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Objectives of today’s lecture
§ To introduce:

• Geometric stiffness matrix

• Basic reference system for frame elements

• Element transformations (from local to basic coordinate system)

• Corotational transformation
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Deflections

Source: http://www.africancichlid.com/Structure.htm

§ Strength and stiffness are completely different properties of a member, that are
indeed related to each other.

§ A fishing rod is flexible yet strong.
§ Floor systems and structures cannot deflect as much for several reasons.

http://www.africancichlid.com/Structure.htm
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Deflections cause second order effects
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Deflections cause second order effects (2)
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P-Delta effects on frame structures

§ 𝑁 % Δ: Additional moment (couple) due to the axial force acting through the relative
transverse displacement of member ends

Δ

Η

ΗL ΗR

N N

VL VR

N N

Frame Bending Moments

𝑀𝑡 = 𝐻" % 𝐿 + 𝑉" % Δ

First Order
Analysis
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Types of analysis
1. First Order Elastic Analysis: The equations of equilibrium are always

written in the undeformed configuration and material nonlinearity is not
considered.

2. Second Order Elastic Analysis: The equations of equilibrium are
always written in the deformed configuration and material nonlinear is
not considered.

3. First Order inelastic Analysis: The equations of equilibrium are always
written in the undeformed configuration and material nonlinearity is
considered.

4. Second Order Inelastic Analysis: The equations of equilibrium are
always written in the deformed configuration and material nonlinearity is
considered.N
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Types of analysis (2)
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Several examples from established theory

N

Lignos et al. (2013) @Prof. E. Miranda (2017)@Prof. R. Tremblay (2015)
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Geometric stiffness matrix for planar elements
§ Instead of using infinitesimal strains that form the basis of linear analysis, start 

using small finite strains

§ Combination of bending and axial force

§ Consider the 2d elastic beam element that we saw previously:

𝐹#!

y

x
𝑀!

𝐹$! 𝑀%

𝐹$%

𝐹#%1 2
𝐿
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Geometric stiffness matrix for planar elements (2)

§ Consider only the axial deformation; denote by 𝑎𝑏 the length of the infinitesimal segment 
𝑑𝑥 (i.e., 𝑎𝑏 = 𝑑𝑥 ) in the reference configuration

§ After rigid body rotation and axial deformation, the length of the segment 𝑑𝑥 is as follows:

1 2

2’

1’

a b

𝑏’
𝑎’

y

x
𝑑𝑥𝑥

𝑢!

𝐿
𝑢%

𝑣%

𝑣!
𝑣

𝑣 +
𝑑𝑣
𝑑𝑥 𝑑𝑥

𝑥 + 𝑢

𝑥 + 𝑢 + 𝑑𝑥 +
𝑑𝑢
𝑑𝑥

𝑑𝑥

2’

1’ 𝑏’a’

x

y

𝜃!

𝜃%

§ Consider the effect of both axial and flexural deformations
Axial 
Deformation:

Flexural 
Deformation:

𝑎&𝑏& = 𝑑𝑥 +
𝑑𝑢
𝑑𝑥

𝑑𝑥
'

+
𝑑𝑣
𝑑𝑥

𝑑𝑥
'
!
'
= 1 + 2

𝑑𝑢
𝑑𝑥

+
𝑑𝑢
𝑑𝑥

'

+
𝑑𝑣
𝑑𝑥

'
!
'
𝑑𝑥
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Geometric stiffness matrix for planar elements (3)
§ Using the binomial theorem and neglecting the higher-order terms gives

𝑎&𝑏&

𝑑𝑥
= 1 +

𝑑𝑢
𝑑𝑥

+
1
2

𝑑𝑢
𝑑𝑥

%

+
𝑑𝑣
𝑑𝑥

%

§ The finite strain 𝑒'() is defined as the sum of the extension per unit length (for the axial deformation) and the 
strain form the flexural deformation:

𝑒'() =
𝑎&𝑏& − 𝑎𝑏

𝑑𝑥
− 𝑦

𝑑%𝑣
𝑑𝑥%

=
𝑑𝑢
𝑑𝑥

+
1
2

𝑑𝑢
𝑑𝑥

%

+
𝑑𝑣
𝑑𝑥

%

− 𝑦
𝑑%𝑣
𝑑𝑥%

Where the last term (*
!+

*#!
:= curvature) is the infinitesimal flexural strain (i.e., neglect the effects of the  rotation and 

stretching of the element neutral axis)

§ The theorem of virtual displacements (for a uniaxial stress state) is applied to the reference configuration:

𝛿𝑊(), = ;
-
𝜎#𝛿𝑒'()𝑑𝑉

§ The following relations are useful for the next step:
𝜎# = − $.

