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=PFL  Objectives of today’s lecture

= To introduce:

« Geometric stiffness matrix
 Basic reference system for frame elements
« Element transformations (from local to basic coordinate system)

e Corotational transformation
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ePFL  Deflections

= Strength and stiffness are completely different properties of a member, that are
indeed related to each other.

= A fishing rod is flexible yet strong.
= Floor systems and structures cannot deflect as much for several reasons.

Source: http.//www.africancichlid.com/Structure.htm
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ePFL  Deflections cause second order effects
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=PFL  Deflections cause second order effects (2)
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=PFL  P-Delta effects on frame structures
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Normally they require special software

Types of analysis

1.

First Order Elastic Analysis: The equations of equilibrium are always
written in the undeformed configuration and material nonlinearity is not
considered.

Second Order Elastic Analysis: The equations of equilibrium are
always written in the deformed configuration and material nonlinear is
not considered.

First Order inelastic Analysis: The equations of equilibrium are always
written in the undeformed configuration and material nonlinearity is

considered.

Second Order Inelastic Analysis: The equations of equilibrium are
always written in the deformed configuration and material nonlinearity is
considered.
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=PFL  Types of analysis (2)
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EPFL  Several examples from established theory

@Prof. R. Tremblay (2015) Lignos et al. (2013) @Prof. E. Miranda (2017)
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EPFL  Geometric stiffness matrix for planar elements

» |nstead of using infinitesimal strains that form the basis of linear analysis, start
using small finite strains

= Combination of bending and axial force

= Consider the 2d elastic beam element that we saw previously:
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EPFL  Geometric stiffness matrix for planar elements (2)

= Consider the effect of both axial and flexural deformations

i du
Axial Yax+u+dx+—dx Flexural _
Deformation: | ax Deformation: y ,
x+tu
[ PN
v+ d_v de_| | | T ®2
dx v — b
V3 o 0

]

Consider only the axial deformation; denote by ab the length of the infinitesimal segment
dx (i.e., ab = dx ) in the reference configuration

After rigid body rotation and axial deformation, the length of the segment dx is as follows:
1

23 () (@) e

N| =

(ar+ %) +(Zax)
T dx "
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EPFL  Geometric stiffness matrix for planar elements (3)

= Using the binomial theorem and neglecting the higher-order terms gives
a'b’ . du N 1 (du)2 N (dv)z
dx dx 2 |\dx dx

= The finite strain ef;, is defined as the sum of the extension per unit length (for the axial deformation) and the
strain form the flexural deformation:

_a'b' —ab d?v _du N 1 (du>2 N (dv>2 d?v
fin T T ax YNaxz) " ax " 2 |\\dx dx Y\ dx?

2
Where the last term (ZTZ: curvature) is the infinitesimal flexural strain (i.e., neglect the effects of the rotation and

stretching of the element neutral axis)

= The theorem of virtual displacements (for a uniaxial stress state) is applied to the reference configuration:

6Wint = faxdefindV
%4

= The following relations are useful for the next step:
0, = 2= with I = [, y2dA

6 (d—u) = L% and § (d—v) = 2% \which are valid for infinitesimal displacements
dx dx dx dx
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EPFL  Geometric stiffness matrix for planar elements (4)

= Using the definition of e;,,, the previous quantities and integrating over the section depth gives
Wi = [0t (2 axs [ m(S2)ax 3 [ oeals (2 4 5(22) ]
e = | O\ Tgx ¥ dxz) T2 , 7 dx dx) |
= The following relations are useful for the next step:
dZ
0y = (52) E. Frz = 0xA, M = (T3) E

= The virtual work can be rewritten as

Wi = [ (G2) 2a (D) axs [ (G2 (G2 ax 1ra [ o (G2) +8(22)

mt )y \dx dx )" dx? dxz) T g dx ax) |

= The elastic stiffness matrix k., (both for axial and flexural deformation) follows from the first two integrals

= The third integral produces a geometric stiffness matrix k,

= To compute the third integral, the “mathematical trick” is that the virtual operator § may be threated as a
déu du

differential operator with respect to the variables du and av - for variable u: 6 (d—u)z =2
P P dx dx u: dx) 7 dx dx
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EPFL  Geometric stiffness matrix for planar elements (5)

