EPFL

CIVIL 449: Nonlinear Analysis of Structures

School of Architecture, Civil & Environmental Engineering Civil Engineering Institute

Enforcement of Constraints

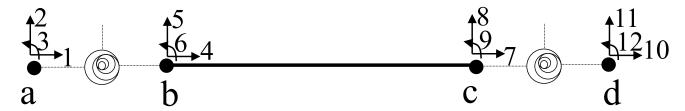
Prof. Dr. Dimitrios Lignos, Dr. Diego Heredia EPFL, ENAC, IIC, RESSLab

EPFL Objectives of today's lecture

- To introduce:
 - How to apply constraints in finite element models

EPFL Motivation

 The figure below shows an elastic beam-column element with two rotational springs at the element ends



- As seen in Week#3, nodes a and b have the same coordinates (same for nodes c and d)
- The left and right springs act between degrees of freedom 3 and 6 (left spring) and 9 and 12 (right spring)
- Additional constraints must be defined between degrees of freedom 1,2,4 and 5 (left spring) and 7,8,10 and 11 (right spring) to ensure that the springs remain at zero length

EPFL Additional constraints

The following constraints are added to the model:

Left spring:
$$\begin{cases} v_1 = v_4 \\ v_2 = v_5 \end{cases}$$
 and right spring:
$$\begin{cases} v_7 = v_{10} \\ v_8 = v_{11} \end{cases}$$

Where v_k denotes the displacement at the global degree of freedom k

EPFL Constraints enforcement – Transformation approach (1)

Constraint equations that couple degrees of freedom in v can be written in the form

$$C \cdot v = Q$$

Where *C* and *Q* contain constants.

• Consider the common case Q = 0, the constraint equation is partitioned so that

$$\begin{bmatrix} \boldsymbol{C}_r & \boldsymbol{C}_c \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_r \\ \boldsymbol{v}_c \end{bmatrix} = \mathbf{0}$$

Where v_r and v_c are the dofs to be retained and dofs to be condensed out, respectively

• Because there are as many dofs v_c as there are independent equations of constraint, matrix c_c is square and nonsingular

EPFL Constraints enforcement – Transformation approach (2)

• Solving for v_c yields

$$\boldsymbol{v}_c = \boldsymbol{C}_{rc} \boldsymbol{v}_r$$
 where $\boldsymbol{C}_{rc} = -\boldsymbol{C}_c^{-1} \boldsymbol{C}_r$

• This equation is combined with the identity $v_r = v_r$:

$$\begin{bmatrix} v_r \\ v_c \end{bmatrix} = Tv_r$$
 where $T = \begin{bmatrix} I \\ C_{rc} \end{bmatrix}$

The transformation $F = T^T F'$ and $K = T^T K' T$ can be applied to the structural equation F' = K' v'

EPFL Constraints enforcement – Transformation approach (3)

• Similarly to the condensation procedure presented in Week#2, the structural equations F' = K'v' can be partitioned as

$$\begin{bmatrix} \mathbf{K}_{rr} & \mathbf{K}_{rc} \\ \mathbf{K}_{cr} & \mathbf{K}_{cc} \end{bmatrix} \begin{bmatrix} \mathbf{v}_r \\ \mathbf{v}_c \end{bmatrix} = \begin{bmatrix} \mathbf{F}_r \\ \mathbf{F}_c \end{bmatrix}$$

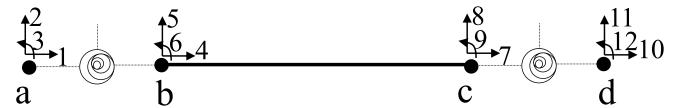
The condensed system is

$$[\boldsymbol{K}_{rr} + \boldsymbol{K}_{rc}\boldsymbol{C}_{rc} + \boldsymbol{C}_{rc}^{T}\boldsymbol{K}_{cr} + \boldsymbol{C}_{rc}^{T}\boldsymbol{K}_{cc}\boldsymbol{C}_{rc}]\boldsymbol{v}_{r} = [\boldsymbol{F}_{r} + \boldsymbol{C}_{rc}^{T}\boldsymbol{F}_{c}]$$

