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Objectives of today’s lecture

To introduce:
§ Fiber-based beam-column elements
§ Fiber discretization of cross sections
§ Constitutive models for fiber-based elements
§ Computation of input strains
§ Section analysis
§ Type of element formulations
• Displacement-based beam-column elements
• Force-based beam-column elements

§ Integration methods for member forces and member stiffness
§ Examples with displacement- and force-based elements
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Displacement-based beam-column element
§ The vectors of nodal displacements, !𝐮, and element resisting forces !𝐪,

are as follows:

!𝐮 = %𝑢!, %𝑢", %𝑢# $

!𝐪 = %𝑞!, %𝑞", %𝑞# $𝑖 𝑗𝐿

"𝑢!

"𝑢"

"𝑢#

𝑥

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛	
𝑝𝑜𝑖𝑛𝑡

§ At a given integration point (section):

𝑑# 𝑥 = 𝑁$(𝑥)'𝑢$ 𝑑% 𝑥 = 𝑁& 𝑥 '𝑢& + 𝑁' 𝑥 '𝑢'
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State determination of displacement-based element
§ The tangent element stiffness matrix at iteration 𝑖 of step 𝑛, !𝐊%,', of a

displacement-based beam-column element of length 𝐿, and the element
resisting force vector !𝐪%,' can be expressed as follows:

!𝐊%,' = -
(

)

!𝐁$(𝑥) 2 𝐤*
%,'(𝑥) 2 !𝐁(𝑥) 2 𝑑𝑥

!𝐪%,' = -
(

)

!𝐁$(𝑥) 2 𝐐*+
%,'(𝑥) 2 𝑑𝑥

We calculate those numerically with some
numerical integration schemes

• Gauss-Legendre,
• Gauss-Lobatto,
• Gauss Radau,
• midpoint rule
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§ The element vector generalized nodal forces !𝐪 at the basic reference
frame (without rigid body modes) is as follows:

!𝐮 = %𝑢!, %𝑢", %𝑢# $

!𝐪 = %𝑞!, %𝑞", %𝑞# $

𝑖 𝑗𝐿 𝑥

𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐿

"𝑞!
"𝑢!

"𝑞"
"𝑢"

"𝑞#
"𝑢#

Force-based (or flexibility-based) elements
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§ The section flexibility at iteration 𝑗, 𝐟(
),+,,(𝑥) is, 

𝐟(
),+,,(𝑥) = 𝐤(

),+,, 𝑥 -$

§ Element flexibility matrix, '𝐅),+,, at iteration 𝑗 is:

'𝐅),+,, = /
.

/

𝐛0(𝑥) 1 𝐟(
),+,,(𝑥) 1 𝐛 𝑥 𝑑𝑥

§ The element stiffness matrix, 2𝐊),+,, at iteration 𝑗 is:

2𝐊),+,, = 𝐅),+,,
-$

State determination of force-based element

§ The element end displacements at iteration 𝑗 is,

2𝐮),+,, = /
.

/

𝐛0(𝑥) 1 𝐝(
),+,,(𝑥) 𝑑𝑥

(section deformations)(end displacements)
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Numerical integration

§ In nonlinear structural mechanics, we seek to obtain numerical estimates
of an integral by picking optimal coordinates (abscissas) 𝑟' at which to
evaluate the function, 𝑓(𝑟') of interest.

§ Gauss quadrature is often used for this purpose.
§ According to the theorem of Gaussian quadrature, the optimal abscissas

of the 𝑚-point Gaussian quadrature formulas are precisely the roots of
the orthogonal polynomial for the same interval and weighting function.

§ Gauss quadrature is optimal because it fits all polynomials up to degree
2m-1 exactly.

§ Slightly less optimal fits are obtained from Radau quadrature and
Laguerre-Gauss quadrature (depends on the problem I would say!)
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Gauss quadrature
-Some remarks

§ The location of Gauss points is such that for a given number of points
greatest accuracy is obtained.

§ The Gauss points are located symmetrically about the center of the
interval to be integrated.

§ The weight will be the same for symmetrically located Gauss points
about the center of the interval to be integrated.



9RESSLab
Resilient Steel Structures Laboratory

Integration Methods for Beam-Column Elements – Nonlinear Analysis of Structures - Prof. Dimitrios Lignos, RESSLab EPFL

Gauss quadrature
-One dimensional integrals

§ For the state determination of beam-column elements, the integration
should be done along the length 𝐿 of the element. Therefore, we are
dealing with one dimensional integrals.

𝑢1𝑖 𝑗𝐿

𝑢2
𝑢3

𝑢4

𝑢6

𝑢5

𝑥

Integration
points
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§ Natural coordinate system [−1 1] instead of [0 𝐿].

𝐼 = #
67

7

𝑓(𝑟) ( 𝑑𝑟 ≅+
897

:

𝑤8 𝑓8(𝑟8)

𝑓 𝑟 = 𝑎7 + 𝑎;𝑟 + 𝑎<𝑟; + 𝑎=𝑟<

Gauss quadrature (2)
-One dimensional integrals
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§ The integral after integrating analytically,

𝐼 = -
,!

!

𝑓 𝑟 2 𝑑𝑟 = 𝑎!𝑟 +
1
2𝑎"𝑟

" +
1
3𝑎#𝑟

# +
1
4𝑎-𝑟

-
,!

!
= 2𝑎! +

2
3𝑎#

Gauss quadrature (3)
-One dimensional integrals
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§ Assume, we would like to approximate this integral with 𝑛 = 1 Gauss
point:

𝐼 = -
,!

!

𝑓(𝑟) 2 𝑑𝑟 ≅ 𝑤!𝑓 𝑟! = 𝑤! 𝑎! + 𝑎"𝑟! + 𝑎#𝑟!" + 𝑎-𝑟!#

§ The error then between exact and approximate solution is as follows:

𝐸 = 𝑎! 2 − 𝑤! + 𝑎#
2
3 − 𝑟!

"𝑤! − 𝑎"𝑟!𝑤! − 𝑎-𝑟!#𝑤!

Gauss quadrature (4)
-One dimensional integrals
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§ The error becomes minimum when the Jacobian 𝐉 is zero:

𝐉 =
𝜗𝐸
𝜗𝑎!

