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Objectives of today’s lecture
§ To introduce:

• Iterative techniques to solve systems of nonlinear equations

• Incremental approach to equilibrium

• Load-displacement constraint methods:
‒ Load control
‒Displacement control
‒Arc-length control
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Motivation

§ Finite element equilibrium equation for static (linear) analysis:
𝐅!"# = 𝐊$#%&'#&%! ⋅ 𝐯

§ When considering geometric (and material) nonlinearities, the stiffness 𝐊
becomes a function of the displacements 𝐯 of the structure. When considering
nonlinearities, the equilibrium equation for static analysis is written,

𝐅!"# = 𝐊$#%&'#&%! 𝐯 ⋅ 𝐯

§ We need an iterative solution procedure to solve the equilibrium equations

§ The imposed external forces and/or displacement are applied incrementally
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Nonlinear equilibrium equations
§ The basic problem in a general nonlinear analysis is to find the state of equilibrium of a

body corresponding to the applied loads. If the externally loads are applied incrementally,
the equilibrium condition of a system can be formulated as follows:

𝐅!"#" = 𝐅!"# 𝐯" = 𝐅$"% 𝐯" − 𝐅&'%" = 𝟎

Where the superscript 𝑛 referrers to the load step and 𝐅!"#" denotes the unbalanced load
vector

§ The response calculations are performed incrementally by dividing the total applied load
or displacement into several increments

§ In an incremental solution, it is assumed that the solution for the step 𝑛 − 1 is known and
that the solution for the step 𝑛 is required

§ This equilibrium condition can be solved using different iterative solution techniques
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Newton-Raphson scheme
§ The most frequently used scheme for the solution of nonlinear equations is the Newton-

Raphson iteration. The equilibrium condition of the system at the step 𝑛 is given by

𝐅!"#" = 𝐅!"# 𝐯" = 𝐅$"% 𝐯" − 𝐅&'%" = 𝟎

§ Assume that in the iterative solution, the quantity 𝐯",$)*is known. The superscript 𝑖 is the
iteration counter for the Newton-Raphson scheme, and is initialized with 𝐯",* = 𝐯")* ,
where 𝐯")* denotes the previous converged step

§ Using a Taylor series expansion and neglecting the higher-order terms gives

𝐅!"#" 𝐯" ≈ 𝐅!"#" 𝐯",$)* + +
𝜕𝐅!"#
𝜕𝐯 𝐯!,#$%

⋅ 𝐯" − 𝐯",$)* = 𝟎

With
.,𝐅&!'

,𝐯 𝐯!,#$%
= .,𝐅#!(

,𝐯 𝐯!,#$%
and 𝐅!"# 𝐯",$)* = 𝐅$"%

",$)* − 𝐅&'%"

Here, the external loads are assumed to be deformation independent
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Newton-Raphson scheme (2)
§ The Taylor series expansion can be rewritten as

!
𝜕𝐅!"#

𝜕𝐯
𝐯!,#$%

⋅ 𝐯" − 𝐯",!&' = 𝐅()#" − 𝐅!"#
",!&'

§ Therefore, the increment in displacement Δ𝐯! = 𝐯" − 𝐯",!&'can be computed by solving

𝐊*#+,-.,/0
",!&' Δ𝐯! = 𝐅()#" − 𝐅!"#

",!&' 1

Where 𝐊*#+,-.,/0
"1',!&' is the current tangent stiffness matrix of the structure

𝐊*#+,-.,/0
",!&' = !

𝜕𝐅!"#

𝜕𝐯
𝐯!,#$%

§ Equation (1) can be solved using various classic approaches from linear algebra to handle
systems of equations of the form 𝑨𝒙 = 𝒃 (Gaussian elimination, LU decomposition, Cholesky
decomposition, iterative methods like the Jacobi, Gauss-Seidel, Conjugate Gradient methods)
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Newton-Raphson scheme (3)
§ Finally, the displacement at iteration 𝑖 is given by

𝐯",$ = 𝐯",$)* + Δ𝐯$

§ At the first iteration of the Newton-Raphson iterative procedure, the following quantities are
initialized:

𝐊.%/012034
",* = 𝐊.%/012034")* , 𝐅$"%

",* = 𝐅$"%")*and 𝐯",* = 𝐯")*

§ The iterations are carried out until appropriate convergence criteria (discussed later) are
satisfied
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Newton-Raphson scheme (4)
§ for a single degree of freedom system:

Load

Displacement

F)*+,-.

F)*+,

v/v/-.

𝐅)*+, − 𝐅0,+
,,.

𝐅)*+, − 𝐅0,+
,,1

𝐅)*+, − 𝐅0,+
,,2

Δv. Δv1

Slope
𝐊3+4567589
,,.

