Question 1 (20 points)

Figure 1a shows a cantilever member with length, *L*, moment of inertia, *I*, and a Young's modulus, *E*. Its lateral response is shown in Figure 1b. We would like to approximate the cantilever member with a zero-length rotational element and an elastic beam-column element as shown in Figure 1c. The zero-length element is assumed to be infinitely stiff compared to the elastic beam-column element ("n" times stiffer than the corresponding beam).

Answer the following questions by showing all your derivations:

- 1. Express the rotational stiffness of the spring, $k_1^{(1)}$ as a function of k, E, I and L.
- 2. Express the post-yield hardening ratio, a_s , of the spring as a function of n.
- 3. Express the post-capping hardening ratio, a_c , of the spring as a function of n.

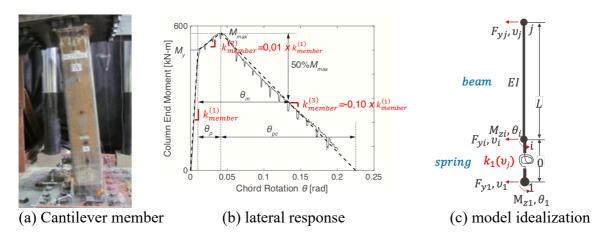


Figure 1. Cantilever member and model idealization

Solution

In all cases,

$$\begin{aligned} k_{member} &= k_{numerical \, model} = \frac{1}{\frac{1}{k_1^i} + \frac{1}{k_{beam}}} \end{aligned}$$

- If the elastic beam is rotationally rigid then, k_{beam} ~ infinite
 - Elastic range: $k_1^{(1)} = 3EI/L$
 - Post yield range : $k_1^{(2)} = 0.01 \times k_1^{(1)}$
 - Post capping range: $k_1^{(3)} = -0.10 \times k_1^{(1)}$

$$k_1^{(1)} = nk_{beam}$$
 (infinitely stiff in the elastic range, you can assume, n = 10)

$$k_{member} = \frac{1}{\frac{1}{k_1^{(1)}} + \frac{1}{k_{beam}}} = \frac{n \cdot k_{beam}^2}{(1+n) \cdot k_{beam}} \Rightarrow$$

$$k_{beam} = \frac{1+n}{n} \cdot k_{member} = \frac{1+n}{n} \cdot \frac{3EI}{L}$$

Hence,

$$k_1^{(1)} = (1+n) \cdot k_{member} = (1+n) \cdot \frac{3EI}{L}$$

CIVIL 449 – Nonlinear Analysis of Structures – 2020 Exam questions and solutions

$$k_{member}^{(2)} = \frac{1}{\frac{1}{k_1^{(2)} + \frac{1}{k_{beam}}}} = \frac{a_s \cdot k_1^{(1)} \cdot k_{beam}}{a_s \cdot k_1^{(1)} + k_{beam}}$$
(assume $k_1^{(2)} = a_s k_1^{(1)}$)

$$k_{member}^{(2)} = \frac{a_s \cdot (1+n) \cdot k_{member} \cdot \frac{1+n}{n} \cdot k_{member}}{a_s \cdot (1+n) \cdot k_{member} + \frac{1+n}{n} \cdot k_{member}}$$

$$0.01 \cdot k_{member} = k_{member}^{(2)} = \frac{a_s \cdot (1+n) \cdot \frac{1+n}{n} \cdot k_{member}}{a_s \cdot (1+n) + \frac{1+n}{n}}$$

$$0,01 = \frac{a_s \cdot (1+n) \cdot \frac{1+n}{n}}{a_s \cdot (1+n) + \frac{1+n}{n}}$$

$$0.01a_s(1+n)n - a_s(1+n)^2 = -0.03(1+n)$$

$$a_{S} = \frac{-0.01}{0.03n - n - 1}$$

and

$$a_{s,post-capping} = \frac{0.10}{-0.10n-n-1}$$

Question 2 (50 points + 10 points bonus)

Part A (10 points)

- 1. Provide at least three shortcomings of displacement-based beam-column elements.
- 2. Explain why the state determination of force-based beam-column elements is challenging compared to displacement-based elements?

