EPFL

CIVIL 449: Nonlinear Analysis of Structures

School of Architecture, Civil & Environmental Engineering Civil Engineering Institute

Integration techniques for element state determination

Prof. Dr. Dimitrios Lignos & Dr. Diego Heredia Rosa EPFL, ENAC, IIC, RESSLab

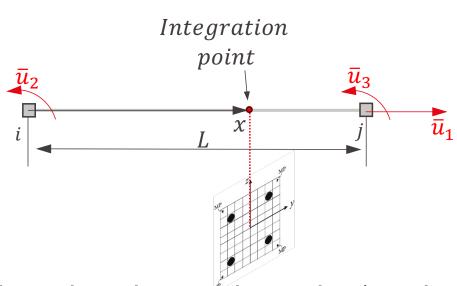
EPFL Objectives of today's lecture

To introduce:

- Fiber-based beam-column elements
- Fiber discretization of cross sections
- Constitutive models for fiber-based elements
- Computation of input strains
- Section analysis
- Type of element formulations
 - Displacement-based beam-column elements
 - Force-based beam-column elements
- Integration methods for member forces and member stiffness
 - Examples with displacement- and force-based elements

EPFL Displacement-based beam-column element

• The vectors of nodal displacements, $\overline{\mathbf{u}}$, and element resisting forces $\overline{\mathbf{q}}$, are as follows:



$$\overline{\mathbf{u}} = \{\overline{u}_1, \overline{u}_2, \overline{u}_3\}^T$$

$$\overline{\mathbf{q}} = \{\overline{q}_1, \overline{q}_2, \overline{q}_3\}^T$$

At a given integration point (section):

$$d_a(x) = N_1(x)\bar{u}_1$$

$$d_f(x) = N_2(x)\bar{u}_2 + N_3(x)\bar{u}_3$$

State determination of displacement-based element **EPFL**

• The tangent element stiffness matrix at iteration i of step n, $\overline{\mathbf{K}}^{n,i}$, of a displacement-based beam-column element of length L, and the element resisting force vector $\overline{\mathbf{q}}^{n,i}$ can be expressed as follows:

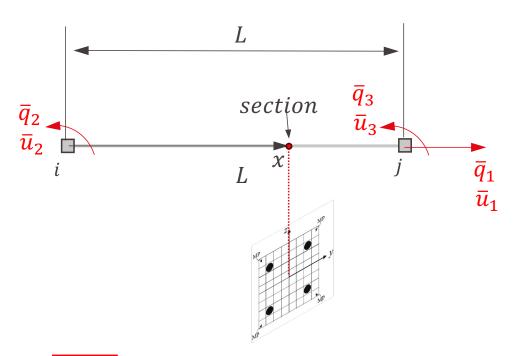
$$\overline{\mathbf{K}}^{n,i} = \int_{0}^{L} \overline{\mathbf{B}}^{T}(x) \cdot \mathbf{k}_{s}^{n,i}(x) \cdot \overline{\mathbf{B}}(x) \cdot dx$$
We calculate those numerically with some numerical integration schemes

$$\overline{\mathbf{q}}^{n,i} = \int_{0}^{L} \overline{\mathbf{B}}^{T}(x) \cdot \mathbf{Q}_{sr}^{n,i}(x) \cdot dx$$
• Gauss-Legendre,
• Gauss-Lobatto,
• Gauss Radau,
• midpoint rule

- midpoint rule

EPFL Force-based (or flexibility-based) elements

• The element vector generalized nodal forces $\overline{\mathbf{q}}$ at the basic reference frame (without rigid body modes) is as follows:



$$\overline{\mathbf{q}} = {\{\overline{q}_1, \overline{q}_2, \overline{q}_3\}}^T$$

$$\overline{\mathbf{u}} = \{\overline{u}_1, \overline{u}_2, \overline{u}_3\}^T$$

EPFL State determination of force-based element

• The section flexibility at iteration j, $\mathbf{f}_{s}^{n,i,j}(x)$ is,

$$\mathbf{f}_{\mathrm{S}}^{n,i,j}(x) = \left(\mathbf{k}_{\mathrm{S}}^{n,i,j}(x)\right)^{-1}$$

• Element flexibility matrix, $\overline{\mathbf{F}}^{n,i,j}$ at iteration j is:

$$\bar{\mathbf{F}}^{n,i,j} = \int_{0}^{L} \mathbf{b}^{T}(x) \cdot \mathbf{f}_{s}^{n,i,j}(x) \cdot \mathbf{b}(x) dx$$

• The element stiffness matrix, $\overline{\mathbf{K}}^{n,i,j}$ at iteration j is:

$$\overline{\mathbf{K}}^{n,i,j} = \left(\mathbf{F}^{n,i,j}\right)^{-1}$$

The element end displacements at iteration j is,

$$\overline{\mathbf{u}}^{n,i,j} = \int_{0}^{L} \mathbf{b}^{T}(x) \cdot \mathbf{d}_{s}^{n,i,j}(x) \ dx$$
 (section deformations)

EPFL Numerical integration

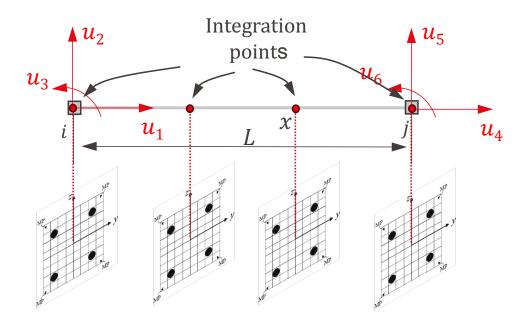
- In nonlinear structural mechanics, we seek to obtain numerical estimates of an integral by picking optimal coordinates (abscissas) r_i at which to evaluate the function, $f(r_i)$ of interest.
- Gauss quadrature is often used for this purpose.
- According to the theorem of Gaussian quadrature, the optimal abscissas of the m-point Gaussian quadrature formulas are precisely the roots of the orthogonal polynomial for the same interval and weighting function.
- Gauss quadrature is optimal because it fits all polynomials up to degree 2m-1 exactly.
- Slightly less optimal fits are obtained from Radau quadrature and Laguerre-Gauss quadrature (depends on the problem I would say!)

EPFL Gauss quadrature

- -Some remarks
- The location of Gauss points is such that for a given number of points greatest accuracy is obtained.
- The Gauss points are located symmetrically about the center of the interval to be integrated.
- The weight will be the same for symmetrically located Gauss points about the center of the interval to be integrated.

EPFL Gauss quadrature

- -One dimensional integrals
- For the state determination of beam-column elements, the integration should be done along the length *L* of the element. Therefore, we are dealing with one dimensional integrals.



