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EPFL  Objectives of today’s lecture

To introduce:

= Fiber-based beam-column elements

= Fiber discretization of cross sections

= Constitutive models for fiber-based elements
= Computation of input strains

= Section analysis

= Type of element formulations
* Displacement-based beam-column elements
» Force-based beam-column elements

= Integration methods for member forces and member stiffness
= Examples with displacement- and force-based elements
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=PFL  Displacement-based beam-column element

= The vectors of nodal displacements, u, and element resisting forces q,
are as follows:

= _ (5 a5 =T
Integration u = {uy, Uy, uUs}

B point _

U, U3

4\\ ’L' ~ T

. X : a= {a. . a

lT< L 4 t q= {Ch' d2, qB}

= At a given integréfion point (section):

d,(x) = Ny(x)q df(x) = N(x)uy + N3(x)is
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EPFL  State determination of displacement-based element

» The tangent element stiffness matrix at iteration i of step n, K™, of a
displacement-based beam-column element of length L, and the element
resisting force vector @’ can be expressed as follows:

L
K% = | BT(x) - K™ (x) - B(x) - dx -
(%) - k™ (x) - B(x) We calculate those numerically with some
0 numerical integration schemes
L « Gauss-Legendre,
—ni _ | BT ANl _ « (Gauss-Lobatto,
Q4 = J B™(x) - Qst (%) - dx J« Gauss Radau,
0 « midpoint rule
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=pFL Force-based (or flexibility-based) elements

= The element vector generalized nodal forces q at the basic reference
frame (without rigid body modes) is as follows:

L = _ (= = =T
- > q= {Ch» d2, q3}
T Section 33 B
1 3
T, G - B U= {Ty, Uy, Uz}’
i L J d1
Uy
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EPFL  State determination of force-based element
- The section flexibility at iteration j, £/ (x) is,
) = (k0 00)

» Element flexibility matrix, F’»*/ at iteration j is:
L

Froi) = f b7 (x) - £ (x) - b(x)dx
0
= The element stiffness matrix, K™%/ at iteration j is:
Rnij — (Fn,i,j)_l

= The element end displacements atLiterationj is,

uh = j b7 (x) - dJ" (x) dx
(end displacements) 0 (section deformations)
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EPFL  Numerical integration

= [n nonlinear structural mechanics, we seek to obtain numerical estimates
of an integral by picking optimal coordinates (abscissas) r; at which to
evaluate the function, f(r;) of interest.

= (Gauss quadrature is often used for this purpose.

= According to the theorem of Gaussian quadrature, the optimal abscissas
of the m-point Gaussian quadrature formulas are precisely the roots of
the orthogonal polynomial for the same interval and weighting function.

= Gauss quadrature is optimal because it fits all polynomials up to degree
2m-1 exactly.

= Slightly less optimal fits are obtained from Radau quadrature and
Laguerre-Gauss quadrature (depends on the problem | would say!)
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=PFL  Gauss quadrature

-Some remarks

= The location of Gauss points is such that for a given number of points
greatest accuracy is obtained.

= The Gauss points are located symmetrically about the center of the
interval to be integrated.

= The weight will be the same for symmetrically located Gauss points
about the center of the interval to be integrated.
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EPFL  Gauss quadrature
-One dimensional integrals

= For the state determination of beam-column elements, the integration
should be done along the length L of the element. Therefore, we are
dealing with one dimensional integrals.

AU, Integration A Us
points
s L TN e
’ ! ;
- >
M%Q;z/fgj/y)/
Y
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EPFL  Gauss quadrature (2)
-One dimensional integrals

= Natural coordinate system [—1 1] instead of [0 L].