𝜗𝐸
𝜗𝑎"

𝜗𝐸
𝜗𝑎#

𝜗𝐸
𝜗𝑎-

§ Subsequently,

𝐉 = [2 − 𝑤! −𝑤!𝑟!
2
3 − 𝑟!

"𝑤! −𝑤!𝑟!#]

§ Therefore,

2 − 𝑤! = 0 𝑟! = 0 𝑟! = ±
2
3𝑤!

𝑟!# = 0

𝑤! = 0 𝑤! = 0

Gauss quadrature (5)
-One dimensional integrals
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§ Therefore, the condition that satisfies all four partial derivatives to be zero
for 𝑛 = 1 Gauss integration point is:

𝑤! = 2 𝑟! = 0and

Gauss quadrature (6)
-One dimensional integrals
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Gauss Points 
𝒏

Point
𝒓𝒊

Weight Coefficient
𝒘𝒊

Polynomial 
Order 𝒎

1 0 2 1
2 -1/Ö3, 1/Ö3 1, 1 3
3 -Ö0.6, 0, Ö0.6 5/9, 8/9, 5/9 5
4 -0.861136, -0.339981, 

0.339981, 0.861136
0.347855, 0.652145, 
0.652145, 0.347855

7

5 -0.906180, -0.538469, 0,
0.538469, 0.906180

0.236927, 0.478629, 
0.568889, 0.478629, 
0.236927

9

6 -0.932470, -0.661209, 
-0.238619, 0.238619, 
0.661209, 0.932470

0.171324, 0.360762, 
0.467914, 0.467914, 
0.360762, 0.171324

11

Gauss quadrature (7)



16RESSLab
Resilient Steel Structures Laboratory

Integration Methods for Beam-Column Elements – Nonlinear Analysis of Structures - Prof. Dimitrios Lignos, RESSLab EPFL

Gauss quadrature
-Example elastic truss element with uniform cross section

𝐤𝒆 = -
(

)

𝐁$(𝑥) 2 𝐤/(𝑥) 2 𝐁(𝑥) 2 𝑑𝑥

= -
(

) −
1
𝐿
1
𝐿

2 𝐸𝐴 2 [−
1
𝐿

1
𝐿
] 2 𝑑𝑥

𝑢1𝑖 𝑗𝐿 𝑢4𝑥 𝑖 𝑗

𝑟 = −1 𝑟 = 1𝑥 = 0 𝑥 = 𝐿

=
1
𝐿"
-
(

)
−1
1 2 𝐸𝐴 2 [−1 1] 2 𝑑𝑥

Cartesian system Natural coordinate system
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𝐤𝒆 =
1
𝐿"
-
(

)
−1
1 2 𝐸𝐴 2 [−1 1] 2 𝑑𝑥

§ From calculus, coordinate transformation from 0 to 𝐿: to -1 to 1:

§ Assume:
𝑥 =

𝑏 − 𝑎
2

𝑟 +
𝑏 − 𝑎
2

𝑑𝑥 =
𝑏 − 𝑎
2 𝑑𝑟

𝑥 =
𝐿 − 0
2 𝑟 +

𝐿 − 0
2

𝑑𝑥 =
𝐿 − 0
2 𝑑𝑟

Gauss quadrature (2)
-Example elastic truss element with uniform cross section
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𝒌𝒆 =
1
𝐿"

-
,!

!
−1
1 2 𝐸𝐴 2 [−1 1] 2

𝐿
2
𝑑𝑟

§ Therefore, 𝐤𝒆 in the updated coordinate system becomes:

=
𝐸𝐴
2𝐿

-
,!

!
1 −1
−1 1 𝑑𝑟

=
𝐸𝐴
2𝐿

-
,!

!
𝑓!(𝑟) 𝑓"(𝑟)
𝑓"(𝑟) 𝑓!(𝑟)

𝑑𝑟 =
𝐸𝐴
2𝐿

2𝑓!(0) 2𝑓"(0)
2𝑓"(0) 2𝑓!(0)

=
𝐸𝐴
2𝐿

2𝑓!(0) 2𝑓"(0)
2𝑓"(0) 2𝑓!(0)

=
𝐸𝐴
2𝐿

2 −2
−2 2 =

𝐸𝐴
𝐿

1 −1
−1 1

§ Note: for 𝑚 = 1 order polynomial, 𝑛 = 2𝑚 − 1 = 1Gauss points give an exact solution

Gauss point

weight

Gauss quadrature (3)
-Example elastic truss element with uniform cross section
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Gauss quadrature
-Example elastic beam-column element with uniform cross section

𝐊$ = -
%

&

6
𝐿'

1 −
2𝑥
𝐿

2
𝐿
3𝑥
𝐿
− 1

6
𝐿'

2𝑥
𝐿
− 1

2
𝐿
3𝑥
𝐿 − 2

5 𝛦𝛪 5
6
𝐿' 1 −

2𝑥
𝐿

2
𝐿
3𝑥
𝐿
− 1

6
𝐿'

2𝑥
𝐿 − 1

2
𝐿
3𝑥
𝐿 − 2 𝑑𝑥

𝐤𝒆 = -
(

)

𝐁$(𝑥) 2 𝐤/(𝑥) 2 𝐁(𝑥) 2 𝑑𝑥

𝑖 𝑗𝐿

𝑢2
𝑢3 𝑢6

𝑢5

𝑖 𝑗

𝑟 = −1 𝑟 = 1

Cartesian system Natural coordinate system
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𝐤𝒆 =
4𝐸𝐼
𝐿'

-
%

&

3
𝐿 1 −

2𝑥
𝐿

3𝑥
𝐿 − 1

3
𝐿
2𝑥
𝐿 − 1

3𝑥
𝐿 − 2

5
3
𝐿
1 −

2𝑥
𝐿

3𝑥
𝐿
− 1

3
𝐿
2𝑥
𝐿
− 1

3𝑥
𝐿
− 2 𝑑𝑥

𝑥 =
𝐿
2 𝑟 +

𝐿
2 𝑑𝑥 =

𝐿
2𝑑𝑟

=
2𝐸𝐼
𝐿 )

!"

"

−
3
𝐿 𝑟

1
2 3𝑟 + 1

3
𝐿 𝑟

1
2 3𝑟 − 1

/ −
3
𝐿 𝑟

1
2 3𝑟 + 1 3

𝐿 𝑟
1
2 3𝑟 − 1 𝑑𝑟 =

2𝐸𝐼
𝐿 )

!"