• After this equation is solved for v_r , the displacement corresponding to the condensed out degrees of freedom v_c can be computed using $v_c = c_{rc}v_r$

EPFL Example: Beam element with two end springs (1)

 Consider the following structure consisting of a single 2D elastic beam-column element with two inelastic rotational spring at its ends



Applying the transformation method, write the global structural equation

EPFL Example: Beam element with two end springs (2)

As previously discussed, the following constraints are imposed:

Left spring:
$$\begin{cases} v_1 = v_4 \\ v_2 = v_5 \end{cases}$$
 and right spring:
$$\begin{cases} v_7 = v_{10} \\ v_8 = v_{11} \end{cases}$$

- The condensed degrees of freedom are selected as v_1, v_2, v_{10} and v_{11}
- The constrained equation are given by

$$[\boldsymbol{C}_{r} \quad \boldsymbol{C}_{c}] \begin{bmatrix} \boldsymbol{v}_{r} \\ \boldsymbol{v}_{c} \end{bmatrix} = \mathbf{0} \rightarrow \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & | & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & | & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & | & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & | & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & | & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_{3} \\ \boldsymbol{v}_{4} \\ \boldsymbol{v}_{5} \\ \boldsymbol{v}_{6} \\ \boldsymbol{v}_{7} \\ \boldsymbol{v}_{8} \\ \boldsymbol{v}_{9} \\ \boldsymbol{v}_{12} \\ - - \\ \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{10} \\ \boldsymbol{v}_{11} \end{bmatrix} = \mathbf{0}$$

EPFL Example: Beam element with two end springs (3)

And

$$\boldsymbol{\mathcal{C}}_{rc} = -\boldsymbol{\mathcal{C}}_c^{-1} \boldsymbol{\mathcal{C}}_r = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

The transformation matrix is given by

$$T = \begin{bmatrix} I \\ C_{rc} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

EPFL Example: Beam element with two end springs (4)

- The force-displacement relations are given by
 - For the left spring (spring stiffness $k_{s1} = a_1 E I_e / L$):

$$\begin{bmatrix} F_3 \\ F_6 \end{bmatrix} = \begin{bmatrix} k_{s1} & -k_{s1} \\ -k_{s1} & k_{s1} \end{bmatrix} \begin{bmatrix} v_3 \\ v_6 \end{bmatrix}$$

• For the right spring (spring stiffness $k_{s2} = a_2 E I_e/L$):

$$\begin{bmatrix} F_9 \\ F_{12} \end{bmatrix} = \begin{bmatrix} k_{s2} & -k_{s2} \\ -k_{s2} & k_{s2} \end{bmatrix} \begin{bmatrix} v_9 \\ v_{12} \end{bmatrix}$$

EPFL Example: Beam element with two end springs (5)

For the elastic beam-column element:

$$\begin{cases} F_4 \\ F_5 \\ F_6 \\ F_7 \\ F_8 \\ F_9 \end{cases} = \underbrace{\frac{E}{L}} \begin{bmatrix} A & 0 & 0 & -A & 0 & 0 \\ 0 & aI_e \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & aI_e \frac{6}{L} \left(1 + \frac{2}{a_2}\right) & 0 & -aI_e \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & aI_e \frac{6}{L} \left(1 + \frac{2}{a_1}\right) \\ 0 & aI_e \frac{6}{L} \left(1 + \frac{2}{a_2}\right) & aI_e 4 \left(1 + \frac{3}{a_2}\right) & 0 & -aI_e \frac{6}{L} \left(1 + \frac{2}{a_2}\right) & 2aI_e \\ -A & 0 & 0 & A & 0 & 0 \\ 0 & -aI_e \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & -aI_e \frac{6}{L} \left(1 + \frac{2}{a_2}\right) & 0 & aI_e \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & -aI_e \frac{6}{L} \left(1 + \frac{2}{a_1}\right) \\ 0 & aI_e \frac{6}{L} \left(1 + \frac{2}{a_1}\right) & 2aI_e & 0 & -aI_e \frac{6}{L} \left(1 + \frac{2}{a_1}\right) & aI_e 4 \left(1 + \frac{3}{a_1}\right) \end{bmatrix}$$

