

CIVIL 449: Nonlinear Analysis of Structures

School of Architecture, Civil & Environmental Engineering Civil Engineering Institute

Revision on Matrix Structural Analysis

Prof. Dr. Dimitrios Lignos EPFL, ENAC, IIC, RESSLab

Revision on Displacement Method, Matrix Structural Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

EPFL Objectives of today's lecture

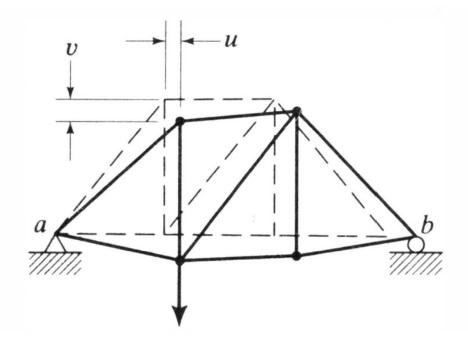
To introduce:

- Definitions and concepts
- Coordinate system
- Direct stiffness method
- Static condensation
- Examples of application

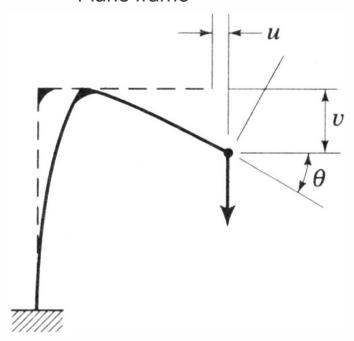
EPFL Degrees of freedom

-Displacement field

Pin-jointed plane truss



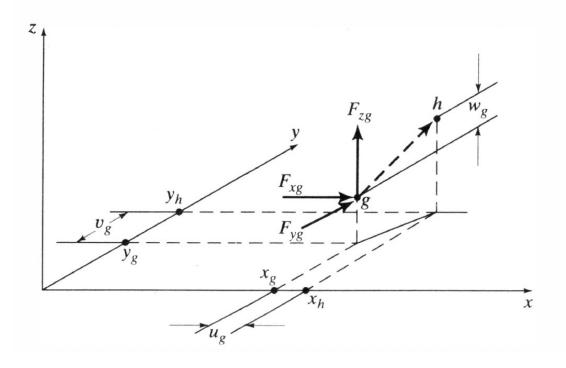
Plane frame

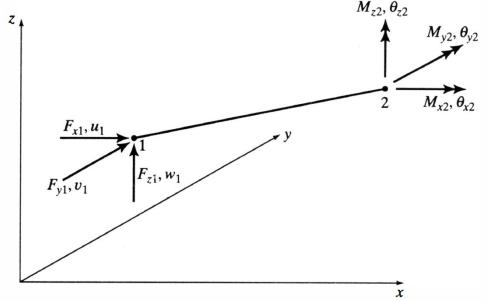


EPFL Coordinate systems and conditions of analysis

Displacement from point *g* to point *h*

Forces, moments and corresponding displacements

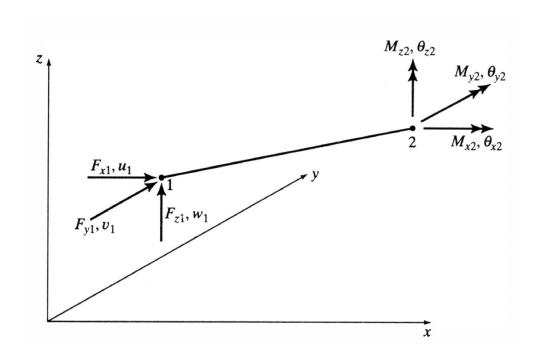




$$\theta_{x2} = \frac{\vartheta w}{\vartheta y}\Big|_{2} \quad \theta_{y2} = \frac{\vartheta w}{\vartheta x}\Big|_{2} \quad \theta_{z2} = \frac{\vartheta v}{\vartheta x}\Big|_{2}$$

Revision on Displacement Method, Matrix Structural Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