/
with 𝐼 = ∫0 𝑦

%𝑑𝐴

𝛿 *1
*#

= *21
*#

and 𝛿 *+
*#

= *2+
*#

which are valid for infinitesimal displacements



13RESSLab
Resilient Steel Structures Laboratory

Nonlinear Geometry – Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

Geometric stiffness matrix for planar elements (4)
§ Using the definition of 𝑒!"#, the previous quantities and integrating over the section depth gives

𝛿𝑊"#$ = %
%

&
𝜎'𝐴

𝑑𝛿𝑢
𝑑𝑥

𝑑𝑥 + %
%

&
𝑀

𝑑(𝑣
𝑑𝑥(

𝑑𝑥 +
1
2
%
%

&
𝜎'𝐴 𝛿

𝑑𝑢
𝑑𝑥

(
+ 𝛿

𝑑𝑣
𝑑𝑥

(
𝑑𝑥

§ The following relations are useful for the next step:
𝜎' =

)*
)'

𝐸, 𝐹'( = 𝜎'𝐴, 𝑀 = )%+
)'%

𝐸𝐼

§ The virtual work can be rewritten as

𝛿𝑊"#$ = %
%

& 𝑑𝑢
𝑑𝑥

𝐸𝐴
𝑑𝛿𝑢
𝑑𝑥

𝑑𝑥 + %
%

& 𝑑(𝑣
𝑑𝑥(

𝐸𝐼
𝑑(𝑣
𝑑𝑥(

𝑑𝑥 +
1
2
𝐹'(%

%

&
𝛿
𝑑𝑢
𝑑𝑥

(
+ 𝛿

𝑑𝑣
𝑑𝑥

(
𝑑𝑥

§ The elastic stiffness matrix 𝐤, (both for axial and flexural deformation) follows from the first two integrals

§ The third integral produces a geometric stiffness matrix 𝐤-

§ To compute the third integral, the “mathematical trick” is that the virtual operator 𝛿 may be threated as a 
differential operator with respect to the variables )*)' and )+)' à for variable 𝑢: 𝛿 )*

)'

(
= 2 ).*)'

)*
)'
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Geometric stiffness matrix for planar elements (5)
§ The third term of the virtual work can then be rewritten as 

𝛿𝑊"#$,0 = 𝐹'(%
%

& 𝑑𝛿𝑢
𝑑𝑥

𝑑𝑢
𝑑𝑥 +

𝑑𝛿𝑣
𝑑𝑥

𝑑𝑣
𝑑𝑥 𝑑𝑥

§ The displacements are interpolated using the usual shape functions 𝑢 '
&
= 𝐍𝐮 :

• For an axial member:
𝐮 = 1 −

𝑥
𝐿

𝑥
𝐿

𝑢1
𝑢(

• For a flexural  member (see lecture notes from last week):

𝑣 = 1 − 3
𝑥
𝐿

(
+ 2

𝑥
𝐿

0
𝑥 − 2𝑥

𝑥
𝐿
+ 𝑥

𝑥
𝐿

(
3
𝑥
𝐿

(
− 2

𝑥
𝐿

0 𝑥(

𝐿
−1 +

𝑥
𝐿

𝑣1
𝜃1
𝑣(
𝜃(

§ The derivative of the displacement with respect to 𝑥 are given by
𝑑𝑢
𝑑𝑥 =

𝑑𝐍
𝑑𝑥 𝐮 = 𝐍′𝐮

§ Similarly,
𝛿𝑢 = 𝐍𝛿𝐮 and ).*

)'
= 𝐍2𝛿𝐮
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Geometric stiffness matrix for planar elements (6)
§ The third term of the virtual work can then be rewritten as

𝛿𝑊()*,, = 𝛿𝐮- 𝐹.'4
/

0
𝐍1-𝐍1 + 𝐍2-𝐍2 𝑑𝑥 𝐮

Where 𝐍1and 𝐍3 are the row vectors of the shape functions for the axial and flexural
member, respectively.