Slope
𝐊3+4567589
,,.
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Newton-Raphson scheme (5)
§ The following flow chart summarizes the process of the solution for the structure state determination

Load increment 𝑛

𝑖 = 1 set Δ𝐅&'(),* = Δ𝐅&'() , 𝐅+)(
),* = 𝐅+)(),*, 

𝐊-(./01/23
),* = 𝐊-(./01/23),* and 𝐯),* = 𝐯),*

Solve ΔF&'(),+ = 𝐊-(./01/23
),+,* Δ𝐯),+

For all elements: element state determination

Assemble new structure tangent stiffness matrix 
𝐊-(./01/23
),+ and structure resisting force vector 𝐅+)(

),+

Compute structure unbalanced force vector 𝐅4)5
),+ = 𝐅+)(

),+ − 𝐅&'()

Newton-Raphson procedure has converged? No

𝑖 + 1

Set Δ𝐅()#
",! = −𝐅2"3

",!&'

Yes

𝑛 + 1

Next load increment
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Newton-Raphson scheme
§ If the current solution iterate 𝐯",$ , 𝐅&'%

",$ is sufficiently close to the solution 𝐯" , 𝐅&'%" and if
the consistent tangent stiffness matrix does not change abruptly, the convergence of the
Newton-Raphson scheme is quadratic

§ Quadratic convergence is guaranteed if the exact consistent tangent stiffness matrix is
used. This requires that

𝐊.%/012034
",$)* = 2

𝜕𝐅$"%

𝜕𝐯
𝐯!,#$%

§ If the current solution iterate 𝐯",$ , 𝐅&'%
",$ is not sufficiently close to the solution 𝐯" , 𝐅&'%"

and/or if the tangent stiffness matrix is not consistent and/or changes abruptly, the
Newton-Raphson scheme may diverge

§ In an effective finite element program, the exact tangent stiffness matrix will be used, if
possible; hence, the primary procedure for reaching convergence (if convergence
difficulties are encountered) is to decrease the magnitude of the load step
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Modified Newton scheme
§ In the Newton-Raphson iteration, the major computational cost per iteration is the calculation and

factorization of the tangent stiffness matrix. Since these calculations can be expensive for large-order
systems, the use of a modification of the full Newton-Raphson algorithm can be effective

§ One modification could be to use the initial stiffness matrix 𝐊*#+,-.,/0' to solve

𝐊*#+,-.,/0' Δ𝐯! = 𝐅()#" − 𝐅!"#
",!&'

In this case, only the initial stiffness matrix 𝐊*#+,-.,/0' needs to be computed and factorized, thus avoiding
the computational cost of recomputing and factorizing the structure stiffness matrix

§ Another approach could be to use a stiffness matrix 𝐊*#+,-.,/0"∗ to solve

𝐊*#+,-.,/0"∗ Δ𝐯! = 𝐅()#" − 𝐅!"#
",!&'

Where 𝐊*#+,-.,/0"∗ is updated only at several converged steps 𝑛∗ (for example 𝑛∗ = 1,5,10,20… )
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Δv2
Δv. Δv1

Modified Newton scheme (2)
§ The following figure illustrates the process of the solution when used for a single degree of freedom

system. In this example the initial structure tangent stiffness matrix 𝐊*#+,-.,/0' is used to iterate

Load

Displacement

F)*+,-.

F)*+,

v,v,-.

𝐅)*+, − 𝐅0,+
,,.

𝐅)*+, − 𝐅0,+
,,1

𝐅)*+, − 𝐅0,+
,,2

Slope
𝐊3+4567589.

Slope
𝐊3+4567589.

𝐅)*+, − 𝐅0,+
,,:
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Example: Newton schemes
§ For a single degree of freedom system, consider the following load step 𝑛 = 2, with:

𝐹()#"56 = 10, 𝐹!"#" = 4 + 2 𝑣" and 𝑣"5' = 1

Compare the Newton-Raphson and the modified Newton with initial tangent to compute 𝑣"56

§ At each iteration 𝑖 of the Newton schemes, the tangent stiffness matrix is given by

𝐾*#+,-.,/0
",! =

𝜕𝐹!"#
",!

𝜕𝑣",!
=

1
𝑣",!

§ The iterations of the Newton schemes are obtained by solving 

𝐾*#+,-.,/0
",!&' Δ𝑣! = 𝐹()#" − 𝐹!"#

",!&' →
1
𝑣",!&'

Δ𝑣! = 10 − 4 − 2 𝑣",!&'

And
𝑣",! = 𝑣",!&' + Δ𝑣!

And using 𝐾*#+,-.,/0
",!&' = '

7!,#$%
for the Newton-Raphson iterations and 𝐾*#+,-.,/0

",!&' = 𝐾*#+,-.,/0' = '

7!,#
= 1 for 

the modified Newton with initial tangent
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Newton-Raphson Modified Newton (Initial tangent)

𝐾*#+,-.,/0
6,!&' 𝐹()#6 − 𝐹!"#

6,!&' 𝑣6,! 𝐾*#+,-.,/0
6,!&' 𝐹()#6 − 𝐹!"#

6,!&' 𝑣6,!