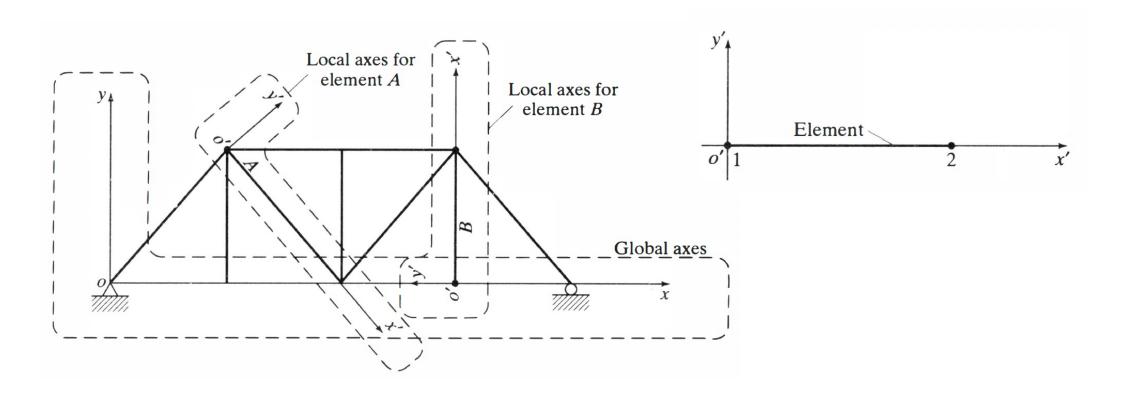
EPFL Coordinate systems and conditions of analysis (2)



$$\{\mathbf{F}\} = [F_{x1} \quad F_{y1} \quad F_{z1} \quad M_{x2} \quad M_{y2} \quad M_{z2}]^{\mathrm{T}}$$

$$\{\Delta\} = [u_1 \quad v_1 \quad w_1 \quad \theta_{x2} \quad \theta_{y2} \quad \theta_{z2}]^{\mathrm{T}}$$

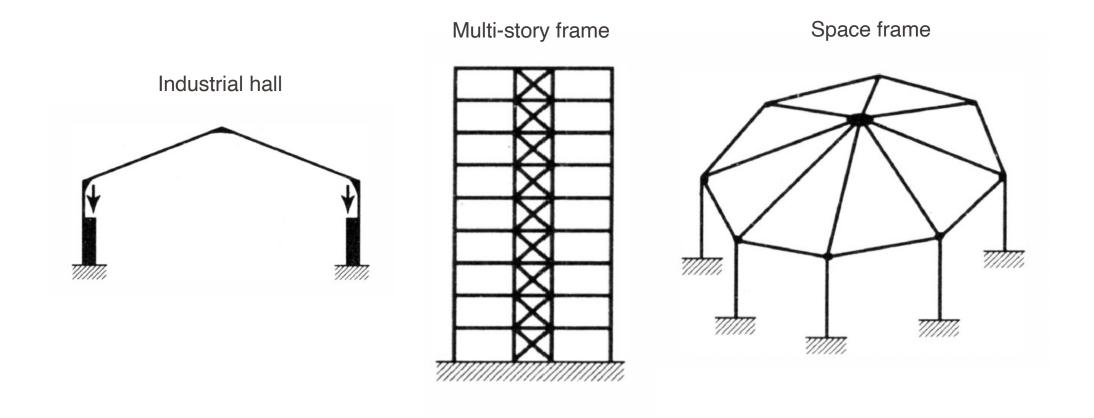
EPFL Coordinate systems and conditions of analysis (3)



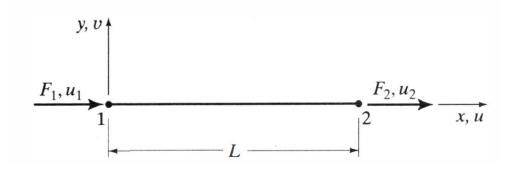
EPFL Idealization of structures into frame and/or truss elements

680 Folsom Street, San Francisco, USA

EPFL Idealization of structures into frame and/or truss elements



-Element stiffness matrix

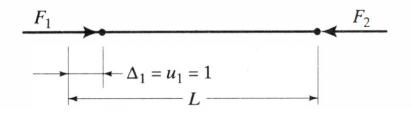


$$\{F\} = [k]\{\Delta\}$$

- [k] Element stiffness matrix
- k_{ij} Element stiffness coefficient

-Element stiffness matrix

If a displacement Δ_i of unit value is imposed and all other degrees of freedom are held fixed, the force F_i is equal to k_{ij}



$$\{\mathbf{F}\} = [F_1 \quad F_2]^{\mathrm{T}}$$

$$\{\mathbf{k}_{i1}\} = [k_{11} \quad k_{21}]^{\mathrm{T}}$$

From basic mechanics:

By equilibrium:

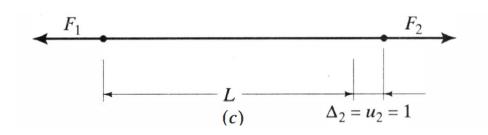
$$u_1 = \frac{F_1 L}{EA}$$

$$u_1 = \frac{F_1 L}{EA} \qquad \qquad F_1 = \frac{EA}{L} u_1$$

$$F_2 = -F_1 = -\frac{EA}{L}u_1$$

-Element stiffness matrix

Similarly,



$$F_2 = -F_1 = \frac{EA}{L}u_2$$

Collected in matrix form:

$$\begin{cases} F_1 \\ F_2 \end{cases} = \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{cases} u_1 \\ u_2 \end{cases} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix}$$

Stiffness matrix of a truss element

-Element flexibility equations

Element flexibility equations express, for elements supported in a stable manner, the joint displacements, $\{\Delta_f\}$, as a function of the joint forces, $\{\mathbf{F}_f\}$:

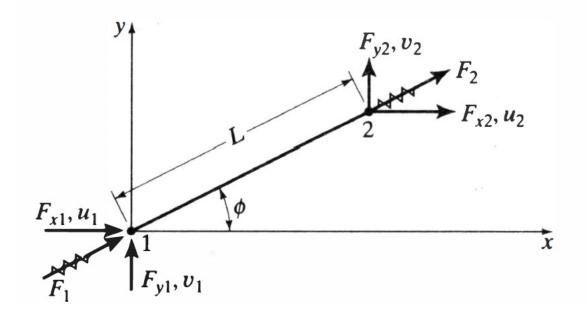
$$\{\Delta_f\} = [\mathbf{d}]\{\mathbf{F}_f\}$$

- [d] Element flexibility matrix (inverse of [k])
- d_{ij} Element flexibility coefficient

EPFL Axial force element: Global stiffness equations

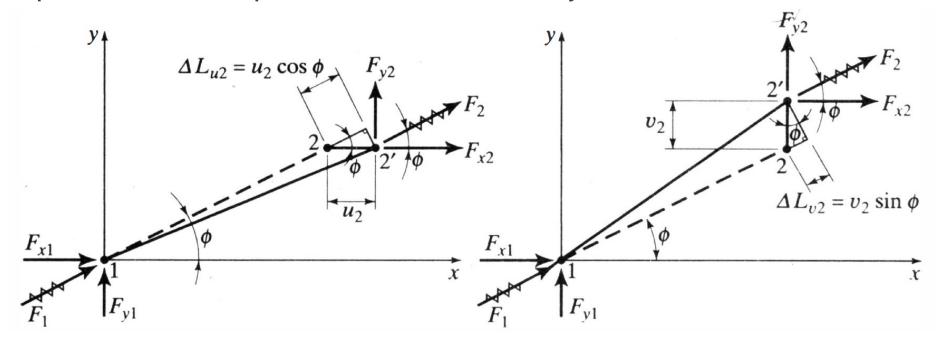
Simplest way to form the global stiffness equations for the analysis of a structure:

- start with element stiffness equations in a local coordinate system
- Transform to global axes



EPFL Axial force element: Global stiffness equations (2)

Impose a small displacement in the x and y directions of node 2



$$\Delta L_{u2} = u_2 cos \phi \qquad \Delta L_{v2} = v_2 sin \phi$$

$$F_2 = \frac{EA}{L} \Delta L_{u2} = \frac{EA cos \phi}{L} \cdot u_2 \qquad F_2 = \frac{EA}{L} \Delta L_{v2} = \frac{EA sin \phi}{L} \cdot v_2$$

Revision on Displacement Method, Matrix Structural Analysis – Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

EPFL Axial force element: Global stiffness equations (3)