EPFL Gauss quadrature (2)

- -One dimensional integrals
- Natural coordinate system $[-1\ 1]$ instead of $[0\ L]$.

$$I = \int_{-1}^{1} f(r) \cdot dr \cong \sum_{i=1}^{n} w_i f_i(r_i)$$

$$f(r) = a_1 + a_2r + a_3r^2 + a_4r^3$$

EPFL Gauss quadrature (3)

- -One dimensional integrals
- The integral after integrating analytically,

$$I = \int_{-1}^{1} f(r) \cdot dr = \left[a_1 r + \frac{1}{2} a_2 r^2 + \frac{1}{3} a_3 r^3 + \frac{1}{4} a_4 r^4 \right]_{-1}^{1} = 2a_1 + \frac{2}{3} a_3$$

EPFL Gauss quadrature (4)

- -One dimensional integrals
- Assume, we would like to approximate this integral with n = 1 Gauss point:

$$I = \int_{-1}^{1} f(r) \cdot dr \cong w_1 f(r_1) = w_1 (a_1 + a_2 r_1 + a_3 r_1^2 + a_4 r_1^3)$$

• The error then between exact and approximate solution is as follows:

$$E = a_1(2 - w_1) + a_3\left(\frac{2}{3} - r_1^2 w_1\right) - a_2 r_1 w_1 - a_4 r_1^3 w_1$$

EPFL Gauss quadrature (5)

-One dimensional integrals

• The error becomes minimum when the Jacobian J is zero:

$$\mathbf{J} = \begin{bmatrix} \frac{\vartheta E}{\vartheta a_1} & \frac{\vartheta E}{\vartheta a_2} & \frac{\vartheta E}{\vartheta a_3} & \frac{\vartheta E}{\vartheta a_4} \end{bmatrix}$$

Subsequently,

$$\mathbf{J} = \begin{bmatrix} 2 - w_1 & -w_1 r_1 & \frac{2}{3} - r_1^2 w_1 & -w_1 r_1^3 \end{bmatrix}$$

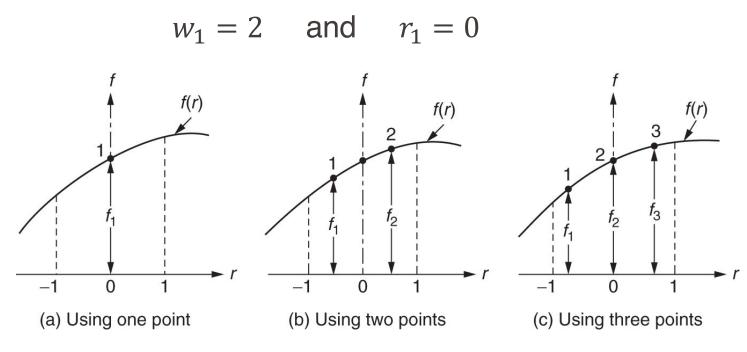
Therefore,

$$w_1 = 0$$
 $w_1 = 0$ $w_1 = 0$ $v_1 = 0$ $v_1 = 0$ $v_2 = 0$ $v_3 = 0$ $v_4 = 0$ $v_1 = 0$ $v_1 = 0$ $v_2 = 0$ $v_3 = 0$ $v_4 = 0$ $v_5 = 0$

EPFL Gauss quadrature (6)

-One dimensional integrals

• Therefore, the condition that satisfies all four partial derivatives to be zero for n=1 Gauss integration point is:



EPFL Gauss quadrature (7)

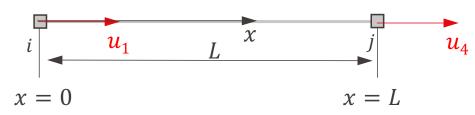
Gauss Points n	Point r_i	Weight Coefficient W _i	Polynomial Order <i>m</i>
1	0	2	1
2	-1/√3, 1/√3	1, 1	3
3	-√0.6, 0, √0.6	5/9, 8/9, 5/9	5
4	-0.861136, -0.339981, 0.339981, 0.861136	0.347855, 0.652145, 0.652145, 0.347855	7
5	-0.906180, -0.538469, 0, 0.538469, 0.906180	0.236927, 0.478629, 0.568889, 0.478629, 0.236927	9
6	-0.932470, -0.661209, -0.238619, 0.238619, 0.661209, 0.932470	0.171324, 0.360762, 0.467914, 0.467914, 0.360762, 0.171324	11

RESSLab

Gauss quadrature **EPFL**

-Example elastic truss element with uniform cross section

Cartesian system



Natural coordinate system

$$\mathbf{k}^{e} = \int_{0}^{L} \mathbf{B}^{T}(x) \cdot \mathbf{k}^{S}(x) \cdot \mathbf{B}(x) \cdot dx$$

$$= \int_{0}^{L} \begin{bmatrix} -\frac{1}{L} \\ \frac{1}{L} \end{bmatrix} \cdot EA \cdot \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \cdot dx \qquad = \frac{1}{L^{2}} \int_{0}^{L} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot EA \cdot \begin{bmatrix} -1 & 1 \end{bmatrix} \cdot dx$$

$$= \frac{1}{L^2} \int_{0}^{L} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot EA \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot dx$$

EPFL Gauss quadrature (2)

-Example elastic truss element with uniform cross section

$$\mathbf{k}^{e} = \frac{1}{L^{2}} \int_{0}^{L} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot EA \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot dx$$

- From calculus, coordinate transformation from 0 to L: to -1 to 1:
- Assume:

$$x = \frac{b-a}{2}r + \frac{b-a}{2}$$

$$x = \frac{b-a}{2}r + \frac{b-a}{2}$$
 $x = \frac{L-0}{2}r + \frac{L-0}{2}$

$$dx = \frac{b-a}{2}dr$$

$$dx = \frac{L - 0}{2}dr$$

EPFL Gauss quadrature (3)

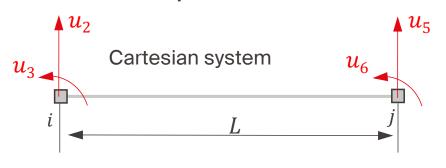
- -Example elastic truss element with uniform cross section
- Therefore, k^e in the updated coordinate system becomes:

$$\begin{aligned} & \boldsymbol{k}^{\boldsymbol{e}} = \frac{1}{L^{2}} \int_{-1}^{1} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot EA \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot \frac{L}{2} dr = \frac{EA}{2L} \int_{-1}^{1} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} dr \\ & = \frac{EA}{2L} \int_{-1}^{1} \begin{bmatrix} f_{1}(r) & f_{2}(r) \\ f_{2}(r) & f_{1}(r) \end{bmatrix} dr = \frac{EA}{2L} \begin{bmatrix} 2f_{1}(0) & 2f_{2}(0) \\ 2f_{2}(0) & 2f_{1}(0) \end{bmatrix} & \text{weight} \\ & = \frac{EA}{2L} \begin{bmatrix} 2f_{1}(0) & 2f_{2}(0) \\ 2f_{2}(0) & 2f_{1}(0) \end{bmatrix} = \frac{EA}{2L} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \end{aligned}$$

- Note: for m=1 order polynomial, n=2m-1=1 Gauss points give an exact solution
- RESSLab Integration Methods for Beam-Column Elements Nonlinear Analysis of Structures Prof. Dimitrios Lignos, RESSLab EPFL

EPFL Gauss quadrature

-Example elastic beam-column element with uniform cross section



Natural coordinate system

$$\mathbf{k}^{e} = \int_{0}^{L} \mathbf{B}^{T}(x) \cdot \mathbf{k}^{S}(x) \cdot \mathbf{B}(x) \cdot dx$$

$$\mathbf{K}^{e} = \int_{0}^{L} \left\{ \frac{\frac{6}{L^{2}} \left(1 - \frac{2x}{L} \right)}{\frac{2}{L} \left(\frac{3x}{L} - 1 \right)} \right\} \cdot EI \cdot \left[\frac{6}{L^{2}} \left(1 - \frac{2x}{L} \right) \quad \frac{2}{L} \left(\frac{3x}{L} - 1 \right) \quad \frac{6}{L^{2}} \left(\frac{2x}{L} - 1 \right) \quad \frac{2}{L} \left(\frac{3x}{L} - 2 \right) \right] dx$$