NOTE: The (+) sign shall be interpreted as an assembly procedure for the corresponding
degrees of freedom.

§ Recognizing that from the virtual work theorem, the internal work should be equal to the
external work 𝛿𝑊4.* = 𝛿𝐮-𝐅 and using 𝐅 = 𝐤𝐮, the following local geometric stiffness
matrix is obtained:

𝐤567896 = 𝐹.'4
/

0
𝐍1-𝐍1 + 𝐍2-𝐍2 𝑑𝑥
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Geometric stiffness matrix for planar elements (7)
§ And after multiplying and integrating 

𝐤567896 =
𝐹.'
𝐿

1 0 0 −1 0 0

0
6
5

𝐿
10

0 −
6
5

𝐿
10

0
𝐿
10

2𝐿'

15
0 −

𝐿
10

−
𝐿'

30
−1 0 0 1 0 0

0 −
6
5

−
𝐿
10

0
6
5

−
𝐿
10

0
𝐿
10

−
𝐿'

30
0 −

𝐿
10

2𝐿'

15

§ To assemble the local geometric stiffness matrices to the global geometric stiffness matrix, 
the usual assembly procedure presented in the previous lectures may be used.

𝑢! 𝑢%𝑣! 𝑣%𝜃! 𝜃%
𝑢!

𝑢%

𝑣!

𝑣%

𝜃!

𝜃%
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Elastic stiffness matrix for planar elements
§ Recall, the elastic stiffness matrix 𝐤,34563 for elastic 2d beam elements (presented in the previous lecture)

is given as a reminder:

𝐤,34563 =
𝐸𝐼
𝐿0

𝐴𝐿(

𝐼 0 0 −
𝐴𝐿(

𝐼 0 0
0 12 6𝐿 0 −12 6𝐿
0 6𝐿 4𝐿( 0 −6𝐿 2𝐿(

−
𝐴𝐿(

𝐼
0 0

𝐴𝐿(

𝐼
0 0

0 −12 −6𝐿 0 12 −6𝐿
0 6𝐿 2𝐿( 0 −6𝐿 4𝐿(

𝑢! 𝑢%𝑣! 𝑣%𝜃! 𝜃%

𝑢!

𝑢%

𝑣!

𝑣%

𝜃!

𝜃%
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Geometric stiffness matrix
§ The geometric stiffness matrix can be used to compute the elastic critical loads which will

lead to flexural buckling and/or lateral torsional buckling. The predicted instability mode
depends on the degrees of freedom present in the element formulation.

§ To compute the elastic critical load, the global stiffness equation is written in the form of a
generalized eigenvalue problem; the equation of equilibrium at the critical state is:

𝐊4
:67;96 + 𝜆@𝐊:

:67;96 𝚫 = 𝟎

where 𝐊4
:67;96 is the global elastic stiffness matrix, @𝐊:

:67;96 is the global geometric stiffness
matrix computed for a reference load, 𝐏<4=; 𝜆 (an eigenvalue) is the load factor with respect
to 𝐏<4= and 𝚫 (an eigenvector) is the buckled shape.

§ The lowest value of 𝜆 that satisfies the equation for 𝚫 ≠ 𝟎 gives the elastic critical load
vector 𝜆𝑷<4= and the corresponding, 𝚫 defines the buckled configuration.
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Solution of the eigenvalue problem
§ To determine the eigenvalues and eigenvector, the eigenvalue problem is 

rewritten as

⟺
1
𝜆𝐊4=

:67;96𝚫𝒇 = −@𝐊:=
:67;96𝚫𝒇 ⟺ − 𝐊4=

:67;96 ?!
@𝐊:=
:67;96𝚫𝒇 =

1
𝜆 𝚫𝒇

where the subscript 𝑓 indicates that the respective matrices and vectors relate to 
the free degrees of freedom only.