𝑖 = 2 1.00 4 5 1.00 4 5

𝑖 = 3 0.45 1.53 8.42 1.00 1.53 6.53

𝑖 = 4 0.34 0.20 8.99 1.00 0.89 7.42

𝑖 = 5 0.33 0.00 9.00 1.00 0.55 7.97

𝑖 = 6 0.33 0.00 9.00 1.00 0.35 8.32

𝑖 = 19 0.33 0.00 9.00 1.00 0.00 9.00

Example: Newton schemes (2)
§ The following quantities are initialized for the first iteration of the Newton schemes:

𝑣6,' = 𝑣' = 1, 𝐾*#+,-.,/0
6,' = 1 and 𝐹!"#

6,' = 4 + 2 𝑣6,' = 6

§ The table summarizes the iterations of both iterative schemes

…
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Example: Newton schemes (3)
§ The Newton-Raphson scheme converges in 4 iterations

§ The modified Newton scheme with the initial tangent converges in 18 iterations

§ Slower convergence rate; no need to compute the consistent tangent stiffness at every iteration
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The Broyden-Fletcher-Goldfarb-Shanno method
§ The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is a particular instance of quasi-Newton

methods (known as matrix update methods). These involve updating the coefficient matrix (i.e.,
its inverse) to provide a secant approximation to the stiffness matrix from iteration 𝑖 − 1 to 𝑖

§ Step 1: Evaluate a displacement vector increment

Δ/𝐯 = 𝐊*#+,-.,/0
",!&' &'

𝐅()#" − 𝐅!"#
",!&'

This displacement vector defines a ‘direction’ for the actual displacement vector

§ Step 2: Perform a line search in the direction Δ/𝐯 to satisfy ‘equilibrium’ in this direction. For this
line search, the following displacement vector is evaluated:

𝐯",! = 𝐯",!&' + 𝛽Δ/𝐯

Where 𝛽 is a scalar multiplier determined by the line search. The unbalanced loads corresponding
to this displacement vector 𝐅()#" − 𝐅!"#

",! are computed
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§ The parameter 𝛽 is varied until the unbalanced loads in the direction Δ8𝐯, as defined by the inner
product Δ8𝐯 𝐅()#" − 𝐅!"#

",! is small. This condition is satisfied when, for a convergence tolerance 𝑡𝑜𝑙, the
following equation is satisfied:

Δ8𝐯 𝐅()#" − 𝐅!"#
",! ≤ 𝑡𝑜𝑙 ⋅ Δ8𝐯 𝐅()#" − 𝐅!"#

",!&'

The final value of 𝐯",! is obtained for the 𝛽 for which this condition is satisfied. The following quantities are
then computed:

𝛅! = 𝐯",! − 𝐯",!&' and 𝛄! = 𝐅!"#
",! − 𝐅!"#

",!&'

The variation of the parameter 𝛽 (i.e. the line search) can be performed using different approaches such as
the bisection method. This step is not mandatory and 𝛽 can be set to 1 and no line search is performed

§ Step 3: The coefficient matrix is updated using

𝐊*#+,-.,/0
",! &'

= 𝐀8 9 𝐊*#+,-.,/0
",!&' &'

𝐀!

With
𝐀! = 𝐈 + 𝐯8 𝐰8 9

The Broyden-Fletcher-Goldfarb-Shanno method (2)
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§ The vectors 𝐯8 and 𝐰8 are computed from the known nodal point forces and displacements using

𝐯8 = −
𝛅! :𝛄!

𝛅! :𝐊*#+,-.,/0
",!&' 𝛅!

𝐊*#+,-.,/0
",!&' 𝛅! − 𝛄!

And

𝐰! =
𝛅!

𝛅! :𝛄!

§ The line search approach presented for the BFGS method could also be used in the Newton-Raphson
and modified Newton approaches

§ With the line search performed within an iteration 𝑖, the expense of the iteration increases, but fewer
iterations may be needed for convergence. Also, the line search may prevent divergence of the
iterations, and in practice, this increased robustness is the major reason why a line search can be
effective

The Broyden-Fletcher-Goldfarb-Shanno method (3)
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Example: The BFGS Method
§ Let’s consider the previous example: for a single degree of freedom system, assume the following load

step 𝑛 = 2, with:

𝐹()#"56 = 10, 𝐹!"#" = 4 + 2 𝑣" and 𝑣"5' = 1

Perform the iteration of the BFGS method to compute 𝑣"56. Omit the line searches in the solution (i.e., use
𝛽 = 1)

§ The iterations of the BFGS scheme are obtained by solving

𝑣",! = 𝑣",!&' + Δ𝑣̅
With

Δ𝑣̅ = 𝐾*#+,-.,/0
",!&' &'

𝐹()#" − 𝐹!"#
",!&' =

1
𝑣",!&'

