CIVIL 449 — Nonlinear Analysis of Structures — 2020 Exam questions and solutions

Question 1 (20 points)

Figure la shows a cantilever member with length, L, moment of inertia, I, and a Young’s
modulus, E. Its lateral response is shown in Figure 1b. We would like to approximate the
cantilever member with a zero-length rotational element and an elastic beam-column element
as shown in Figure lc. The zero-length element is assumed to be infinitely stiff compared to
the elastic beam-column element (“n” times stiffer than the corresponding beam).

Answer the following questions by showing all your derivations:

1. Express the rotational stiffness of the spring, kil) as a function of k, E, I and L.
2. Express the post-yield hardening ratio, a, of the spring as a function of n.
3. Express the post-capping hardening ratio, a., of the spring as a function of n.
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Figure 1. Cantilever member and model idealization
Solution

In all cases,

kmember = knumerical model — 1 1

ki kbeam

= |f the elastic beam is rotationally rigid then, A, ~ infinite

* Elastic range: k("= 3El/L
* Post yield range : K@= 0,01x 40
* Post capping range: 4@ =- 0,10 x 4

(1) _ P e . _
k1 = nkbeam (infinitely stiff in the elastic range, you can assume,n = 10)

k _ 1 _ n- kl%eam
member L + 1 (1+n) - kpeam
k;l) kbeam
1+n 1+n 3EI
kpeam = T * Kmember = n : I

Hence,

1) 3EI
k1 =(1 +n) * kmemper = (1 +n) T
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0.01-k _ k(z) as-(1+n)- T kmember
) * Rmember —

as-(1+n)+1+n

n
as-(1+n)-1+n
ag-(1+n)+

n

0,01a,(1 +n)n —ag(1 +n)? = —0,03(1 +n)

. —001
s =0,03n—n—1
and

0.10
Qs,post—capping = —010n—n—1
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Question 2 (50 points + 10points bonus)

Part A (10 points)
1. Provide at least three shortcomings of displacement-based beam-column elements.
2. Explain why the state determination of force-based beam-column elements is
challenging compared to displacement-based elements?

Part B (40 points + 10 points bonus)

The tapered beam shown in Figure 2 has a linear elastic material. The material modulus of
elasticity E is constant. The beam depth changes linearly from 2d at the fixed support to d at
the tip. The beam width, b, is constant. This beam is analyzed with a single displacement-based
beam-column element with two nodes. The left note is Node-i and the right node is Node-j as
shown in the figure.

—— - - = - - -

| L
Figure 2. tapered element

The transverse displacement field v(x) along the beam is approximated by the Euler-Bernoulli
beam theory assumptions and,

v =[3(2) —2() |+ [E-1]a (M

From the above displacement field, the curvature field k(x) can be calculated to get the
following transformation matrix,

k(x) = BX) - {Zj | @)

With the use of the principle of virtual displacement method, the resulting stiffness matrix of
the element is 2x2 and can be calculated as:

k = [ [B)] k,(x) [BX)]dx 3)
Where K (x) = EI(x) is the section stiffness matrix.

Answer to the following questions:
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1. (10 points) What type of numerical integration method do you propose in order to
calculate the above stiffness matrix “numerically exact”? How many integration points
should be used with this method and explain why?

2. (20 points) Calculate the “numerically exact” stiffness matrix.

3. (10 points) Is this stiffness matrix the “theoretically exact” stiffness matrix for this
tapered beam? Explain why?

4. Bonus: Calculate the “theoretically exact” stiffness matrix (10 extra points)

Solution
Part A

Question 1:

The assumed cubic interpolation functions result in linear curvature and constant axial
strain along the member.

Have well-known issues when it comes to softening

Generally require a large number of element segments (fine discretization mesh in the
inelastic regions) to trace accurately the strain gradient along a member.

A fine mesh (i.e., more element segments to discretize a member) increase the number
of degrees-of-freedom of the problem thereby causing increased computational cost.

Question 2:

The state determination computation is challenging because (a) the flexibility (not stiffness)
matrix and (b) the deformation vector that corresponds to the applied forces should be
computed.
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Part B

1. What type of numerical integration method do you propose in order to calculate the above stiffness

matrix “numerically exact”? How many integration points should be used with this method and explain
why?

Since this is a problem with linear elasticity I propose to use Gauss-Legendre (herein just Gauss) quadrature because this method gives the
best accuracy for the number of points required. The number of integration points is to be determined based on the order of the polynomial
function to be integrated.