Analyzing the force into the global coordinate system (x-direction):

$$F_{x2} = -F_{x1} = F_2 \cos \phi = \frac{EA}{L} \cos^2 \phi \cdot u_2$$

$$F_{y2} = -F_{y1} = F_2 \sin\phi = \frac{EA}{L} \sin\phi \cos\phi \cdot u_2$$

Analyzing the force into the global coordinate system (y-direction):

$$F_{x2} = -F_{x1} = F_2 \cos\phi = \frac{EA}{L} \sin\phi \cos\phi \cdot v_2$$
$$F_{y2} = -F_{y1} = F_2 \sin\phi = \frac{EA}{L} \sin^2\phi \cdot v_2$$

Revision on Displacement Method, Matrix Structural Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

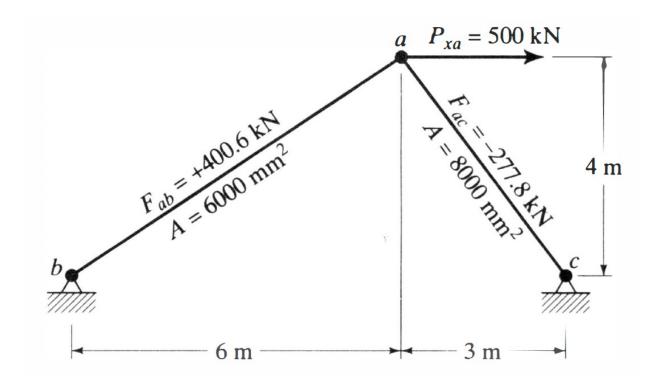
EPFL Axial force element: Global stiffness equations (4)

In a matrix form

$$\begin{cases} F_{x1} \\ F_{y1} \\ F_{x2} \\ F_{y2} \end{cases} = \frac{EA}{L} \begin{bmatrix} \cos^2\phi & \sin\phi\cos\phi & -\cos^2\phi & -\sin\phi\cos\phi \\ \sin\phi\cos\phi & \sin^2\phi & -\sin\phi\cos\phi & -\sin^2\phi \\ -\cos^2\phi & -\sin\phi\cos\phi & \cos^2\phi & \sin\phi\cos\phi \\ -\sin\phi\cos\phi & -\sin^2\phi & \sin\phi\cos\phi & \sin^2\phi \end{bmatrix} \begin{cases} u_1 \\ v_1 \\ u_2 \\ v_2 \end{cases}$$

EPFL Example

A statically determinate truss is subjected to the load and resulting bar forces shown. What is the displacement of α ? assume E=200,000MPa



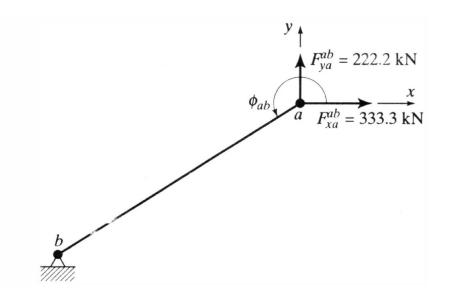
Revision on Displacement Method, Matrix Structural Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

EPFL Example (2)

Consider ab:

$$\left(\frac{EA}{L}\right)_{ab} = \frac{200 \times 6 \times 10^3}{\sqrt{6^2 + 4^2} \times 10^3} = 166.4 \text{ kN/mm}$$

$$\phi_{ab} = \tan^{-1}\left(\frac{-4}{-6}\right) = 213.69^\circ$$



$$F_{xa}^{ab} = 166.4(\cos^2 \phi_{ab} \cdot u_a + \sin \phi_{ab} \cos \phi_{ab} \cdot v_a)$$

333.3 = 166.4(0.6923 u_a + 0.4615 v_a)

EPFL Example (3)

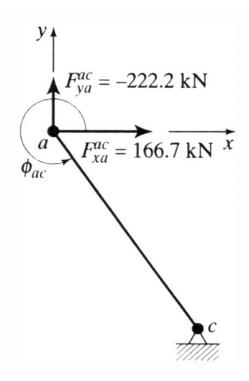
Consider ac:

$$\left(\frac{EA}{L}\right)_{ac} = \frac{200 \times 8 \times 10^3}{5 \times 10^3} = 320.0 \text{ kN/mm}$$

$$\phi_{ac} = \tan^{-1}\left(-\frac{4}{3}\right) = 306.87^\circ$$

$$F_{xa}^{ac} = 320.0(\cos^2 \phi_{ac} \cdot u_a + \sin \phi_{ac} \cos \phi_{ac} \cdot v_a)$$