𝐊4=
:67;96𝚫𝒇 = −𝜆@𝐊:=

:67;96𝚫𝒇
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Solution of the eigenvalue problem (2)
§ The following approach may be used to determine the elastic critical loads of a structure:

1. Assemble the global elastic stiffness matrix of the structure 𝐤4
:67;96

2. Impose the boundary conditions (external unit loads 𝐅)
3. Using the static condensation, solve the system 𝐅 = 𝐊4

:67;96𝐯 to determine the nodal
displacements 𝐯

4. For each element:
a. In the local reference system, solve the system 𝐐 = 𝐤467896𝐮 to determine the

internal forces 𝐐
b. Compute the local geometric stiffness matrix 𝐤:67896

5. Assemble the global geometric stiffness matrix of the structure 𝐤:
:67;96

6. Solve the eigenvalue problem 𝐤4=
:67;96 ?!

𝐤:
:67;96𝚫𝒇 =

!
@
𝚫𝒇 to determine the load

multipliers 𝜆
7. The critical load 𝐏8< is obtained by taking the minimum (in absolute value) load

multiplier 𝜆ABC = min 𝜆 and multiplying it with the applied unit load 𝐅:
𝐏8< = 𝜆ABC𝐅
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Example: Euler buckling load
§ Determine the Euler load of a ℎ = 3.0𝑚 high Euler column. Assume a HEA 320 steel cross 

section (E = 200 G𝑃𝑎, 𝐼 = 229.3 ⋅ 10D 𝑚𝑚E and 𝐴 = 12400 𝑚𝑚') 
§ Use 2d elastic beam elements (see previous slides for elastic and geometric stiffness 

matrices)
§ Compare with the theoretical Euler buckling load 𝑃F given by, 𝑃F =

G3FH
I3

Number of elements used

𝑃 8
</
𝑃 F
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Example: Effect of the lateral restraint on the buckling load
§ What is the influence of the spring stiffness on the buckling response of the column?
§ The buckling load 𝑃57 is given by

𝑃57 =
𝜋(𝐸𝐼
𝐾ℎ (

Where 𝑘 is the effective length factor (𝐾ℎ is the buckling length of the column) 

§ The stiffness 𝑘 of the spring is taken as

𝑘 = 𝛼
3𝐸𝐼
ℎ0

Where 3𝐸𝐼/ℎ0 is the lateral (translational) stiffness of the cantilever column

§ Include the effect of the spring when assembling the global elastic stiffness matrix

§ To determine the influence of the spring stiffness on the buckling length when 
computing the buckling load, compute the effective length factor 𝐾 using

𝐾 =
𝜋(𝐸𝐼
𝑃57ℎ(

Where 𝑃57 is obtained by solving the eigenvalue problem
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Example: Effect of the lateral restraint on the buckling load (2)

§ The effective length factor 𝐾 varies from 𝐾 = 2 to 𝐾 = 0,7
§ The value 𝐾 = 2 corresponds to a fixed-free column
§ The value 𝐾 = 0,7 corresponds to a fixed-fixed column
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Basic reference system for frame elements

Global 
reference system

Y

X

Transformation
matrix 𝑻 Local 

reference system

Removal of rigid
body modes

𝐹# , 𝑣#
𝐹$ , 𝑣$

𝑀, 𝜃

y
x

𝑄%, 𝑢%𝑄!, 𝑢!

