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In-class Exercise Set #10: Numerical integration in beam-column elements 
 
The tapered beam shown in Figure 1 has a linear elastic material. The material modulus of 
elasticity E is constant. The beam depth changes linearly from 2𝑑 at the fixed support to 𝑑 at 
the tip. The beam width, 𝑏, is constant. This beam is analyzed with a single displacement-based 
beam-column element with two nodes. The left note is Node-i and the right node is Node-j as 
shown in the figure.  
 

 
Figure 1. tapered element 

 
The transverse displacement field 𝑣(𝑥) along the beam is approximated by the Euler-Bernoulli 
beam theory assumptions that we discussed in class and, 
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From the above displacement field, the curvature field 𝑘(𝑥) can be calculated to get the 
following transformation matrix,  
 

 𝑘(𝑥) = 𝐁(𝐱) ∙ 7
𝑣%
𝜃%8  (2) 

 



CIVIL 449: Numerical integration techniques  Prof. Dr. Dimitrios G. Lignos, EPFL 2 

With the use of the principle of virtual displacement method, the resulting stiffness matrix of 
the element is 2x2 and can be calculated as: 
 
 𝐤 = ∫ [𝐁(𝐱)]&𝐤'(𝑥)

"
(

[𝐁(𝐱)]𝑑𝑥  (3) 
 
Where 𝐤'(𝑥) = 𝐸𝐼(𝑥) is the section stiffness matrix. 
 
Answer to the following questions: 
 

1. What type of numerical integration method do you propose in order to calculate the 
above stiffness matrix “numerically exact”? How many integration points should be 
used with this method and explain why? 

2. Calculate the “numerically exact” stiffness matrix. 
3. Is this stiffness matrix the “theoretically exact” stiffness matrix for this tapered beam? 

Explain your reasoning. 
 
  



CIVIL 449: Numerical integration techniques  Prof. Dr. Dimitrios G. Lignos, EPFL 3 

Solution: 
Question 1 
The Gauss-Legendre quadrature rule is selected as it yields an exact result when integrating 
all polynomials of degree 2𝑚 − 1 or less, where 𝑚 indicates the number of integration 
points. 
 
In order to obtain the number 𝑚 of integration sections along the element length needed to 
obtain exact results, the order of the polynomial function to be integrated should be 
determined 
 
The transverse displacement field is governed by the following two shape functions 
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As shown in Slides 14 and 21 of Lecture 08, the shape functions for the transversal degrees 
of freedom should be derived twice in order to obtain the matrix 𝑩(𝑥) 
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To determine the section stiffness matrix 𝐤'(𝑥) for the different integration sections along 
the element length, the expression of the moment of inertia 𝐼(𝑥) should be determined. 
 
The beam’s depth is given by 
 

𝑑(𝑥) = 𝑑 +2 −
𝑥
𝐿,	

(6) 
Hence, the moment of inertia is 
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The element stiffness matrix that is to be computed is 
 

𝐤 = Q[𝐁(𝐱)]&𝐤'(𝑥)
"

(
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"
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With  
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Or in matrix form 
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Since 𝒈(𝑥) is a fifth order polynomial and the Gauss-Legendre quadrature rule integrates 
polynomials exactly up to degree 2𝑚 − 1, 𝑚 = 3 integration points are used along the 
element length to integrate exactly 𝒈(𝑥). 
 
Question 2 
As given in Slide 13 of Lecture 09, the following integration point locations 𝑟* and weights 
𝑤+* expressed in the natural coordinates are used 

- 𝑟) = −√0.6, 𝑤+) =
,
-
 

- 𝑟# = 0, 𝑤+# =
.
-
 

- 𝑟$ = √0.6, 𝑤+$ =
,
-
 

 
Those values are used to evaluate integrals in the natural domain, that is between -1 and 1. 
Hence the sum of all the weights is equal to 2 (which is the interval length). 
Therefore, in order to evaluate an integral between 0 and L, the following transformations 
between the natural domain 𝑟 and the beam domain 𝑥	should be made 
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And 
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This gives 
- 𝑥) = 0.11𝐿, 𝑤!) =

,
).
𝐿 

- 𝑥# =
"
#
, 𝑤!# =

.
).
𝐿 

- 𝑥$ = 0.89𝐿, 𝑤!$ =
,
).
𝐿 

 
 
The function 𝒈(𝑥) is now evaluated at the integration points 𝑥* 
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𝒈(𝑥$) = 𝐸	𝐼( C
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Using the selected quadrature rule, the element stiffness matrix is computed 
 

𝐤 = Q𝒈(𝑥)
"
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Question 3 
As previously discussed, since 3 Gauss-Legendre integration points have been used to integrate 
a fifth-degree polynomial, the stiffness matrix computed using the selected quadrature is the 
“theoretically exact” stiffness matrix. 
 
Note, small round-off errors can be introduced in the numerical integration by finite-precision 
computations. 