166.7 = 320.0(0.3600 u_a - 0.4800 v_a)



EPFL Example (4)

Solve Equations a and b simultaneously:

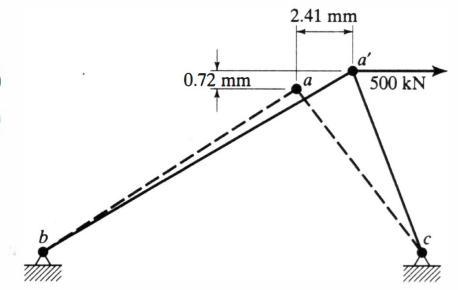
$$0.6923u_a + 0.4615v_a = 2.003$$
 (a)

$$0.3600u_a - 0.4800v_a = 0.5209$$
 (b)

$$u_a = 2.41 \text{ mm} \rightarrow$$

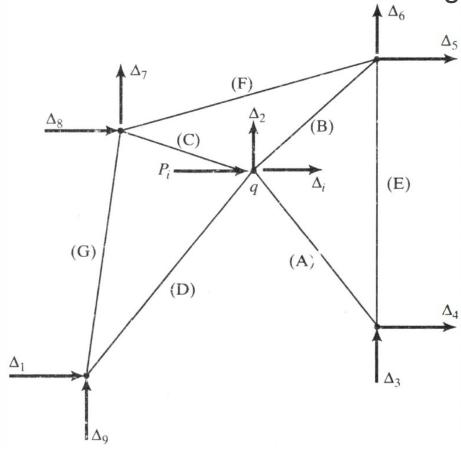
$$v_a = 0.72 \text{ mm} \uparrow$$

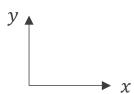
$$\overline{aa}' = 2.52 \text{ mm } \nearrow$$



EPFL The direct stiffness method

Let us assume the plane truss below with identified degrees of freedom



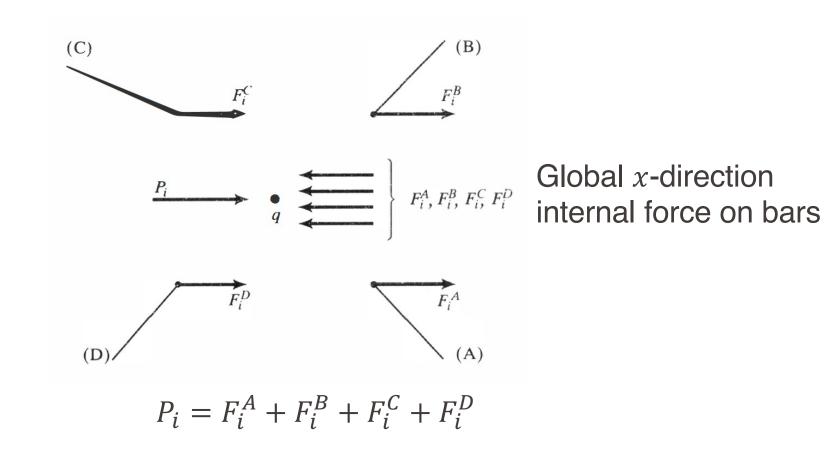


Revision on Displacement Method, Matrix Structural Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

EPFL The direct stiffness method (2)

At junction q

 $\rightarrow \chi$



Revision on Displacement Method, Matrix Structural Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

EPFL The direct stiffness method (3)

These forces yield expressions for F_i^A , ... F_i^D in terms of the corresponding element degrees of freedom Δ_i^A , ... Δ_9^D ; hence,

$$\begin{split} P_{i} &= F_{i}^{A} + F_{i}^{B} + F_{i}^{C} + F_{i}^{D} = \\ P_{i} &= k_{ii}^{A} \Delta_{i}^{A} + k_{i2}^{A} \Delta_{2}^{A} + k_{i3}^{A} \Delta_{3}^{A} + k_{i4}^{A} \Delta_{4}^{A} \\ &+ k_{ii}^{B} \Delta_{i}^{B} + k_{i2}^{B} \Delta_{2}^{B} + k_{i3}^{B} \Delta_{3}^{B} + k_{i4}^{B} \Delta_{4}^{B} \\ &+ k_{ii}^{C} \Delta_{i}^{C} + k_{i2}^{C} \Delta_{2}^{C} + k_{i3}^{C} \Delta_{3}^{C} + k_{i4}^{C} \Delta_{4}^{C} \\ &+ k_{ii}^{D} \Delta_{i}^{D} + k_{i2}^{D} \Delta_{2}^{D} + k_{i3}^{D} \Delta_{3}^{D} + k_{i4}^{D} \Delta_{4}^{D} \end{split}$$