Part B (40 points + 10 points bonus)

The tapered beam shown in Figure 2 has a linear elastic material. The material modulus of elasticity E is constant. The beam depth changes linearly from 2d at the fixed support to d at the tip. The beam width, b, is constant. This beam is analyzed with a single displacement-based beam-column element with two nodes. The left note is *Node-i* and the right node is *Node-j* as shown in the figure.

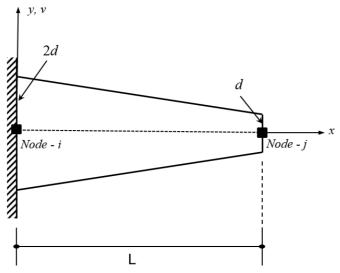


Figure 2. tapered element

The transverse displacement field v(x) along the beam is approximated by the Euler-Bernoulli beam theory assumptions and,

$$v(x) = \left[3\left(\frac{x}{L}\right)^2 - 2\left(\frac{x}{L}\right)^3\right]v_j + \left[\frac{x^3}{L^2} - \frac{x^2}{L}\right]\theta_j \tag{1}$$

From the above displacement field, the curvature field k(x) can be calculated to get the following transformation matrix,

$$k(x) = \mathbf{B}(\mathbf{x}) \cdot \begin{Bmatrix} v_j \\ \theta_i \end{Bmatrix}$$
 (2)

With the use of the principle of virtual displacement method, the resulting stiffness matrix of the element is 2x2 and can be calculated as:

$$\mathbf{k} = \int_0^L [\mathbf{B}(\mathbf{x})]^T \mathbf{k}_s(x) [\mathbf{B}(\mathbf{x})] dx$$
 (3)

Where $\mathbf{k}_s(x) = EI(x)$ is the section stiffness matrix.

Answer to the following questions:

- 1. (10 points) What type of numerical integration method do you propose in order to calculate the above stiffness matrix "numerically exact"? How many integration points should be used with this method and explain why?
- 2. (20 points) Calculate the "numerically exact" stiffness matrix.
- 3. (10 points) Is this stiffness matrix the "theoretically exact" stiffness matrix for this tapered beam? Explain why?
- 4. **Bonus:** Calculate the "theoretically exact" stiffness matrix (10 extra points)

Solution

Part A

Question 1:

- The assumed cubic interpolation functions result in linear curvature and constant axial strain along the member.
- Have well-known issues when it comes to softening
- Generally require a large number of element segments (fine discretization mesh in the inelastic regions) to trace accurately the strain gradient along a member.
- A fine mesh (i.e., more element segments to discretize a member) increase the number of degrees-of-freedom of the problem thereby causing increased computational cost.

Ouestion 2:

The state determination computation is challenging because (a) the flexibility (not stiffness) matrix and (b) the deformation vector that corresponds to the applied forces should be computed.

Part B

1. What type of numerical integration method do you propose in order to calculate the above stiffness matrix "numerically exact"? How many integration points should be used with this method and explain why?

Since this is a problem with linear elasticity I propose to use Gauss-Legendre (herein just Gauss) quadrature because this method gives the best accuracy for the number of points required. The number of integration points is to be determined based on the order of the polynomial function to be integrated.

First the transverse displacement is defined,

$$ln[2]:= v = {3 * (x / l) ^2 - 2 (x / l) ^3, x^3 / l^2 - x^2 / l};$$

The second derivative of the displacement field is required to obtain the strain-displacement matrix for flexure, B (strainDispMat),

Out[4]//MatrixForm= $\begin{pmatrix} \frac{6}{l^2} - \frac{12 x}{l^3} \\ -\frac{2}{l^2} + \frac{6 x}{l^2} \end{pmatrix}$

Next, I define the moment of inertia as a function of x (ix),

$$ln[5]:= ix = b / 12 * (2 * d - d * x / l) ^3 // FullSimplify$$

Out[5]=
$$\frac{1}{12} b d^3 \left(2 - \frac{x}{1}\right)^3$$

The term b $d^3/12$ is defined as I_0 (i0) that represents the moment of inertia at the fixed end, and the substitution is made

$$ln[6]:= ix = ix /. (b * d^3 / 12 \rightarrow i0)$$

Out[6]=
$$i0 \left(2 - \frac{x}{l}\right)^3$$

The stiffness matrix to be computed is

$$k = \int_0^L B^T k_s B dx = \int_0^L f[x] dx,$$

Since we are using numerical integration I define the integrand f[x] as a function of x. This is a 2x2 matrix function.