&'
10 − 4 − 2 𝑣",!&'
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Example: The BFGS Method
§ The following quantities are initialized for the first iteration of the BFGS scheme:

𝑣6,' = 𝑣' = 1, 𝐾*#+,-.,/0
6,' = 1 and 𝐹!"#

6,' = 4 + 2 𝑣6,' = 6

§ The table below summarizes the iterations of the BFGS scheme:

𝑖 𝑣6,!&' Δ𝑣̅ = 𝛿! 𝑣6,! 𝛾! 𝐾*#+,-.,/0
6,! &'

2 1.00 4.00 5.00 2.47 1.62

3 5.00 2.47 7.47 0.99 2.48

4 7.47 1.32 8.80 0.45 2.85

5 8.80 0.19 8.99 0.06 2.98

6 8.99 0.01 9.00 0.00 3.00

§ Convergence is achieved after 5 iterations



21RESSLab
Resilient Steel Structures Laboratory

Iterative Techniques for Nonlinear Analysis – Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

Convergence criteria
§ The iterative schemes are performed until a convergence criterion is satisfied. Typically, this criterion is

satisfied when a certain quantity 𝑔 reaches a predefined threshold. Mathematically,

𝑔 ≤ 𝑡𝑜𝑙
Where 𝑡𝑜𝑙 is an arbitrary tolerance value

§ The following quantities are typically used to assess convergence at an iteration 𝑖:

• The norm of the unbalanced force: 𝐅()#" − 𝐅!"#
",! ≤ 𝑡𝑜𝑙

• The relative norm of the unbalanced force:
𝐅789! &𝐅#!9

!,#

𝐅789! ≤ 𝑡𝑜𝑙

• The norm of the displacement increment: Δ𝐯",! ≤ 𝑡𝑜𝑙

• The relative norm of the displacement increment: <𝐯!,#

𝐯!$% ≤ 𝑡𝑜𝑙

• The energy increment: Δ𝐯",! :(𝐅()#" − 𝐅!"#
",!) ≤ 𝑡𝑜𝑙

• The relative energy increment: <𝐯!,#
:
(𝐅789! &𝐅#!9

!,#)
𝐯!$% :(𝐅789! )

≤ 𝑡𝑜𝑙
• Fixed number of iterations: A predetermined number of iterations are performed, after which the

final state is assumed to be converged. This approach does not guarantee convergence
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Load-Displacement-Constraint methods
Load

DisplacementLoad increments can be large

Load increments 
should be smaller

Softening response

§ To compute the load-displacement response, initially relatively large load increments can be used, but
as the peak load is approached, the load increments shall be smaller

§ At the peak point, the stiffness matrix is singular (i.e., the slope of the load-displacement curve is zero)

§ In the softening path of the load-displacement curve, a special solution procedure is required which
allows for a decrease in load. An increase in displacement shall be used in this case
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Load-Displacement-Constraint methods (2)
§ For this purpose, a load-displacement-constraint method can be used

§ The idea is to introduce a load multiplier that increases (or decreases) the intensity of the applied
loads, to obtain fast convergence per load step, to traverse the peak point and evaluate the softening
response

§ A basic assumption is that the load vector varies proportionally during the response calculation. With
this assumption, the governing equation at a load step 𝑛 is given by

𝐅!"#" − 𝜆" 8𝐅()# = 𝟎

Where,
• 𝜆" is a scalar load multiplier, unknown (to be determined);
• 8𝐅()# is the reference load vector for the 𝑛𝐷𝑂𝐹𝑠 degrees of freedom of the finite element model;
• 𝐅!"#" is the usual structure resisting force vector.

NOTE: The value of the load multiplier can increase or decrease, and the increment per step should in
general also change, depending on the structural response characteristics
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Load-Displacement-Constraint methods (3)
§ In an incremental-iterative procedure, the loads and displacements are updated by adding the

incremental changes from the current iteration to the values obtained in the previous converged step
𝑛 − 1 :

𝐯",! = 𝐯"&' + Δ𝐯",!

𝐅()#
",! = 𝐅()#"&' + Δ𝐅()#

",!

§ On each iteration 𝑖 for an increment 𝑛, the incremental updates are computed by adding the contribution
of the previous iteration and the iterative updates at the current iteration:

Δ𝐯",! = Δ𝐯",!&' + 𝛿𝐯",!

Δ 𝐅()#
",! = Δ𝐅()#

",!&' + 𝛿𝐅()#
",!

§ The unbalanced force vector is then given by
𝐅2"3
",! = 𝐅!"#

",! − 𝐅()#"&' + Δ𝐅()#
",!

Where the internal force 𝐅!"#
",! corresponds to a displacement 𝐯"&' + Δ𝐯",!