1 n
[= [ £y -dr= ) wifio
) i=1

f(r) =a; +a,r +asr? + aur
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EPFL  Gauss quadrature (3)
-One dimensional integrals

= The integral after integrating analytically,

1 1 1 1 !
I = ff(r) dr = [alr +—a,r? + —asr’ + —a4r4]
1

2 3 4 »
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EPFL  Gauss quadrature (4)
-One dimensional integrals

= Assume, we would like to approximate this integral with n =1 Gauss
point:

1
I = jf(r) cdr = wyf (1) = wyag + apry + agr{ + aury)
-1

= The error then between exact and approximate solution is as follows:

2
E=a,(2—-wyp)+as (g - 12W1) — QyT Wy — GaT7 Wy
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EPFL  Gauss quadrature (5)
-One dimensional integrals

= The error becomes minimum when the Jacobian J is zero:

_[VE JE 9JE ﬁE]
"~ Ya; Ya, 9a; VYa,

= Subsequently,

2
] — [ —W; —wWin § — r12W1 _W17"13]
» Therefore,
Wy = 0 ’7 Wq = 0
_ _ e 3 _
2—w; =0 r =0 rl_iV3W1 ry =0
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EPFL  Gauss quadrature (6)
-One dimensional integrals

= Therefore, the condition that satisfies all four partial derivatives to be zero
for n = 1 Gauss integration point is:

i

A Y S —
Y
-
- THh
-

- =
s

\j

-

1 —1 0 1
(a) Using one point (b) Using two points (c) Using three points
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EPFL  Gauss quadrature (7)

Gauss Points Weight Coefficient Polynomial
w; Order m

1 0 2 1

2 -1/N3, 13 1, 1 3

3 0.6, 0, V0.6 5/9, 8/9, 5/9 5

4 -0.861136, -0.339981, 0.347855, 0.652145, 7
0.339981, 0.861136 0.652145, 0.347855

) -0.906180, -0.538469, 0, 0.236927, 0.478629, 9
0.538469, 0.906180 0.568889, 0.478629,

0.236927
6 -0.932470, -0.661209, 0.171324, 0.360762, 11

-0.238619, 0.238619,
0.661209, 0.932470

0.467914, 0.467914,
0.360762, 0.171324
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EPFL  Gauss quadrature
-Example elastic truss element with uniform cross section

Cartesian system Natural coordinate system

> >
iT Uuq L X J Uy iT ]T
- >

x=0 x =1L r=-1 r=1
L
keszT(x)~kS(x)-B(x)-dx
0
L__l- L
L 1 1 1 1
— EA-[—2 1. _ CEA - [— :
fl [—7 71-dx sz[llEA[ll]dx
0|7 | 0
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EPFL  Gauss quadrature (2)
-Example elastic truss element with uniform cross section

L
ke=L12“‘11]-EA~[—1 1] - dx
0

= From calculus, coordinate transformation from 0 to L:to -1 to 1:

= Assume: _b—a b—a —L_Or+L_O
X = 5 r + 5 X = > —2

P _b—ad g _L—O
X = > a X = >
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EPFL  Gauss quadrature (3)
-Example elastic truss element with uniform cross section

= Therefore, k€ in the updated coordinate system becomes:

ke=L_12“—11].EA.[_1 1] _dr__ﬂl ar

j [f1(7") fz(?‘)] _EA [2f1(0) 2(0)] |
f2(r)  fi(r) 2L 122(0)  2/1(0)] weight

_EAT2£,(0) 2£5(0) __Alz —ZI_EF —1]
T 2L 12£(0) 2f1(0)] T 2L 1— L l-1 1

= Note: for m = 1 order polynomial, n = 2m — 1 = 1 Gauss points give an exact solution

Gauss point
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EPFL  Gauss quadrature
-Example elastic beam-column element with uniform cross section

AU, AUsg
u Cartesian system Ug Natural coordinate system
3 - -t
DN i1\ .
< L >J LT J
L r=-—1 r=1
f
k¢ = | B (x)-k%(x)-B(x) - dx
0
6 2
f_(l__x>\
L2 L
Ll 2/3x
Z(T_1> 6/ 2x\ 2/3x 6 /2x 2 (3x
Ke = | [ - El —( ——) —(——) _(__> _(__ )]d
j 6(2 L2 L) L\L L2\ L L\L 2)]
0o | ={——1
L2\ L
2 (3x 5
7(7-2),
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=PrL

Gauss quadrature (2)
-Example elastic beam-column element with uniform cross section

(3
L

(1

3
S P

L

Zx)w
L

1
roSGreD) 3

1)>'[Z(1_

2Xx
L

)

3x
L

)

9
L—ZT

9
LZ

2

——=T

2

3
_ )
2LT‘(3T’+1) Lzr

3 1
— _ 2
oL r(3r+1) Br+1)