EPFL Gauss quadrature (2)

-Example elastic beam-column element with uniform cross section

$$\mathbf{k}^{e} = \frac{4EI}{L^{2}} \int_{0}^{L} \left\{ \frac{\frac{3}{L} \left(1 - \frac{2x}{L}\right)}{\left(\frac{3x}{L} - 1\right)} \right\} \cdot \left[\frac{3}{L} \left(1 - \frac{2x}{L}\right) \quad \left(\frac{3x}{L} - 1\right) \quad \frac{3}{L} \left(\frac{2x}{L} - 1\right) \quad \left(\frac{3x}{L} - 2\right) \right] dx$$

$$x = \frac{L}{2}r + \frac{L}{2} \quad dx = \frac{L}{2}dr$$

$$=\frac{2EI}{L}\int_{-1}^{1} \begin{cases} -\frac{3}{L}r \\ \frac{1}{2}(3r+1) \\ \frac{3}{L}r \\ \frac{1}{2}(3r-1) \end{cases} \cdot \begin{bmatrix} -\frac{3}{L}r & \frac{1}{2}(3r+1) & \frac{3}{L}r & \frac{1}{2}(3r-1) \end{bmatrix} dr = \frac{2EI}{L}\int_{-1}^{1} \begin{bmatrix} \frac{9}{L^{2}}r^{2} & -\frac{3}{2L}r(3r+1) & -\frac{9}{L^{2}}r^{2} & -\frac{3}{2L}r(3r+1) \\ -\frac{3}{2L}r(3r+1) & \frac{1}{4}(3r+1)^{2} & \frac{3}{2L}r(3r+1) & \frac{1}{4}(9r^{2}-1) \\ -\frac{9}{L^{2}}r^{2} & \frac{3}{2L}r(3r+1) & \frac{9}{L^{2}}r^{2} & \frac{3}{2L}r(3r-1) \end{bmatrix} dr$$

EPFL Gauss quadrature (3)

- -Example elastic beam-column element with uniform cross section
- Therefore, \mathbf{k}^e in the natural coordinate system becomes:

$$=\frac{2EI}{L}\int\limits_{-1}^{1}\begin{bmatrix} \frac{9}{L^{2}}r^{2} & -\frac{3}{2L}r(3r+1) & -\frac{9}{L^{2}}r^{2} & -\frac{3}{2L}r(3r-1) \\ -\frac{3}{2L}r(3r+1) & \frac{1}{4}(3r+1)^{2} & \frac{3}{2L}r(3r+1) & \frac{1}{4}(9r^{2}-1) \\ -\frac{9}{L^{2}}r^{2} & \frac{3}{2L}r(3r+1) & \frac{9}{L^{2}}r^{2} & \frac{3}{2L}r(3r-1) \\ -\frac{3}{2L}r(3r-1) & \frac{1}{4}(9r^{2}-1) & \frac{3}{2L}r(3r-1) & \frac{1}{4}(3r-1)^{2} \end{bmatrix}dr = \frac{2EI}{L}\int\limits_{-1}^{1}\begin{bmatrix} f_{1}(r) & f_{2}(r) & f_{3}(r) & f_{4}(r) \\ f_{5}(r) & f_{6}(r) & f_{7}(r) \\ \text{Sym.} & f_{8}(r) & f_{9}(r) \\ f_{10}(r) \end{bmatrix}dr$$

EPFL Gauss quadrature (4)

-Example elastic beam-column element with uniform cross section

Assume two Gauss points:

$$= \frac{2EI}{L} \int_{-1}^{1} \underbrace{ \begin{cases} f_1(r) & f_2(r) & f_3(r) & f_4(r) \\ f_5(r) & f_6(r) & f_7(r) \\ \text{Sym.} & f_8(r) & f_9(r) \\ \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_1(+0.57735) \\ f_2(-0.57735)^2 + \frac{9}{L^2}(0.57735)^2 \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735)^2 + \frac{9}{L^2}(0.57735)^2 \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735)^2 + \frac{9}{L^2}(0.57735)^2 \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735)^2 + \frac{9}{L^2}(0.57735)^2 \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735)^2 + \frac{9}{L^2}(0.57735)^2 \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735)^2 + \frac{9}{L^2}(0.57735)^2 \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735)^2 + \frac{9}{L^2}(0.57735)^2 \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735)^2 + \frac{9}{L^2}(0.57735)^2 \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735)^2 + \frac{9}{L^2}(0.57735)^2 \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735)^2 \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735) \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735) \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735) \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735) \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735) \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735) \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735) \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735) \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735) \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735) \end{cases}}_{=\frac{2EI}{L}} \underbrace{ \begin{cases} f_1(-0.57735) + f_2(-0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735) \\ f_2(-0.57735) + \frac{9}{L^2}(0.57735) +$$

$$= \frac{2EI}{L} \begin{bmatrix} \frac{6.007999}{L^2} & -\frac{5.999994}{2L} & -\frac{6.007999}{L^2} & \frac{5.999994}{2L} \\ -\frac{5.999994}{2L} & 1.999999 & \frac{5.999994}{2L} & 0.999999 \\ -\frac{6.007999}{L^2} & \frac{5.999994}{2L} & \frac{6.007999}{L^2} & \frac{2.999997}{L} \\ \frac{5.999994}{2L} & 0.999999 & \frac{2.999997}{L} & 1.999999 \end{bmatrix} = \frac{12.016EI}{L^3}$$
 (I would expect $12EI/L^3$)

EPFL Gauss quadrature (5)

- -Example elastic beam-column element with uniform cross section
- Note: the error with 2 Gauss points is due to the numerical integration approximation and the number of decimals

$$\mathbf{k}^{e} = \frac{2EI}{L} \begin{bmatrix} \frac{6.007999}{L^{2}} & -\frac{5.999994}{2L} & -\frac{6.007999}{L^{2}} & \frac{5.999994}{2L} \\ -\frac{5.999994}{2L} & 1.999999 & \frac{5.999994}{2L} & 0.9999999 \\ -\frac{6.007999}{L^{2}} & \frac{5.999994}{2L} & \frac{6.007999}{L^{2}} & \frac{2.999997}{L} \\ \frac{5.999994}{2L} & 0.9999999 & \frac{2.999999}{L} & 1.9999999 \end{bmatrix}$$

EPFL Gauss Lobatto

- A Gaussian quadrature with weighting function W(x) = 1 in which the end points of the interval [-1, 1] are included in a total of n abscissas, given r = n 2 free abscissas.
- The abscissas are symmetrical about the origin.
- the general formula of integration is as follows,

$$I = \int_{-1}^{1} f(r) \cdot dr \cong w_1 f(-1) + w_n f(1) + \sum_{i=2}^{n-1} w_i f(r_i)$$

EPFL Gauss Lobatto (2)

Gauss Lobatto Points n	Point r_i	Weight Coefficient w _i	Polynomial Order <i>m</i>
3	-1,0,1	$\frac{1}{3}, \frac{4}{3}, \frac{1}{3}$	3
4	$-1, -\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 1$	$\frac{1}{6}$, $\frac{5}{6}$, $\frac{5}{6}$, $\frac{1}{6}$	5
5	$-1, -\sqrt{\frac{3}{7}}, 0, \sqrt{\frac{3}{7}}, 1$	$\frac{1}{10}$, $\frac{49}{90}$, $\frac{32}{45}$, $\frac{49}{90}$, $\frac{1}{10}$	7
6	-1, -0.765055, -0.285232, 0.285232, 0.765055, 1	0.066667, 0.378475, 0.554858, 0.554858, 0.378475, 0.066667	9

EPFL Gauss Radau

- A Gaussian quadrature-like formula for numerical estimation of integrals. It requires m+1 points and fits all polynomials to degree 2m, so it effectively fits exactly all polynomials of degree 2m-1.
- It uses a weighting function W(x) = 1 in which the endpoint -1 in the interval [-1, 1] is included in a total of n abscissas, giving r = n 1 free coordinates.