= The third term of the virtual work can then be rewritten as
SW d(Su du (ddv dV)] p
int,3 = xzj [ dx dx dx dx)] "

» The displacements are interpolated using the usual shape functions u (’ZC) = Nu :
* For an axial member:
X X1/,Uq
u=1-7 7(,)

* For aflexural member (see lecture notes from last week):

U1
B X\ 2 x\3 x x4\ 2 X\ 2 x\3  x? X ] 01
= [1—3(2) +2(;) x-a(p)+x(p) 3(p) -2(0) (143 v
2
= The derivative of the displacement with respect to x are given by
du dN N'u
dx dx
= Similarly,
du = N(Suand@—N du
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EPFL  Geometric stiffness matrix for planar elements (6)

= The third term of the virtual work can then be rewritten as

L
SWines = 6u’ <Fx2 j INI'N, + NZ,"Nv]dx> u
0

Where N,and N, are the row vectors of the shape functions for the axial and flexural
member, respectively.

NOTE: The (+) sign shall be interpreted as an assembly procedure for the corresponding
degrees of freedom.

= Recognizing that from the virtual work theorem, the internal work should be equal to the

external work 6W,,, = Su’F and using F = ku, the following local geometric stiffness
matrix is obtained:

L
kX = F,, j ININ,, + NIN, ]dx
0
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EPFL  Geometric stiffness matrix for planar elements (7)

= And after multiplying and integrating
Uq

(41 01 Uz 1%} 0,
-1 0 0 -1 0 0 1w
s & L 6 L
5 10 5 10 |
, L 212 ) L 12|,
_— ——\ Y%
local _ Fya 10 15 10 30
g 1 0 o0 1 0 0 |u
) 6 L 6 L
- - — ——\| V2
5 10 5 10
L 12 L 217 |,
0 — —— 0 —— —|"
- 10 30 10 15 -

= To assemble the local geometric stiffness matrices to the global geometric stiffness matrix,
the usual assembly procedure presented in the previous lectures may be used.
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cPFL  Elastic stiffness matrix for planar elements

= Recall, the elastic stiffness matrix ki’ for elastic 2d beam elements (presented in the previous lecture)
is given as a reminder:

ul 7.71 81 u’Z vZ 92
" AL> AL? 1.,
— 0 0 - 0 0 |%2
0 12 6L 0 -—12 6L |
wocal _ ELf 0 6L 42 0 —6L 212 |0
¢ 13| AL? AL?
—T 0 0 T 0 0 U
0 —12 —6L 0 12  —6L|"2
0 6L 212 0 —6L 41210;
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EPFL  Geometric stiffness matrix

= The geometric stiffness matrix can be used to compute the elastic critical loads which will
lead to flexural buckling and/or lateral torsional buckling. The predicted instability mode
depends on the degrees of freedom present in the element formulation.

= To compute the elastic critical load, the global stiffness equation is written in the form of a
generalized eigenvalue problem; the equation of equilibrium at the critical state is:

global > global .
K" +2KJ " |a=0

where K2'°?? is the global elastic stiffness matrix, KglOb ! is the global geometric stiffness
matrix computed for a reference load, P,.r; 4 (an eigenvalue) is the load factor with respect
to P.., and A (an eigenvector) is the buckled shape.

= The lowest value of 1 that satisfies the equation for A # 0 gives the elastic critical load
vector AP, and the corresponding, A defines the buckled configuration.
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£PFL  Solution of the eigenvalue problem

= To determine the eigenvalues and eigenvector, the eigenvalue problem is
rewritten as

1

1 -1
global _ __2i§r9lobal ~ yrglobal _ _frglobal global > global _ =
Kg" A = —ARGUAr o KA = —RPNA o —(KEP) ORIV, = 24

ef af 1 ef 9f ef 9f f

where the subscript f indicates that the respective matrices and vectors relate to
the free degrees of freedom only.

L RESSLab Nonlinear Geometry - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL 19



=PrL

Solution of the eigenvalue problem (2)

The following approach may be used to determine the elastic critical loads of a structure:

1.
2.