3
ET(BT + 1)

3 1
2
=51 r(3r—1) ) Or 1)
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EPFL  Gauss quadrature (3)

-Example elastic beam-column element with uniform cross section

= Therefore, k€ in the natural coordinate system becomes:

9 9

3 3 l
Zirz —57T@r+ 1) "Zirz —57r@r=1)

3 1 3 1
! 2
——r(3r+1) —@r+1 +1) =(9r2
ZEIJ 2L Gr+ D g Grel) 2 G+ O D)

9 3 9
1 — =72 —7rBr+1)

3
2 - _
12 2L 2z’ AR

S (3r—1)  —(@r2—1) —rGr—1) ~@Gr—1)
I ir T Z T 2L7" T 4 T |

A KO A L)
_2EI H0) o) fr)
== sym. fs) fo) |7
-1
fio(1)
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EPFL  Gauss quadrature (4)
-Example elastic beam-column element with uniform cross section

= Assume two Gauss points:

2EI
AAM)) L) f3(r) fa(r) \ T(fl(_o'57735) + f1(+0.57735))
_ 2EI f fs) fe@) fr(M)] .
L J Sym. fe()  fo(r)
: fro(r) = 22 (5 (~0.57735)% + — (0.57735)?)
- 6.007999 5.999994  6.007999 5.999994
12 2L 12 2L =22 (5 (-057735)% + — (0.57735)?)
5999994 999999 3999994
_2E1 o7 . ——— 0.999999
L _6.00L72999 £ 909904 6.00L72999 2.99;9997 _ 12.0;6151 (I would expect 12E1/L?)
5.999994 2L 2.999997
——r— 0999999 ———— 1.999999
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EPFL  Gauss quadrature (5)
-Example elastic beam-column element with uniform cross section

= Note: the error with 2 Gauss points is due to the numerical integration
approximation and the number of decimals

$6.007999 5999994  6.007999 5.999994
12 2L 12 2L
5.999994 5.999994
2B~ — 1999999 T 0.999999
Ke =2 2L
L | 6007999 6.007999  2.999997
~——>"" 5999994
12 — 12 L
5.999994 2.999997
——— 0999999 =——— 1.999999
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=PFL Gauss Lobatto

= A Gaussian quadrature with weighting function W (x) = 1in which the
end points of the interval [-1, 1] are included in a total of n abscissas,
given r = n — 2 free abscissas.

= The abscissas are symmetrical about the origin.
= the general formula of integration is as follows,

1 n-—1
| = _fl Fr) - dr = wy F(=1) + w, F(1) + ; wif (1)
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EPFL  Gauss Lobatto (2)

Gauss
Lobatto
Points n

Weight Coefficient

Polynomial
Order m

0.285232,0.765055, 1

5 ;[ 1 49 32 49 1 7
-1,—- |5,0, |5,1 10°90°45°90° 10
ﬁ ﬁ
6 ~1,-0.765055,—0.285232, | 0.066667,0.378475,0.554858, 9

0.554858,0.378475,0.066667
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EPFL  Gauss Radau

= A Gaussian quadrature-like formula for numerical estimation of
integrals. It requires m 4+ 1 points and fits all polynomials to degree 2m,
so it effectively fits exactly all polynomials of degree 2m — 1.

= |t uses a weighting function W(x) = 1 in which the endpoint -1 in the
interval [-1, 1] is included in a total of n abscissas, givingr =n — 1free
coordinates.

The general formula of integration is as follows,

1 n
- jl F(r) - dr = wyf(=1) + Z wif (1)
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EPFL  Gauss Radau (2)

Gauss Weight Coefficient Polynomial
L obatto ; w; Order m
Points n

2 —1,0.333333 0.5,1.5 2
3 —1,-0.289898, 0.689898 0.222222,1.02497,0.752806 4
4 —1,—0.575319,0.181066, 0.125,0.657689,0.776387, 6
0.822824 0.440924
) —1,-0.72048,—-0.167181, 0.08,0.446208,0.623653, 8
0.446314,0.885792 0.562712,0.287427
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EPFL  Example: Tapered member

= Element with linearly varying cross-section with unit length

= Subjected to unit axial load only (P = 1)

= Assume all units to be consistent (omitted for the sake of the example)
= Stress-strain relation is assumed as follows:

AO)=3 /1
R (5) =25 2
A(1) = _ )& —0.5¢%, £ <095
e O {00 +0.05(c — 0.95), & > 0.95
oA 0, = ole = 0.95] = 0.49875

L=1
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EPFL  Example: Tapered member (2)

= et us assume 3 integration points because of the tapered cross-section

1
L= [ £y dr = wif (1) +wsf (1) +waf 0
Z1

Integration points and weights at
natural coordinate system

r1=—1 W1=W3=§

r3=1 4
Wy = —~

7"2—0 3

Integration points at

Corresponding area at
Cartesian system

integration points

1 +1_1(1)+1_0 PR
1= Ty=y 2= 1
1 +1_1(0)+1_1 P
X2=5THy =5 272 27
1 1 1 1
X3 27”3+2 2(1)+2 3
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EPFL  Example: Tapered member (3)

= This analysis consists in a single step (n = 1) in load control
= The first step is to compute the structure initial stiffness matrix

= Since the member is subjected to axial load only, one fiber is enough for such
computations (uniaxial loading)
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=PFL  Example: Tapered member (4)

- Displacement-based element: Initial element stiffness matrix

= When the tapered member is modeled with a single (axial load only)
displacement-based beam-column element

= The axial displacement field can be computed as follows: u(x) = N(x)i; = ’Lﬁal

= Therefore, the strain: e(x) = B(x)u; = %ﬂl

= The initial structure tangent stiffness K2 ,ceure COfresponds to the initial

element tangent stiffness K and is given as follows at iteration i:

L 2

1
KO, e = KO = f (Z) k9)dx (kO is the initial section tangent stiffness)
0

s ol
L) =\2" T 2)2% T 2T )
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=prL  Example: Tapered member (5)

- Displacement-based element: Initial element stiffness matrix

= The section stiffness matrix k. ,

Nnfib

ks (x) = 2 li.fiber . (Ek.fiberAk.fiber) . lk.fiber .
k=1

lk.fiber = {1, —Yk.fiber> Zk.fiber}

Y
Single (0,0) Z

fiber

_ kg (x) = Efiber(x) . Afiber(x)

v

do
e Afiper (x)

(We assume one fiber in this case, therefore: yy riper = Zi fiper = 0)
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=PFL  Example: Tapered member (6)

- Displacement-based element: Initial element stiffness matrix

= Hence, after applying Gauss-Lobatto integration:

1
1 1
thructure =K% = 2L jf(?‘)d?" - ﬂ(wlf(rl) +wsf(r3) + sz("”z))
1

L L d
Fr)=FD =K (G0 +5) = RO =22 Ar=1-4, =3
=0
L L L d
Fo) = fO =R (5O +5) =K (3) = | A, =1-4,=25
=0
L L d
Fo) = fD =K (M +5) =W =27| Az =1-45=2
=0
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=PFL  Example: Tapered member (7)

- Displacement-based element: Initial element stiffness matrix

= Hence, after applying Gauss-Lobatto integration:
1 /1 1 .

0 0 4 2.5
KstructurezK =—(§3+§2+§25)=T= 25 (L=1)
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=PFL  Example: Tapered member (8)

- Displacement-based element: Structure state determination step

= Now that the initial structure tangent stiffness matrix was computed, the first iteration
of the structure state determination can be performed

= Load-control is used, and the external load P = 1 = AotFexr = 11 is applied in a
single load increment (n = 1). Hence, the load multiplier is given by A* = 1

= For the first iteration i = 1 of load control, the following quantities are computed:

F‘l?nb 0 1,1 Fext 1
structure structure '

1,1 _

0
KS tructure

= The increment in load multiplier is therefore 6111 = A1 =1

= The increment in the structure’s displacement is vt = §v;* + §AV16v, " = 0.4
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EPFL  Example: Tapered member (9)

- Displacement-based element: Element state determination step

= The increment in the element displacement is Aul! = évi! = 0.4
= The element displacement is therefore ut! = a%° + Autt =0+ 0.4 = 0.4

= The section deformations at the three integration sections can be computed:

ds” (x) = Beu"!