The general formula of integration is as follows,

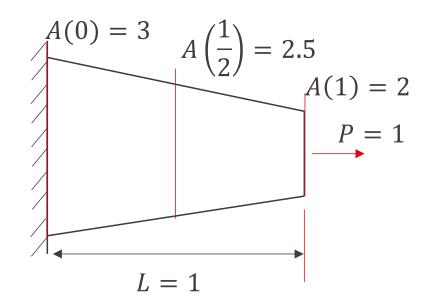
$$I = \int_{-1}^{1} f(r) \cdot dr \cong w_1 f(-1) + \sum_{i=2}^{n} w_i f(r_i)$$

EPFL Gauss Radau (2)

Gauss Lobatto Points n	Point r _i	Weight Coefficient w _i	Polynomial Order <i>m</i>
2	-1, 0.333333	0.5, 1.5	2
3	-1, -0.289898, 0.689898	0.222222, 1.02497, 0.752806	4
4	-1, -0.575319, 0.181066, 0.822824	0.125, 0.657689, 0.776387, 0.440924	6
5	-1, -0.72048, -0.167181, 0.446314, 0.885792	0.08, 0.446208, 0.623653, 0.562712, 0.287427	8

EPFL Example: Tapered member

- Element with linearly varying cross-section with unit length
- Subjected to unit axial load only (P = 1)
- Assume all units to be consistent (omitted for the sake of the example)
- Stress-strain relation is assumed as follows:



$$A(1) = 2$$

$$P = 1$$

$$\sigma = \begin{cases} \varepsilon - 0.5\varepsilon^2, & \varepsilon \le 0.95 \\ \sigma_o + 0.05(\varepsilon - 0.95), \varepsilon > 0.95 \end{cases}$$

$$\sigma_o = \sigma[\varepsilon = 0.95] = 0.49875$$

Example: Tapered member (2) EPFL

Let us assume 3 integration points because of the tapered cross-section

$$I = \int_{-1}^{1} f(r) \cdot dr \cong w_1 f(-1) + w_3 f(1) + w_2 f(0)$$

Integration points and weights at natural coordinate system

$$r_1 = -1$$
 $w_1 = w_3 = \frac{1}{3}$
 $r_3 = 1$ $w_2 = \frac{4}{3}$
 $r_2 = 0$

Integration points at Cartesian system

$$x_1 = \frac{1}{2}r_1 + \frac{1}{2} = \frac{1}{2}(-1) + \frac{1}{2} = 0$$
 $A_1 = 3$
 $x_2 = \frac{1}{2}r_2 + \frac{1}{2} = \frac{1}{2}(0) + \frac{1}{2} = \frac{1}{2}$ $A_2 = 2.5$

$$x_3 = \frac{1}{2}r_3 + \frac{1}{2} = \frac{1}{2}(1) + \frac{1}{2} = 1$$
 $A_3 = 2$

Corresponding area at integration points

$$A_1 = 3$$

$$A_2 = 2.5$$

$$A_3 = 2$$

EPFL Example: Tapered member (3)

- This analysis consists in a single step (n = 1) in load control
- The first step is to compute the structure initial stiffness matrix
- Since the member is subjected to axial load only, one fiber is enough for such computations (uniaxial loading)

EPFL Example: Tapered member (4)

- Displacement-based element: Initial element stiffness matrix
- When the tapered member is modeled with a single (axial load only) displacement-based beam-column element
- The axial displacement field can be computed as follows: $u(x) \cong \overline{N}(x)\overline{u}_1 = \frac{x}{L}\overline{u}_1$
- Therefore, the strain: $\varepsilon(x) \cong \overline{B}(x)\overline{u}_1 = \frac{1}{L}\overline{u}_1$
- The initial structure tangent stiffness $K^0_{structure}$ corresponds to the initial element tangent stiffness K^0 , and is given as follows at iteration i:

$$K_{structure}^0 = K^0 = \int_0^L \left(\frac{1}{L}\right)^2 k_s^0(x) dx$$
 (k_s is the initial section tangent stiffness)

$$= \int_{-1}^{1} \left(\frac{1}{L}\right)^{2} k_{s}^{0} \left(\frac{L}{2}r + \frac{L}{2}\right) \frac{L}{2} dr = \frac{1}{2L} \int_{-1}^{1} k_{s}^{0} \left(\frac{L}{2}r + \frac{L}{2}\right) dr$$

$$f(r)$$

EPFL Example: Tapered member (5)

- Displacement-based element: Initial element stiffness matrix

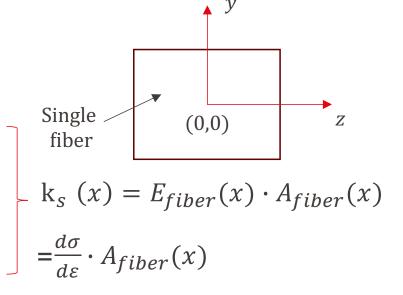
ullet The section stiffness matrix $\mathbf{k}_{\mathcal{S}}$,

$$\mathbf{k}_{S}\left(x\right) = \sum_{k=1}^{n_{nfib}} \mathbf{l}_{k.fiber}^{T} \cdot \left(E_{k.fiber}A_{k.fiber}\right) \cdot \mathbf{l}_{k.fiber}$$

$$\mathbf{k}_{S}\left(x\right) = \begin{bmatrix} \mathbf{l}_{k.fiber} & \mathbf{l}_{k.fiber} \\ \mathbf{k}_{S}\left(x\right) & \mathbf{l}_{k.fiber} \end{bmatrix}$$

$$\mathbf{l}_{k.fiber} = \{1, -y_{k.fiber}, z_{k.fiber}\}$$

$$= \frac{d\sigma}{d\varepsilon} \cdot A_{fiber}$$
Single fiber
$$\mathbf{k}_{S}\left(x\right) = \begin{bmatrix} \mathbf{l}_{S} & \mathbf{l}_{S} \\ \mathbf{l}_{S} & \mathbf{l}_{S} \end{bmatrix}$$



(We assume one fiber in this case, therefore: $y_{k.fiber} = z_{k.fiber} = 0$)

EPFL Example: Tapered member (6)

