
CIVIL 449: Material nonlinearity – Concentrated plasticity Prof. Dr. Dimitrios G. Lignos, EPFL 1 

FACULTE ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT 

ENAC 

INSTITUT D’INGÉNIERIE CIVILE IIC 
Laboratoire des Structures Métalliques Résilientes 
RESSLAB 
  
Téléphone : +41 21 693 24 27 
Fax : +41 21 693 28 68 
E-mail : dimitrios.lignos@epfl.ch 
Site web : http://resslab.epfl.ch 
Address: EPFL ENAC IIC RESSLAB 

GC B3 485, Station 18,  
CH-1015, Lausanne 

 
 

 
 
 
 

 
In-class Exercise – Week #8: Zero length elements for material nonlinearity 
 
Exercise #1:  
 
Derive the stiffness matrix for an element that is comprised of a zero-length rotational 
element and an elastic beam-column element as shown in Figure 1.1 in the basic reference 
system. Assume that the rotational stiffness of the zero-length element is 𝑛 !"#!

$
 where 𝐼% =

&'(
&
𝐼. 

 

 
Figure 1.1.  Zero length rotational element and elastic beam-column element in series 

 
Hint: By using static condensation, determine the coefficients 𝑆)), 𝑆)!, 𝑆!) and 𝑆!! of the 
stiffness matrix 𝐤& *+, of the elastic beam-column element given by 
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such that a beam-column member can be modeled with the derived elastic beam-column 
element and a rotational spring. 
 
Recall that the elastic stiffness matrix, 𝐤&  of an elastic beam-column element in the basic 
reference system is as follows:  
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Solution: 
Consider the following beam-column element with a spring at node 1 

 
Figure 1.2.  Elastic beam-column element with one spring in the basic reference frame 

 
The following moment-rotation relation can be written for the rotational spring: 
 

3𝑞5)𝑞5-
6 = 𝑘. 8

1 −1
−1 1 ; 3

𝑢5)
𝑢5-
6	 (1.1) 

 
The following force-displacement relation can be written for the elastic beam-column 
element: 
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Combining Equations 1.3 and 1.4 gives 
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The objective is now to eliminate the degree of freedom corresponding to 𝑢5) by using the 
static condensation method. 
Using Slides 29 to 31 from Lecture #1, the problems can be decomposed as follows: 
 

𝑲// = H𝑘. +
𝑆))𝐸𝐼%
𝐿 I		 (1.4) 

 

𝑲/0 = H0
𝑆)!𝐸𝐼%
𝐿 −𝑘.I	 (1.5) 
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Therefore, the following condensed stiffness matrix is obtained 
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Substituting the definitions of 𝑘. and 𝐼% given by 
 

𝑘. = 𝑛 !"#!
$

 and 𝐼% =
&'(
&
𝐼 

 
into Equation 1.8 gives 
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This matrix should be equal to the stiffness matrix of the member in the basic reference frame 
𝐤&  . Therefore, the following system of equations is obtained 
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Solving this system of equations finally gives 
 

𝑆)) =
12𝑛
3𝑛 − 1		

(1.11) 
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𝑆)! = 𝑆!) =
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The stiffness matrix of the modified elastic beam-column element is therefore given by 
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Exercise #2:  
 
Write a script for a zero-length rotational element that utilizes the moment-rotation 
constitutive relation shown in Figure 2.1. Consider both the loading and unload paths in your 
model. Validate your implementation for the following input parameters: 
 

o 𝑘% = 400000𝑘𝑁.𝑚𝑚/𝑟𝑎𝑑 
o 𝜃3 = 𝜃0 − 𝜃4 = 0,02	𝑟𝑎𝑑 
o 𝜃30 = 𝜃5 − 𝜃0 = 0,05	𝑟𝑎𝑑 
o 𝑀4

∗ = 	4000𝑘𝑁.𝑚𝑚 and 𝑀5 	= 4500𝑘𝑁.𝑚𝑚 
 

1. Load case #1: Rotational monotonic loading, 𝜃 = {0, 0,08}1𝑟𝑎𝑑 
2. Load case #2: Rotational cyclic loading, 𝜃 = {0, 0,06, −0,06, 0}1𝑟𝑎𝑑 

 
Figure 2.1.  Moment-rotation relation for zero length element 
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Solution: 
The following steps summarize the workflow of the implemented constitutive formulation at 
a load step 𝑛: 
1)  Determine if the loading is moving towards positive or negative rotation: if 𝜃7 > 𝜃72(, the 
loading is moving towards positive rotation 
2) Compute the trial elastic moment based on the previous moment and rotation using the 
elastic tangent stiffness 𝑘%: 

𝑀7 = 𝑀72( + 𝑘%b𝜃7 − 𝜃72(c 
3) Check if the material is in the residual path (i.e. if 𝑀7 = 0 and 𝑘7 = 0) 
4) If the material is an inelastic path and moving towards positive rotation (i.e. if 𝑀7 >
𝑀*89
' ): 

 4.1) Reset the negative yielding and capping flags 
 4.2) Update the initial rotation offset in the positive direction 
 4.3) If the spring is the hardening path or softening path, compute the moment  

accordingly 
 4.4) If rotation exceeds the 𝜃5 , the residual flag is set, and the moment is set to zero,  
  indicating failure 
 4.5) Update the maximum moment which corresponds to the positive backbone curve 
5) If the material is an inelastic path and moving towards negative rotation (i.e. if 𝑀7 <
𝑀*89
2 ): analogous to steps 4.1 to 4.5 above 