𝑄4, 𝑢4

𝑄5, 𝑢5

𝑄6, 𝑢6

𝑄7, 𝑢7

Basic 
reference system

y
x

B𝑞!, B𝑢!B𝑞4, B𝑢4

B𝑞%, B𝑢%

§ Conventional frame (beam-column) elements are formulated within the basic reference frame
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Removal of rigid body modes

xy

𝑖

𝑗

𝛽

𝐿
G𝑢 (
v 0

𝑣 8
G𝑢 0

!𝑢 &

X

Y

v1

v(

v9

v:

𝐿)

𝐿

𝛥u' = 𝑢9 − 𝑢1

𝛥u; = 𝑢: − 𝑢(

x

y

𝑖

𝑗

𝛽

𝐿

Rigid body translation 
𝐿)

𝛥u' = 𝑢9 − 𝑢1

𝑗

𝛥u; = 𝑢: − 𝑢(

!𝑢&

x

y

𝑖

𝑗

G𝑢( 𝑢0
𝑢8

Deformations in the basic reference frame

!𝑢'

𝑖

𝑗𝐿

𝛽
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Displacement–deformation relation: Large displacements
§ The displacements in the basic reference frame are given by

"𝑢F = 𝐿G − 𝐿
"𝑢H = 𝑢I − 𝛽
"𝑢I = 𝑢J − 𝛽

With

𝛽 = arctan
𝛥𝑢K

𝐿 + 𝛥𝑢L
, 𝐿G = 𝐿 + 𝛥uL H + 𝛥𝑢K

H
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Linear geometry approximation
§ Assuming small deformations and rotations, expanding the arctan function using a Taylor 

series approximation about the point 𝛥𝑢. = 0, 𝛥𝑢J = 0,

𝛽 =
𝛥𝑢J
𝐿

1 −
𝛥𝑢.
𝐿

+ ⋯
Similarly,

𝑢̂! = 𝐿
𝛥𝑢.
𝐿

+
1
2
𝛥𝑢.
𝐿

'

+
1
2
𝛥𝑢J
𝐿

'

§ Assuming small deformations and rotations, the second order terms can be neglected, 

𝛽 = K18
0

And
𝑢̂! = 𝛥𝑢.
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Linear geometry approximation (2)
§ Assuming linear geometry (i.e., small deformations and rotations), the compatibility relations

between the element deformations in the basic reference frame *𝐮 and the element
displacements in the local reference frame 𝒖 become linear:

-𝑢1 = Δ𝑢' = 𝑢9 − 𝑢1 = −1𝑢1 + 0𝑢( + 0𝑢0 + 1𝑢9 + 0𝑢: + 0𝑢8
-𝑢( = 𝑢0 −

𝛥u;
𝐿

= 𝑢0 −
𝑢: − 𝑢(

𝐿
= 0𝑢1 +

1
𝐿
𝑢( + 1𝑢0 + 0𝑢9 −

1
𝐿
𝑢: + 0𝑢8

-𝑢0 = 𝑢8 −
𝛥𝑢;
𝐿

= 𝑢8 −
𝑢: − 𝑢(

𝐿
= 0𝑢1 +

1
𝐿
𝑢( + 0𝑢0 + 0𝑢9 −

1
𝐿
𝑢: + 1𝑢8

§ In matrix form

-𝑢1
-𝑢(
-𝑢0

=

−1 0 0
0 1

&
1

0 1
&

0

1 0 0
0 − 1

&
0

0 − 1
&

1

𝑢1
𝑢(
𝑢0
𝑢9
𝑢:
𝑢8

In compact form
*𝐮 = 𝐋𝐮
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Linear geometry approximation (3)

§ Using the equilibrium of forces (linear geometry à deformed configuration ≈ undeformed configuration), the 
element resisting forces in the local reference system are given by

𝑄( = !𝑞&
𝑄' = !𝑞)
𝑄* = !𝑞'

𝑄& = −𝑄( = −!𝑞&
𝑄) =

1
𝐿 𝑄' +𝑄* =

1
𝐿 !𝑞) + !𝑞'

𝑄+ =
−1
𝐿

𝑄' +𝑄* =
−1
𝐿

!𝑞) + !𝑞'
§ In matrix form

𝑄&
𝑄)
𝑄'
𝑄(
𝑄+
𝑄*

=

−1 0 0
0 1/𝐿 1/𝐿
0 1 0
1 0 0
0 −1/𝐿 −1/𝐿
0 0 1

!𝑞&
!𝑞)
!𝑞'

or 𝐐 = 𝐋,.𝐪

x

y

𝑖
x

y

𝑖

𝑗

G𝑞(

G𝑞1Local reference system Basic reference system
𝛥𝑢J

𝑗

!𝑞'

