CHAPTER

CONSTRAINTS

Constraints enforce a relationship among d.o.f. Procedures for imposing a con-
straint include transformation, Lagrange multipliers, and penalty functions. Nat-
urally arising constraints, constraint counting, and integration rules for incom-
pressible materials are also discussed.

9.1 CONSTRAINTS. TRANSFORMATIONS

Constraints. A constraint either prescribes the value of a d.o.f. (as in imposing
a support condition) or prescribes a relationship among d.o.f. In common ter-
minology, a single-point constraint sets a single d.o.f. to a known value (often
zero), and a multipoint constraint imposes a relationship between two or more
d.o.f, Thus support conditions in the three-bar truss of Fig. 2.2-1 invoke three
single-point constraints. Rigid links and rigid elements, discussed in Section 7.8,
each invoke a multipoint constraint,

Figure 9.1-1 shows an example in which constraints could be imposed. In a
typical frame, axial deformation of a member can usually be ignored; only bending
deformation is significant. Accordingly, in Fig. 9.1-1, one could impose the single-
point constraints v, = 0and v = 0, and the multipoint constraint i, = up, after
which the active d.o.f. consist of only 84, 8z, and either 1y or ip. {Failure to
impose the constraint us = up invites numerical difficulty; see Section 18.2.)
Special-purpose computer programs for tall buildings may incorporate constraints
of this type by allowing only three d.o.f. per floor, these being the rotation 6.
of a floor about a vertical z axis and the horizontal displacement components
u and v,

For each equation of constraint, one d.o.f. can be eliminated from the vector
of structural d.o.f, {D}. However, doing so may involve appreciable manipulation
and typically increases the bandwidth (or the frontwidth) of the structural equa-
tions. The Lagrange multiplier method of treating constraints, discussed subse-
quently, adds to the number of equations but requires less manipulation.

Transformation Equations. Constraint equations that couple d.o.f. in {D} can be
written in the form

[CHD} = {Q} ©.1-1)

where [C] and {Q} contain constants. There are more d.o.f. in {D} than constraint
equations, so {C] has more columns than rows. We now consider the cemmon
case {Q} = {6}. Let Eq. 9.1-1 be partitioned so that
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where {D,} and {D.} are, respectively, d.o.f. to be retained and d.o.f. to be elim-
inated or “‘condensed out.”” Because there are as many d.o.f. {D,} as there are
independent equations of constraint in Eq. 9.1-2, matrix [C,] is square and non-
singular. Solution for {D,} yields

D} = [C, KD}, where [C.]= —[CJ'IC] 9.1-3)

We now write as one relation the identity {D,} = {D,} and Eq. 9.1-3:

{g:} = [TKD), where [T] = [ CI} (9.1-4)

With the transformation matrix [T] now defined, the familiar transformations
(R} = [T]T{R'} and [K] = [TP[K'}T] of Egs. 7.4-2 and 7.4-4 can be applied to
the structural equations [K'HD'} = {R’}, which are partitioned as :

Krr Krc‘ Dr — R!
[l e - 1 019

The condensed system is
{Krr + Krccrr: + C;{;-Krr + CS-UKCCCrc]{Dr} = {Rr + C,?;R(} (91'6)

After Eq. 9.1-6 is solved for {D,}, Eq. 9.1-3 yields {D.}. If {Q} # {0} in Eq. 9.1-1,
. additional terms appear on the right-hand side of Eq. 9.1-6.

If Eq. 9.1-2 simply sets certain d.0.f, {D.} to zero, then [C,] = [0] and [C.] =
(1], hence [C,.] = [0], and Eq. 9.1-6 is equivalent to discarding rows and columns
associated with {D_}. Otherwise, the choice of which d.o.f. to place in {D} is not
unique, so the choice of [C.] is not unique. One might then define [C_] to be the
last ¢ linearly independent columns of [C].