First the transverse displacement is defined,
2= V= {3% (Xx/1)A2-2 (x/1)A3, xA3/1A2-x"2/1};
The second derivative of the displacement field is required to obtain the strain-displacement matrix for flexure, B (strainDispMat),
ngi= strainDispMat = D[v, {x, 2}];
strainDispMat // MatrixForm

Out[4}/MatrixForm=

6 12 x
v
2 n 6 x
[T

Next, I define the moment of inertia as a function of x (ix),

5= iX=b/12% (2*d-d*x/1)A3 // FullSimplify
1 X3
ous= — b d® (2 - —]
12 1
The term b dA3/12 is defined as /; (i0) that represents the moment of inertia at the fixed end, and the substitution is made
nel= ix = ix /. (b*d"3/ 12 » 'i@)

X\ 3
outigl= 10 (2 - —]
1

The stiffness matrix to be computed is

k= ["B" k,Bdx = ["flx]dx,

Since we are using numerical integration I define the integrand f[x] as a function of x. This is a 2x2 matrix function.
n7= FIX_] = ee » ix » Outer [Times, strainDispMat, strainDispMat];

f[x] // MatrixForm

Out[8)/MatrixForm=

eeio (G- )7 (2-7)7 eedo (G (1T (2-7)
eede (S-ZX) (-2 %) (2-%)° eedo (- 2+ 2X)% (2- 1)

Note that the highest power of x in f[x] is x°. Gauss quadrature integrates polynomials exactly to the order of 2m-1, therefore 3-point
integration is required.

2. Calculate the “numerically exact” stiffness matrix.

The integration will now be done with Gauss quadrature. The three Gauss points and associated weights are:
r1=0,wl =8/9

2 =-Sqrt[3/5], w2 = 5/9

r3 = Sqrt[3/5], w3 = 5/9.

We also need the conversion between the natural coordinates r, and the given coordinates x:
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o= r1=03; wl=8./9.;
r2 =-Sqrt[3/5.];w2=5./9;
r3 =Sqrt[3/5.];w3=5./9;
rix_.1=1/2+xx1/2;
j =DIr[x], x];

1 define three functions for each of the entries of the matrix function f[x], note that f 12 = 21 due to symmetry of the stiffness matrix:

na= F110x_] = F[x][[1, 1]]
f12[x_] = f[x][[1, 2]]
f22[x_] = f[x]1[[2, 2]]

6 12x)2 X3
ouf14- ee 10 [— - J [2 - 7J
LS 1
6 12 x 2 6x X3
outisl- ee 10 [—f ] [f—+—] [2——
12 IS 1 12 1

2 6x)2 3

X
ouftel= ee i0 [— — — [2 - =
12 1

Integration point 1 (r1 = 0):

7= fllptl = f11l[r[r1]]

ou(17= 0
npep= f12ptl = f12[r([r1]]
out[igl= @
nrop= f22ptl = £22[r[r1]] // N
3.375eei0
12
Integration point 2 (r2 = -Sqrt[3/5]):
ineop= fllpt2 = f11[r[r2]]

Out[19]=

145.203 ee i0
14
nei= f12pt2 = f12[r[r2]]

out[20}=

41.3588 ee i0
13
nezp= f22pt2 = f22[r[r2]]

out21]= —

11.7804 ee i0
-LZ
Integration point 3 (r3 = -Sqrt[3/5]):
neai= f1lpt3 = f11[r([r3]]

Out[22]=

29.7571 ee i0
14
neap- F12pt3 = F12[r[r3]]

Out[23]=

21.2812 eei0
13
inesi= f22pt3 = f22[r[r3]]

outf24l= —

15.2196 ee i0
-LZ

Out[25]=
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Weighted sum

The integral is computed using Gauss quadrature
[Ffardx = Swi flrl
neel= k= (wl« {{fllptl, f12pt1}, {f12pt1, f22pt1}} + w2« {{f1lpt2, f12pt2}, {f12pt2, f22pt2}} +
w3 « {{f11pt3, f12pt3}, {f12pt3, f22pt3}}) j;
k // Chop // MatrixForm

Out[27]/MatrixForm=
48.6 ee 10 17.4eei0
v v
17.4 ee i@ 9. eei0
T 1

The numerically exact stiffness matrix is:

486El,  -174El
[ A r ]

~174El,  9El,
2 L

3. Is this stiffness matrix the “theoretically exact” stiffness matrix for this tapered beam? Explain why or
why not?

The stiffness matrix computed using Gauss quadrature is the “theoretically exact” stiffness matrix disregarding any round-off errors
introduced by finite-precision computations. This is because of our choice of 3-point Gaussian quadrature as explained earlier.

