
S| e
= A"
[~
~
<]
\ 4
An—l

|
-1 _ .
vt AT = sv™t | Displacement
) Ry
5vn3
—>

ol RESSLab

2

ov™
>
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=PFL  Displacement control (3)

= Displacement control fails to converge in a load-displacement which exhibits snap-back

Load

Multiple solutions

shap‘back

 _
Displacement

v

Av
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=PFL  Example: Displacement control

= Consider the previous example shown below
P

ka Lo

= Determine the equilibrium path using displacement control and Newton-Raphson for w = :—2 =50 and

1
w = 0.5
= Use a, as the controlling dof for the displacement control algorithm

= RESSLab Iterative Techniques for Nonlinear Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL
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EPFL  Example: Displacement control (2)

= The following results are obtained:

2.5 - . . .
w =50

2

* Displacement control : == == == = Displacement control
Exact — Exact
1

a, [l a, [-]

= Displacement control can capture snap-through responses but cannot capture snap-back responses
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=PFL  Arc-Length control

= Arc-length control (Riks 1979) is an efficient method in solving systems, which exhibit snap-back
behaviour. The method postulates a simultaneous increment in both displacement Av and load
multiplier AA. The method is based on the constraint of each increment n to a prescribed arc-length of
length Al™. Mathematically, this constraint can be written as:

(av)" avri + p2(aami)? = (AT)

Where Al™ is the prescribed arc length for the step n; ¥ is a user-defined scalar parameter. When ¢ = 1,
the method is called spherical arc-length method (the constraint corresponds to a sphere of radius Al™).
Similarly, when y = 0, the method is called cylindrical arc-length method. For arbitrary ¥, the constraint is
geometrically interpreted as a hyper-ellipse in the multidimensional displacement-load space (Av — 1)

= An initial arc-length iteration is determined by the constraint equation and the following iterations lie on

the constrained surface created by the arc. The constraint equation can therefore be rewritten using the
iteration updates instead of the increment update:

(5vn,i=1)T5vn,i Fp2sani=igni = (Aln,i)z

Where Al™ denotes the value of the arc length for iteration i
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=PFL  Arc-Length control (2)

= The constraint equation between §v™' and §A™! is therefore given by

ni=1\T  coni 209ni=1 | sni — A" ’ ifi=1
(5v ) vt + Y oA oA
0 else

» |Inthis case, the constants defining the general form of the constraints are given by

an,i — 5vn,i=1 — 5/1n,i=1 . 5V;l,l'=1 bn,i — 1/)26‘/111,1':1 and Cn,i — {(Al_n)z ifi =1
0 else

= Therefore, for iteration i of the increment n, the iterative update to the load multiplier §A™! is given by

( m
Al o 1
T ifi = 1(note,dv,’~ = 0)
i — (@) sV \/(6vg'i=1)T6vg’i=1 + 2
SA™M = - = <
: i : _ _
(an’l)T5Vp + bn’l (6vn,l=1)T6v77:L,l l
- ; : ; else
\ (5vn,1=1)T5V;l'l + l/)25/1n,l=1

The + sign in the first iteration arises from the quadratic nature of the constraint equatic_)n. It is possible that
both roots may be admissible for the initial iterative update of the load multiplier §A™*=1. The selection of
the appropriate root will be discussed in a few slides
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EPFL  Arc-Length control (3)

= The following figure schematically illustrates the solution process for a given step with arc-length control

Load multiplier /14

AVAL e I
A A "

DS N oY

gl = |

<) =

<SS

v. Y
s
Displacement

o] RESSLab
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=PFL  Arc-Length control (4)

= As previously observed, the drawback of the method is related to the two distinct solutions (5v”'i, Sﬂ’f'i)
and (6v,", §1,") that may be admissible for the first iteration i = 1 of an increment n

Load multiplier 1 4 Load multiplier 1 4
n,i A
ik 61" v
Ny 5%
St
8
: - ; . >
PR ‘ Displacement «;»517;” Displacement
svt vyt Sviten

= One approach to selecting the appropriate root is to choose the one that has the same sign as the
determinant of the current structure stiffness matrix
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=PFL  Example: Arc-Length control

= Consider the previous example shown below
P

ka Lo

= Determine the equilibrium path using the arc-length control and Newton-Raphson iterations for w = ];—2 =
1

50 and w = 0.5. Use the cylindrical arc-length (i.e. ¥ = 0) with a constant arc length Al
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=PFL  Example: Arc-Length control (2)

= The following results are obtained:

23 ' | ' - 0.8 : . , ,
w =230 w = 0.5
2 | 0.6
= | 0.4
= 1 — 0.2
= ~
0.5 T 0 * Arc-length control
Exact
0 = Arc-length control | -0.2
— Exact
02 ' ' ' ' 0.4 - - | |
0 1 2 3 4 5 0 ) 5 3 f
%l a, [

= Arc-length control can capture both snap-through and snap-back responses
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