§ Finally, the equilibrium equation to be solved at the 𝑖#? iteration of the 𝑛#? increment is given by

𝐊*#+,-.,/0
",!&' 𝛿𝐯",! = 𝐅()#

",! − 𝐅!"#
",!&'

Where the stiffness matrix 𝐊*#+,-.,/0
",!&' corresponds to the solution schemes previously discussed
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Load-Displacement-Constraint methods (4)
§ Introducing the load multiplier 𝜆 and the reference load vector 8𝐅()#, the governing equations are

rewritten:

𝐅()#
",! = 𝐅()#"&' + Δ𝐅()#

",!&' + 𝛿𝜆",! 8𝐅()#
𝐊*#+,-.,/0
",!&' 𝛿𝐯",! = −𝐅2"3

",!&' + 𝛿𝜆",! 8𝐅()#

§ The unknowns are the vector of displacement increments 𝛿𝐯",! and the load multiplier increment 𝛿𝜆",!.
This system of equation represents 𝑛𝐷𝑂𝐹𝑠 equations and 𝑛𝐷𝑂𝐹𝑠 + 1 unknowns. Therefore, an
additional equation is required to solve the system

§ The additional equation is a constraint equation between 𝛿𝐯",! and 𝛿𝜆",! of the form

𝒂",! :𝛿𝐯",! + 𝑏",!𝛿𝜆",! = 𝑐",!

Where 𝒂",!, 𝑏",! and	𝑐",! are parameters to be defined later depending on the control method (load,
displacement or arc-length control)
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Load-Displacement-Constraint methods (5)
§ The system can be written as follows:

𝐊*#+,-.,/0
",!&' 𝛿𝐯",! − 𝛿𝜆",! 8𝐅()# = −𝐅2"3

",!&'

𝒂",! :𝛿𝐯",! + 𝑏",!𝛿𝜆",! = 𝑐",!

§ And the system can be written in a matrix form,

𝐊*#+,-.,/0
",!&' −8𝐅()#
𝒂",!

:
𝑏",!

𝛿𝐯",!
𝛿𝜆",!

= − 𝐅2"3
",!&'

−𝑐",!
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Load-Displacement-Constraint methods (6)
§ The system of equations,

𝐊*#+,-.,/0
",!&' −8𝐅()#
𝒂",!

:
𝑏",!

𝛿𝐯",!
𝛿𝜆",!

= − 𝐅2"3
",!&'

−𝑐",!

can be solved using the iterative schemes discussed previously. However, this approach may not be
optimal because the augmented stiffness matrix on the left-hand side is neither symmetric nor banded,
unlike the original structure stiffness matrix. This increases the computational cost associated with storing
and inverting the matrix
§ Another approach to solve the same system is as follows:

§ From the first equation of the linear system:

𝐊*#+2@#2+(
",!&' 𝛿𝐯",! − 8𝐅()#𝛿𝜆",! = −𝐅2"3

",!&'

𝛿𝐯A
",!= 𝐊*#+2@#2+(

",!&' &' 8𝐅()# and    𝛿𝐯+",! = − 𝐊*#+2@#2+(
",!&' &'

𝐅2"3
",!&'

§ We can now decompose the displacement iteration update as follows:
𝛿𝐯",! = 𝛿𝜆",!𝛿𝐯A

",! + 𝛿𝐯+
",!

𝛿𝜆",! is computed from the constraint equation after substituting 𝛿𝐯",! with the expression above

→ 𝛿𝐯",! = 𝐊*#+2@#2+(
",!&' &' 8𝐅()#𝛿𝜆",! − 𝐅2"3

",!&'
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Load-Displacement-Constraint methods (7)
§ The iterative update in the load multiplier is then computed by solving the constraint equation:

𝛿𝜆",! = @!,#& 𝒂!,#
:
C𝐯;

!,#

𝒂!,# :C𝐯<
!,#13!,#

§ The benefit of using this approach is that at each iteration, the Jacobian of the problem corresponds to
the stiffness matrix 𝐊*#+2@#2+(

",!&' , which is banded and symmetric, enabling the use of optimized solvers
when inverting and storing the matrix when solving for the unknown displacements

§ NOTE: from linear algebra, a banded matrix is a sparse
matrix whose non-zero entries are confined to a diagonal
band, comprising the main diagonal and zero or more
diagonals on either side
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Load-Displacement-Constraint methods (8)
§ The flow chart gives the solution process for the general load-displacement constraint methods

Increment 𝑛

𝑖 = 1: set 𝜆),+=* = 𝜆),*, 𝐅4)5
),+=* = 𝐅+)(),* − 𝐅&'(),* , 𝐯),+=* = 𝐯),*

and 𝐊-(.4>(),+=* = 𝐊-(.4>(),*

Determine 𝛿𝐯.),+and 𝛿𝐯?),+à compute 𝛿𝜆),+ and 𝛿𝐯),+à update 𝜆),+ , 𝐯),+ and 𝐅&'(),+