4. Bonus: Calculate the “theoretically exact” stiffness matrix (** extra points)

The “theoretically exact” stiffness matrix is found by evaluating the integral of f[x] analytically.
Evaluating each of the terms of f[x] individually to show potential steps,
The 1,1 entry

s Integrate[f11[x], x|

36eei0 (819x-22 14 x2, 10 B0, 20 20

out[28]=

‘L9
oy Integrate[f1l[x], {x, 0, 1}]
243 ee i0
oufe9}r —————
513
The 1,2 entry
naop= Integrate[f12[x], x|
12eei0 (81°x-261%x2+38 1% - o, ‘usﬁ,xe)
outf30)= —

'LS
nary= Integrate[f12[x], {x, 0, 1}]

87 ee i0
out[d3t}s - ——
512
The 2,2 entry

nazi- Integrate[f22[x], x|
4eei0 (81°x-3014x+50 12 x° - B PR
out[32]=

‘L7
naap- Integrate[f22[x], {x, 0, 1}]

9eeiod
out[33]=
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Complete matrix

343= kTheory = Integrate[f[x] , {X, 0, 'l.}] // FullSimplify;
kTheory // MatrixForm

Out[35]/MatrixForm=
243 ee i0 87 eeid
51° 512
87 ee 10 9eeid
T su 0

Evaluating this matrix numerically yields

inissl= N[kTheory] // MatrixForm

Out[36)/MatrixForm=

48.6 ee 10 17.4eei0
-
17.4 eei® 9. eeid

12 1

As expected, the numerical and analytical stiffness matrices correspond.



CIVIL 449 Final Exam Problem 2
Solutions

ni1= Clear ["Global‘ *"]

1. What type of numerical integration method do you propose in order to calculate the above stiffness

matrix “numerically exact”? How many integration points should be used with this method and explain
why?

Since this is a problem with linear elasticity I propose to use Gauss-Legendre (herein just Gauss) quadrature because this method gives the
best accuracy for the number of points required. The number of integration points is to be determined based on the order of the polynomial
function to be integrated.

First the transverse displacement is defined,
2= V= {3% (x/1)"2-2(x/1)"3, x*"3/1r2-x"2/1};

The second derivative of the displacement field is required to obtain the strain-displacement matrix for flexure, B (strainDispMat),
in@i= strainDispMat = D[v, {x, 2}];

strainDispMat // MatrixForm

Out[4]//MatrixForm=

6 12 x
[12 ©

6 x
1

2
- =+

1
Next, I define the moment of inertia as a function of x (ix),

nsl= iX=b/12% (2*xd-dxx/1) A3 // FullSimplify

1 X\3
ousle — b d? (2 - —J
12 1

The term b d*3/12 is defined as I, (i0) that represents the moment of inertia at the fixed end, and the substitution is made

nel= iX =ix /. (b*d’\3/12—>'iG)

X\ 3
outlel= 10 (2 - —

1

The stiffness matrix to be computed is

k=["B"kBdx = ["flx]dx,
Since we are using numerical integration I define the integrand f[x] as a function of x. This is a 2x2 matrix function.
n7= F[X_] = ee * ix » Outer [Times, strainDispMat, strainDispMat];

f[x] // MatrixForm

Out[8]//MatrixForm=

ee'iG)(f—z—l;X)z(2—%)3 ee'io(f—z—lf3x)(f%+6?:)( 71)3
eedo (L - 2X) (-2. %) (2-X)° eei0 (-2+ %) (2-X)°

Note that the highest power of x in f[x] is x°. Gauss quadrature integrates polynomials exactly to the order of 2m-1, therefore 3-point
integration is required.

2. Calculate the “numerically exact” stiffness matrix.

The integration will now be done with Gauss quadrature. The three Gauss points and associated weights are:
r1=0,wl =8/9

12 =-Sqrt[3/5], w2 = 5/9

13 = Sqrt[3/5], w3 = 5/9.