"

9
𝐿# 𝑟

# −
3
2𝐿 𝑟(3𝑟 + 1) −

9
𝐿# 𝑟

# −
3
2𝐿 𝑟(3𝑟 − 1)

−
3
2𝐿 𝑟(3𝑟 + 1)

1
4 3𝑟 + 1 # 3

2𝐿 𝑟 3𝑟 + 1
1
4(9𝑟

# −1)

−
9
𝐿# 𝑟

#

−
3
2𝐿 𝑟 3𝑟 − 1

3
2𝐿 𝑟 3𝑟 + 1
1
4 9𝑟# −1

9
𝐿# 𝑟

# 3
2𝐿 𝑟 3𝑟 − 1

3
2𝐿 𝑟 3𝑟 − 1

1
4 3𝑟 − 1 #

𝑑𝑟

Gauss quadrature (2)
-Example elastic beam-column element with uniform cross section
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§ Therefore, 𝐤0 in the natural coordinate system becomes:

=
2𝐸𝐼
𝐿

-
-.

. 𝑓.(𝑟) 𝑓'(𝑟) 𝑓/(𝑟) 𝑓0 𝑟
𝑓1(𝑟) 𝑓2(𝑟) 𝑓3(𝑟)

𝑓4(𝑟) 𝑓5(𝑟)
𝑓.%(𝑟)

𝑑𝑟=
2𝐸𝐼
𝐿 -

-.

.

9
𝐿' 𝑟

' −
3
2𝐿 𝑟(3𝑟 + 1) −

9
𝐿'
𝑟' −

3
2𝐿
𝑟(3𝑟 − 1)

−
3
2𝐿 𝑟(3𝑟 + 1)

1
4 3𝑟 + 1 ' 3

2𝐿
𝑟 3𝑟 + 1

1
4
(9𝑟' − 1)

−
9
𝐿' 𝑟

'

−
3
2𝐿 𝑟 3𝑟 − 1

3
2𝐿 𝑟 3𝑟 + 1
1
4 9𝑟' − 1

9
𝐿' 𝑟

' 3
2𝐿 𝑟 3𝑟 − 1

3
2𝐿 𝑟 3𝑟 − 1

1
4 3𝑟 − 1 '

𝑑𝑟
Sym.

Gauss quadrature (3)
-Example elastic beam-column element with uniform cross section
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§ Assume two Gauss points:

=
2𝐸𝐼
𝐿 -

-.

. 𝑓.(𝑟) 𝑓'(𝑟) 𝑓/(𝑟) 𝑓0 𝑟
𝑓1(𝑟) 𝑓2(𝑟) 𝑓3(𝑟)

𝑓4(𝑟) 𝑓5(𝑟)
𝑓.%(𝑟)

𝑑𝑟

=
2𝐸𝐼
𝐿

6.007999
𝐿'

−
5.999994

2𝐿
−6.007999

𝐿'
5.999994

2𝐿

−
5.999994

2𝐿 1.999999 5.999994
2𝐿 0.999999

−
6.007999

𝐿'
5.999994

2𝐿

5.999994
2𝐿

0.999999

6.007999
𝐿'

2.999997
𝐿

2.999997
𝐿 1.999999

'67
& (𝑓. −0.57735 + 𝑓. +0.57735 )

= '67
&
( 5
&!

−0.57735 ' + 5
&!

0.57735 ')

= '67
& ( 5&! −0.57735 ' + 5

&! 0.57735 ')

=
12.016𝐸𝐼

𝐿/
(I would expect 12𝐸𝐼/𝐿3)

Sym.

Gauss quadrature (4)
-Example elastic beam-column element with uniform cross section
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§ Note: the error with 2 Gauss points is due to the numerical integration
approximation and the number of decimals

𝐤𝒆 =
2𝐸𝐼
𝐿

6.007999
𝐿' −

5.999994
2𝐿 −6.007999

𝐿'
5.999994

2𝐿

−
5.999994

2𝐿 1.999999 5.999994
2𝐿

0.999999

−
6.007999

𝐿'
5.999994

2𝐿

5.999994
2𝐿

0.999999

6.007999
𝐿'

2.999997
𝐿

2.999997
𝐿

1.999999

Gauss quadrature (5)
-Example elastic beam-column element with uniform cross section
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Gauss Lobatto

§ A Gaussian quadrature with weighting function 𝑊(𝑥) = 1 in which the
end points of the interval [-1, 1] are included in a total of 𝑛 abscissas,
given 𝑟 = 𝑛 − 2 free abscissas.

§ The abscissas are symmetrical about the origin.
§ the general formula of integration is as follows,

𝐼 = -
,!

!

𝑓(𝑟) 2 𝑑𝑟 ≅ 𝑤!𝑓 −1 + 𝑤%𝑓 1 +N
'1"

%,!

𝑤'𝑓(𝑟')
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Gauss 
Lobatto
Points 𝒏

Point
𝒓𝒊

Weight Coefficient
𝒘𝒊

Polynomial 
Order 𝒎

3 −1, 0, 1 1
3
,
4
3
,
1
3

3

4 −1,−
1
5
,
1
5
, 1

1
6
,
5
6
,
5
6
,
1
6

5

5
−1,−

3
7 , 0,

3
7 , 1

1
10
,
49
90
,
32
45
,
49
90
,
1
10

7

6 −1,−0.765055, −0.285232,
0.285232, 0.765055, 1

0.066667, 0.378475, 0.554858,
0.554858, 0.378475, 0.066667

9

Gauss Lobatto (2)
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Gauss Radau

§ A Gaussian quadrature-like formula for numerical estimation of
integrals. It requires 𝑚+ 1 points and fits all polynomials to degree 2𝑚,
so it effectively fits exactly all polynomials of degree 2𝑚 − 1.

§ It uses a weighting function 𝑊(𝑥) = 1 in which the endpoint -1 in the
interval [-1, 1] is included in a total of 𝑛 abscissas, giving 𝑟 = 𝑛 − 1 free
coordinates.

The general formula of integration is as follows,

𝐼 = -
,!

!