1
dyt (x 0)=Zﬁ11= 0.4 = 0.4
1,1 L 11
dy’ (x=L/2)=Zu' =—--04=04
1,1 L 11
dy (x L)=Zu =—--04=04
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=PFL  Example: Tapered member (10)

- Displacement-based element: Section state determination step

= For every section along the element length, the strain at each fiber is computed
using

Ek.fiver = lk.fiber - dgt - Ek.fiber = 1 - dg
= Recall that each section is composed of a single fiber, therefore:
ekﬁber(x— 0)=1-04=04
e fiver(X =L1/2) =1-0.4=0.4

e fiper(X =L) =104 =04
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=PFL  Example: Tapered member (11)

- Displacement-based element: Section state determination step

= For every fiber, the stress and material tangent stiffness can be determined:

olt(x =0) = ¢"1(0) — 0.5¢¥1(0)?2 = 0.4 — 0.5-0.4% = 0.32
oll(x =L/2) = e¥1(L/2) — 0.5 (L/2)? = 0.4 — 0.5-0.4% = 0.32
cll(x=L) =¥1(L) — 05¢%1(L)? = 0.4 - 0.5-0.4% = 0.32

do

— =1-04=0.6
dee

=0.4
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=PFL  Example: Tapered member (12)

- Displacement-based element: Section state determination step
= For every section, the section resisting force can be determined:

Q@ = ) oM@ AW

fibers
1,1 _ _ 11 _ _ _ _
Qe (x=0)=0"(x=0)-A(x =0) =0.32-3 = 0.96
QU (x = L/2) = " (x = L/2) - A(x = L/2) = 0.32 - 2.5 = 0.80

QMl(x=L) =0 (x =L)-A(x =L) = 0.32- 2 = 0.64
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=PFL  Example: Tapered member (13)

- Displacement-based element: Section state determination step

= Similarly, the section tangent stiffness can be determined:

11 do
Ko=) — (@) A®
, de
fibers €
do
ki’l(x=0)=E (x=0)-A(x=0)=06-3=1.8
£=0.4

do
ke'(x =1/2) = —

7e (x=L/2)-A(x=L/2)=0.6-25=1.5

£=0.4

do
ky'(x = L) = —

(x=L)-Alx=L)=06-2=1.2
de

£=0.4
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=PFL  Example: Tapered member (14)

- Displacement-based element: Element state determination step

= The element resisting force can be determined:
L
QU =g ~ o= (wiQi (x = 0) + w3Qy (x = L/2) + wpQY (x = 1)

_1 (1 096+4 08+1 064)—08
2 \3 7 3 3 7 -

= Similarly, the element tangent stiffness can be determined:

_ 1
KLl = RL! = i(wlk;»l(x = 0) + wak ™ (x = L/2) + w, kM (x = L))

- (1 18+4 15+1 12)—15
- 2-1\3 7 3 73 %) 7
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=PFL  Example: Tapered member (15)

- Displacement-based element: Structure state determination step

= The structure internal force is therefore
Fie = QY =0.8

int
= The element unbalance force is given by
FlAd =fF2! — A1 F,,=08—-1-1=—-0.2

unb — " int
= At next iteration (i =2) of the Newton-Raphson algorithm for the load-control

integrator, this unbalance force is used to compute the increment in the structure
displacements
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ctPFL  Example: Tapered member (16)
- Displacement-based element: Results iterations

I u Section 3 o do/de Qsr kg Q K Fynp
1 0.40 0.32 0.60 0.96 1.80

1 0.40 2 040 0.32 0.60 0.80 1.50 0.80 1.50 -0.20
3 0.40 0.32 0.60 0.64 1.20
1 0.53 0.39 0.47 117 140

2 0.53 2 0.53 0.39 0.47 0.98 117 0.98 117 -0.02
3 0.53 0.39 0.47 078 0.93
1 0.55 0.40 0.45 1.20 1.34

3| 055 2 0.55 0.40 0.45 1.00 112 1.00 112 0
3 0.55 0.40 0.45 0.80 0.90
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tPFL  Example: Tapered member (17)
-Some important remarks

Strain Section forces

& , Exact
: xac '

o 10 S L - Approximate

< : T o o o

. O. o @ / 1\ o o0
Approximate T & ey = = S Exact
W e ] [ i S S l _______ i “A/

= The strain along the member remains constant, which is not correct due
to the approximate nature of the axial displacement interpolation.