Out[8]//MatrixForm=

$$\begin{pmatrix} & \text{ee i0} \left(\frac{6}{l^2} - \frac{12\,x}{l^3}\right)^2 \left(2 - \frac{x}{l}\right)^3 & \text{ee i0} \left(\frac{6}{l^2} - \frac{12\,x}{l^3}\right) \left(-\frac{2}{l} + \frac{6\,x}{l^2}\right) \left(2 - \frac{x}{l}\right)^3 \\ \text{ee i0} \left(\frac{6}{l^2} - \frac{12\,x}{l^3}\right) \left(-\frac{2}{l} + \frac{6\,x}{l^2}\right) \left(2 - \frac{x}{l}\right)^3 & \text{ee i0} \left(-\frac{2}{l} + \frac{6\,x}{l^2}\right)^2 \left(2 - \frac{x}{l}\right)^3 \end{pmatrix}$$

Note that the highest power of x in f[x] is x^5 . Gauss quadrature integrates polynomials exactly to the order of 2m-1, therefore 3-point integration is required

2. Calculate the "numerically exact" stiffness matrix.

The integration will now be done with Gauss quadrature. The three Gauss points and associated weights are:

r1 = 0, w1 = 8/9

r2 = -Sqrt[3/5], w2 = 5/9

r3 = Sqrt[3/5], w3 = 5/9

We also need the conversion between the natural coordinates r, and the given coordinates x:

2 | civil499_prob2_soln.nb

I define three functions for each of the entries of the matrix function f[x], note that $f_1 = f_2 = f_2$ due to symmetry of the stiffness matrix:

Integration point 1 (r1 = 0):

Integration point 2 (r2 = -Sqrt[3/5]):

$$\begin{array}{ll} & \text{In}(20) = & \text{f11}[\text{rt} 2 = \text{f11}[\text{rt} 2]] \\ & \text{Out}(20) = & \frac{145.203 \text{ ee i0}}{l^4} \\ & \text{In}(21) = & \text{f12}[\text{rt} 2 = \text{f12}[\text{rt} 2]] \\ & \text{Out}(21) = & -\frac{41.3588 \text{ ee i0}}{l^3} \\ & \text{In}(22) = & \text{f22}[\text{rt} 2]] \\ & \text{Out}(22) = & \frac{11.7804 \text{ ee i0}}{l^2} \end{array}$$

Integration point 3 (r3 = -Sqrt[3/5]):

$$\begin{array}{ll} & \text{In[23]:=} & \text{f11[pt3] = f11[r[r3]]} \\ & \text{Out[23]:=} & \frac{29.7571 \, \text{ee i0}}{l^4} \\ & \text{In[24]:=} & \text{f12pt3 = f12[r[r3]]} \\ & \text{Out[24]:=} & -\frac{21.2812 \, \text{ee i0}}{l^3} \\ & \text{In[25]:=} & \text{f22pt3 = f22[r[r3]]} \\ & \text{Out[25]:=} & \frac{15.2196 \, \text{ee i0}}{l^2} \\ \end{array}$$

civil499_prob2_soln.nb |3

Weighted sum

The integral is computed using Gauss quadrature

The numerically exact stiffness matrix is:

$$\left(\begin{array}{cc} \frac{48.6 \, \text{EI}_0}{\textit{L}^3} & \frac{-17.4 \, \text{EI}_0}{\textit{L}^2} \\ \\ \frac{-17.4 \, \text{EI}_0}{\textit{L}^2} & \frac{9 \, \text{EI}_0}{\textit{L}} \end{array} \right)$$

3. Is this stiffness matrix the "theoretically exact" stiffness matrix for this tapered beam? Explain why or why not?

The stiffness matrix computed using Gauss quadrature is the "theoretically exact" stiffness matrix disregarding any round-off errors introduced by finite-precision computations. This is because of our choice of 3-point Gaussian quadrature as explained earlier.