- Displacement-based element: Initial element stiffness matrix
- Hence, after applying Gauss-Lobatto integration:

$$K_{structure}^{0} = K^{0} = \frac{1}{2L} \int_{-1}^{1} f(r)dr \approx \frac{1}{2L} (w_{1}f(r_{1}) + w_{3}f(r_{3}) + w_{2}f(r_{2}))$$

$$f(r_1) = f(-1) = k_s^0 \left(\frac{L}{2} (-1) + \frac{L}{2} \right) = k_s^0(0) = \frac{d\sigma}{d\varepsilon} \Big|_{\varepsilon=0} \cdot A_1 = 1 \cdot A_1 = 3$$

$$f(r_2) = f(0) = k_s^0 \left(\frac{L}{2}(0) + \frac{L}{2}\right) = k_s^0 \left(\frac{L}{2}\right) = \frac{d\sigma}{d\varepsilon}\Big|_{\varepsilon=0} \cdot A_2 = 1 \cdot A_2 = 2.5$$

$$f(r_3) = f(1) = k_s^0 \left(\frac{L}{2}(1) + \frac{L}{2}\right) = k_s^0(L) = \frac{d\sigma}{d\varepsilon}\Big|_{\varepsilon=0} \cdot A_3 = 1 \cdot A_3 = 2$$

EPFL Example: Tapered member (7)

- Displacement-based element: Initial element stiffness matrix
- Hence, after applying Gauss-Lobatto integration:

$$K_{structure}^{0} = K^{0} = \frac{1}{2L} \left(\frac{1}{3} \cdot 3 + \frac{1}{3} \cdot 2 + \frac{4}{3} \cdot 2.5 \right) = \frac{2.5}{L} = 2.5 \ (L = 1)$$

EPFL Example: Tapered member (8)

- Displacement-based element: Structure state determination step
- Now that the initial structure tangent stiffness matrix was computed, the first iteration
 of the structure state determination can be performed
- Load-control is used, and the external load $P = 1 = \lambda_{tot} F_{ext} = 1 \cdot 1$ is applied in a single load increment (n = 1). Hence, the load multiplier is given by $\bar{\lambda}^1 = 1$
- For the first iteration i = 1 of load control, the following quantities are computed:

$$\delta v_r^{1,1} = \frac{F_{unb}^0}{K_{structure}^0} = \frac{0}{K_{structure}^0} = 0 \text{ and } \delta v_p^{1,1} = \frac{F_{ext}}{K_{structure}^0} = \frac{1}{2.5} = 0.4$$

- The increment in load multiplier is therefore $\delta \lambda^{1,1} = \bar{\lambda}^1 = 1$
- The increment in the structure's displacement is $\delta v^{1,1} = \delta v_r^{1,1} + \delta \lambda^{1,1} \delta v_p^{1,1} = 0.4$

EPFL Example: Tapered member (9)

- Displacement-based element: Element state determination step
- The increment in the element displacement is $\Delta \bar{u}^{1,1} = \delta v^{1,1} = 0.4$
- The element displacement is therefore $\bar{u}^{1,1} = \bar{u}^{1,0} + \Delta \bar{u}^{1,1} = 0 + 0.4 = 0.4$
- The section deformations at the three integration sections can be computed:

$$d_s^{1,1}(x) = \overline{B}(x)\overline{u}^{1,1}$$

$$d_S^{1,1}(x=0) = \frac{1}{L}\bar{\mathbf{u}}^{1,1} = \frac{1}{1} \cdot 0.4 = 0.4$$

$$d_S^{1,1}(x = L/2) = \frac{1}{L}\bar{u}^{1,1} = \frac{1}{1} \cdot 0.4 = 0.4$$

$$d_s^{1,1}(x = L) = \frac{1}{L}\bar{u}^{1,1} = \frac{1}{1} \cdot 0.4 = 0.4$$

EPFL Example: Tapered member (10)

- Displacement-based element: Section state determination step
- For every section along the element length, the strain at each fiber is computed using

$$\boldsymbol{\varepsilon}_{k.fiber} = \mathbf{l}_{k.fiber} \cdot \boldsymbol{d}_{s}^{1,1} \rightarrow \varepsilon_{k.fiber} = 1 \cdot d_{s}^{1,1}$$

• Recall that each section is composed of a single fiber, therefore:

$$\varepsilon_{k.fiber}^{1,1}(x=0) = 1 \cdot 0.4 = 0.4$$

$$\varepsilon_{k.fiber}^{1,1}(x = L/2) = 1 \cdot 0.4 = 0.4$$

$$\varepsilon_{k.fiber}^{1,1}(x=L) = 1 \cdot 0.4 = 0.4$$

EPFL Example: Tapered member (11)

- Displacement-based element: Section state determination step
- For every fiber, the stress and material tangent stiffness can be determined:

$$\sigma^{1,1}(x=0) = \varepsilon^{1,1}(0) - 0.5\varepsilon^{1,1}(0)^2 = 0.4 - 0.5 \cdot 0.4^2 = 0.32$$

$$\sigma^{1,1}(x=L/2) = \varepsilon^{1,1}(L/2) - 0.5\varepsilon^{1,1}(L/2)^2 = 0.4 - 0.5 \cdot 0.4^2 = 0.32$$

$$\sigma^{1,1}(x=L) = \varepsilon^{1,1}(L) - 0.5\varepsilon^{1,1}(L)^2 = 0.4 - 0.5 \cdot 0.4^2 = 0.32$$

$$\frac{d\sigma}{d\varepsilon}\bigg|_{\varepsilon=0.4} = 1 - 0.4 = 0.6$$

EPFL Example: Tapered member (12)

- Displacement-based element: Section state determination step
- For every section, the section resisting force can be determined:

$$Q_{sr}^{1,1}(x) = \sum_{fibers} \sigma^{1,1}(x) \cdot A(x)$$

$$Q_{sr}^{1,1}(x=0) = \sigma^{1,1}(x=0) \cdot A(x=0) = 0.32 \cdot 3 = 0.96$$

$$Q_{sr}^{1,1}(x = L/2) = \sigma^{1,1}(x = L/2) \cdot A(x = L/2) = 0.32 \cdot 2.5 = 0.80$$

$$Q_{ST}^{1,1}(x=L) = \sigma^{1,1}(x=L) \cdot A(x=L) = 0.32 \cdot 2 = 0.64$$

EPFL Example: Tapered member (13)

- Displacement-based element: Section state determination step
- Similarly, the section tangent stiffness can be determined:

$$k_s^{1,1}(x) = \sum_{fibers} \frac{d\sigma}{d\varepsilon} \Big|_{\varepsilon} (x) \cdot A(x)$$

$$k_s^{1,1}(x=0) = \frac{d\sigma}{d\varepsilon}\Big|_{\varepsilon=0.4} (x=0) \cdot A(x=0) = 0.6 \cdot 3 = 1.8$$

$$k_s^{1,1}(x = L/2) = \frac{d\sigma}{d\varepsilon}\Big|_{\varepsilon=0.4} (x = L/2) \cdot A(x = L/2) = 0.6 \cdot 2.5 = 1.5$$

$$k_s^{1,1}(x = L) = \frac{d\sigma}{d\varepsilon}\Big|_{\varepsilon=0.4} (x = L) \cdot A(x = L) = 0.6 \cdot 2 = 1.2$$

EPFL Example: Tapered member (14)

- Displacement-based element: Element state determination step
- The element resisting force can be determined:

$$Q^{1,1} = \bar{q}^{1,1} \approx \frac{L}{2} \cdot \frac{1}{L} \cdot \left(w_1 Q_{sr}^{1,1}(x=0) + w_3 Q_{sr}^{1,1}(x=L/2) + w_2 Q_{sr}^{1,1}(x=L) \right)$$

$$= \frac{1}{2} \cdot \left(\frac{1}{3} \cdot 0.96 + \frac{4}{3} \cdot 0.8 + \frac{1}{3} \cdot 0.64 \right) = 0.8$$