𝑄:
𝑄1

𝑄(

𝑄0
𝑄9

𝑄8
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Linear geometry approximation (4)

§ The element stiffness matrix in the basic reference system, 𝐤̅ is given by

𝐤̅ =
𝜕4𝐪
𝜕4𝐮

§ The element stiffness matrix in the local reference system, 𝐤NOPQN is given by

𝐤NOPQN =
𝜕𝐐
𝜕𝐮

=
𝜕
𝜕𝐮

𝐋R4𝐪 =
𝜕
𝜕𝐮

𝐋R𝐤̅4𝐮 =
𝜕
𝜕𝐮

𝐋R𝐤̅𝐋𝐮 = 𝐋R𝐤̅𝐋
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Nonlinear geometry: Large displacements and rotations

xy

𝑖

𝑗

𝛽

𝐿
G𝑢 (
v 0

𝑣 8
G𝑢 0

!𝑢 &

X

Y

v1

v(

v9

v:

𝐿)

𝐿

𝛥u' = 𝑢9 − 𝑢1

𝛥u; = 𝑢: − 𝑢(

x

y

𝑖

𝑗

𝛽

𝐿

Rigid body translation 
𝐿)

𝛥u' = 𝑢9 − 𝑢1

𝑗

𝛥u; = 𝑢: − 𝑢(

!𝑢&

x

y

𝑖

𝑗

G𝑢( 𝑢0
𝑢8

Deformations in the basic reference frame

!𝑢'

𝑖

𝑗𝐿

𝛽



32RESSLab
Resilient Steel Structures Laboratory

Nonlinear Geometry – Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

Displacement–deformation relation: Large displacements
§ The displacements in the basic reference frame are given by

𝑢̂! = 𝐿) − 𝐿
𝑢̂' = 𝑢, − 𝛽
𝑢̂, = 𝑢D − 𝛽

With

𝛽 = arctan
𝛥𝑢J

𝐿 + 𝛥𝑢.
, 𝐿) = 𝐿 + 𝛥u. ' + 𝛥𝑢J

'

§ Large displacements and rotations à Corotational formulation

§ Define

𝑐 = cos(𝛽) =
𝐿 + 𝛥𝑢.
𝐿)

, 𝑠 = sin(𝛽) =
𝛥𝑢J
𝐿)
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Corotational formulation: Virtual displacements
§ The virtual basic displacements are obtained through differentiation of the previous 

equations

𝛿𝑢̂! = 𝛿𝐿) =
1
2𝐿)

2𝛿Δ𝑢. 𝐿 + Δ𝑢. + 2Δ𝑢J𝛿Δ𝑢J = 𝑐 𝛿𝑢E − 𝛿𝑢! + 𝑠 𝛿𝑢L − 𝛿𝑢'
= −𝑐 −𝑠 0 𝑐 𝑠 0 𝛿𝐮

𝛿𝑢̂' = 𝛿𝑢, − 𝛿𝛽
𝛿𝑢̂, = 𝛿𝑢D − 𝛿𝛽

Where,

𝛿𝛽 =
1

1 +
Δ𝑢J

𝐿 + Δ𝑢.

'
𝛿Δ𝑢J 𝐿 + Δ𝑢. − Δ𝑢J𝛿Δ𝑢J

𝐿 + Δ𝑢. '

And after simplification 

𝛿𝛽 =
1
𝐿)

𝑐 𝛿𝑢L − 𝛿𝑢' − 𝑠 𝛿𝑢E − 𝛿𝑣! =
1
𝐿)

𝑠 −𝑐 0 −𝑠 𝑐 0 𝛿𝐮
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Corotational formulation: Virtual displacements (2)
§ The relations between the displacements in the local reference frame 𝐮 and the

displacements in the basic reference frame j𝐮 are given by,

𝛿𝑢̂! = −𝑐 −𝑠 0 𝑐 𝑠 0 𝛿𝐮

𝛿𝑢̂' = 𝛿𝑢, −
1
𝐿)