For all elements: element state determination

Assemble the new structure tangent stiffness matrix 
𝐊-(./01/23
),+ and structure resisting force vector 𝐅+)(

),+

Compute the structure unbalanced force vector 𝐅4)5
),+ = 𝐅+)(

),+ − 𝐅&'(
),+

Has the procedure converged? No

𝑖 + 1

Set 𝐅2"3
",' = 𝐅4)5

),+,*

Yes

𝑛 + 1

Next increment
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Load control 
§ In load control, the vector of applied external forces is known at every step. The load multiplier is

therefore also known. The external forces are computed at the first iteration (𝑖 = 1) of each increment
𝑛 and held constant in the remaining iterations,

§ The constraint equation between 𝛿𝐯",! and 𝛿𝜆",! is given by the following:

𝟎: ⋅ 𝛿𝐯",! + 1 ⋅ 𝛿𝜆",! = UΔ𝜆̅
" if 𝑖 = 1
0 els𝑒

Where Δ𝜆̅" denotes the prescribed increment in load multiplier

§ In this case, the constants defining the general form of the constraints are given by

𝒂",! = 𝟎, 𝑏",! = 1 and 𝑐",! = UΔ𝜆̅
" if 𝑖 = 1
0 else

§ Therefore, for iteration 𝑖 of the increment 𝑛, the iterative update to the load multiplier 𝛿𝜆",! is given by

𝛿𝜆",! =
𝑐",! − 𝒂",! :𝛿𝐯+

",!

𝒂",! :𝛿𝐯A
",! + 𝑏",!

= UΔ𝜆̅
" if 𝑖 = 1
0 else
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𝛿𝑣,,1 𝛿𝑣,,2
𝛿𝑣,,:𝛿𝑣,,.

Load control (2) 
§ The following figure schematically illustrates the solution process for a step, in load control

Δ𝜆
,

Δ𝑣,
Displacement𝑣,-.

𝜆,

𝜆,-.

𝑣,

Constraint surface
Load multiplier 𝜆
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Load control (3) 
§ Load control fails to converge in a load-displacement equilibrium path which exhibits snap-through

Load

Displacement

𝜆

snap-through

Multiple solutions
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Load control (4): Instability of steel columns 

Source: Suzuki and Lignos (2021)
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Load control (5): Instability of steel columns 

Source: Suzuki and Lignos (2021)
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Example: Load control
§ Consider the following example:

§ Three truss elements, each with the same undeformed length 𝑙2 have axial stiffness 𝑘D =
EF@
GA

𝜃𝜃; 𝜃;

𝑃

𝑘., 𝑙<

𝑘., 𝑙<

𝑘1, 𝑙<𝑢1

𝑢.

𝜃
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Example: Load control (2)
§ The deformation of the vertical truss element is given by 𝑒6 =

2B&2%
GA

= 𝑎6 − 𝑎'
§ where 𝑎' and 𝑎6 are the normalized displacements

§ The internal force 𝑁6 inside the vertical truss element is given by 𝑁6 = 𝑘6𝑙H(𝑎6 − 𝑎')

§ The internal force 𝑁' inside the inclined truss elements is given by 𝑁' = 𝑘' (𝑙H − 𝑙I) where 𝑙I is the
deformed length of the element

§ By considering force equilibrium at both extremities of the vertical truss element, the following relations
are obtained:

𝑁6 = 2𝑁' sin 𝜃
𝑁6 = 𝑃

NOTE: here the equalities are in terms of absolute value (not vectoral). This is also the reason why we
have used 𝑙H − 𝑙I > 0 in the definition of 𝑁'(and not 𝑙I − 𝑙H < 0 )
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Example: Load control (3)
§ Consider the following figure

𝜃𝜃;

𝑙<

𝑢.

𝑙=

§ Using Pythagoras theorem, we have

𝑙I6 = 𝑙H sin 𝜃J − 𝑢' 6 + 𝑙H cos 𝜃J 6 →
𝑙I
𝑙H
= 1 −

2𝑢'
𝑙H

sin 𝜃J +
𝑢'
𝑙H

6

sin 𝜃 =
𝑙H sin 𝜃J − 𝑢'

𝑙I
§ Thus

𝑁' sin 𝜃 = 𝑘' 𝑙H − 𝑙I
𝑙H sin 𝜃J − 𝑢'

𝑙I
Where

𝐵 𝑎' = 1 − 2𝑎' sin 𝜃J + 𝑎'6

= 𝑘'
𝑙H
𝑙I
− 1 𝑙H sin 𝜃J − 𝑢' = 𝑘'𝑙H

1
𝐵 𝑎'

− 1 sin 𝜃J − 𝑎'
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Example: Load control (4)
§ The force equilibrium conditions can be rewritten as follows

2𝑘'𝑙H
1
𝐵 𝑎'

− 1 sin 𝜃J − 𝑎' − 𝑘6𝑙H 𝑎6 − 𝑎'