Similarly, the element tangent stiffness can be determined:

$$K^{1,1} = \overline{K}^{1,1} \cong \frac{1}{2L} \Big(w_1 k_s^{1,1} (x = 0) + w_3 k_s^{1,1} (x = L/2) + w_2 k_s^{1,1} (x = L) \Big)$$

$$= \frac{1}{2 \cdot 1} \left(\frac{1}{3} \cdot 1.8 + \frac{4}{3} \cdot 1.5 + \frac{1}{3} \cdot 1.2 \right) = 1.5$$

EPFL Example: Tapered member (15)

- Displacement-based element: Structure state determination step
- The structure internal force is therefore

$$F_{int}^{1,1} = Q^{1,1} = 0.8$$

The element unbalance force is given by

$$F_{unb}^{1,1} = F_{int}^{1,1} - \lambda^{1,1} \cdot F_{ext} = 0.8 - 1 \cdot 1 = -0.2$$

• At next iteration (i=2) of the Newton-Raphson algorithm for the load-control integrator, this unbalance force is used to compute the increment in the structure displacements

EPFL

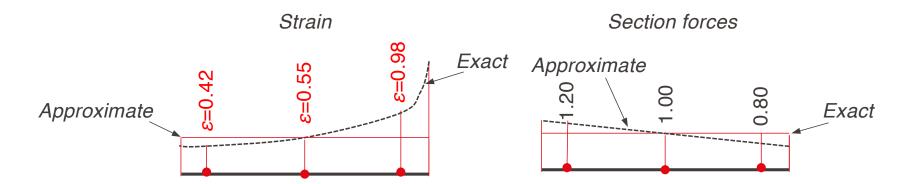
Example: Tapered member (16)

- Displacement-based element: Results iterations

i	и	Section	ε	σ	dσ/dε	Q_{sr}	k_s	Q	K	F_{unb}
	0.40	1	0.40	0.32	0.60	0.96	1.80		1.50	
1		2	0.40	0.32	0.60	0.80	1.50	0.80		-0.20
		3	0.40	0.32	0.60	0.64	1.20			
	0.53	1	0.53	0.39	0.47	1.17	1.40		1.17	
2		2	0.53	0.39	0.47	0.98	1.17	0.98		-0.02
		3	0.53	0.39	0.47	078	0.93			
		1	0.55	0.40	0.45	1.20	1.34			
3	0.55	2	0.55	0.40	0.45	1.00	1.12	1.00	1.12	0
		3	0.55	0.40	0.45	0.80	0.90			

EPFL Example: Tapered member (17)

-Some important remarks



- The strain along the member remains constant, which is not correct due to the approximate nature of the axial displacement interpolation.
- The corresponding section forces are not correct along the member.
- Satisfies equilibrium in the weighted residual sense, it does not satisfy equilibrium in a strict point-by-point sense.
- Force-based beam-column elements should yield the exact answer.

EPFL Example: Tapered member (18)

- Force-based element: Initial element stiffness matrix
- The initial element flexibility is given as follows:

$$F^{0} = \int_{0}^{L} \mathbf{b}^{T}(x) \cdot \left(\mathbf{k}_{S}^{0}(x)\right)^{-1} \cdot \mathbf{b}(x) dx = \int_{0}^{L} 1 \cdot f_{S}^{0}(x) \cdot 1 dx \quad \left(\mathbf{b}(x) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \left(\frac{x}{L} - 1\right) & \left(\frac{x}{L}\right) \end{bmatrix}\right)$$

$$= \int_{-1}^{1} f_s^0 \left(\frac{L}{2}r + \frac{L}{2}\right) \frac{L}{2} dr = \frac{L}{2} \int_{-1}^{1} f_s^0 \left(\frac{L}{2}r + \frac{L}{2}\right) dr$$

$$g(r)$$

EPFL Example: Tapered member (19)

- Force-based element: Initial element stiffness matrix
- With (see slide 34):

$$f_s^0(0) = \frac{1}{k_s^0(0)} = \frac{1}{3} = 0.33$$

$$f_s^0(L/2) = \frac{1}{k_s^0(L/2)} = \frac{1}{2.5} = 0.40$$

$$f_s^0(L) = \frac{1}{k_s^0(L)} = \frac{1}{2} = 0.50$$

With the selected numerical integration rule:

$$F^{0} = \overline{F}^{0} = \frac{L}{2} \cdot \left(w_{1} f_{s}^{0}(0) + w_{2} f_{s}^{0}(L/2) + w_{3} f_{s}^{0}(L) \right)$$

$$= \frac{1}{2} \cdot \left(\frac{1}{3} \cdot 0.33 + \frac{4}{3} \cdot 0.40 + \frac{1}{3} \cdot 0.50\right) = 0.41$$

EPFL Example: Tapered member (20)

- Force-based element: Initial element stiffness matrix
- The initial element stiffness (and therefore the initial structure stiffness) is given by

$$K_{structure}^{0} = \overline{K}^{0} = K^{0} = \frac{1}{F^{0}} = \frac{1}{0.41} = 2.47$$

EPFL Example: Tapered member (21)

- Force-based element: Structure state determination step
- The initial structure tangent stiffness matrix was computed; therefore, the first iteration of the structure state determination can be performed
- Load-control is used, and the external load $P=1=\lambda_{tot}F_{ext}=1\cdot 1$ is applied in a single load increment (n=1). Hence, the load multiplier is given by $\bar{\lambda}^1=1$
- For the first iteration i = 1 of load control, the following quantities are computed:

$$\delta v_r^{1,1} = \frac{F_{unb}^0}{K_{structure}^0} = \frac{0}{K_{structure}^0} = 0 \text{ and } \delta v_p^{1,1} = \frac{F_{ext}}{K_{structure}^0} = \frac{1}{2.47} = 0.406$$

- The increment in load multiplier is therefore $\delta \lambda^{1,1} = \bar{\lambda}^1 = 1$
- The increment in the structure's displacement is $\delta v^{1,1} = \delta v_r^{1,1} + \delta \lambda^{1,1} \delta v_p^{1,1} = 0.406$

EPFL Example: Tapered member (22)

- Force-based element: Element state determination step
- The increment in the element displacement is $\Delta \bar{u}^{1,1} = \delta v^{1,1} = 0.406$
- The element displacement is therefore $\bar{u}^{1,1} = \bar{u}^{1,0} + \Delta \bar{u}^{1,1} = 0 + 0.406 = 0.406$
- The Newton-Raphson procedure to ensure convergence of the element state determination step of the force-based beam-column element is started (j = 1)
- The element force increment is computed:

$$\Delta \bar{q}^{1,1,1} = \bar{K}^{1,1,1} \Delta \bar{u}^{1,1,1} = 2.47 \cdot 0.406 = 1.0$$

The element force is updated:

$$\bar{q}^{1,1,1} = \bar{q}^{1,0,1} + \Delta \bar{q}^{1,1,1} = 0 + 1.0 = 1.0$$

EPFL Example: Tapered member (23)