3.

Assemble the global elastic stiffness matrix of the structure k tobal

Impose the boundary conditions (external unit loads F)

Using the static condensation, solve the system F = KJ'**%

displacements v

For each element:

a. In the local reference system, solve the system Q = k““u to determine the
internal forces Q

b. Compute the local geometric stiffness matrix k>

Assemble the global geometric stiffness matrix of the structure

v to determine the nodal

global
kg

-1
Solve the eigenvalue problem (kf}‘)bal) k§'"*A; = 2A; to determine the load

multipliers 1
The critical load P, is obtained by taking the minimum (in absolute value) load
multiplier A,,;;, = min(|A]) and multiplying it with the applied unit load F:

P.r = AminF
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=PFL  Example: Euler buckling load

= Determine the Euler load of a h = 3.0m high Euler column. Assume a HEA 320 steel cross
section (E = 200 GPa,I = 229.3 - 10° mm* and 4 = 12400 mm?)
= Use 2d elastic beam elements (see previous slides for elastic and geometric stiffness

matrices)
: : : : 2E1
= Compare with the theoretical Euler buckling load Pr given by, P = ”hz
P
§I: ! 1.25
N ) 1.2F
£ AT 115
< + 3 X
< AY 1.1
AL e
()
1.05F

7 1
Number of elements used
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EPFL  Example: Effect of the lateral restraint on the buckling load

=  What is the influence of the spring stiffness on the buckling response of the column?

= The buckling load P, is given by
b m2EIl
T (Kh)?

Where k is the effective length factor (Kh is the buckling length of the column)

= The stiffness k of the spring is taken as

3EI
k=ags
Where 3EI/h3 is the lateral (translational) stiffness of the cantilever column

= Include the effect of the spring when assembling the global elastic stiffness matrix

= To determine the influence of the spring stiffness on the buckling length when
computing the buckling load, compute the effective length factor K using

P m2E]
| P..h?

Where P, is obtained by solving the eigenvalue problem
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EPFL  Example: Effect of the lateral restraint on the buckling load (2)

0.5

e 7 10°

The effective length factor K varies from K = 2to K = 0,7
The value K = 2 corresponds to a fixed-free column
The value K = 0,7 corresponds to a fixed-fixed column
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EPFL  Basic reference system for frame elements

Transformation Removal of rigid
Global matrix T Local body modes Basic
reference system > reference system - reference system
U Qs u _ _
Certie \ v q3,u3(( q1,Uq
y Us, Us
X y
Q3,u3 X
QU1 Qy,u, q2, Uy
Ya

O

@
Fy, vy
Ey, vy
M, 0

= Conventional frame (beam-column) elements are formulated within the basic reference frame
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tPFL  Removal of rigid body modes

Rigid body translation
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EPFL Displacement—deformation relation: Large displacements

= The displacements in the basic reference frame are given by

‘L_L1=Ln—L
72‘2=u3—.8
Uz =Ug—pf

With

Au

y 2
+ Au,

),Ln = \/(L + Auy)? + (duy)

p = arctan(
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=PFL Linear geometry approximation

= Assuming small deformations and rotations, expanding the arctan function using a Taylor
series approximation about the point 4u, = 0,4u,, =0,

Au Au
y b
L L

Similarly,

Auy, 1 Aun\* 1Ay’
i
ul [L 2\1 ) T2\

= Assuming small deformations and rotations, the second order terms can be neglected,

Au
B=-1"
And
ﬂl = Aux
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EPFL Linear geometry approximation (2)

= Assuming linear geometry (i.e., small deformations and rotations), the compatibility relations
between the element deformations in the basic reference frame u and the element

displacements in the local reference frame u become linear:

u; = Au, = uy —uy = —1uy + Ou, + Oug + 1u, + Oug + Oug
3 Au,, Us — Uy 1 1
Up =Ug == = U3 —— =Ou1+zu2+1u3+0u4—zu5+0u6
B Au,, Us — Uy 1 1
3—u6—T=u6— 7 =Ou1+zu2+0u3+0u4—zu5+1u6
* |[n matrix form
Uq
_ -1 0 0 1 0 O01/u
Uq 1 1 2
(ﬂ >_ 0 = 1 0 —= 0| Us
2 | = L L U
7 1 1 4
Us 0O - 0 0 —= 1]\ ug
L L L i
Ue