𝑓(𝑟) 2 𝑑𝑟 ≅ 𝑤!𝑓 −1 +N
'1"

%

𝑤'𝑓(𝑟')
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Gauss 
Lobatto
Points 𝒏

Point
𝒓𝒊

Weight Coefficient
𝒘𝒊

Polynomial 
Order 𝒎

2 −1, 0.333333 0.5, 1.5 2
3 −1,−0.289898, 0.689898 0.222222, 1.02497, 0.752806 4

4 −1,−0.575319, 0.181066,
0.822824

0.125, 0.657689, 0.776387,
0.440924

6

5 −1,−0.72048, −0.167181,
0.446314, 0.885792

0.08, 0.446208, 0.623653,
0.562712, 0.287427

8

Gauss Radau (2)
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Example: Tapered member

§ Element with linearly varying cross-section with unit length
§ Subjected to unit axial load only (𝑃 = 1)
§ Assume all units to be consistent (omitted for the sake of the example)
§ Stress-strain relation is assumed as follows:

𝜎 = Q𝜀 − 0.5𝜀
", 𝜀 ≤ 0.95

𝜎2 + 0.05 𝜀 − 0.95 , 𝜀 > 0.95

𝜎2 = 𝜎 𝜀 = 0.95 = 0.49875

𝑃 = 1

𝐿 = 1

𝐴(0) = 3
𝐴

1
2

= 2.5
𝐴 1 = 2
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§ Let us assume 3 integration points because of the tapered cross-section

𝐼 = -
,!

!

𝑓(𝑟) 2 𝑑𝑟 ≅ 𝑤!𝑓 −1 + 𝑤#𝑓 1 + 𝑤"𝑓(0)

𝑟. = −1

𝑟/ = 1

𝑟' = 0

𝑤. = 𝑤/ =
1
3

𝑤' =
4
3

𝑥. =
1
2 𝑟. +

1
2 =

1
2 −1 +

1
2 = 0

𝑥' =
1
2 𝑟' +

1
2 =

1
2 0 +

1
2 =

1
2

𝑥/ =
1
2
𝑟/ +

1
2
=
1
2
1 +

1
2
= 1

𝐴. = 3

𝐴' = 2.5

𝐴/ = 2

Integration points and weights at 
natural coordinate system

Integration points at 
Cartesian system

Corresponding area at 
integration points

Example: Tapered member (2)
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§ This analysis consists in a single step (𝑛 = 1) in load control

§ The first step is to compute the structure initial stiffness matrix

§ Since the member is subjected to axial load only, one fiber is enough for such
computations (uniaxial loading)

Example: Tapered member (3)
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Example: Tapered member (4)

§ When the tapered member is modeled with a single (axial load only)
displacement-based beam-column element

§ The axial displacement field can be computed as follows: 𝑢 𝑥 ≅ 2𝑁 𝑥 '𝑢$ =
5
/
'𝑢$

§ Therefore, the strain: 𝜀 𝑥 ≅ 2B 𝑥 '𝑢$ =
$
/
'𝑢$

§ The initial structure tangent stiffness K6789:798;. corresponds to the initial
element tangent stiffness K.,and is given as follows at iteration 𝑖:

K56789687:; = K; = G
;

<
1
𝐿

!

k5;(𝑥)𝑑𝑥

= G
="

"
1
𝐿

!

k5;
𝐿
2
𝑟 +

𝐿
2
𝐿
2
𝑑𝑟 =

1
2𝐿

G
="

"

k5;
𝐿
2
𝑟 +

𝐿
2
𝑑𝑟

𝑓 𝑟

- Displacement-based element: Initial element stiffness matrix

(k6. is the initial section tangent stiffness)
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§ The section stiffness matrix k/ ,

k/ (𝑥) = N
31!

%!"#$

𝐥3.5'607$ 2 (𝐸3.5'607𝐴3.5'607) 2 𝐥3.5'607

𝐥3.5'607 = {1,−𝑦3.5'607, 𝑧3.5'607}

(We assume one fiber in this case, therefore: 𝑦3.5'607 = 𝑧3.5'607 = 0 )

k6 𝑥 = 𝐸%+<;8(𝑥) 1 𝐴%+<;8(𝑥)

==>
=?
1 𝐴%+<;8(𝑥)

𝑧

𝑦

Single
Niber

(0,0)

Example: Tapered member (5)
- Displacement-based element: Initial element stiffness matrix
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Example: Tapered member (6)

§ Hence, after applying Gauss-Lobatto integration:

K/879:8970( = K( =
1
2𝐿

-
,!

!

𝑓(𝑟)𝑑𝑟 ≅
1
2𝐿

𝑤!𝑓 𝑟! +𝑤#𝑓 𝑟# +𝑤"𝑓 𝑟"

𝑓 𝑟! = 𝑓 −1 = k/(
𝐿
2
(−1) +

𝐿
2
= k/( 0 = a

𝑑𝜎
𝑑𝜀 ;1(

2 𝐴! = 1 2 𝐴! = 3

𝑓 𝑟" = 𝑓 0 = k/(
𝐿
2 (0) +

𝐿
2 = k/(

𝐿
2 = a

𝑑𝜎
𝑑𝜀 ;1(

2 𝐴" = 1 2 𝐴" = 2.5

𝑓 𝑟# = 𝑓 1 = k/(
𝐿
2 (1) +

𝐿
2 = k/( 𝐿 = a

𝑑𝜎
𝑑𝜀 ;1(

2 𝐴# = 1 2 𝐴# = 2

- Displacement-based element: Initial element stiffness matrix
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Example: Tapered member (7)

§ Hence, after applying Gauss-Lobatto integration:

K/879:8970( = K( =
1
2𝐿

1
3
2 3 +

1
3
2 2 +

4
3
2 2.5 =

2.5
𝐿
= 2.5 (𝐿 = 1)

- Displacement-based element: Initial element stiffness matrix
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Example: Tapered member (8)

§ Now that the initial structure tangent stiffness matrix was computed, the first iteration
of the structure state determination can be performed

§ Load-control is used, and the external load 𝑃 = 1 = 𝜆7@7𝐹;57 = 1 ⋅ 1 is applied in a
single load increment (𝑛 = 1). Hence, the load multiplier is given by 𝜆̅$ = 1

§ For the first iteration 𝑖 = 1 of load control, the following quantities are computed:

𝛿v8
$,$ = A89:

;

B<=>8?=8>@
; = .