𝑠 −𝑐 0 −𝑠 𝑐 0 𝛿𝐮

𝛿𝑢̂, = 𝛿𝑢D −
1
𝐿)

𝑠 −𝑐 0 −𝑠 𝑐 0 𝛿𝐮

In matrix form:

𝛿j𝐮 = 𝐋𝛿𝐮
With

𝐋 =
−𝑐 −𝑠 0 𝑐 𝑠 0

−𝑠/𝐿) 𝑐/𝐿) 1 𝑠/𝐿) −𝑐/𝐿𝑛 0
−𝑠/𝐿) 𝑐/𝐿) 0 𝑠/𝐿) −𝑐/𝐿) 1
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Corotational formulation: Resisting forces
§ The relation between the resisting forces in the basic reference system 4𝐪 and

the resisting forces in the local reference system 𝐐 is obtained by equating
the virtual work in both basic and local reference systems,

𝑊 = 𝛿𝐮R𝐐 = 𝛿4𝐮R4𝐪 = 𝛿𝐯R𝐋R4𝐪

§ This equation must hold true for any arbitrary 𝛿𝐮R, therefore, the element
resisting forces in the local reference frame 𝐐 are given by

𝐐 = 𝐋R4𝐪

§ The element resisting forces in the basic reference frame 4𝐪 depend on the
element formulation and will be discussed in the following weeks.
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Corotational formulation: Tangent stiffness matrix
§ The tangent stiffness in the local reference frame 𝐊6 defined by

𝛿𝐐 = 𝐊6𝛿𝐮

is obtained by differentiating the relation 𝐐 = 𝐋-j𝐪, which gives

𝛿𝐐 = 𝐋-𝛿j𝐪 + 𝛿𝐋-j𝐪 = 𝐋-𝛿j𝐪 + 𝑞̂!𝛿𝐋! + 𝑞̂'𝛿𝐋' + 𝑞̂,𝛿𝐋,

Where 𝐋M is the 𝑘*I column of 𝐋-
§ Introduce the quantities

𝐫 = −𝑐 −𝑠 0 𝑐 𝑠 0 -

𝐳 = 𝑠 −𝑐 0 −𝑠 𝑐 0 -

And differentiate them
𝛿𝐫 = 𝐳𝛿𝛽, 𝛿𝐳 = −𝐫𝛿𝛽

These can be used to rewrite

𝛿𝑢̂! = 𝛿𝐿) = 𝐫-𝛿𝐮, 𝛿𝛽 =
𝐳-

𝐿)
𝛿𝐮
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Corotational formulation: Tangent stiffness matrix (2)
§ Using these notations

𝐋! = 𝐫
𝐋' = 0 0 1 0 0 0 - −

𝐳
𝐿)

𝐋, = 0 0 0 0 0 1 - −
𝐳
𝐿)

Which by differentiation give

𝛿𝐋! = 𝛿𝐫 =
𝐳𝐳-

𝐿)
𝛿𝐮

𝛿𝐋' = 𝛿𝐋, = −
𝛿𝐳
𝐿)
+
𝐳𝛿𝐿)
𝐿)'

=
1
𝐿)'

𝐫𝐳- + 𝐳𝐫- 𝛿𝐮
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Corotational formulation: Tangent stiffness matrix (3)
§ The tangent stiffness matrix in the basic reference system 𝐤̅ defined by