𝑘6𝑙H 𝑎6 − 𝑎' − 𝑃 = 0

§ Defining the load multiplier as 𝜆 = K
6L%GA

and the stiffness ratio between the truss members as 𝑤 = LB
L%

,
the above system of equations can be rewritten as

1
𝐵 𝑎'

− 1 sin 𝜃J − 𝑎' −𝑤 𝑎6 − 𝑎'

𝑤 𝑎6 − 𝑎' − 𝜆 = 0
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Example: Load control (5)
§ The system of equations has the form 𝐅!"# 𝐯 − 𝜆8𝐅()# with

𝐅!"# 𝐯 = 𝐅!"# 𝑎', 𝑎6 = 𝐹' 𝑎'𝑎6
𝐹6 𝑎'𝑎6

=
1
𝐵 𝑎'

− 1 sin 𝜃J − 𝑎' −𝑤 𝑎6 − 𝑎'

𝑤 𝑎6 − 𝑎'
And 

8𝐅()# =
0
1

§ The structure stiffness matrix (i.e. the Jacobian) of the problem is given by

𝐊*#+2@#2+( =

𝜕𝐹'
𝜕𝑎'

𝜕𝐹'
𝜕𝑎6

𝜕𝐹'
𝜕𝑎6

𝜕𝐹6
𝜕𝑎6

= 1 + 𝑤 −
1 − sin 𝜃J 6

𝐵
M
6

−𝑤

−𝑤 𝑤
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Example: Load control (6)
§ The system is solved for 𝑤 = LB

L%
= 50 using load control with a Newton-Raphson algorithm

§ The load control algorithm cannot capture the snap-trough response
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Displacement control 
§ Displacement control is an efficient method in solving systems which exhibit snap-through behavior. The 

value of the displacement at a specific dof is prescribed in this case.

§ The constraint equation between 𝛿𝐯",! and 𝛿𝜆",! is therefore given by

𝛿𝐯N
",! + 0 ⋅ 𝛿𝜆",! = UΔ8v

" if 𝑖 = 1
0 else

Where the subscript 𝑞 denotes the selected dof 𝑞 at which the control displacement is imposed and  Δ8v"
denotes the prescribed increment in displacement 

§ In this case, the constants defining the general form of the constraints are given by 

𝒂",! = 0, 0, … , 1, … , 0,0 :, 𝑏",! = 0 and 𝑐",! = UΔ8v
" if 𝑖 = 1
0 else

Where the where the entry 1 in 𝒂",! corresponds to the dof 𝑞
§ Therefore, for iteration 𝑖 of the increment 𝑛, the iterative update to the load multiplier 𝛿𝜆",! is given by

𝛿𝜆",! =
𝑐",! − 𝒂",!

:
𝛿𝐯+

",!

𝒂",! :𝛿𝐯A
",! + 𝑏",!

=

Δ8v"

𝛿𝐯A
",! if 𝑖 = 1 (𝑛𝑜𝑡𝑒, 𝛿𝐯+

",' = 𝟎)

−
𝛿𝐯+

",!

𝛿𝐯A
",! else
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𝛿𝜆
,
,1

𝛿𝜆
,
,2

𝛿𝜆
,
,:

𝛿𝑣,,:

𝛿𝑣,,2

𝛿𝑣,,1

Displacement control (2)
§ The following figure schematically illustrates the solution process for a step in displacement control

Δ𝜆
,

Δ𝑣̅, = 𝛿𝑣,,. Displacement𝑣,-.

𝜆,

𝜆,-.

𝑣,

Constraint surface

𝛿𝜆
,
,.

Load multiplier 𝜆
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Displacement control (3) 
§ Displacement control fails to converge in a load-displacement which exhibits snap-back

Load

Displacement
Δ𝑣

snap-back

Multiple solutions



44RESSLab
Resilient Steel Structures Laboratory

Iterative Techniques for Nonlinear Analysis – Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

Example: Displacement control 
§ Consider the previous example shown below

𝜃𝜃; 𝜃;

𝑃

𝑘., 𝑙<

𝑘., 𝑙<

𝑘1, 𝑙<𝑢1

𝑢.

𝜃

§ Determine the equilibrium path using displacement control and Newton-Raphson for 𝑤 = LB
L%
= 50 and 

𝑤 = 0.5
§ Use 𝑎6 as the controlling dof for the displacement control algorithm
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Example: Displacement control (2)
§ The following results are obtained:

𝑤 = 50 𝑤 = 0.5

§ Displacement control can capture snap-through responses but cannot capture snap-back responses
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Arc-Length control
§ Arc-length control (Riks 1979) is an efficient method in solving systems, which exhibit snap-back

behaviour. The method postulates a simultaneous increment in both displacement Δ𝐯 and load
multiplier Δ𝜆. The method is based on the constraint of each increment 𝑛 to a prescribed arc-length of
length Δ ̅𝑙". Mathematically, this constraint can be written as:

Δ𝐯",!
:
Δ𝐯",! + 𝜓6 Δ𝜆",!

