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Objectives of today’s lecture
§ To introduce:

• How to apply constraints in finite element models
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Motivation
§ The figure below shows an elastic beam-column element with two rotational

springs at the element ends

§ As seen in Week#3, nodes a and b have the same coordinates (same for nodes
c and d)

§ The left and right springs act between degrees of freedom 3 and 6 (left spring)
and 9 and 12 (right spring)

§ Additional constraints must be defined between degrees of freedom 1,2,4 and 5
(left spring) and 7,8,10 and 11 (right spring) to ensure that the springs remain at
zero length
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Additional constraints 

§ The following constraints are added to the model:

Left spring:!
𝑣! = 𝑣"
𝑣# = 𝑣$ and right spring:!

𝑣% = 𝑣!&
𝑣' = 𝑣!!

Where 𝑣( denotes the displacement at the global degree of freedom 𝑘
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Constraints enforcement – Transformation approach (1)

§ Constraint equations that couple degrees of freedom in 𝒗 can be written in the
form

𝑪 ⋅ 𝒗 = 𝑸
Where 𝑪 and 𝑸 contain constants.

§ Consider the common case 𝑸 = 𝟎, the constraint equation is partitioned so that

𝑪) 𝑪*
𝒗)
𝒗* = 𝟎

Where 𝒗) and 𝒗𝒄 are the dofs to be retained and dofs to be condensed out,
respectively

§ Because there are as many dofs 𝒗* as there are independent equations of
constraint, matrix 𝑪* is square and nonsingular
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Constraints enforcement – Transformation approach (2)

§ Solving for 𝒗* yields
𝒗* = 𝑪)*𝒗) where 𝑪)* = −𝑪*,!𝑪)

§ This equation is combined with the identity 𝒗) = 𝒗):

𝒗)
𝒗* = 𝑻𝒗) where 𝑻 = 𝑰

𝑪)*

§ The transformation 𝑭 = 𝑻-𝑭′ and 𝑲 = 𝑻-𝑲′𝑻 can be applied to the structural 
equation 𝑭′ = 𝑲′𝒗′
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Constraints enforcement – Transformation approach (3)

§ Similarly to the condensation procedure presented in Week#2, the structural 
equations 𝑭′ = 𝑲′𝒗′ can be partitioned as

𝑲)) 𝑲)*
𝑲*) 𝑲**

𝒗)
𝒗* = 𝑭)

𝑭*

§ The condensed system is

𝑲)) + 𝑲)*𝑪)* + 𝑪)*- 𝑲*) + 𝑪)*- 𝑲**𝑪)* 𝒗) = 𝑭) + 𝑪)*- 𝑭*

§ After this equation is solved for 𝒗), the displacement corresponding to the 
condensed out degrees of freedom 𝒗* can be computed using 𝒗* = 𝑪)*𝒗)
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Example: Beam element with two end springs (1)
§ Consider the following structure consisting of a single 2D elastic beam-column 

element with two inelastic rotational spring at its ends

§ Applying the transformation method, write the global structural equation
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Example: Beam element with two end springs (2)
§ As previously discussed, the following constraints are imposed:

Left spring:!
𝑣! = 𝑣"
𝑣# = 𝑣$ and right spring:!

𝑣% = 𝑣!&
𝑣' = 𝑣!!

§ The condensed degrees of freedom are selected as 𝑣!, 𝑣#, 𝑣!& and 𝑣!!

§ The constrained equation are given by

𝑪! 𝑪"
𝒗!
𝒗" = 𝟎 →

0 1 0 0 0 0 0 0 | −1 0 0 0
0 0 1 0 0 0 0 0 | 0 −1 0 0
0 0 0 0 1 0 0 0 | 0 0 −1 0
0 0 0 0 0 1 0 0 | 0 0 0 −1

𝑣#
𝑣$
𝑣%
𝑣&
𝑣'
𝑣(
𝑣)
𝑣*+
−−
𝑣*
𝑣+
𝑣*,
𝑣**

= 𝟎
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Example: Beam element with two end springs (3)
§ And

𝑪)* = −𝑪*,!𝑪) =

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

§ The transformation matrix is given by

𝑻 = 𝑰
𝑪!"