𝛿*𝐪 = 𝐤̅𝛿*𝐮 = 𝐤̅𝐋𝛿𝐮
§ Finally

𝛿𝐐 = 𝐊3𝛿𝐮 = 𝐋<𝛿*𝐪 + -𝑞1𝛿𝐋1 + -𝑞(𝛿𝐋( + -𝑞0𝛿𝐋0

= 𝐋<𝐤̅𝐋𝛿𝐮 + -𝑞1
𝐳𝐳<

𝐿#
𝛿𝐮 + -𝑞(

1
𝐿#(

𝐫𝐳< + 𝐳𝐫< 𝛿𝐮 + -𝑞0
1
𝐿#(

𝐫𝐳< + 𝐳𝐫< 𝛿𝐮

= 𝐋<𝐤̅𝐋 + -𝑞1
𝐳𝐳<

𝐿#
+ -𝑞(

1
𝐿#(

𝐫𝐳< + 𝐳𝐫< + -𝑞0
1
𝐿#(

𝐫𝐳< + 𝐳𝐫< 𝛿𝐮

§ The tangent stiffness in the local reference frame 𝐊3 is given by

𝐊3 = 𝐋<𝐤̅𝐋 + -𝑞1
𝐳𝐳<

𝐿#
+
1
𝐿#(

𝐫𝐳< + 𝐳𝐫< -𝑞( + -𝑞0

§ The element tangent stiffness matrix in the basic reference frame 𝐤̅ depends on the element 
formulation. This will be discussed in the coming weeks.

Material stiffness matrix Geometric stiffness matrix
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Corotational formulation: Geometric stiffness matrix
§ The geometric stiffness matrix 𝐤-,4= is computed using

𝐤-,4= = -𝑞1
𝐳𝐳<

𝐿#
+
1
𝐿#(

𝐫𝐳< + 𝐳𝐫< -𝑞( + -𝑞0

=
-𝑞1
𝐿#

𝑠( −𝑐𝑠 0 −𝑠( 𝑐𝑠 0
−𝑐𝑠 𝑐( 0 𝑐𝑠 −𝑐( 0
0 0 0 0 0 0
−𝑠( 𝑐𝑠 0 𝑠( −𝑐𝑠 0
𝑐𝑠 −𝑐( 0 −𝑐𝑠 𝑐( 0
0 0 0 0 0 0

+
-𝑞( + -𝑞0
𝐿#(

−2𝑠𝑐 𝑐( − 𝑠( 0 2𝑠𝑐 −𝑐( + 𝑠( 0
𝑐( − 𝑠( 2𝑐𝑠 0 −𝑐( + 𝑠( −2𝑐𝑠 0
0 0 0 0 0 0
2𝑠𝑐 −𝑐( + 𝑠( 0 −2𝑠𝑐 𝑐( − 𝑠( 0

−𝑐( + 𝑠( −2𝑐𝑠 0 𝑐( − 𝑠( 2𝑐𝑠 0
0 0 0 0 0 0
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Transformation to the global reference system
§ From the previous lectures, to transform the stiffness matrix from the local reference frame 𝐊3 to the 

stiffness matrix in the global reference system 𝐊-, the transformation matrix 𝐓 is used:

𝐊- = 𝐓<𝐊3𝐓

§ Using the definition of the local stiffness matrix 𝐊3 using the stiffness matrix from the basic reference 
frame 𝐤̅ gives

𝐊- = 𝐓< 𝐋<𝐤̅𝐋 + G𝑞1
𝐳𝐳<

𝐿#
+
1
𝐿#(

𝐫𝐳< + 𝐳𝐫< G𝑞( + G𝑞0 𝐓

Material stiffness matrix Geometric stiffness matrix

Tangent stiffness matrix in the local reference system

Tangent stiffness matrix in the global reference system
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P-Delta effects on columns
§ Consider the following column loaded laterally and vertically

𝐿

𝐻
𝑃𝛥

𝐻𝐿
1N* order moment
(Linear geometry)

𝑃𝛥
2N* order moment
(Nonlinear geometry)

§ Assume linear geometry: P-Delta effects are not captured
§ Assuming a linear versus nonlinear geometry strongly influences the simulation results 
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Nonlinear geometric effects on the response of frames
§ Assuming a linear or nonlinear geometry is very important when modeling frame

structures.

Δ

𝑁 = 0.3𝑃$ 𝑁 = 0.3𝑃$

H
EB

34
0

H
EB

34
0

IPE300
(assume rigid 
diaphragm action)

ℎ = 4𝑚

𝐿 = 8𝑚 𝑁,9, ⋅
Δ
ℎ

§ For the simulations, a 2d force-based beam-column element was used and the UVC (i.e.,
isotropic hardening rule) constitutive material law. These will be explained later.

𝑁,9, ⋅
Δ
ℎ