= The corresponding section forces are not correct along the member.

= Satisfies equilibrium in the weighted residual sense, it does not satisfy
equilibrium in a strict point-by-point sense.

= Force-based beam-column elements should yield the exact answer.
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=prL  Example: Tapered member (18)

- Force-based element: Initial element stiffness matrix

= The initial element flexibility is given as follows:

0

1 1
il ot [t
= | Ss\grtg)dr=5 | s\5rtg)dr
-1 -1
\ J
f
g(r)

ol RESSLab

Integration Methods for Beam-Column Elements - Nonlinear Analysis of Structures - Prof. Dimitrios Lignos, RESSLab EPFL
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FY = be(x) : (kg(x))_l-b(x)dx = j@x ( =1
0

0
X

L

D

)
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=prL.  Example: Tapered member (19)
- Force-based element: Initial element stiffness matrix

= With (see slide 34):
1 1
f(0) = = —=0.33

k2(0) 3
0 — — —
fO(L/2) = w2 =25 0.40
fo(L) = %— ~=10.50
ks(L) 2

= With the selected numerical integration rule:

_ L
FO =F0 = 2 (W1f2(0) + wyof2(L/2) + wsf2(L))
1 (1 033+4 040+1 050) 0.41
2 \3 7 3 3 )
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=pFL  Example: Tapered member (20)

- Force-based element: Initial element stiffness matrix

= The initial element stiffness (and therefore the initial structure stiffness) is given

Y 1 1
thructure =K% =K’ = FO — 041 = 2.47

L RESSLab Integration Methods for Beam-Column Elements - Nonlinear Analysis of Structures - Prof. Dimitrios Lignos, RESSLab EPFL

47



=PFL  Example: Tapered member (21)

- Force-based element: Structure state determination step

= The initial structure tangent stiffness matrix was computed; therefore, the first
iteration of the structure state determination can be performed

= Load-control is used, and the external load P =1 = A;,Fex; = 1- 1 is applied in a
single load increment (n = 1). Hence, the load multiplier is given by A = 1

= For the first iteration i = 1 of load control, the following quantities are computed:

0
1,1 F 0 1,1 F 1
sybl = funb  — = 0and svit = et — 1 — 406
Kstructure Kstructure Kstructure 2.47

= The increment in load multiplier is therefore 6171 = A1 =1

» The increment in the structure’s displacement is 6vt = §v,7* + §A118v; " = 0.406
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=PFL  Example: Tapered member (22)

- Force-based element: Element state determination step

= The increment in the element displacement is Au'! = vt = 0.406
= The element displacement is therefore ! = % + Aat! = 0 + 0.406 = 0.406

= The Newton-Raphson procedure to ensure convergence of the element state
determination step of the force-based beam-column element is started (j = 1)

= The element force increment is computed:
Aghttt = kWAt =247 .0.406 = 1.0

= The element force is updated:
gttt =gt +Agttt =0+ 1.0=1.0
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=PFL  Example: Tapered member (23)

- Force-based element: Element state determination step

= The increment in section force is computed at each section using
1,1,1 —
AQs " (x) = b(x)Aghtt?

This gives:
A0271(0)=1.0-1.0=1.0
A0 (L/2) =1.0-1.0=1.0
A0 (1) =1.0-1.0=1.0

= The section force is updated:
Qs (x) = Q5 (%) + 405 (x)
This gives:
Qs(0) = 0.0+ 1.0 = 1.0
Qs N (L/2) = 0.0+ 1.0 =1.0
Qs (L) =0.04 1.0 =1.0
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=PFL  Example: Tapered member (24)

- Force-based element: Element state determination step

= The increment in section deformation is computed at each section using
1,1,1 1,1, 1,1, 1,1,1
Adg™ () = dgy” () + £ () - 4Q5 (%)

This gives:
Adyt1(0) = 0.0 +0.33-1.0 = 0.33
Adyt(L/2) = 0.0 + 0.40 - 1.0 = 0.40

Ady™ (L) = 0.0 + 0.50 - 1.0 = 0.50
= The section deformation is updated:
ds ' (x) = dg"(x) + Adg™ (x)

This gives:
dy1(0) = 0.0 + 0.33 = 0.33
dsVH(L/2) = 0.0 + 0.40 = 0.40
ds V(L) = 0.0 + 0.50 = 0.50
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=PFL  Example: Tapered member (25)