=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
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Example: Beam element with two end springs (4)
§ The force-displacement relations are given by

• For the left spring (spring stiffness 𝑘.! = 𝑎!𝐸𝐼//𝐿):
𝐹0
𝐹1

=
𝑘.! −𝑘.!
−𝑘.! 𝑘.!

𝑣0
𝑣1

• For the right spring (spring stiffness 𝑘.# = 𝑎#𝐸𝐼//𝐿):
𝐹2
𝐹!#

=
𝑘.# −𝑘.#
−𝑘.# 𝑘.#

𝑣2
𝑣!#
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Example: Beam element with two end springs (5)
• For the elastic beam-column element:

𝐹!
𝐹"
𝐹#
𝐹$
𝐹%
𝐹&

=
𝐸
𝐿

𝐴 0 0 −𝐴 0 0

0 𝑎𝐼'
12
𝐿( 1 +

𝑎) + 𝑎(
𝑎)𝑎(

𝑎𝐼'
6
𝐿 1 +

2
𝑎(

0 −𝑎𝐼'
12
𝐿( 1 +

𝑎) + 𝑎(
𝑎)𝑎(

𝑎𝐼'
6
𝐿 1 +

2
𝑎)

0 𝑎𝐼'
6
𝐿 1 +

2
𝑎(

𝑎𝐼'4 1 +
3
𝑎(

0 −𝑎𝐼'
6
𝐿 1 +

2
𝑎(

2𝑎𝐼'
−𝐴 0 0 𝐴 0 0

0 −𝑎𝐼'
12
𝐿( 1 +

𝑎) + 𝑎(
𝑎)𝑎(

−𝑎𝐼'
6
𝐿 1 +

2
𝑎(

0 𝑎𝐼'
12
𝐿( 1 +

𝑎) + 𝑎(
𝑎)𝑎(

−𝑎𝐼'
6
𝐿 1 +

2
𝑎)

0 𝑎𝐼'
6
𝐿 1 +

2
𝑎)

2𝑎𝐼' 0 −𝑎𝐼'
6
𝐿 1 +

2
𝑎)

𝑎𝐼'4 1 +
3
𝑎)

𝑣!
𝑣"
𝑣#
𝑣$
𝑣%
𝑣&
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Example: Beam element with two end springs (6)
§ The complete system is given by:

𝐹!
𝐹"
𝐹#
𝐹$
𝐹%
𝐹&
𝐹'
𝐹(
𝐹)
𝐹!*
𝐹!!
𝐹!"

=

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 𝑘+! 0 0 −𝑘+! 0 0 0 0 0 0

0 0 0
𝐴𝐸
𝐿

0 0 −
𝐴𝐸
𝐿

0 0 0 0 0

0 0 0 0
𝑎𝐸𝐼,
𝐿

12
𝐿"

1 +
𝑎! + 𝑎"
𝑎!𝑎"

𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎"

0 −
𝑎𝐸𝐼,
𝐿

12
𝐿"

1 +
𝑎! + 𝑎"
𝑎!𝑎"

𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎!

0 0 0

0 0 −𝑘+! 0
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎"

𝑎𝐸𝐼,
𝐿

4 1 +
3
𝑎"

+ 𝑘+! 0 −
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎"

2
𝑎𝐸𝐼,
𝐿

0 0 0

0 0 0 −
𝐴𝐸
𝐿

0 0
𝐴𝐸
𝐿

0 0 0 0 0

0 0 0 0 −
𝑎𝐸𝐼,
𝐿

12
𝐿"

1 +
𝑎! + 𝑎"
𝑎!𝑎"

−
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎"

0
𝑎𝐸𝐼,
𝐿

12
𝐿"

1 +
𝑎! + 𝑎"
𝑎!𝑎"

−
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎!