B<=>8?=8>@
; = 0 and 𝛿vC$,$ =

A@A=
B<=>8?=8>@
; = $

&.E
= 0.4

§ The increment in load multiplier is therefore 𝛿𝜆$,$ = 𝜆̅$ = 1

§ The increment in the structure’s displacement is 𝛿v$,$ = 𝛿v8
$,$ + 𝛿𝜆$,$𝛿vC

$,$ = 0.4

- Displacement-based element: Structure state determination step
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Example: Tapered member (9)

§ The increment in the element displacement is Δ'u$,$ = 𝛿v$,$ = 0.4
§ The element displacement is therefore 'u$,$ = 'u$,. + Δ'u$,$ = 0 + 0.4 = 0.4
§ The section deformations at the three integration sections can be computed:

d6
$,$(𝑥) = 2B(𝑥)'u$,$

d6
$,$ 𝑥 = 0 =

1
𝐿
'u$,$ =

1
1
⋅ 0.4 = 0.4

d6
$,$ 𝑥 = 𝐿/2 =

1
𝐿
'u$,$ =

1
1
⋅ 0.4 = 0.4

d6
$,$ 𝑥 = 𝐿 =

1
𝐿
'u$,$ =

1
1
⋅ 0.4 = 0.4

- Displacement-based element: Element state determination step
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Example: Tapered member (10)

§ For every section along the element length, the strain at each fiber is computed
using

𝜺F.%+<;8 = 𝐥F.%+<;8 ⋅ 𝒅6
$,$ → 𝜀F.%+<;8 = 1 ⋅ 𝑑6

$,$

§ Recall that each section is composed of a single fiber, therefore:

𝜀F.%+<;8
$,$ 𝑥 = 0 = 1 ⋅ 0.4 = 0.4

𝜀F.%+<;8
$,$ 𝑥 = 𝐿/2 = 1 ⋅ 0.4 = 0.4

𝜀F.%+<;8
$,$ 𝑥 = 𝐿 = 1 ⋅ 0.4 = 0.4

- Displacement-based element: Section state determination step
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Example: Tapered member (11)

§ For every fiber, the stress and material tangent stiffness can be determined:

𝜎$,$ 𝑥 = 0 = 𝜀$,$ 0 − 0.5𝜀$,$ 0 & = 0.4 − 0.5 1 0.4& = 0.32

𝜎$,$ 𝑥 = 𝐿/2 = 𝜀$,$ 𝐿/2 − 0.5𝜀$,$ 𝐿/2 & = 0.4 − 0.5 1 0.4& = 0.32

𝜎$,$ 𝑥 = 𝐿 = 𝜀$,$ 𝐿 − 0.5𝜀$,$ 𝐿 & = 0.4 − 0.5 1 0.4& = 0.32

`
𝑑𝜎
𝑑𝜀 ?G..H

= 1 − 0.4 = 0.6

- Displacement-based element: Section state determination step



39RESSLab
Resilient Steel Structures Laboratory

Integration Methods for Beam-Column Elements – Nonlinear Analysis of Structures - Prof. Dimitrios Lignos, RESSLab EPFL

Example: Tapered member (12)

§ For every section, the section resisting force can be determined:
Q68
$,$ 𝑥 = c

%+<;86

𝜎$,$ 𝑥 ⋅ 𝐴(𝑥)

Q68
$,$ 𝑥 = 0 = 𝜎$,$ 𝑥 = 0 ⋅ 𝐴 𝑥 = 0 = 0.32 ⋅ 3 = 0.96

Q68
$,$ 𝑥 = 𝐿/2 = 𝜎$,$ 𝑥 = 𝐿/2 ⋅ 𝐴 𝑥 = 𝐿/2 = 0.32 ⋅ 2.5 = 0.80

Q68
$,$ 𝑥 = 𝐿 = 𝜎$,$ 𝑥 = 𝐿 ⋅ 𝐴 𝑥 = 𝐿 = 0.32 ⋅ 2 = 0.64

- Displacement-based element: Section state determination step
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Example: Tapered member (13)

§ Similarly, the section tangent stiffness can be determined:
k6
$,$ 𝑥 = c

%+<;86

`
𝑑𝜎
𝑑𝜀 ?

(𝑥) 1 𝐴(𝑥)

k6
$,$ 𝑥 = 0 = `

𝑑𝜎
𝑑𝜀 ?G..H

𝑥 = 0 ⋅ 𝐴 𝑥 = 0 = 0.6 ⋅ 3 = 1.8

k6
$,$ 𝑥 = 𝐿/2 = `

𝑑𝜎
𝑑𝜀 ?G..H

𝑥 = 𝐿/2 ⋅ 𝐴 𝑥 = 𝐿/2 = 0.6 ⋅ 2.5 = 1.5

k6
$,$ 𝑥 = 𝐿 = `

𝑑𝜎
𝑑𝜀 ?G..H

𝑥 = 𝐿 ⋅ 𝐴 𝑥 = 𝐿 = 0.6 ⋅ 2 = 1.2

- Displacement-based element: Section state determination step
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Example: Tapered member (14)

§ The element resisting force can be determined:
Q$,$ = '𝑞$,$ ≈

𝐿
2
⋅
1
𝐿
⋅ 𝑤$Q68

$,$ 𝑥 = 0 + 𝑤'Q68
$,$ 𝑥 = 𝐿/2 + 𝑤&Q68

$,$ 𝑥 = 𝐿

=
1
2
⋅
1
3
⋅ 0.96 +

4
3
⋅ 0.8 +

1
3
⋅ 0.64 = 0.8

§ Similarly, the element tangent stiffness can be determined:
K$,$ = 2K$,$ ≅

1
2𝐿

𝑤$k6
$,$ 𝑥 = 0 + 𝑤'k6

$,$ 𝑥 = 𝐿/2 + 𝑤&k6
$,$ 𝑥 = 𝐿

=
1
2 ⋅ 1

1
3
⋅ 1.8 +

4
3
⋅ 1.5 +

1
3
⋅ 1.2 = 1.5

- Displacement-based element: Element state determination step
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Example: Tapered member (15)

§ The structure internal force is therefore
F+)7
$,$ = 𝑄$,$ = 0.8

§ The element unbalance force is given by
F9)<
$,$ = F+)7

$,$ − 𝜆$,$ ⋅ F;57 = 0.8 − 1 ⋅ 1 = −0.2
§ At next iteration ( 𝑖 = 2 ) of the Newton-Raphson algorithm for the load-control

integrator, this unbalance force is used to compute the increment in the structure
displacements