EPFL The direct stiffness method (4)

At the joint the condition of displacement compatibility applies

$$\Delta_i^A = \Delta_i^B = \Delta_i^C = \Delta_i^D = \Delta_i$$

Therefore,

$$P_{i} = (k_{ii}^{A} + k_{ii}^{B} + k_{ii}^{C} + k_{ii}^{D})\Delta_{i} + k_{i1}^{D}\Delta_{1} (k_{i2}^{A} + k_{i2}^{B} + k_{i2}^{C} + k_{i2}^{D})\Delta_{2} + k_{i3}^{A}\Delta_{3} + \dots k_{i9}^{D}\Delta_{9}$$

or

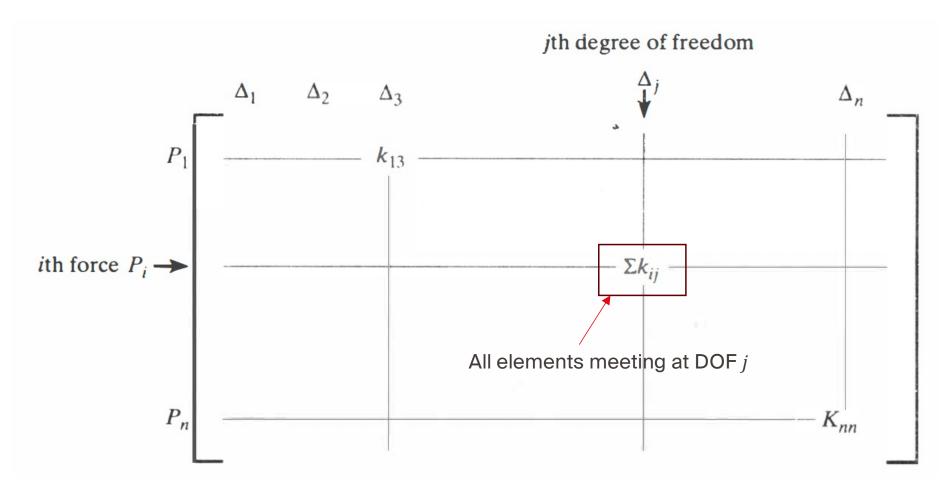
$$P_i = K_{ii}\Delta_i + K_{i1}\Delta_2 + K_{i3}\Delta_3 + \dots K_{i9}\Delta_9$$

Global stiffness coefficients

EPFL The direct stiffness method (5)

- Each element stiffness coefficient is assigned a double subscript (k_{ij}) . The first subscript in the element stiffness coefficient designates the force for which the equation is written, the second subscript designates the degree of freedom.
- Global stiffness matrix is aways square whose size is equal to the number of degrees of freedom in the complete system (see next page).
 - First subscript pertains to the force equation
 - Second subscript to the degree of freedom
- Support conditions are accounted for by noting which displacements are zero and then removing from the equations the columns or stiffness coefficients multiplying these degrees of freeedom.
- The remaining equations are solved to the global coordinate system.
- Member forces are then computed in the local coordinate system.

EPFL The direct stiffness method (6)



EPFL The direct stiffness method (7)

In a matrix form:

$$\{P\} = [K]\{\Delta\}$$

Assume that the support degrees of freedom $\{\Delta_s\}$ are grouped together

After reordering the equations,

Remaining degrees of freedom

$$\begin{cases}
\mathbf{P}_f \\
\mathbf{P}_S
\end{cases} = \begin{bmatrix}
\mathbf{K}_{ff} & \mathbf{K}_{fS} \\
\mathbf{K}_{Sf} & \mathbf{K}_{SS}
\end{bmatrix} \begin{Bmatrix} \mathbf{\Delta}_f \\
\mathbf{\Delta}_S
\end{cases}$$
supposition