0 0 0

0 0 0 0
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎!

2
𝑎𝐸𝐼,
𝐿

0 −
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎!

𝑎𝐸𝐼,
𝐿

4 1 +
3
𝑎!

+ 𝑘+" 0 0 −𝑘+"

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −𝑘+" 0 0 𝑘+"

𝑣!
𝑣"
𝑣#
𝑣$
𝑣%
𝑣&
𝑣'
𝑣(
𝑣)
𝑣!*
𝑣!!
𝑣!"
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Example: Beam element with two end springs (7)
§ The reduced system is given by

𝑭 = 𝑲𝒗) → 𝑻-𝑭3 = 𝑻-𝑲′𝑻𝒗)

§ Which gives

𝐹!
𝐹" + 𝐹#
𝐹$ + 𝐹%
𝐹&

𝐹' + 𝐹#(
𝐹) + 𝐹
𝐹*
𝐹#%

=

𝑘+# 0 0 −𝑘+# 0 0 0 0

0
𝐴𝐸
𝐿

0 0 −
𝐴𝐸
𝐿

0 0 0

0 0
𝑎𝐸𝐼,
𝐿

12
𝐿%

1 +
𝑎# + 𝑎%
𝑎#𝑎%

𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎%

0 −
𝑎𝐸𝐼,
𝐿

12
𝐿%

1 +
𝑎# + 𝑎%
𝑎#𝑎%

𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎#

0

−𝑘+# 0
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎%

𝑎𝐸𝐼,
𝐿

4 1 +
3
𝑎%

+ 𝑘+# 0 −
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎%

2
𝑎𝐸𝐼,
𝐿

0

0 −
𝐴𝐸
𝐿

0 0
𝐴𝐸
𝐿

0 0 0

0 0 −
𝑎𝐸𝐼,
𝐿

12
𝐿%

1 +
𝑎# + 𝑎%
𝑎#𝑎%

−
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎%

0
𝑎𝐸𝐼,
𝐿

12
𝐿%

1 +
𝑎# + 𝑎%
𝑎#𝑎%

−
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎#

0

0 0
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎#

2
𝑎𝐸𝐼,
𝐿

0 −
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎#

𝑎𝐸𝐼,
𝐿

4 1 +
3
𝑎#

+𝑘+% −𝑘+%

0 0 0 0 0 0 −𝑘+% 𝑘+%

𝑣!
𝑣"
𝑣$
𝑣&
𝑣'
𝑣)
𝑣*
𝑣#%
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Constraints enforcement – Direct approach (1)

§ Another approach to directly enforce constraint which impose equal degrees of 
freedom of the form 𝑣4 = 𝑣5 (where 𝑣5 is to be condensed out), consists in 
assigning the same number to both degree of freedom number at both nodes. 

§ The external force acting on degrees of freedom 𝑚 must be transferred to the 
degree of freedom 𝑛

§ It is important to note that this approach is only applicable to impose equal 
degrees of freedom constraints of the form 𝑣4 = 𝑣5
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Constraints enforcement – Direct approach (2)
§ For example, consider the previous example:

§ As previously discussed, the following constraints are imposed:

Left spring:!
𝑣! = 𝑣"
𝑣# = 𝑣$ and right spring:!

𝑣% = 𝑣!&
𝑣' = 𝑣!!

§ The condensed degrees of freedom are selected as 𝑣!, 𝑣#, 𝑣!& and 𝑣!!

a
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8
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Constraints enforcement – Direct approach (3)
§ The degrees of freedom are transformed as follows:

§ With these degrees of freedom, the force-displacement relations are given by
• For the left spring (spring stiffness 𝑘.! = 𝑎!𝐸𝐼//𝐿):

𝐹0
𝐹1

=
𝑘.! −𝑘.!
−𝑘.! 𝑘.!