- Displacement-based element: Structure state determination step
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Example: Tapered member (16)
- Displacement-based element: Results iterations

𝑖 𝑢 Section 𝜀 𝜎 𝑑𝜎/𝑑𝜀 𝑄"# 𝑘" 𝑄 𝐾 𝐹$%&

1 0.40

1 0.40 0.32 0.60 0.96 1.80

0.80 1.50 -0.202 0.40 0.32 0.60 0.80 1.50

3 0.40 0.32 0.60 0.64 1.20

2 0.53

1 0.53 0.39 0.47 1.17 1.40

0.98 1.17 -0.022 0.53 0.39 0.47 0.98 1.17

3 0.53 0.39 0.47 078 0.93

3 0.55

1 0.55 0.40 0.45 1.20 1.34

1.00 1.12 02 0.55 0.40 0.45 1.00 1.12

3 0.55 0.40 0.45 0.80 0.90
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Example: Tapered member (17)
-Some important remarks

§ The strain along the member remains constant, which is not correct due
to the approximate nature of the axial displacement interpolation.

§ The corresponding section forces are not correct along the member.
§ Satisfies equilibrium in the weighted residual sense, it does not satisfy

equilibrium in a strict point-by-point sense.
§ Force-based beam-column elements should yield the exact answer.

ε=
0.
42

ε=
0.
55

ε=
0.
98

1.
20

1.
00

0.
80

Exact

Approximate

Strain Section forces

Exact

Approximate
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§ The initial element flexibility is given as follows:

𝐹( = -
(

)

𝐛$ 𝑥 2 𝐤/( 𝑥
,!
2 𝐛(𝑥)𝑑𝑥 = -

(

)

1 2 𝑓/( 𝑥 2 1𝑑𝑥

= -
,!

!

𝑓/(
𝐿
2
𝑟 +

𝐿
2
𝐿
2
𝑑𝑟 =

𝐿
2
-
,!

!

𝑓/(
𝐿
2
𝑟 +

𝐿
2
𝑑𝑟

𝑔 𝑟

Example: Tapered member (18)

𝐛 𝑥 =
1 0 0
0

𝑥
𝐿 − 1

𝑥
𝐿

- Force-based element: Initial element stiffness matrix
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§ With (see slide 34):
f6. 0 =

1
k6. 0

=
1
3
= 0.33

f6. 𝐿/2 =
1

k6. 𝐿/2
=

1
2.5

= 0.40

f6. 𝐿 =
1

k6. 𝐿
=
1
2
= 0.50

§ With the selected numerical integration rule:
F. = 'F. =

𝐿
2
⋅ 𝑤$f6. 0 + 𝑤&f6. 𝐿/2 + 𝑤'f6. 𝐿

=
1
2
⋅
1
3
⋅ 0.33 +

4
3
⋅ 0.40 +

1
3
⋅ 0.50 = 0.41

Example: Tapered member (19)
- Force-based element: Initial element stiffness matrix
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§ The initial element stiffness (and therefore the initial structure stiffness) is given
by

K6789:798;. = 2K. = K. =
1
F.

=
1

0.41
= 2.47

Example: Tapered member (20)
- Force-based element: Initial element stiffness matrix
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Example: Tapered member (21)

§ The initial structure tangent stiffness matrix was computed; therefore, the first
iteration of the structure state determination can be performed

§ Load-control is used, and the external load 𝑃 = 1 = 𝜆7@7𝐹;57 = 1 ⋅ 1 is applied in a
single load increment (𝑛 = 1). Hence, the load multiplier is given by 𝜆̅$ = 1

§ For the first iteration 𝑖 = 1 of load control, the following quantities are computed:

𝛿v8
$,$ = A89:

;

B<=>8?=8>@
; = .

B<=>8?=8>@
; = 0 and 𝛿vC$,$ =

A@A=
B<=>8?=8>@
; = $

&.HR
= 0.406

§ The increment in load multiplier is therefore 𝛿𝜆$,$ = 𝜆̅$ = 1

§ The increment in the structure’s displacement is 𝛿v$,$ = 𝛿v8
$,$ + 𝛿𝜆$,$𝛿vC

$,$ = 0.406

- Force-based element: Structure state determination step
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Example: Tapered member (22)

§ The increment in the element displacement is Δ'u$,$ = 𝛿v$,$ = 0.406
§ The element displacement is therefore 'u$,$ = 'u$,. + Δ'u$,$ = 0 + 0.406 = 0.406
§ The Newton-Raphson procedure to ensure convergence of the element state

determination step of the force-based beam-column element is started (𝑗 = 1)
§ The element force increment is computed:

𝛥'q$,$,$ = 2𝐾$,$,$𝛥'u$,$,$ = 2.47 ⋅ 0.406 = 1.0
§ The element force is updated:

'q$,$,$ = 'q$,.,$ + Δ'q$,$,$ = 0 + 1.0 = 1.0

- Force-based element: Element state determination step
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Example: Tapered member (23)

§ The increment in section force is computed at each section using
𝛥𝑄6

$,$,$ 𝑥 = 𝑏(𝑥)𝛥'q$,$,$

This gives:
𝛥𝑄6

$,$,$ 0 = 1.0 ⋅ 1.0 = 1.0
𝛥𝑄6

$,$,$ 𝐿/2 = 1.0 ⋅ 1.0 = 1.0
𝛥𝑄6

$,$,$ 𝐿 = 1.0 ⋅ 1.0 = 1.0
§ The section force is updated:

𝑄6
$,$,$ 𝑥 = 𝑄6

$,$,. 𝑥 + 𝛥𝑄6
$,$,$ 𝑥

This gives:
𝑄6
$,$,$ 0 = 0.0 + 1.0 = 1.0

𝑄6
$,$,$ 𝐿/2 = 0.0 + 1.0 = 1.0
𝑄6
$,$,$ 𝐿 = 0.0 + 1.0 = 1.0

- Force-based element: Element state determination step
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Example: Tapered member (24)

§ The increment in section deformation is computed at each section using
𝛥𝑑6

$,$,$ 𝑥 = 𝑑69
$,$,. 𝑥 + f6

$,$,. 𝑥 ⋅ 𝛥𝑄6
$,$,$(𝑥)