6) Compute the tangent stiffness 𝑘: 

𝑘 =
𝑀7 −𝑀72(

𝜃7 − 𝜃72(  
 

The following responses are obtained for the monotonic and cyclic load protocols: 

 
Figure 2.2.  Spring response under monotonic load 

 

 
Figure 2.3.  Spring response under cyclic load 
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Exercise #3:  
 
Consider the following column from Week #5: 
 

𝐴 = 1.27 ⋅ 10-𝑚𝑚), 𝐼 = 3.66 ⋅ 10:𝑚𝑚), 𝐸 = 200,000𝑀𝑃𝑎 

 
Figure 3.1. Column under axial and lateral loading 

 
Consider material nonlinearity with the element model you developed in Exercise #2 and the 
element stiffness matrix you derived in Exercise #1. For a=0.05, determine the load-
displacement relationship (secondary equilibrium path) of the cantilever member when: 
 

•  𝜃3 = 𝜃0 − 𝜃4 = 0,02	𝑟𝑎𝑑 
• 𝜃30 = 𝜃5 − 𝜃0 = 0,05	𝑟𝑎𝑑 
• 𝑀4

∗ = 	4000𝑘𝑁.𝑚𝑚 and 𝑀5 	= 4500𝑘𝑁.𝑚𝑚 
 

1. Would you use a displacement or load-control scheme for your solution? Explain 
your answer. 
 

2. Compare the computed secondary equilibrium path for the following cases: 
 

a. Case #1: Linear elastic analysis (from Week #5) 
b. Case #2: Nonlinear geometric analysis and linear material (from Week #5) 
c. Case #3: Nonlinear analysis with material nonlinearity and linear geometric 

transformation 
d. Case #4: Nonlinear analysis with both material and geometric nonlinearities  

 
3. Calculate the displacement at which the cantilever member reaches zero lateral 

strength (i.e., collapse) with your program. 
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Solution:  
1) Displacement-control is used because the inelastic spring exhibits a snap-trough behavior. 
 
2) To determine the load-displacement relation of the member when it is modeled using an 
elastic beam-column element and an inelastic spring, the same steps are used as shown in the 
solution of Exercise 1 of Week 5, with the following modifications when computing the 
structure resisting force vector and the tangent stiffness matrix. 
 
The following global degrees of freedom are used: 

 
Figure 3.2. Global degrees of freedom 

Referring to Figure 3.2, the global degrees of freedom 1 and 2 should be equal to 4 and 5, 
respectively. This constraint can be enforced by removing the global degrees of freedom 1 
and 2 and applying the fixed boundary conditions to the global degrees of freedom 4 and 5. 
With this approach, the following global degrees of freedom are obtained: 

 
Figure 3.3. Global degrees of freedom with equal DOF constraint 

The global degrees of freedom corresponding to the inelastic spring are therefore 1 and 4, 
while those of the elastic beam-column elements are 2, 3, 4, 5, 6 and 6. 
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At each iteration 𝑖 of the iterative procedure for the displacement-control algorithm, the 
element state determination for the elastic beam-column element is done similarly to the one 
described in the solution of Exercise 1 of Week 5. The only difference is that the element 
stiffness matrix derived in Question 1 is used. 

For the inelastic spring element, the following state determination is used: 

- The spring rotation 𝜃 is defined as 𝜃 = 𝑣- − 𝑣(. Note that this convention become very 
important in the case where the constitutive relation assigned to the spring exhibits an 
asymmetric response between tension and compression. This rotation is then inputted into the 
constitutive formulation derived in Question 2, which return the spring moment 𝑀.3;7&< and 
tangent stiffness 𝑘.3;7&<, which are used to form the spring resisting force vector 𝑭7&=,.3;7&< 
and stiffness matrix 𝑲.3;7&< as follows: 

𝑭7&=,.3;7&< = 3
−𝑀.3;7&<
𝑀.3;7&<

6 

𝑲.3;7&< = 𝑘.3;7&< ⋅ 8
1 −1
−1 1 ; 

These quantities are then used when assembling the structure resisting force vector and 
stiffness matrix. 

It is also important to note that to compute the constitutive relation for the inelastic spring 
formulated in Question 2, the previous moment and previous rotation are needed. These refer 
to the previous converged step and should only be updated for each displacement step once 
the iterative procedure for the displacement-control algorithm has converged. 

 
The following figure compares the results obtained for the case where 𝑀4

∗ = 	4000𝑘𝑁.𝑚𝑚 
and 𝑀5 	= 4500𝑘𝑁.𝑚𝑚.  
 

 
Figure 3.4. Comparison of computed secondary equilibrium paths under various analysis methods 

 
Similarly, the figure below compares the results obtained for a second case where 𝑀4

∗ =
	200000𝑘𝑁.𝑚𝑚 and 𝑀5 	= 225000𝑘𝑁.𝑚𝑚. 
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Figure 3.5. Comparison of computed secondary equilibrium paths under various analysis methods – increased 

yield and capping moments 
 

  

 