4. Bonus: Calculate the "theoretically exact" stiffness matrix (** extra points)

The "theoretically exact" stiffness matrix is found by evaluating the integral of f[x] analytically.

Evaluating each of the terms of f[x] individually to show potential steps,

The 1,1 entry

$$\begin{array}{l} & \text{Integrate} \left[\text{f11[x], x} \right] \\ & \text{Out[28]=} & \frac{36 \text{ ee i0} \left(8 \, \mathbb{I}^5 \, \text{x} - 22 \, \mathbb{I}^4 \, \text{x}^2 + \frac{86 \, \mathbb{I}^3 \, \text{x}^3}{3} - \frac{73 \, \mathbb{I}^2 \, \text{x}^4}{4} + \frac{28 \, \mathbb{I} \, \text{x}^5}{5} - \frac{2 \, \text{x}^6}{3} \right)}{\mathbb{I}^9} \\ & \text{Integrate} \left[\text{f11[x], \{x, 0, \mathbb{I}\}} \right] \\ & \text{Out[29]=} & \frac{243 \, \text{ee i0}}{5 \, \mathbb{I}^3} \end{array}$$

The 1,2 entry

$$\begin{split} & & \text{Integrate} \left[\text{f12} \left[\text{x} \right], \text{x} \right] \\ & & \text{Out} [30] = & - \frac{12 \text{ ee i0} \left(8 \text{ l}^5 \text{ x} - 26 \text{ l}^4 \text{ x}^2 + 38 \text{ l}^3 \text{ x}^3 - \frac{103 \text{ l}^2 \text{ x}^4}{4} + \frac{41 \text{ l} \text{ x}^5}{5} - \text{ x}^6 \right)}{\text{l}^8} \\ & & \text{In} [31] = & & \text{Integrate} \left[\text{f12} \left[\text{x} \right], \left\{ \text{x}, \text{0}, \text{l} \right\} \right] \\ & & \text{Out} [31] = & - \frac{87 \text{ ee i0}}{5 \text{ l}^2} \end{split}$$

The 2,2 entry

$$\begin{split} & \text{Integrate} \left[\text{f22}[x] \;,\; x \right] \\ & \text{Out} \text{(32)=} & \frac{4 \; \text{ee} \; \text{i} \; 0 \; \left(8 \; \text{l}^5 \; x - 30 \; \text{l}^4 \; x^2 + 50 \; \text{l}^3 \; x^3 - \frac{145 \; \text{l}^2 \; x^4}{4} + 12 \; \text{l} \; x^5 - \frac{3 \; x^6}{2} \right)}{\text{l}^7} \\ & \text{In} \text{(33)=} & \text{Integrate} \left[\text{f22}[x] \;,\; \{x \;,\; 0 \;,\; \text{l} \} \right] \\ & \text{Out} \text{(33)=} & \frac{9 \; \text{ee} \; \text{i} \; 0}{\text{l}} \\ \end{aligned}$$

4 civil499_prob2_soln.nb

Complete matrix

$$\label{eq:local_local} $$ \inf(34)=$ kTheory = Integrate[f[x], \{x, 0, l\}] // FullSimplify; $$ kTheory // MatrixForm$$

Out[35]//MatrixForm=

$$\begin{pmatrix} \frac{243 \text{ ee i 0}}{5 \, l^3} & -\frac{87 \text{ ee i 0}}{5 \, l^2} \\ -\frac{87 \text{ ee i 0}}{5 \, l^2} & \frac{9 \text{ ee i 0}}{l} \end{pmatrix}$$

Evaluating this matrix numerically yields

Out[36]//MatrixForm=

ixForm=
$$\begin{pmatrix} \frac{48.6 \text{ ee i 0}}{2^3} & -\frac{17.4 \text{ ee i 0}}{2^2} \\ -\frac{17.4 \text{ ee i 0}}{2^2} & \frac{9. \text{ ee i 0}}{2} \end{pmatrix}$$

As expected, the numerical and analytical stiffness matrices correspond.