In compact form

L RESSLab Nonlinear Geometry - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

28



EPFL  Linear geometry approxmatlon (3)

Local reference system

. ?—' Q4
Q1 [ TQZ X 0s

Basic reference system a1
y —— —
/
X

= Using the equilibrium of forces (linear geometry - deformed conflguratlon ~ undeformed configuration), the
element resisting forces in the local reference system are given by

Qs =1
Q3 = q2
Q6 =73
Q1 =—-0s=—q1

1 1
Q; = g(Q3 + Q6) = Z(lqz + 5_13)
Qs = T(Q3 + Q6) = T(ﬁz + ‘73)

= |n matrix form

Q>
Qs
Qs
Qs

6
L RESSLab Nonlinear Geometry - Nonlinear Analysis of Structures - Prof.

—1

0
0
1
0

-0

0
1/L
1
0
~1/L
0

0 -

1/L
0
0
~1/L

1 A

Dr. Dimitrios Lignos, RESSLab EPFL

i

q1
orQ=1"q
qs
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=PFL  Linear geometry approximation (4)

= The element stiffness matrix in the basic reference system, k is given by
_9q

- ou

= The element stiffness matrix in the local reference system, k;,.,; is given by

0 , . G- _
q) = u(L k - (L"kLu) = LTKL
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EPFL  Nonlinear geometry: Large displacements and rotations

“l/v\

Rigid body translation
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=PFL Displacement—deformation relation: Large displacements

= The displacements in the basic reference frame are given by
i, =L, —L
U =uz —f
Uz =uUg—f

With

B = arctan (L o );Ln = [(L+ Auy)* + (A”y)
X

= Large displacements and rotations - Corotational formulation

= Define

L+ Au, Au,,

Ln , S = sm(ﬁ) = ?

c =cos(f) =
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cPFL  Corotational formulation: Virtual displacements

= The virtual basic displacements are obtained through differentiation of the previous

equations
Su, = 8L, = oL (Z(SAux(L + Au,,) + 2Auy8Auy) = c(0uy — 6uq) + s(dus — du,)
=[-c —=s 0 ¢ s 0]6u
517,2 - 6”3 - Sﬁ
517,3 - 6”6 - Sﬁ

Where,

1 SAu, (L + Au,) — Auy6Auy>

56 =

ﬂ Auy 2 ( (L + Aux)z
1+ (L + Aux>

And after simplification

5B = [c(6u5 Su,) — s(bu, — 6vy)] = Li[s —c 0 —s ¢ 0]éu

Tl n
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EPFL  Corotational formulation: Virtual displacements (2)

= The relations between the displacements in the local reference frame u and the
displacements in the basic reference frame u are given by,

( Sty =[-c —-s 0 ¢ s 0]éu
1
Sy =6uz——I[s —c 0 —s ¢ 0]éu
9 Ly
B 1
0tz =6ug——I[s —c 0 —-s c¢ 0]éu
\ Ly
In matrix form:
ou = Lou
With
—C —s 0 C S 0

L=|-s/L, c¢/L, 1 s/L, —c/Ln 0
-s/L, c¢/L, 0 s/L, -c/L, 1
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£PFL  Corotational formulation: Resisting forces

= The relation between the resisting forces in the basic reference system q and
the resisting forces in the local reference system Q is obtained by equating
the virtual work in both basic and local reference systems,

W =+6u'Q=4d6u'q=46viLlq

= This equation must hold true for any arbitrary su’, therefore, the element
resisting forces in the local reference frame Q are given by

Q=L'q

= The element resisting forces in the basic reference frame q depend on the
element formulation and will be discussed in the following weeks.
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£PFL  Corotational formulation: Tangent stiffness matrix

= The tangent stiffness in the local reference frame K, defined by
6Q = K;6u
is obtained by differentiating the relation Q = LTq, which gives
5Q = LT6q + 6LTq = LT6q + g, 6L, + G,6L, + G36L3