- Force-based element: Element state determination step
- The increment in section force is computed at each section using

$$\Delta Q_s^{1,1,1}(x) = b(x) \Delta \bar{q}^{1,1,1}$$

This gives:

$$\Delta Q_s^{1,1,1}(0) = 1.0 \cdot 1.0 = 1.0$$

 $\Delta Q_s^{1,1,1}(L/2) = 1.0 \cdot 1.0 = 1.0$
 $\Delta Q_s^{1,1,1}(L) = 1.0 \cdot 1.0 = 1.0$

The section force is updated:

$$Q_S^{1,1,1}(x) = Q_S^{1,1,0}(x) + \Delta Q_S^{1,1,1}(x)$$

This gives:

$$Q_s^{1,1,1}(0) = 0.0 + 1.0 = 1.0$$

 $Q_s^{1,1,1}(L/2) = 0.0 + 1.0 = 1.0$
 $Q_s^{1,1,1}(L) = 0.0 + 1.0 = 1.0$

EPFL Example: Tapered member (24)

- Force-based element: Element state determination step
- The increment in section deformation is computed at each section using

$$\Delta d_s^{1,1,1}(x) = d_{su}^{1,1,0}(x) + f_s^{1,1,0}(x) \cdot \Delta Q_s^{1,1,1}(x)$$

This gives:

$$\Delta d_s^{1,1,1}(0) = 0.0 + 0.33 \cdot 1.0 = 0.33$$

 $\Delta d_s^{1,1,1}(L/2) = 0.0 + 0.40 \cdot 1.0 = 0.40$

$$\Delta d_s^{1,1,1}(L) = 0.0 + 0.50 \cdot 1.0 = 0.50$$

The section deformation is updated:

$$d_S^{1,1,1}(x) = d_S^{1,1,0}(x) + \Delta d_S^{1,1,1}(x)$$

This gives:

$$d_s^{1,1,1}(0) = 0.0 + 0.33 = 0.33$$

 $d_s^{1,1,1}(L/2) = 0.0 + 0.40 = 0.40$
 $d_s^{1,1,1}(L) = 0.0 + 0.50 = 0.50$

EPFL Example: Tapered member (25)

- Force-based element: Section state determination step
- For every section along the element length, the strain at each fiber is computed using

$$\boldsymbol{\varepsilon}_{k.fiber} = \mathbf{I}_{k.fiber} \cdot \boldsymbol{d}_{s}^{1,1,1} \rightarrow \varepsilon_{k.fiber} = 1 \cdot d_{s}^{1,1,1}$$

Since each section is composed of a single fiber:

$$\varepsilon_{k.fiber}^{1,1,1}(x=0) = 1 \cdot 0.33 = 0.33$$

$$\varepsilon_{k.fiber}^{1,1,1}(x=L/2) = 1 \cdot 0.40 = 0.40$$

$$\varepsilon_{k.fiber}^{1,1,1}(x=L) = 1 \cdot 0.50 = 0.50$$

EPFL Example: Tapered member (26)

- Force-based element: Section state determination step
- For every fiber, the stress and material tangent stiffness can be determined:

$$\sigma^{1,1,1}(x=0) = \varepsilon^{1,1,1}(0) - 0.5\varepsilon^{1,1,1}(0)^{2} = 0.33 - 0.5 \cdot 0.33^{2} = 0.28$$

$$\sigma^{1,1,1}(x=L/2) = \varepsilon^{1,1,1}(L/2) - 0.5\varepsilon^{1,1,1}(L/2)^{2} = 0.4 - 0.5 \cdot 0.4^{2} = 0.32$$

$$\sigma^{1,1,1}(x=L) = \varepsilon^{1,1,1}(L) - 0.5\varepsilon^{1,1,1}(L)^{2} = 0.5 - 0.5 \cdot 0.5^{2} = 0.375$$

$$\frac{d\sigma}{d\varepsilon} \begin{vmatrix} (x=0) = 1 - 0.33 = 0.67 \\ \frac{d\sigma}{d\varepsilon} \end{vmatrix}_{\varepsilon=0.4} (x = L/2) = 1 - 0.4 = 0.6$$

$$\frac{d\sigma}{d\varepsilon} \begin{vmatrix} (x=L/2) = 1 - 0.5 = 0.5 \\ (x=L) = 1 - 0.5 = 0.5 \end{vmatrix}$$

EPFL Example: Tapered member (27)

- Force-based element: Section state determination step
- For every section, the section resisting force can be determined:

$$Q_{sr}^{1,1,1}(x) = \sum_{fibers} \sigma^{1,1,1}(x) \cdot A(x)$$

$$Q_{sr}^{1,1,1}(x=0) = \sigma^{1,1,1}(x=0) \cdot A(x=0) = 0.28 \cdot 3 = 0.83$$

$$Q_{ST}^{1,1,1}(x = L/2) = \sigma^{1,1,1}(x = L/2) \cdot A(x = L/2) = 0.32 \cdot 2.5 = 0.80$$

$$Q_{sr}^{1,1,1}(x=L) = \sigma^{1,1,1}(x=L) \cdot A(x=L) = 0.375 \cdot 2 = 0.75$$

EPFL Example: Tapered member (28)

- Force-based element: Section state determination step
- Similarly, the section tangent stiffness can be determined:

$$k_s^{1,1,1}(x) = \sum_{fibers} \frac{d\sigma}{d\varepsilon} \Big|_{\varepsilon} (x) \cdot A(x)$$

$$k_s^{1,1,1}(x=0) = \frac{d\sigma}{d\varepsilon}\Big|_{\varepsilon=0.33} (x=0) \cdot A(x=0) = 0.67 \cdot 3 = 2.0$$

$$k_s^{1,1,1}(x = L/2) = \frac{d\sigma}{d\varepsilon}\Big|_{\varepsilon=0.4} (x = L/2) \cdot A(x = L/2) = 0.6 \cdot 2.5 = 1.5$$

$$k_s^{1,1,1}(x=L) = \frac{d\sigma}{d\varepsilon}\Big|_{\varepsilon=0.5} (x=L) \cdot A(x=L) = 0.5 \cdot 2 = 1.0$$

EPFL Example: Tapered member (29)

- Force-based element: Section state determination step
- The section flexibility is computed:

$$f_s^{1,1,1}(x) = \frac{1}{k_s^{1,1,1}(x)}$$

$$f_s^{1,1,1}(x=0) = \frac{1}{k_s^{1,1,1}(x=0)} = \frac{1}{2.0} = 0.5$$

$$f_s^{1,1,1}(x = L/2) = \frac{1}{k_s^{1,1,1}(x = L/2)} = \frac{1}{1.5} = 0.67$$

$$f_s^{1,1,1}(x=L) = \frac{1}{k_s^{1,1,1}(x=L)} = \frac{1}{1.0} = 1.0$$

EPFL Example: Tapered member (30)

- Force-based element: Element state determination step
- The section unbalanced force is computed for every section:

Which gives

$$Q_{su}^{1,1,1}(x) = Q_{s}^{1,1,1}(x) - Q_{sr}^{1,1,1}(x)$$

$$Q_{su}^{1,1,1}(0) = 1.0 - 0.83 = 0.17$$

$$Q_{su}^{1,1,1}(0) = 1.0 - 0.80 = 0.2$$

$$Q_{su}^{1,1,1}(0) = 1.0 - 0.75 = 0.25$$

EPFL Example: Tapered member (31)

- Force-based element: Element state determination step
- The section unbalanced deformation is computed for every section:

Which gives

$$d_{su}^{1,1,1}(x) = f_s^{1,1,1}(x) \cdot Q_{su}^{1,1,1}(x)$$

$$d_{su}^{1,1,1}(0) = 0.5 \cdot 0.17 = 0.085$$

$$d_{su}^{1,1,1}(L/2) = 0.67 \cdot 0.20 = 0.133$$

$$d_{SU}^{1,1,1}(L) = 1.0 \cdot 0.25 = 0.25$$

EPFL Example: Tapered member (32)

- Force-based element: Element state determination step
- The element resisting force can be determined:

$$Q^{1,1,1} = \bar{q}^{1,1,1} \approx \frac{L}{2} \cdot \left(w_1 Q_{sr}^{1,1,1}(x=0) + w_3 Q_{sr}^{1,1,1}(x=L/2) + w_2 Q_{sr}^{1,1,1}(x=L) \right)$$

$$= \frac{1}{2} \cdot \left(\frac{1}{3} \cdot 0.83 + \frac{4}{3} \cdot 0.8 + \frac{1}{3} \cdot 0.75 \right) = 0.80$$

Similarly, the element flexibly can be determined:

$$F^{1,1,1} = \overline{F}^{1,1,1} \cong \frac{L}{2} \cdot \left(w_1 f_S^{1,1,1}(x=0) + w_3 f_S^{1,1,1}(x=L/2) + w_2 f_S^{1,1,1}(x=L) \right)$$

$$= \frac{1}{2} \cdot \left(\frac{1}{3} \cdot 0.5 + \frac{4}{3} \cdot 0.67 + \frac{1}{3} \cdot 1.0 \right) = 0.69$$

EPFL Example: Tapered member (33)

- Force-based element: Element state determination step
- Therefore, the element tangent stiffness is computed:

$$K^{1,1,1} = \overline{K}^{1,1,1} = \frac{1}{F^{1,1,1}} = \frac{1}{0.69} = 1.44$$

• The element unbalanced displacement is computed:

$$\overline{\mathbf{u}}_{u}^{1,1,1} = \int_{0}^{L} \mathbf{b}^{T}(x) \mathbf{d}_{su}^{1,1,1}(x) dx$$

Which gives

$$\bar{\mathbf{u}}_{\mathbf{u}}^{1,1,1} = \frac{\mathbf{L}}{2} \cdot \left(w_1 d_{su}^{1,1,1}(x=0) + w_3 d_{su}^{1,1,1}(x=L/2) + w_2 d_{su}^{1,1,1}(x=L) \right)$$

$$= \frac{1}{2} \cdot \left(\frac{1}{3} \cdot 0.085 + \frac{4}{3} \cdot 0.133 + \frac{1}{3} \cdot 0.25 \right) = 0.144$$

EPFL Example: Tapered member (34)

- Force-based element: Element state determination step
- For the next iteration (j = 2) of the Newton-Raphson procedure for the element state determination of the force-based element, the increment in the element deformation is set to

$$\Delta \bar{\mathbf{u}}^{1,1,2} = -\bar{\mathbf{u}}_u^{1,1,1} = -0.144$$

- The element state determination loop in continued until the element has converged
- Then another iteration (i=2) of the Newton-Raphson procedure for the structure state determination is conducted following the load-control integrator

EPFL Example: Tapered member (35)

- Force-based element: Results iterations (1)

i	и	j	Sec	ε	σ	dσ/dε	Q_{sr}	Q_{su}	d_{su}	k_{S}	u_u	Q	K_{struct}	F_{unb}
1	0.41	1	1	0.33	0.28	0.67	0.83	0.17	0.08	2.00	0.14	- 0.79	1.42	-0.21
			2	0.40	0.32	0.60	0.80	0.20	0.13	1.50				
			3	0.50	0.37	0.50	0.75	0.25	0.25	1.00				
		2	1	0.31	0.26	0.69	0.79	0.00	0.00	2.06	0.00			
			2	0.39	0.32	0.61	0.79	0.00	0.00	1.51				
			3	0.54	0.40	0.46	0.79	0.00	0.00	0.92				
2	0.55	1	1	0.41	0.33	0.59	0.98	0.02	0.01	1.76	0.03	0.07	0.91	-0.03
			2	0.53	0.39	0.47	0.98	0.02	0.02	1.17				
			3	0.77	0.47	0.23	0.95	0.05	0.11	0.46				
	0.55		1	0.40	0.32	0.60	0.97	0.00	0.00	1.79		0.97		
		2	2	0.52	0.39	0.48	0.97	0.00	0.00	1.19				
			3	0.81	0.48	0.19	0.97	0.00	0.00	0.37				
3	0.59	0.59 1	1	0.42	0.33	0.58	1.00	0.00	0.00	1.73	0.01			
			2	0.55	0.40	0.45	1.00	0.00	0.00	1.12				
			3	0.91	0.50	0.09	0.99	0.01	0.05	0.19				

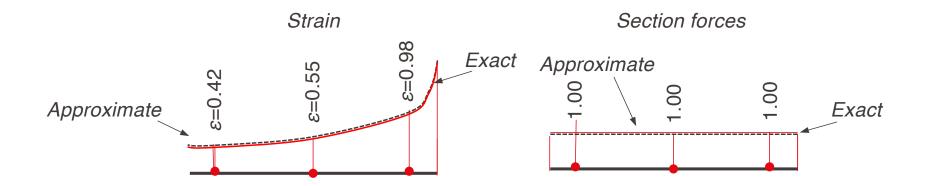
EPFL Example: Tapered member (36)

- Force-based element: Results iterations (2)

i	и	j	Sec	ε	σ	dσ/dε	Q_{sr}	Q_{su}	d_{su}	k_{S}	u_u	Q	K_{struct}	F_{unb}
3	0.59		1	0.42	0.33	0.58	0.99	0.00	0.00	1.74	0.00	0.99	0.56	-0.01
		2	2	0.55	0.40	0.45	0.99	0.00	0.00	1.13				
			3	0.92	0.50	0.08	0.99	0.00	0.00	0.15				
4	0.60	1	1	0.42	0.33	0.58	1.00	0.00	0.00	1.73	0.00	- 1,00	0.31	-0.00
			2	0.55	0.40	0.45	1.00	0.00	0.00	1.12				
			3	0.96	0.50	0.04	1.00	0.00	0.02	0.08				
			1	0.42	0.33	0.58	1.00	0.00	0.00	1.73	0.00			
		2	2	0.55	0.40	0.45	1.00	0.00	0.00	1.12				
			3	0.97	0.50	0.03	1.00	0.00	0.00	0.07				
5	0.60	1	1	0.42	0.33	0.58	1.00	0.00	0.00	1.73	0.00	- 1.00	0.17	0.00
			2	0.55	0.40	0.45	1.00	0.00	0.00	1.12				
			3	0.98	0.50	0.02	1.00	0.00	0.01	0.03				
			1	0.42	0.33	0.58	1.00	0.00	0.00	1.73	0.00			0.00
		2	2	0.55	0.40	0.45	1.00	0.00	0.00	1.12				
			3	0.98	0.50	0.02	1.00	0.00	0.00	0.03				

EPFL Example: Tapered member (19)

-force-based elements



- The strain along the member is accurate
- The corresponding section forces are correct along the member
- Satisfies equilibrium in a strict point-by-point sense
- Force-based elements yield the exact answer