EPFL Example: Beam element with two end springs (6)

The complete system is given by:

Example: Beam element with two end springs (7) **EPFL**

The reduced system is given by

$$F = K v_r \rightarrow T^T F' = T^T K' T v_r$$

Which gives

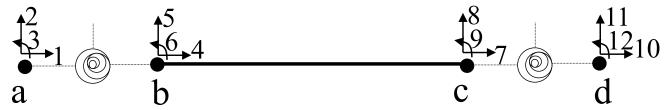
$$\begin{bmatrix} F_{3} \\ F_{4} + F_{1} \\ F_{5} + F_{2} \\ F_{6} \\ F_{7} + F_{10} \\ F_{8} + F \\ F_{9} \\ F_{12} \end{bmatrix} = \begin{bmatrix} k_{s1} & 0 & 0 & -k_{s1} & 0 & 0 & 0 & 0 \\ 0 & \frac{AE}{L} & 0 & 0 & -\frac{AE}{L} & 0 & 0 & 0 \\ 0 & 0 & \frac{aEI_{e}}{L} \frac{12}{L^{2}} \left(1 + \frac{a_{1} + a_{2}}{a_{1} a_{2}}\right) & \frac{aEI_{e}}{L} \frac{6}{L} \left(1 + \frac{2}{a_{2}}\right) & 0 & -\frac{aEI_{e}}{L} \frac{12}{L^{2}} \left(1 + \frac{a_{1} + a_{2}}{a_{1} a_{2}}\right) & \frac{aEI_{e}}{L} \frac{6}{L} \left(1 + \frac{2}{a_{1}}\right) & 0 \\ -k_{s1} & 0 & \frac{aEI_{e}}{L} \frac{6}{L} \left(1 + \frac{2}{a_{2}}\right) & \frac{aEI_{e}}{L} 4 \left(1 + \frac{3}{a_{2}}\right) + k_{s1} & 0 & -\frac{aEI_{e}}{L} \frac{6}{L} \left(1 + \frac{2}{a_{2}}\right) & 2\frac{aEI_{e}}{L} & 0 \\ 0 & -\frac{AE}{L} & 0 & 0 & \frac{AE}{L} & 0 & 0 & 0 \\ 0 & 0 & -\frac{aEI_{e}}{L} \frac{12}{L^{2}} \left(1 + \frac{a_{1} + a_{2}}{a_{1} a_{2}}\right) & -\frac{aEI_{e}}{L} \frac{6}{L} \left(1 + \frac{2}{a_{2}}\right) & 0 & \frac{aEI_{e}}{L} \frac{12}{L^{2}} \left(1 + \frac{a_{1} + a_{2}}{a_{1} a_{2}}\right) & -\frac{aEI_{e}}{L} \frac{6}{L} \left(1 + \frac{2}{a_{1}}\right) & 0 \\ 0 & 0 & \frac{aEI_{e}}{L} \frac{6}{L} \left(1 + \frac{2}{a_{1}}\right) & 2\frac{aEI_{e}}{L} & 0 & -\frac{aEI_{e}}{L} \frac{6}{L} \left(1 + \frac{2}{a_{1}}\right) & \frac{aEI_{e}}{L^{2}} \left(1 + \frac{4}{a_{1}} + a_{2}\right) & -\frac{aEI_{e}}{L} \frac{6}{L} \left(1 + \frac{2}{a_{1}}\right) & 0 \\ 0 & 0 & \frac{aEI_{e}}{L} \frac{6}{L} \left(1 + \frac{2}{a_{1}}\right) & 2\frac{aEI_{e}}{L} & 0 & -\frac{aEI_{e}}{L} \frac{6}{L} \left(1 + \frac{2}{a_{1}}\right) & \frac{aEI_{e}}{L^{2}} \left(1 + \frac{4}{a_{1}} + a_{2}\right) & -\frac{aEI_{e}}{L^{2}} \frac{6}{L^{2}} \left(1 + \frac{2}{a_{1}}\right) & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{aEI_{e}}{L^{2}} \frac{6}{L^{2}} \left(1 + \frac{2}{a_{1}}\right) & \frac{aEI_{e}}{L^{2}} \left(1 + \frac{2}{a_{1}}\right) & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{aEI_{e}}{L^{2}} \frac{6}{L^{2}} \left(1 + \frac{2}{a_{1}}\right) & \frac{aEI_{e}}{L^{2}} \left(1 + \frac{2}{a_{1}}\right) & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{aEI_{e}}{L^{2}} \frac{6}{L^{2}} \left(1 + \frac{2}{a_{1}}\right) & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{aEI_{e}}{L^{2}} \frac{6}{L^{2}} \left(1 + \frac{2}{a_{1}}\right) & \frac{aEI_{e}}{L^{2}} \left(1 + \frac{2}{$$