It is possible to avoid the reordering, partitioning, and matrix multiplications
implied by Eq. 9.1-6 by applying individual constraint equations serially and
retaining all d.o.f. of {D,} and {D.} in the transformed equations [6.1]. The trans-
formed coefficient matrix may not be positive definite.

allowed, and after the support condition 4 = 9 is imposed at x = 0, the structural

(Example. Consider the three-element structure of Fig. 9.1-2, With only axial deformation
' equatinas are
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Figure 9,1-2. Three identical bar elements, each of axial

stiffness k = AE/L.
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Imagine that the constraint #, = u, is to be imposed. With the choice D. = w3, Eqgs.
9.1-2 and 9.1-3 become

I
o 1i-1 {ﬂz] =0 and [CJ=100 1] (9.1-8)

11

The transformation matrix of Eq. 9.1-4 and the reduced system of Eq. 9.1-6 are

10
2k —kjJu| _ P
[T}—[g :] and [_k k] {u;}ﬁ{ZP} .19

Equation 9.1-9 yields «, = 3P/k and 1, = 5P/k. Hence, Bq. 9.1-8 vields uy = 5P/k.

in Section 8.16, we note that two different nodes can be forced to have the
same d.0.f. in {D} by giving them the same node number. (Actual nodal coordinates
are still used in the generation of element matrices.) Thus a node whose d.o.f.
would all appear in {D.} can be assigned a node number associated with {D,}
instead of using the transformation, Eq. 9.1-6. Any externally applied loads on
d.o.f, {D.} must be transferred to d.o.f. in {D,}. In applying this method to the
foregoing example problem, one assigns the number 2 to the rightmost two nodes.
This causes addition of the four coefficients in {k] of the right element, for a sum
of zero at node 3, effectively removing the right element (but not its load) from
the structure, and producing Eq. 9.1-9 upon assembly of the remaining two ele-
menis,

The condensed system in Eq. 9.1-6 is different from the system obtained by
static condensation, Eq. 8.1-3. In Eq. 8.1-3, condensed d.o.f. are related to re-
tained d.o.f. by equilibrium equations already present in the system [K}{D} =
{R}. In Eq. 9.1-6, condensed d.o.f. {D.} are related to retained d.o.f. {D,} by
supplementary equations of constraint that replace certain equilibrium equations.
Accordingly, constraints may appear to falsify certain equilibritin equations. Fig-
ure 9.1-3 is a case in point, The original system, and the system that results from
the constraint v, = p,, are respectively
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Figure 9.1-3. (&) A rigid bar supported by two springs. (b) External
and elastic forces applied to the bar if the constraint v, = v, is

imposed. Forces of constraint are not shown,

Hence, v, = v, = P/2k, and forces carried by the springs are kv; = kv, = P/2,
‘Net forces applied to the bar, Fig. 9.1-3b, satisfy equiltbrium of y-direction forces
but not moment equilibrium. Of course, the condensed structure is not that of
Fig. 9.1-3b; it is a single spring of stiffness 2%, loaded by force P.

9.2 LAGRANGE MULTIPLIERS

Lagrange's method of undetermined muitipliers is used to find the maximum or
minimum of a function whose variables are not independent but have some pre-
scribed relation. In structural mechanics the function is potential energy I1, and
the variables are d.o.f. in {D}. System unknowns become {D} and the Lagrange
multipliers,

The theory is easy to describe, We write the constraint equation (Eq. 9.1-1} as
the homogeneous equation [CKD} — {Q} = {0} and multiply its left-hand side by
a row vector {A}? that contains as many Lagrange muitipliers A; as there are
constraint eguations. Next we add the result to the potential expression, Eq.
4.1-7:

I, = § {D[K}D} — (DR} + {A}([CHD} - {Q 9.2-1)

The expression in parentheses is zero, so we have added nothing to I1,,. Next we
make T, stationary by writing the equations {3I1,/6D} = {0} and {aI1,/3A} = {0},
following differentiation rules stated in Appendix A. The result is

Ralt 022

The lower partition of Egs. 9.2-2is Eq. 9.1-1, the equation of constraint. Equations
9.2-2 are solved for both {D} and {A}. The A; may be interpreted as forces of
constraint (see the following example problem).

Strict partitioning—that is, {D} followed by {A} in Eq. 9.2-2—increases band-
width to the maximum. If instead the D; and A; are interlaced, bandwidth can be
much less, although not as small as when the A; are absent. However, in a Gauss
elimination solution with pivoting on the diagonal, a zero pivot appears if 2 con-
straint equation is processed before any of the d.o.f. to which it is coupled.
Otherwise, the null submatrix fills in and the sclution proceeds normally if the
stiffness matrix [K] is by itself positive definite.
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