This gives:
𝛥𝑑6

$,$,$ 0 = 0.0 + 0.33 ⋅ 1.0 = 0.33
𝛥𝑑6

$,$,$ 𝐿/2 = 0.0 + 0.40 ⋅ 1.0 = 0.40

𝛥𝑑6
$,$,$ 𝐿 = 0.0 + 0.50 ⋅ 1.0 = 0.50

§ The section deformation is updated:
𝑑6
$,$,$(𝑥) = 𝑑6

$,$,. 𝑥 + Δ𝑑6
$,$,$ 𝑥

This gives:
𝑑6
$,$,$ 0 = 0.0 + 0.33 = 0.33

𝑑6
$,$,$ 𝐿/2 = 0.0 + 0.40 = 0.40
𝑑6
$,$,$ 𝐿 = 0.0 + 0.50 = 0.50

- Force-based element: Element state determination step
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Example: Tapered member (25)

§ For every section along the element length, the strain at each fiber is computed
using

𝜺F.%+<;8 = 𝐥F.%+<;8 ⋅ 𝒅6
$,$,$ → 𝜀F.%+<;8 = 1 ⋅ 𝑑6

$,$,$

§ Since each section is composed of a single fiber:

𝜀F.%+<;8
$,$,$ 𝑥 = 0 = 1 ⋅ 0.33 = 0.33

𝜀F.%+<;8
$,$,$ 𝑥 = 𝐿/2 = 1 ⋅ 0.40 = 0.40

𝜀F.%+<;8
$,$,$ 𝑥 = 𝐿 = 1 ⋅ 0.50 = 0.50

- Force-based element: Section state determination step
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Example: Tapered member (26)

§ For every fiber, the stress and material tangent stiffness can be determined:
𝜎$,$,$ 𝑥 = 0 = 𝜀$,$,$ 0 − 0.5𝜀$,$,$ 0 & = 0.33 − 0.5 1 0.33& = 0.28

𝜎$,$,$ 𝑥 = 𝐿/2 = 𝜀$,$,$ 𝐿/2 − 0.5𝜀$,$,$ 𝐿/2 & = 0.4 − 0.5 1 0.4& = 0.32
𝜎$,$,$ 𝑥 = 𝐿 = 𝜀$,$,$ 𝐿 − 0.5𝜀$,$,$ 𝐿 & = 0.5 − 0.5 1 0.5& = 0.375

`
𝑑𝜎
𝑑𝜀 ?G..''

(𝑥 = 0) = 1 − 0.33 = 0.67

`
𝑑𝜎
𝑑𝜀 ?G..H

(𝑥 = 𝐿/2) = 1 − 0.4 = 0.6

`
𝑑𝜎
𝑑𝜀 ?G..E

(𝑥 = 𝐿) = 1 − 0.5 = 0.5

- Force-based element: Section state determination step
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Example: Tapered member (27)

§ For every section, the section resisting force can be determined:
Q68
$,$,$ 𝑥 = c

%+<;86

𝜎$,$,$ 𝑥 ⋅ 𝐴(𝑥)

Q68
$,$,$ 𝑥 = 0 = 𝜎$,$,$ 𝑥 = 0 ⋅ 𝐴 𝑥 = 0 = 0.28 ⋅ 3 = 0.83

Q68
$,$,$ 𝑥 = 𝐿/2 = 𝜎$,$,$ 𝑥 = 𝐿/2 ⋅ 𝐴 𝑥 = 𝐿/2 = 0.32 ⋅ 2.5 = 0.80

Q68
$,$,$ 𝑥 = 𝐿 = 𝜎$,$,$ 𝑥 = 𝐿 ⋅ 𝐴 𝑥 = 𝐿 = 0.375 ⋅ 2 = 0.75

- Force-based element: Section state determination step



55RESSLab
Resilient Steel Structures Laboratory

Integration Methods for Beam-Column Elements – Nonlinear Analysis of Structures - Prof. Dimitrios Lignos, RESSLab EPFL

Example: Tapered member (28)

§ Similarly, the section tangent stiffness can be determined:
k6
$,$,$ 𝑥 = c

%+<;86

`
𝑑𝜎
𝑑𝜀 ?

(𝑥) 1 𝐴(𝑥)

k6
$,$,$ 𝑥 = 0 = `

𝑑𝜎
𝑑𝜀 ?G..''

𝑥 = 0 ⋅ 𝐴 𝑥 = 0 = 0.67 ⋅ 3 = 2.0

k6
$,$,$ 𝑥 = 𝐿/2 = `

𝑑𝜎
𝑑𝜀 ?G..H

𝑥 = 𝐿/2 ⋅ 𝐴 𝑥 = 𝐿/2 = 0.6 ⋅ 2.5 = 1.5

k6
$,$,$ 𝑥 = 𝐿 = `

𝑑𝜎
𝑑𝜀 ?G..E

𝑥 = 𝐿 ⋅ 𝐴 𝑥 = 𝐿 = 0.5 ⋅ 2 = 1.0

- Force-based element: Section state determination step
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Example: Tapered member (29)

§ The section flexibility is computed:
𝑓6
$,$,$ 𝑥 =

1
k6
$,$,$ 𝑥

𝑓6
$,$,$ 𝑥 = 0 =

1
k6
$,$,$ 𝑥 = 0

=
1
2.0

= 0.5

𝑓6
$,$,$ 𝑥 = 𝐿/2 =

1
k6
$,$,$ 𝑥 = 𝐿/2

=
1
1.5

= 0.67

𝑓6
$,$,$ 𝑥 = 𝐿 =

1
k6
$,$,$ 𝑥 = 𝐿

=
1
1.0

= 1.0

- Force-based element: Section state determination step
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Example: Tapered member (30)

§ The section unbalanced force is computed for every section:

𝑄69
$,$,$ 𝑥 = Q(

$,$,$ 𝑥 − Q(S
$,$,$ 𝑥

Which gives
𝑄69
$,$,$ 0 = 1.0 − 0.83 = 0.17

𝑄69
$,$,$ 0 = 1.0 − 0.80 = 0.2

𝑄69
$,$,$ 0 = 1.0 − 0.75 = 0.25

- Force-based element: Element state determination step
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Example: Tapered member (31)