Note that for the supports:

$$\{\Delta_{\mathbf{s}}\} = 0$$

EPFL The direct stiffness method (8)

Therefore,

$$\{\mathbf{P}_f\} = [\mathbf{K}_{ff}]\{\mathbf{\Delta}_f\}$$

$$\{\mathbf{P}_S\} = [\mathbf{K}_{Sf}]\{\mathbf{\Delta}_f\}$$

To compute the displacements at all unsupported nodes:

$$\{\Delta_f\} = [\mathbf{K}_{ff}]^{-1} \{\mathbf{P}_f\} = [\mathbf{D}] \{\mathbf{P}_f\}$$

Global flexibility matrix

To compute the support reactions:

$$\{\mathbf{P}_{S}\} = [\mathbf{K}_{Sf}] [\mathbf{D}] \{\mathbf{P}_{f}\}$$

To obtain the internal force distribution in the *i*-th element

$$\left\{ \mathbf{F}^{i}\right\} =\left[\mathbf{k}^{i}\right] \left\{ \mathbf{\Delta}^{i}\right\}$$

Revision on Displacement Method, Matrix Structural Analysis – Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

EPFL Static condensation

The term condensation refers to the contraction in size of a system of equations by elimination of certain degrees of freedom.

$$\begin{cases}
\mathbf{P}_c \\
\mathbf{P}_b
\end{cases} = \begin{bmatrix}
\mathbf{K}_{cc} & \mathbf{K}_{cb} \\
\mathbf{K}_{bc} & \mathbf{K}_{bb}
\end{bmatrix} \begin{Bmatrix} \mathbf{\Delta}_c \\
\mathbf{\Delta}_b
\end{cases}$$

And condenses them to the form:

$$\{\widehat{\mathbf{P}}_c\} = [\widehat{\mathbf{K}}_{cc}]\{\boldsymbol{\Delta}_c\}$$

First solve the lower partition and solve for $\{\Delta_b\}$

$$\{\Delta_b\} = [\mathbf{K}_{bb}]^{-1} \{\mathbf{P}_b\} - [\mathbf{K}_{bb}]^{-1} [\mathbf{K}_{bc}] \{\Delta_c\}$$

EPFL Static condensation (2)

Substituting the previous equation into the expanded upper partition of the system:

$$\begin{cases}
\mathbf{P}_c \\
\mathbf{P}_b
\end{cases} = \begin{bmatrix}
\mathbf{K}_{cc} & \mathbf{K}_{cb} \\
\mathbf{K}_{bc} & \mathbf{K}_{bb}
\end{bmatrix} \begin{Bmatrix} \mathbf{\Delta}_c \\
\mathbf{\Delta}_b
\end{cases}$$

$$\{\boldsymbol{P}_c\} = [\mathbf{K}_{cc}]\{\boldsymbol{\Delta}_c\} + [\mathbf{K}_{cb}]\{\boldsymbol{\Delta}_b\}$$

$$\{P_c\} = [\mathbf{K}_{cc}]\{\Delta_c\} - [\mathbf{K}_{cb}][\mathbf{K}_{bb}]^{-1}[\mathbf{K}_{bc}]\{\Delta_c\} + [\mathbf{K}_{cb}][\mathbf{K}_{bb}]^{-1}\{\mathbf{P}_b\}$$

$$\{\mathbf{P}_c\} - [\mathbf{K}_{cb}][\mathbf{K}_{bb}]^{-1} \{\mathbf{P}_b\} = ([\mathbf{K}_{cc}] - [\mathbf{K}_{cb}][\mathbf{K}_{bb}]^{-1}[\mathbf{K}_{bc}]) \{\Delta_c\}$$

$$\{\widehat{\mathbf{P}}_c\}$$

$$[\widehat{\mathbf{K}}_{cc}]$$

Revision on Displacement Method, Matrix Structural Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

EPFL Static condensation (3)

Therefore, the unknown displacements can be calculated as follows:

$$\{\boldsymbol{\Delta}_{c}\} = [\widehat{\mathbf{K}}_{cc}]^{-1} \{\widehat{\mathbf{P}}_{c}\}$$