CIVIL 449 Final Exam Problem 2 Solutions

1. What type of numerical integration method do you propose in order to calculate the above stiffness matrix "numerically exact"? How many integration points should be used with this method and explain why?

Since this is a problem with linear elasticity I propose to use Gauss-Legendre (herein just Gauss) quadrature because this method gives the best accuracy for the number of points required. The number of integration points is to be determined based on the order of the polynomial function to be integrated.

First the transverse displacement is defined,

$$ln[2] = V = \{3 * (x / 1) ^2 - 2 (x / 1) ^3, x^3 / 1^2 - x^2 / 1\};$$

The second derivative of the displacement field is required to obtain the strain-displacement matrix for flexure, B (strainDispMat),

Out[4]//MatrixForm

$$\left(\begin{array}{c}
\frac{6}{l^2} - \frac{12 x}{l^3} \\
-\frac{2}{l} + \frac{6 x}{l^2}
\right)$$

Next, I define the moment of inertia as a function of x (ix),

$$ln[5]:= ix = b / 12 * (2 * d - d * x / l) ^3 // FullSimplify$$

Out[5]=
$$\frac{1}{12}$$
 b d³ $\left(2-\frac{x}{l}\right)^3$

The term b $d^3/12$ is defined as I_0 (i0) that represents the moment of inertia at the fixed end, and the substitution is made

$$ln[6] := ix = ix /. (b * d^3 / 12 \rightarrow i0)$$

Out[6]=
$$i0 \left(2-\frac{x}{l}\right)^3$$

The stiffness matrix to be computed is

$$k = \int_0^L B^T k_s B dx = \int_0^L f[x] dx,$$

Since we are using numerical integration I define the integrand f[x] as a function of x. This is a 2x2 matrix function.

Out[8]//MatrixForm=

$$\left(\begin{array}{cccc} \text{ee i0} \left(\frac{6}{l^2} - \frac{12\,x}{l^3} \right)^2 \left(2 - \frac{x}{l} \right)^3 & \text{ee i0} \left(\frac{6}{l^2} - \frac{12\,x}{l^3} \right) \left(-\frac{2}{l} + \frac{6\,x}{l^2} \right) \left(2 - \frac{x}{l} \right)^3 \\ \text{ee i0} \left(\frac{6}{l^2} - \frac{12\,x}{l^3} \right) \left(-\frac{2}{l} + \frac{6\,x}{l^2} \right) \left(2 - \frac{x}{l} \right)^3 & \text{ee i0} \left(-\frac{2}{l} + \frac{6\,x}{l^2} \right)^2 \left(2 - \frac{x}{l} \right)^3 \end{array} \right)$$

Note that the highest power of x in f[x] is x^5 . Gauss quadrature integrates polynomials exactly to the order of 2m-1, therefore 3-point integration is required.

2. Calculate the "numerically exact" stiffness matrix.

The integration will now be done with Gauss quadrature. The three Gauss points and associated weights are:

$$r1 = 0, w1 = 8/9$$

$$r2 = -Sqrt[3/5], w2 = 5/9$$

$$r3 = Sqrt[3/5], w3 = 5/9.$$

We also need the conversion between the natural coordinates \mathbf{r} , and the given coordinates \mathbf{x} :

I define three functions for each of the entries of the matrix function f[x], note that $f_12 = f_21$ due to symmetry of the stiffness matrix:

In[14]:=
$$f11[x_{]} = f[x][[1, 1]]$$

 $f12[x_{]} = f[x][[1, 2]]$
 $f22[x_{]} = f[x][[2, 2]]$
Out[14]= $ee i0 \left(\frac{6}{l^{2}} - \frac{12x}{l^{3}}\right)^{2} \left(2 - \frac{x}{l}\right)^{3}$
Out[15]= $ee i0 \left(\frac{6}{l^{2}} - \frac{12x}{l^{3}}\right) \left(-\frac{2}{l} + \frac{6x}{l^{2}}\right) \left(2 - \frac{x}{l}\right)^{3}$
Out[16]= $ee i0 \left(-\frac{2}{l} + \frac{6x}{l^{2}}\right)^{2} \left(2 - \frac{x}{l}\right)^{3}$

Integration point 1 (r1 = 0):

Integration point 2 (r2 = -Sqrt[3/5]):

$$\begin{array}{ll} & \text{In}[20] \coloneqq & \text{f11pt2} = \text{f11}[\text{r}[\text{r2}]] \\ & \text{Out}[20] \coloneqq & \frac{145.203 \text{ ee i 0}}{l^4} \\ & \text{In}[21] \coloneqq & \text{f12pt2} = \text{f12}[\text{r}[\text{r2}]] \\ & \text{Out}[21] \coloneqq & -\frac{41.3588 \text{ ee i 0}}{l^3} \\ & \text{In}[22] \coloneqq & \text{f22pt2} = \text{f22}[\text{r}[\text{r2}]] \\ & \text{Out}[22] \coloneqq & \frac{11.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] \coloneqq & \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] = \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] = \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out}[22] = \frac{12.7804 \text{ ee i 0}}{l^2} \\ & \text{Out$$

Integration point 3 (r3 = -Sqrt[3/5]):

$$\begin{array}{ll} & \text{In}[23]\text{:=} & \text{f11pt3} = \text{f11}[\text{r}[\text{r3}]] \\ & \\ & \text{Out}[23]\text{=} & \frac{29.7571\,\text{ee}\,\text{i}0}{l^4} \\ & \\ & \text{In}[24]\text{:=} & \text{f12pt3} = \text{f12}[\text{r}[\text{r3}]] \\ & \\ & \text{Out}[24]\text{=} & -\frac{21.2812\,\text{ee}\,\text{i}0}{l^3} \\ & \\ & \text{In}[25]\text{:=} & \text{f22pt3} = \text{f22}[\text{r}[\text{r3}]] \\ & \\ & \text{Out}[25]\text{=} & \frac{15.2196\,\text{ee}\,\text{i}0}{l^2} \\ \end{array}$$

Weighted sum

The integral is computed using Gauss quadrature

Out[27]//MatrixForm=

$$\begin{pmatrix} \frac{48.6 \, \text{ee i0}}{l^3} & -\frac{17.4 \, \text{ee i0}}{l^2} \\ -\frac{17.4 \, \text{ee i0}}{l^2} & \frac{9. \, \text{ee i0}}{l} \end{pmatrix}$$

The numerically exact stiffness matrix is:

$$\begin{pmatrix} \frac{48.6 \,\mathrm{EI_0}}{L^3} & \frac{-17.4 \,\mathrm{EI_0}}{L^2} \\ \frac{-17.4 \,\mathrm{EI_0}}{L^2} & \frac{9 \,\mathrm{EI_0}}{L} \end{pmatrix}$$

3. Is this stiffness matrix the "theoretically exact" stiffness matrix for this tapered beam? Explain why or why not?

The stiffness matrix computed using Gauss quadrature is the "theoretically exact" stiffness matrix disregarding any round-off errors introduced by finite-precision computations. This is because of our choice of 3-point Gaussian quadrature as explained earlier.

4. Bonus: Calculate the "theoretically exact" stiffness matrix (** extra points)

The "theoretically exact" stiffness matrix is found by evaluating the integral of f[x] analytically.