EPFL Constraints enforcement – Direct approach (1)

- Another approach to directly enforce constraint which impose **equal degrees of freedom** of the form $v_n = v_m$ (where v_m is to be condensed out), consists in assigning the same number to both degree of freedom number at both nodes.
- The external force acting on degrees of freedom m must be transferred to the degree of freedom n
- It is important to note that this approach is **only applicable to impose equal** degrees of freedom constraints of the form $v_n = v_m$

EPFL Constraints enforcement – Direct approach (2)

For example, consider the previous example:



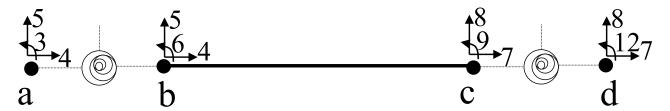
As previously discussed, the following constraints are imposed:

Left spring:
$$\begin{cases} v_1 = v_4 \\ v_2 = v_5 \end{cases}$$
 and right spring:
$$\begin{cases} v_7 = v_{10} \\ v_8 = v_{11} \end{cases}$$

• The condensed degrees of freedom are selected as v_1 , v_2 , v_{10} and v_{11}

EPFL Constraints enforcement – Direct approach (3)

The degrees of freedom are transformed as follows:



- With these degrees of freedom, the force-displacement relations are given by
 - For the left spring (spring stiffness $k_{s1} = a_1 E I_e / L$):

$$\begin{bmatrix} F_3 \\ F_6 \end{bmatrix} = \begin{bmatrix} k_{s1} & -k_{s1} \\ -k_{s1} & k_{s1} \end{bmatrix} \begin{bmatrix} v_3 \\ v_6 \end{bmatrix}$$

• For the right spring (spring stiffness $k_{s2} = a_2 E I_e/L$):

$$\begin{bmatrix} F_9 \\ F_{12} \end{bmatrix} = \begin{bmatrix} k_{s2} & -k_{s2} \\ -k_{s2} & k_{s2} \end{bmatrix} \begin{bmatrix} v_9 \\ v_{12} \end{bmatrix}$$

EPFL Constraints enforcement – Direct approach (4)