§ The section unbalanced deformation is computed for every section:

d(T
$,$,$ 𝑥 = f6

$,$,$ 𝑥 ⋅ 𝑄69
$,$,$ 𝑥

Which gives
d(T
$,$,$ 0 = 0.5 ⋅ 0.17 = 0.085

d(T
$,$,$ 𝐿/2 = 0.67 ⋅ 0.20 = 0.133

d(T
$,$,$ 𝐿 = 1.0 ⋅ 0.25 = 0.25

- Force-based element: Element state determination step
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Example: Tapered member (32)

§ The element resisting force can be determined:
𝑄$,$,$ = '𝑞$,$,$ ≈

𝐿
2
⋅ 𝑤$Q68

$,$,$ 𝑥 = 0 + 𝑤'Q68
$,$,$ 𝑥 = 𝐿/2 + 𝑤&Q68

$,$,$ 𝑥 = 𝐿

=
1
2
⋅
1
3
⋅ 0.83 +

4
3
⋅ 0.8 +

1
3
⋅ 0.75 = 0.80

§ Similarly, the element flexibly can be determined:
𝐹$,$,$ = '𝐹$,$,$ ≅

𝐿
2
⋅ 𝑤$𝑓6

$,$,$ 𝑥 = 0 + 𝑤'𝑓6
$,$,$ 𝑥 = 𝐿/2 + 𝑤&𝑓6

$,$,$ 𝑥 = 𝐿

=
1
2
⋅
1
3
⋅ 0.5 +

4
3
⋅ 0.67 +

1
3
⋅ 1.0 = 0.69

- Force-based element: Element state determination step
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Example: Tapered member (33)

§ Therefore, the element tangent stiffness is computed:
K$,$,$ = 2K$,$,$ =

1
𝐹$,$,$

=
1

0.69
= 1.44

§ The element unbalanced displacement is computed:

2𝐮T
$,$,$ = /

𝟎

𝑳

𝐛0 𝑥 𝐝(T
$,$,$(𝑥) 𝑑𝑥

Which gives
'uT
$,$,$ =

L
2
⋅ 𝑤$𝑑69

$,$,$ 𝑥 = 0 + 𝑤'𝑑69
$,$,$ 𝑥 = 𝐿/2 + 𝑤&𝑑69

$,$,$ 𝑥 = 𝐿

=
1
2
⋅
1
3
⋅ 0.085 +

4
3
⋅ 0.133 +

1
3
⋅ 0.25 = 0.144

- Force-based element: Element state determination step
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Example: Tapered member (34)

§ For the next iteration (𝑗 = 2) of the Newton-Raphson procedure for the element
state determination of the force-based element, the increment in the element
deformation is set to

𝛥'u$,$,& = −'u9
$,$,$ = −0.144

§ The element state determination loop in continued until the element has converged
§ Then another iteration (i = 2) of the Newton-Raphson procedure for the structure

state determination is conducted following the load-control integrator

- Force-based element: Element state determination step
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Example: Tapered member (35)
- Force-based element: Results iterations (1)

𝑖 𝑢 𝑗 Sec 𝜀 𝜎 𝑑𝜎/𝑑𝜀 𝑄!" 𝑄!# 𝑑!# 𝑘! 𝑢# 𝑄 𝐾!$"#%$ 𝐹#&'

1 0.41

1

1 0.33 0.28 0.67 0.83 0.17 0.08 2.00

0.14

0.79 1.42 -0.21

2 0.40 0.32 0.60 0.80 0.20 0.13 1.50

3 0.50 0.37 0.50 0.75 0.25 0.25 1.00

2

1 0.31 0.26 0.69 0.79 0.00 0.00 2.06

0.002 0.39 0.32 0.61 0.79 0.00 0.00 1.51

3 0.54 0.40 0.46 0.79 0.00 0.00 0.92

2 0.55

1

1 0.41 0.33 0.59 0.98 0.02 0.01 1.76

0.03

0.97 0.91 -0.03

2 0.53 0.39 0.47 0.98 0.02 0.02 1.17

3 0.77 0.47 0.23 0.95 0.05 0.11 0.46

2

1 0.40 0.32 0.60 0.97 0.00 0.00 1.79

0.002 0.52 0.39 0.48 0.97 0.00 0.00 1.19

3 0.81 0.48 0.19 0.97 0.00 0.00 0.37

3 0.59 1

1 0.42 0.33 0.58 1.00 0.00 0.00 1.73

0.012 0.55 0.40 0.45 1.00 0.00 0.00 1.12

3 0.91 0.50 0.09 0.99 0.01 0.05 0.19
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Example: Tapered member (36)
- Force-based element: Results iterations (2)

𝑖 𝑢 𝑗 Sec 𝜀 𝜎 𝑑𝜎/𝑑𝜀 𝑄!" 𝑄!# 𝑑!# 𝑘! 𝑢# 𝑄 𝐾!$"#%$ 𝐹#&'

3 0.59 2

1 0.42 0.33 0.58 0.99 0.00 0.00 1.74

0.00 0.99 0.56 -0.012 0.55 0.40 0.45 0.99 0.00 0.00 1.13

3 0.92 0.50 0.08 0.99 0.00 0.00 0.15

4 0.60

1

1 0.42 0.33 0.58 1.00 0.00 0.00 1.73

0.00

1,00 0.31 -0.00

2 0.55 0.40 0.45 1.00 0.00 0.00 1.12

3 0.96 0.50 0.04 1.00 0.00 0.02 0.08

2

1 0.42 0.33 0.58 1.00 0.00 0.00 1.73

0.002 0.55 0.40 0.45 1.00 0.00 0.00 1.12

3 0.97 0.50 0.03 1.00 0.00 0.00 0.07

5 0.60

1

1 0.42 0.33 0.58 1.00 0.00 0.00 1.73

0.00

1.00 0.17 0.00

2 0.55 0.40 0.45 1.00 0.00 0.00 1.12

3 0.98 0.50 0.02 1.00 0.00 0.01 0.03

2

1 0.42 0.33 0.58 1.00 0.00 0.00 1.73

0.002 0.55 0.40 0.45 1.00 0.00 0.00 1.12

3 0.98 0.50 0.02 1.00 0.00 0.00 0.03
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§ The strain along the member is accurate
§ The corresponding section forces are correct along the member
§ Satisfies equilibrium in a strict point-by-point sense
§ Force-based elements yield the exact answer

ε=
0.
42

ε=
0.
55

ε=
0.
98

1.
00

1.
00

1.
00

Exact

Approximate

Strain Section forces

Exact

Approximate

Example: Tapered member (19)
-force-based elements