Evaluating each of the terms of f[x] individually to show potential steps,

The 1,1 entry

The 1,2 entry

The 2,2 entry

$$\begin{aligned} &\text{Integrate} \Big[\text{f22[x], x} \Big] \\ &\text{Out[32]=} & \frac{4 \text{ ee i0 } \left(8 \text{ l}^5 \text{ x} - 30 \text{ l}^4 \text{ x}^2 + 50 \text{ l}^3 \text{ x}^3 - \frac{145 \text{ l}^2 \text{ x}^4}{4} + 12 \text{ l x}^5 - \frac{3 \text{ x}^6}{2} \right)}{\text{l}^7} \\ &\text{In[33]:=} & \text{Integrate} \Big[\text{f22[x], \{x, 0, l\}} \Big] \\ &\text{Out[33]=} & \frac{9 \text{ ee i0}}{\text{l}} \end{aligned}$$

Complete matrix

Out[35]//MatrixForm=

$$\begin{pmatrix} \frac{243 \text{ ee i0}}{5 \text{ l}^3} & -\frac{87 \text{ ee i0}}{5 \text{ l}^2} \\ -\frac{87 \text{ ee i0}}{5 \text{ l}^2} & \frac{9 \text{ ee i0}}{\text{ l}} \end{pmatrix}$$

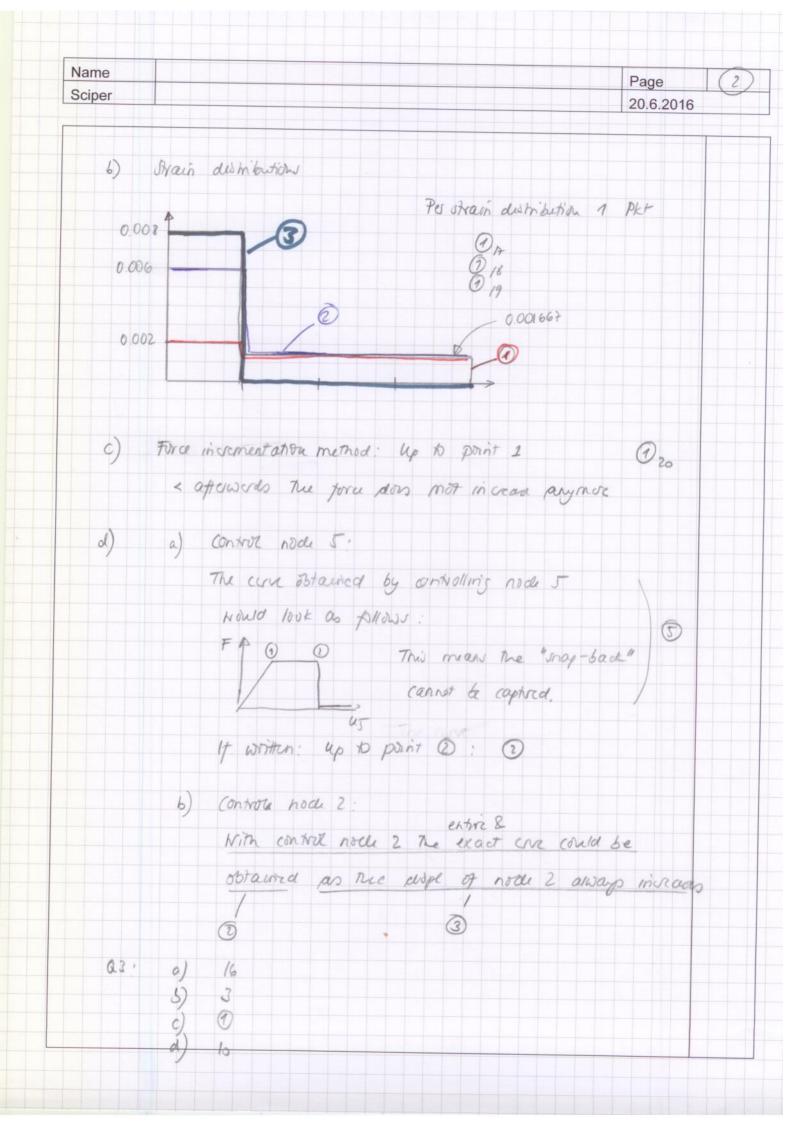
Evaluating this matrix numerically yields

Out[36]//MatrixForm=

$$\begin{pmatrix} \frac{48.6 \, \text{ee i0}}{l^3} & -\frac{17.4 \, \text{ee i0}}{l^2} \\ -\frac{17.4 \, \text{ee i0}}{l^2} & \frac{9. \, \text{ee i0}}{l} \end{pmatrix}$$

As expected, the numerical and analytical stiffness matrices correspond.