- Force-based element: Section state determination step

= For every section along the element length, the strain at each fiber is computed

using
1,1,1 B 1,1,1
€k.fiber — lk.fiber dg > Ek.fiber = 1° ds

= Since each section is composed of a single fiber:
£ fiper(x =0) = 1-0.33 = 0.33
£ fiper(X = L/2) = 1-0.40 = 0.40

£ fiper(x =1) =1-0.50 = 0.50
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=PFL  Example: Tapered member (26)

- Force-based element: Section state determination step

= For every fiber, the stress and material tangent stiffness can be determined:
oltl(x =0) = 11(0) — 0.5¢¥11(0)? = 0.33 - 0.5-0.33% = 0.28

otti(x =L/2) = e¥11(L/2) — 0.5eV11(L/2)? = 0.4 — 0.5 0.4% = 0.32
oltti(x = L) = ¥11(L) — 0.5¢VH1(L)2 = 0.5 - 0.5+ 0.5%2 = 0.375

do

— =0)=1-0.33=0.67
p (x =0)

=0.33
@ =L/2)=1-04=0.6
rp (x=L/2) = 4 = 0.

=0.4

d—g =L)=1-05=0.5

rp (x =L) = 5 =0.
£=0.5

L RESSLab Integration Methods for Beam-Column Elements - Nonlinear Analysis of Structures - Prof. Dimitrios Lignos, RESSLab EPFL

53



=PFL  Example: Tapered member (27)

- Force-based element: Section state determination step
= For every section, the section resisting force can be determined:

Q0 = Y M@ - Aw)

fibers
QUM (x = 0) = oLb(x = 0) - A(x = 0) = 0.28 - 3 = 0.83
QLM (x = 1/2) = "W (x = L/2) - A(x = L/2) = 0.32 - 2.5 = 0.80

QLM (x =L) =0 (x = L) - A(x = L) = 0.375 - 2 = 0.75
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=PFL  Example: Tapered member (28)

- Force-based element: Section state determination step

= Similarly, the section tangent stiffness can be determined:

do
W = Y () AG)
fibers €
do
ko't (x =0) = - (x=0)-A(x =0)=0.67-3=2.0
€ £=0.33

do
kgt (x = L/2) = —

1e (x=L/2)-A(x=L/2)=0.6-25=1.5

£=0.4

do
kit (x = L) = —

(x=L)-Alx=L)=05-2=1.0
de

£=0.5
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=PFL  Example: Tapered member (29)

- Force-based element: Section state determination step
= The section flexibility is computed:
1

1,1,1
X =
f:S‘ ( ) k;'l'l(x)

fittx=1/2) = 1 - =
S kit (x=1L/2) 15

1 1

1,1,1
T (x = L) = = =
Js kitt(x=1) 1.0
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=PFL  Example: Tapered member (30)

- Force-based element: Element state determination step

= The section unbalanced force is computed for every section:

Qs (1) = Q™ (1) — Qs ' (%)
Which gives
0L11(0) = 1.0 — 0.83 = 0.17
0L11(0) = 1.0 — 0.80 = 0.2

0L11(0) = 1.0 — 0.75 = 0.25
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=PFL  Example: Tapered member (31)

- Force-based element: Element state determination step

= The section unbalanced deformation is computed for every section:

111()—f111() Qlll(x)
Which gives
ds;’'(0) = 0.5-0.17 = 0.085
de’t(L/2) = 0.67 - 0.20 = 0.133

de’t(L) = 1.0 - 0.25 = 0.25
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=PFL  Example: Tapered member (32)

- Force-based element: Element state determination step

= The element resisting force can be determined:

L
QM = gt & - (Wi Qi O = 0) + waQyt (x = 1/2) + waQ

_! (1 083+4 O8+1 075)—080
2 \3 7 3 3 7 -

= Similarly, the element flexibly can be determined:

1,1,1
ST

_ L
F111 = pL1l ~ 5 (Wlfsl'l’l(x = 0) + wafs " (x = L/2) + wyfi M

_1 (1 05+4 067+1 10)—069
2 \3 77 3 7 3 ) 7
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=PFL  Example: Tapered member (33)