6
= Δ ̅𝑙"

6

Where Δ ̅𝑙" is the prescribed arc length for the step 𝑛; 𝜓 is a user-defined scalar parameter. When 𝜓 = 1,
the method is called spherical arc-length method (the constraint corresponds to a sphere of radius Δ ̅𝑙").
Similarly, when 𝜓 = 0, the method is called cylindrical arc-length method. For arbitrary 𝜓, the constraint is
geometrically interpreted as a hyper-ellipse in the multidimensional displacement-load space (Δ𝐯 − 𝜆)

§ An initial arc-length iteration is determined by the constraint equation and the following iterations lie on
the constrained surface created by the arc. The constraint equation can therefore be rewritten using the
iteration updates instead of the increment update:

𝛿𝐯",!5'
:
𝛿𝐯",! + 𝜓6𝛿𝜆",!5'𝛿𝜆",! = Δ𝑙",!

6

Where Δ𝑙",! denotes the value of the arc length for iteration 𝑖
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Arc-Length control (2)
§ The constraint equation between 𝛿𝐯",! and 𝛿𝜆",! is therefore given by

𝛿𝐯",!5'
:
⋅ 𝛿𝐯",! + 𝜓6𝛿𝜆",!5' ⋅ 𝛿𝜆",! = l Δ ̅𝑙" 6 if 𝑖 = 1

0 else

§ In this case, the constants defining the general form of the constraints are given by 

𝒂",! = 𝛿𝐯",!5' = 𝛿𝜆",!5' ⋅ 𝛿𝐯A
",!5', 𝑏",! = 𝜓6𝛿𝜆",!5' and 𝑐",! = l Δ ̅𝑙" 6 if 𝑖 = 1

0 else

§ Therefore, for iteration 𝑖 of the increment 𝑛, the iterative update to the load multiplier 𝛿𝜆",! is given by

𝛿𝜆",! =
𝑐",! − 𝒂",! :𝛿𝐯+

",!

𝒂",! :𝛿𝐯A
",! + 𝑏",!

=

±
Δ ̅𝑙"

𝛿𝐯A
",!5' :

𝛿𝐯A
",!5' + 𝜓6

if 𝑖 = 1(𝑛𝑜𝑡𝑒, 𝛿𝐯+
",' = 𝟎)

−
𝛿𝐯",!5' :𝛿𝐯+

",!

𝛿𝐯",!5' :𝛿𝐯A
",! + 𝜓6𝛿𝜆",!5'

else

The ± sign in the first iteration arises from the quadratic nature of the constraint equation. It is possible that
both roots may be admissible for the initial iterative update of the load multiplier 𝛿𝜆",!5'. The selection of
the appropriate root will be discussed in a few slides
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Δ𝑣,,1

Δ𝑣,,2

Δ𝑣,,:

𝛿𝑣,,1𝛿𝑣,,2𝛿𝑣,,:

Δ𝜆
,
,.

Δ𝜆
,
,1

Δ𝜆
,
,2

Δ𝜆
,
,:

Δ𝑣,,.

𝛿𝑣,,.

Arc-Length control (3)
§ The following figure schematically illustrates the solution process for a given step with arc-length control

Load multiplier 𝜆

Displacement𝑣,-.

Δ𝑙,
𝜆,

𝜆,-.

𝑣,
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𝛿𝜆1
,,0

𝛿𝜆.
,,0

Arc-Length control (4)
§ As previously observed, the drawback of the method is related to the two distinct solutions (𝛿𝐯'

",!, 𝛿𝜆'
",!)

and (𝛿𝐯6
",!, 𝛿𝜆6

",!) that may be admissible for the first iteration 𝑖 = 1 of an increment 𝑛

Displacement Displacement
𝛿𝑣.

,,0 𝛿𝑣1
,,0

𝛿𝜆1
,,0

𝛿𝜆.
,,0

𝛿𝑣1
,,0

𝛿𝑣.
,,0

§ One approach to selecting the appropriate root is to choose the one that has the same sign as the
determinant of the current structure stiffness matrix

Load multiplier 𝜆 Load multiplier 𝜆
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Example: Arc-Length control 
§ Consider the previous example shown below

𝜃𝜃; 𝜃;

𝑃

𝑘., 𝑙<

𝑘., 𝑙<

𝑘1, 𝑙<𝑢1

𝑢.

𝜃

§ Determine the equilibrium path using the arc-length control and Newton-Raphson iterations for 𝑤 = LB
L%
=

50 and 𝑤 = 0.5. Use the cylindrical arc-length (i.e. 𝜓 = 0) with a constant arc length Δ ̅𝑙
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Example: Arc-Length control (2) 
§ The following results are obtained:

𝑤 = 50 𝑤 = 0.5

§ Arc-length control can capture both snap-through and snap-back responses