We also need the conversion between the natural coordinates r, and the given coordinates x:

Printed by Wolfram Mathematica Student Edition
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ngr= r1 =03 wl=8./9.;
r2=-Sqrt[3/5.];w2=5./9;
r3 =Sqrt[3/5.]; w3 =5./9;

rix_]=1/2+x*1/2;
j =DLr[x], x];
I define three functions for each of the entries of the matrix function f[x], note that f 12 =f_21 due to symmetry of the stiffness matrix:
4= F11[x_1 = f[x]1[[1, 1]]
fi2[x_] = f[x][[1, 2]]
f22[x_]1 = f[x]1[[2, 2]]

6 12x)2 X\ 3
out[14]- ee i0 (—— [2— —
12 13 1
6 12 x 2 6X X3
out[i5)= ee i0 (—— J [——Jr —J (2— —)
12 13 1 1? 1
2 6x\2 X3
outji6)= ee i0 (— —+ —J (2— —J
1 12 1

Integration point 1 (r1 = 0):

7= fllptl = f11[r[rl1]]

outj171= O

npep= f12ptl = f12[r[rl1]]

outj1g]= O

o= f22ptl = f22[r[r1]] // N
3.375ee 10

12

Integration point 2 (r2 = -Sqrt[3/5]):

ineoj= fllpt2 = f11[r[r2]]

out[19]=

145.203 ee i0
14
nei- f12pt2 = f12[r[r2]]

Out[20]=

41.3588 ee 0
'L3
ne2)= f22pt2 = f22[r[r2]]

outi21]= —

11.7804 ee i0
‘LZ
Integration point 3 (r3 = -Sqrt[3/5]):
3= f1llpt3 = f11[r[r3]]

out[22]=

29.7571 ee i0
'L4
4= F12pt3 = f12[r[r3]]

Out[23]=

21.2812 ee 0
T
niesi= £22pt3 = f22[r[r3]]

Out[24]= —

15.2196 ee i0
12

Out[25]=

Printed by Wolfram Mathematica Student Edition
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Weighted sum

The integral is computed using Gauss quadrature

[Ffix1dx = Swi flr1J
neei= k= (wlw {{fl1ptl, f12pt1}, {f12pt1, f22pt1}} +w2 « {{fllpt2, f12pt2}, {f12pt2, f22pt2}} +
w3« {{f11pt3, f12pt3}, {f12pt3, f22pt3}}) «j;
k // Chop // MatrixForm

Out[27]//MatrixForm=

48.6 ee i0 17.4 eei0
E T

_17.4eeii0 9. eeid
12 1

The numerically exact stiffness matrix is:

486El, -174E]
L."r LZ

~17.4El, 9El,
L L

3. Is this stiffness matrix the “theoretically exact” stiffness matrix for this tapered beam? Explain why or
why not?

The stiffness matrix computed using Gauss quadrature is the “theoretically exact” stiffness matrix disregarding any round-off errors
introduced by finite-precision computations. This is because of our choice of 3-point Gaussian quadrature as explained earlier.

4. Bonus: Calculate the “theoretically exact” stiffness matrix (** extra points)

The “theoretically exact” stiffness matrix is found by evaluating the integral of f[x] analytically.

Evaluating each of the terms of f[x] individually to show potential steps,
The 1,1 entry
nesi= Integrate [fll [x]1, X]

33 2,4 5 6
36eei0 (81°x-221%x? 4 B0 - B, 2 2

Out[28]=
19

o= Integrate[f11[x], {x, 0, 1}]
243 ee 10
out29)r ———
513
The 1,2 entry
na0- Integrate[f12[x], x]

10312 x*  411x° 6
+ X

12 ee i0 (815x—2614x2+3813x3—

4 5
out[30j= —
'L8
na- Integrate[f12[x], {x, 0, 1}]
87 ee i0
outdtls - ————
512
The 2,2 entry
In[32]:= Integrate[fZZ[x] , x]
4eei0 (815x—3014x2+5013x3- WSUX 121 x5 - 3;5

out[32]=

17
na- Integrate[f22[x], {x, 0, 1}]

9eeiid
Out[33]=
1

Printed by Wolfram Mathematica Student Edition
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Complete matrix

niz4)= kTheory = Integrate[f[x], {x, 0, 1}] // FullSimplify;
kTheory // MatrixForm

Out[35]//MatrixForm=

243 eei0 87 eei0
51 T s
87 ee i0 9eeid
T s 1

Evaluating this matrix numerically yields

6= N[kTheory] // MatrixForm

Out[36]//MatrixForm=

48.6 ee i0 17.4 ee i@
& T
17.4 eei0 9. eeid
12 1

As expected, the numerical and analytical stiffness matrices correspond.

Printed by Wolfram Mathematica Student Edition
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Sticky Note
Typo: +2

kbeyer
Sticky Note
Without the typo it is -20

kbeyer
Sticky Note
sqrt(2)*20=28.3
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