- Force-based element: Element state determination step

= Therefore, the element tangent stiffness is computed:

_ 1 1
KLl = gLl = = = 1.44
FLL10.69
= The element unbalanced displacemeLnt IS computed:
u, ot = j b7 (x)dst (x) dx
0
Which gives
L
ottt = (Wldgﬁl’l x =0)+wsdy (x =L/2) + wyd
2
! (1 0085+4 0133+1 025)—0144
2 \3 7 3 3 )
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=PFL  Example: Tapered member (34)

- Force-based element: Element state determination step

= For the next iteration (j = 2) of the Newton-Raphson procedure for the element
state determination of the force-based element, the increment in the element
deformation is set to
AT = —ayt = —0.144

= The element state determination loop in continued until the element has converged

= Then another iteration (i = 2) of the Newton-Raphson procedure for the structure
state determination is conducted following the load-control integrator
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tPFL  Example: Tapered member (35)
- Force-based element: Results iterations (1)
i u J Sec € o do/de Qsr Qsu dsy ks Uy Q Kstruct Fynp
1 0.33 0.28 0.67 0.83 0.7 0.08 2.00
1 2 0.40 0.32 0.60 0.80 0.20 013 1.50 0.14
3 0.50 0.37 0.50 0.75 0.25 0.25 1.00
1 0.41 0.79 142 -0.21
1 0.31 0.26 0.69 0.79 0.00 0.00 2.06
2 2 0.39 0.32 0.61 0.79 0.00 0.00 1.51 0.00
3 0.54 0.40 0.46 0.79 0.00 0.00 0.92
1 0.41 0.33 0.59 0.98 0.02 0.01 1.76
1 2 0.53 0.39 0.47 0.98 0.02 0.02 117 0.03
3 0.77 0.47 0.23 0.95 0.05 omn 0.46
2 0.55 0.97 0.91 -0.03
1 0.40 0.32 0.60 0.97 0.00 0.00 1.79
2 2 0.52 0.39 0.48 0.97 0.00 0.00 119 0.00
3 0.81 0.48 0.19 0.97 0.00 0.00 0.37
1 0.42 0.33 0.58 1.00 0.00 0.00 1.73
3 0.59 1 2 0.55 0.40 0.45 1.00 0.00 0.00 112 0.01
3 0.91 0.50 0.09 0.99 0.01 0.05 0.19
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ctPFL  Example: Tapered member (36)
- Force-based element: Results iterations (2)
i u j Sec E o do/de Qs Qsu dsu ks Uy Q Kstruct Fyunp
1 0.42 0.33 0.58 0.99 0.00 0.00 174
3 0.59 2 2 0.55 0.40 0.45 0.99 0.00 0.00 113 0.00 0.99 0.56 -0.01
3 0.92 0.50 0.08 0.99 0.00 0.00 0.15
1 0.42 0.33 0.58 1.00 0.00 0.00 1.73
1 2 0.55 0.40 0.45 1.00 0.00 0.00 112 0.00
3 0.96 0.50 0.04 1.00 0.00 0.02 0.08
4 0.60 1,00 0.31 -0.00
1 0.42 0.33 0.58 1.00 0.00 0.00 1.73
2 2 0.55 0.40 0.45 1.00 0.00 0.00 112 0.00
3 0.97 0.50 0.03 1.00 0.00 0.00 0.07
1 0.42 0.33 0.58 1.00 0.00 0.00 1.73
1 2 0.55 0.40 0.45 1.00 0.00 0.00 112 0.00
3 0.98 0.50 0.02 1.00 0.00 0.01 0.03
5 0.60 1.00 0.7 0.00
1 0.42 0.33 0.58 1.00 0.00 0.00 1.73
2 2 0.55 0.40 0.45 1.00 0.00 0.00 112 0.00
3 0.98 0.50 0.02 1.00 0.00 0.00 0.03
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=prL.  Example: Tapered member (19)
-force-based elements

Strain Section forces

(e 0)
< Exact  Approximate

Al o .

< Il o o o

. o © o o o
Approximate ) - — — Exact
\ ————————————— — I ______ l ___________ i -

= The strain along the member is accurate

= The corresponding section forces are correct along the member
= Satisfies equilibrium in a strict point-by-point sense

= Force-based elements yield the exact answer
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