	Page	(1
Sciper	20.6.2016	
Solution Q3		
00/00/000 002		
0) 0 a Pa 4		
	The bis that yields ? either stated explicitly	
Oz ATI OTW	bou remain elastic I st implicately (through	
	asurptions in calculations)	
· Force - ole	iplacement relativiship of bu 1	
ETAN) E	m_3 awieme: $A = 0.01 \text{ m}^2$	
0 03		
A 6/2 - 2,0	c. (, = 0.002. 0.7 = 0.0002 Qy	
	E. C1 = 0.006. 0.1 = 0.0006 @5	
0	E. (1 = 0.008 0.1 = 0.0008 D6	
	formation of $6.2 - 4$ / $\Delta = \epsilon \cdot (c_1 + c_3 + c_4) = \frac{200}{240} \cdot 0.002 \cdot 0.3$	
. F	tea β calculate = 0.0005 [m] $\alpha r = \alpha + \alpha$	
. F	lea & calculate = 0.0005 [m]	
• F [M]	tea Δ calculate = 0.0005 [m] $u_5 = u_2 + \Delta$	
. F [M]	tea Δ calculate = 0.0005 [m] $u_5 = u_2 + \Delta$	
. F [M]	tea Δ calculate = 0.0005 [m] $u_5 = u_2 + \Delta$	
. F [17]N] 0 0 0 0 0 0 2	Lea Δ calculate = 0.0005 Em ? $U_5 = U_2 + \Delta$ Em ? $O + O = O$ $O 0002 + 0.0005 = 0.0007$ $O = O$	
O 7 - 10 . F [ITIN] O O O O O O O O O O O O O	tea Δ calculate = 0.0005 [m] $u_5 = u_2 + \Delta$	
. F [M]	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
0 7 - 10 F CTINJ O 2 O 2 O 3 O 4 O 7	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
0 7 - 10 F [171N] 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
0 F CONT	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
0 7 - 10 F [171N] 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
0 F CONT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 F CONT	$\begin{array}{llllllllllllllllllllllllllllllllllll$	



Name	Page (
Sciper	20.6.2016
Solution QY a	
orialish of fax	
a) $\vec{F} = \begin{bmatrix} -8.12 \\ +8.12 \end{bmatrix}$ On, 2 for evry incorrect compones	nt -0.5
L P	
$\vec{F} = \vec{\kappa} \cdot \vec{u} \Theta_3$	
$\vec{F} = \underline{k} \cdot \vec{u} \Theta_{3}$	
[1.35 0.25 0 0 -1. 0]	42 / V2 /
/ 1.25 0 -1 0 0 /	
b) $t_{gisbal} = \begin{cases} 1.5 & 0.5 - 0.5 - 0.5 \\ 3ym & (5 - 0.5 - 0.5) \\ 1.5 & 0.5 \end{cases}$ by $u_{cona} = \begin{cases} u_{cona} = 0.5 \\ u_{cona} = 0.5 \\ u_{cona} = 0.5 \end{cases}$	<i>u</i> ₃
Jym (T-05-01	4
[1,5 0,5 Dy U	9
C	
c) Indired support $u_3 = V_3$ or $u_3 - V_3 = 0$	25,6
[1.35 0.35 0 0 - 1 -1 0]	
1 135 0 -1 0 0	
Kperaty = 15+00+05-0-05 coined	+ P 10
0500 15+0 -05 -05 enry m	state -1
1.T 0.5 ENG 11.	
107	
) 8 4 OH, 12	
F = 98/Y — Supply modelled with peralty method up in force vecks	-) does not that
of the second	
$F_p = K_p u \qquad u = inv(k_p) \cdot F_p$	
$F_{p} = K_{p} u \qquad u = inv(k_{p}) \cdot F_{p}$ $G_{14,17}$	
TH, IT	