Where L,, is the k" column of LT
= [ntroduce the quantities

r=[-c —-s 0 ¢ s 0]

Zz=[s —c 0 —-s ¢ 0]
And differentiate them

or = 26,6z = —réf
These can be used to rewrite
S, = 6L, = rléu, 5B = —Su
LTl
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£PFL  Corotational formulation: Tangent stiffness matrix (2)

= Using these notations

L1 =T
Z
L,=[0 0 1 0 0 0]f ——
Ln
Z
L.=[0 0 0 0 0 1]"——
Ln
Which by differentiation give
zzT
5].41 - 51‘ - —511
Ln
0z ZOL 1
6L, =8L; = ——+——=—(rz" +zr")su

L, 12 I2
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£PFL  Corotational formulation: Tangent stiffness matrix (3)

= The tangent stiffness matrix in the basic reference system k defined by

5q = kéu = KLSu
= Finally
5Q = K,6u = L"6q + q,6L, + q,6L, + G36L;
_ _zzT 1 1
= L'kLSu + g, —du+ g, — (rz" + zr")éu + g5 — (rz" + zr")éu
L, 12 12

_ 227 1 1
=|\L'KL+q —+ G, 5 (@z" +zr") + g3 5 (rz" + zr") |Su
Ly Ly )

= The tangent stiffness in the local reference frame K, is given by

. _zz" 1 o~
K,=L'KkL+q, —+—(z" +zr")(q, + q3)
L L
k_Y_) L n n Y J
Material stiffness matrix Geometric stiffness matrix

= The element tangent stiffness matrix in the basic reference frame k depends on the element
formulation. This will be discussed in the coming weeks.
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EPFL  Corotational formulation: Geometric stiffness matrix

= The geometric stiffness matrix k.., is computed using

_zz" 1 o~
kgeom = 1 L_+ L_z(rz + Zr )(CIZ + CIS)
n n
s2  —cs 0 —s? c¢s 0] —2sc c?—5s% 0 2sc —c? + 52
|l—es 2 0 ¢ —c* 0] | c*-5s? 2cs 0 —c?*+s* —2cs
_4l o0 0 0 O 0 0f,9 133 0 0 0 0 0
= 2 2 +— 2 | 2 2 2
L,|—s cs 0 s —cs 0 Ly, 2sc —c“+s- 0 —2sc c“—s
cs —c> 0 —cs c* 0 —c? + 52 —2cs 0 c¢?—s? 2cs
L0 0 0 0 0 0- 0 0 0 0 0
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tPFL  Transformation to the global reference system

= From the previous lectures, to transform the stiffness matrix from the local reference frame K; to the
stiffness matrix in the global reference system K, the transformation matrix T is used:

K, = T'K;T

= Using the definition of the local stiffness matrix K; using the stiffness matrix from the basic reference
frame k gives

T T7, — ZZT 1 T (= —
K,=T LkL+q1L—+L—2(rz +zr')(q,+q3) | T
n n
\ Y | Y J
Material stiffness matrix Geometric stiffness matrix

\ J
|

Tangent stiffness matrix in the local reference system

\ J
|

Tangent stiffness matrix in the global reference system
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EPFL  P-Delta effects on columns

= Consider the following column loaded laterally and vertically

A, P
A —>,
H

L

\ 4

YA

HL PA

15t order moment 25t order moment
(Linear geometry) (Nonlinear geometry)

= Assume linear geometry: P-Delta effects are not captured
= Assuming a linear versus nonlinear geometry strongly influences the simulation results

L RESSLab Nonlinear Geometry - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

41



=PFL  Nonlinear geometric effects on the response of frames

= Assuming a linear or nonlinear geometry is very important when modeling frame

structures.
N = 03P, N = 03P,
A >V A 4
IPE300 4
(assume rigid
Q diaphragm action) <
g pnrag ) g W= 4m
m m
Ll L
T T
A L = 8m f!f.ﬂv
< |

= For the simulations, a 2d force-based beam-column element was used and the UVC (i.e.,
isotropic hardening rule) constitutive material law. These will be explained later.
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