𝑣0
𝑣1

• For the right spring (spring stiffness 𝑘.# = 𝑎#𝐸𝐼//𝐿):
𝐹2
𝐹!#

=
𝑘.# −𝑘.#
−𝑘.# 𝑘.#

𝑣2
𝑣!#

a
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b
4

5
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c
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8
9

d
7
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Constraints enforcement – Direct approach (4)
• For the elastic beam-column element:

𝐹!
𝐹"
𝐹#
𝐹$
𝐹%
𝐹&

=
𝐸
𝐿

𝐴 0 0 −𝐴 0 0

0 𝑎𝐼'
12
𝐿( 1 +

𝑎) + 𝑎(
𝑎)𝑎(

𝑎𝐼'
6
𝐿 1 +

2
𝑎(

0 −𝑎𝐼'
12
𝐿( 1 +

𝑎) + 𝑎(
𝑎)𝑎(

𝑎𝐼'
6
𝐿 1 +

2
𝑎)

0 𝑎𝐼'
6
𝐿 1 +

2
𝑎(

𝑎𝐼'4 1 +
3
𝑎(

0 −𝑎𝐼'
6
𝐿 1 +

2
𝑎(

2𝑎𝐼'
−𝐴 0 0 𝐴 0 0

0 −𝑎𝐼'
12
𝐿( 1 +

𝑎) + 𝑎(
𝑎)𝑎(

−𝑎𝐼'
6
𝐿 1 +

2
𝑎(

0 𝑎𝐼'
12
𝐿( 1 +

𝑎) + 𝑎(
𝑎)𝑎(

−𝑎𝐼'
6
𝐿 1 +

2
𝑎)

0 𝑎𝐼'
6
𝐿 1 +

2
𝑎)

2𝑎𝐼' 0 −𝑎𝐼'
6
𝐿 1 +

2
𝑎)

𝑎𝐼'4 1 +
3
𝑎)

𝑣!
𝑣"
𝑣#
𝑣$
𝑣%
𝑣&



19RESSLab
Resilient Steel Structures Laboratory

Iterative Techniques for Nonlinear Analysis – Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

Constraints enforcement – Direct approach (5)
§ Assembling the global force-deformation relation directly gives

𝐹!
𝐹" + 𝐹#
𝐹$ + 𝐹%
𝐹&

𝐹' + 𝐹#(
𝐹) + 𝐹
𝐹*
𝐹#%

=

𝑘+# 0 0 −𝑘+# 0 0 0 0

0
𝐴𝐸
𝐿

0 0 −
𝐴𝐸
𝐿

0 0 0

0 0
𝑎𝐸𝐼,
𝐿

12
𝐿%

1 +
𝑎# + 𝑎%
𝑎#𝑎%

𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎%

0 −
𝑎𝐸𝐼,
𝐿

12
𝐿%

1 +
𝑎# + 𝑎%
𝑎#𝑎%

𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎#

0

−𝑘+# 0
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎%

𝑎𝐸𝐼,
𝐿

4 1 +
3
𝑎%

+ 𝑘+# 0 −
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎%

2
𝑎𝐸𝐼,
𝐿

0

0 −
𝐴𝐸
𝐿

0 0
𝐴𝐸
𝐿

0 0 0

0 0 −
𝑎𝐸𝐼,
𝐿

12
𝐿%

1 +
𝑎# + 𝑎%
𝑎#𝑎%

−
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎%

0
𝑎𝐸𝐼,
𝐿

12
𝐿%

1 +
𝑎# + 𝑎%
𝑎#𝑎%

−
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎#

0

0 0
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎#

2
𝑎𝐸𝐼,
𝐿

0 −
𝑎𝐸𝐼,
𝐿

6
𝐿
1 +

2
𝑎#

𝑎𝐸𝐼,
𝐿

4 1 +
3
𝑎#

+𝑘+% −𝑘+%

0 0 0 0 0 0 −𝑘+% 𝑘+%

𝑣!
𝑣"
𝑣$
𝑣&
𝑣'
𝑣)
𝑣*
𝑣#%

§ Which corresponds to the system obtained with the constraint transformation 
approach