And finally,

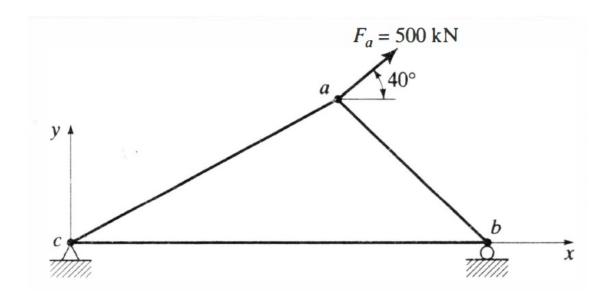
$$\{\Delta_b\} = [\mathbf{K}_{bb}]^{-1} \{\mathbf{P}_b\} - [\mathbf{K}_{bb}]^{-1} [\mathbf{K}_{bc}] \{\Delta_c\}$$

The inversion of matrices $[\mathbf{K}_{bb}]$ and $[\widehat{\mathbf{K}}_{cc}]^{-1}$ are easier to handle than the original global stiffness matrix $[\mathbf{K}]$, which is usually ill-conditioned.

EPFL Example

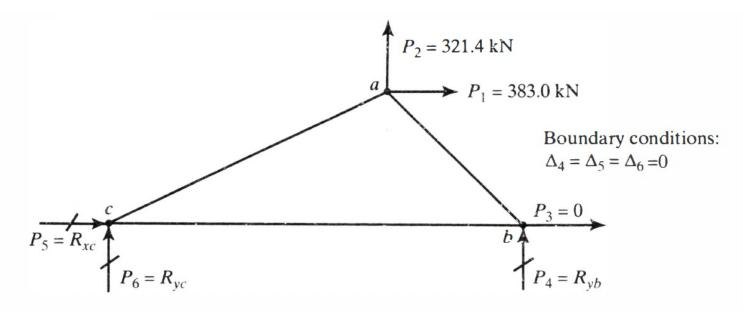
The truss is supported and loaded as shown in the figure.

- Calculate the displacements at a and b.
- Calculate the reactions.
- Calculate the bar forces.



Revision on Displacement Method, Matrix Structural Analysis - Nonlinear Analysis of Structures - Prof. Dr. Dimitrios Lignos, RESSLab EPFL

EPFL Example (2)



1. Displacements. The upper three global stiffness equations can be written as follows:

$$\begin{cases}
383.0 \\
321.4 \\
0
\end{cases} = 10^{2} \begin{bmatrix}
6.348 & -1.912 & -3.536 \\
4.473 & 3.536 \\
Sym.
\end{cases} \begin{cases}
\dot{\Delta}_{1} \\
\Delta_{2} \\
\Delta_{3}
\end{cases} + 10^{2} \begin{bmatrix}
3.536 & -2.812 & -1.624 \\
-3.536 & -1.624 & -0.938 \\
-3.536 & -3.294 & 0
\end{cases} \begin{cases}
0 \\
0 \\
0
\end{cases}$$

EPFL Example (3)

Inverting the first matrix and solving for the displacements yields

$$\begin{bmatrix} \Delta_1 & \Delta_2 & \Delta_3 \end{bmatrix} = \begin{bmatrix} 0.871 & 1.244 & -0.193 \end{bmatrix} \text{ mm}$$

EPFL Example (4)

3. Bar forces. The bar forces may now be obtained from the member stiffness equations: Member ab

$$\begin{cases}
F_1^{ab} \\
F_2^{ab}
\end{cases} = 707.11 \begin{bmatrix}
0.500 & -0.500 & -0.500 \\
-0.500 & 0.500 & 0.500
\end{bmatrix} \begin{cases}
0.871 \\
1.244 \\
-0.193
\end{cases} = \begin{cases}
-63.6 \\
63.6
\end{cases} kN$$

$$F_{ab} = F_2^{ab} \cdot \sqrt{2} = +90.0 \text{ kN (tension)}$$

EPFL Example (5)

Member ac

$$\begin{cases} F_1^{ac} \\ F_2^{ac} \end{cases} = 375.00 \begin{bmatrix} 0.750 & 0.433 \\ 0.433 & 0.250 \end{bmatrix} \begin{cases} 0.871 \\ 1.244 \end{cases} = \begin{cases} 447.0 \\ 258.0 \end{cases} \text{ kN}$$

$$F_{ac} = F_1^{ac} \cdot \frac{2}{\sqrt{3}} = +516.2 \text{ kN (tension)}$$