For the elastic beam-column element:

$$\begin{cases} F_4 \\ F_5 \\ F_6 \\ F_7 \\ F_8 \\ F_9 \end{cases} = \frac{E}{L} \begin{bmatrix} A & 0 & 0 & -A & 0 & 0 \\ 0 & aI_e \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & aI_e \frac{6}{L} \left(1 + \frac{2}{a_2}\right) & 0 & -aI_e \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & aI_e \frac{6}{L} \left(1 + \frac{2}{a_1}\right) \\ 0 & aI_e \frac{6}{L} \left(1 + \frac{2}{a_2}\right) & aI_e 4 \left(1 + \frac{3}{a_2}\right) & 0 & -aI_e \frac{6}{L} \left(1 + \frac{2}{a_2}\right) & 2aI_e \\ -A & 0 & 0 & A & 0 & 0 \\ 0 & -aI_e \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & -aI_e \frac{6}{L} \left(1 + \frac{2}{a_2}\right) & 0 & aI_e \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & -aI_e \frac{6}{L} \left(1 + \frac{2}{a_1}\right) \\ 0 & aI_e \frac{6}{L} \left(1 + \frac{2}{a_1}\right) & 2aI_e & 0 & -aI_e \frac{6}{L} \left(1 + \frac{2}{a_1}\right) & aI_e 4 \left(1 + \frac{3}{a_1}\right) \end{bmatrix} \end{cases}$$

EPFL Constraints enforcement – Direct approach (5)

Assembling the global force-deformation relation directly gives

$$\begin{bmatrix} F_3 \\ F_4 + F_1 \\ F_5 + F_2 \\ F_6 \\ F_7 + F_{10} \\ F_{12} \end{bmatrix} = \begin{bmatrix} k_{s1} & 0 & 0 & -k_{s1} & 0 & 0 & 0 & 0 \\ 0 & \frac{AE}{L} & 0 & 0 & -\frac{AE}{L} & 0 & 0 & 0 \\ 0 & 0 & \frac{aEl_e}{L} \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & \frac{aEl_e}{L} \frac{6}{L} \left(1 + \frac{2}{a_2}\right) & 0 & -\frac{aEl_e}{L} \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & \frac{aEl_e}{L} \frac{6}{L} \left(1 + \frac{2}{a_1}\right) & 0 \\ -k_{s1} & 0 & \frac{aEl_e}{L} \frac{6}{L} \left(1 + \frac{2}{a_2}\right) & \frac{aEl_e}{L} 4 \left(1 + \frac{3}{a_2}\right) + k_{s1} & 0 & -\frac{aEl_e}{L} \frac{6}{L} \left(1 + \frac{2}{a_2}\right) & 2 \frac{aEl_e}{L} & 0 \\ 0 & -\frac{AE}{L} & 0 & 0 & \frac{AE}{L} & 0 & 0 & 0 \\ 0 & 0 & -\frac{aEl_e}{L} \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & -\frac{aEl_e}{L} \frac{6}{L} \left(1 + \frac{2}{a_2}\right) & 0 & \frac{aEl_e}{L} \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & -\frac{aEl_e}{L} \frac{6}{L} \left(1 + \frac{2}{a_1}\right) & 0 \\ 0 & 0 & \frac{aEl_e}{L} \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & -\frac{aEl_e}{L} \frac{6}{L} \left(1 + \frac{2}{a_1}\right) & 0 & -\frac{aEl_e}{L} \frac{6}{L} \left(1 + \frac{2}{a_1}\right) & 0 \\ 0 & 0 & \frac{aEl_e}{L} \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & -\frac{aEl_e}{L} \frac{6}{L} \left(1 + \frac{2}{a_1}\right) & 0 & -\frac{aEl_e}{L} \frac{6}{L} \left(1 + \frac{2}{a_1}\right) & 0 \\ 0 & 0 & \frac{aEl_e}{L} \frac{12}{L^2} \left(1 + \frac{a_1 + a_2}{a_1 a_2}\right) & -\frac{aEl_e}{L} \frac{6}{L} \left(1 + \frac{2}{a_1}\right) & 0 & -\frac{aEl_e}{L} \frac{6}{L} \left(1 + \frac{2}{a_1}\right) & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -k_{s2} & k_{s2} \end{bmatrix}$$

Which corresponds to the system obtained with the constraint transformation approach