
CIVIL 449 – Nonlinear Analysis of Structures – 2020 Exam questions and solutions 

Question 1 (20 points) 
 
Figure 1a shows a cantilever member with length, 𝐿, moment of inertia, 𝐼, and a Young’s 
modulus, 𝐸. Its lateral response is shown in Figure 1b. We would like to approximate the 
cantilever member with a zero-length rotational element and an elastic beam-column element 
as shown in Figure 1c. The zero-length element is assumed to be infinitely stiff compared to 
the elastic beam-column element (“𝑛” times stiffer than the corresponding beam).  
 
Answer the following questions by showing all your derivations: 

1. Express the rotational stiffness of the spring, 𝑘!
(!) as a function of 𝑘, 𝐸, 𝐼 and 𝐿. 

2. Express the post-yield hardening ratio, 𝑎$, of the spring as a function of 𝑛. 
3. Express the post-capping hardening ratio, 𝑎%, of the spring as a function of 𝑛. 

 

            
(a) Cantilever member (b) lateral response (c) model idealization 
 

Figure 1. Cantilever member and model idealization 
 
Solution 
 
In all cases,  
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Question 2 (50 points + 10points bonus) 
 
Part A (10 points) 

1. Provide at least three shortcomings of displacement-based beam-column elements. 
2. Explain why the state determination of force-based beam-column elements is 

challenging compared to displacement-based elements? 
 
Part B (40 points + 10 points bonus) 
The tapered beam shown in Figure 2 has a linear elastic material. The material modulus of 
elasticity E is constant. The beam depth changes linearly from 2d at the fixed support to d at 
the tip. The beam width, b, is constant. This beam is analyzed with a single displacement-based 
beam-column element with two nodes. The left note is Node-i and the right node is Node-j as 
shown in the figure.  
 

 
Figure 2. tapered element 

 
The transverse displacement field 𝑣(𝑥) along the beam is approximated by the Euler-Bernoulli 
beam theory assumptions and, 
 

 𝑣(𝑥) = .3 02
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From the above displacement field, the curvature field 𝑘(𝑥) can be calculated to get the 
following transformation matrix,  
 

 𝑘(𝑥) = 𝐁(𝐱) ∙ ;
𝑣6
𝜃6<  (2) 

 
With the use of the principle of virtual displacement method, the resulting stiffness matrix of 
the element is 2x2 and can be calculated as: 
 
 𝐤 = ∫ [𝐁(𝐱)]7𝐤$(𝑥)

3
8

[𝐁(𝐱)]𝑑𝑥  (3) 
 
Where 𝐤$(𝑥) = 𝐸𝐼(𝑥) is the section stiffness matrix. 
 
Answer to the following questions: 
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1. (10 points) What type of numerical integration method do you propose in order to 

calculate the above stiffness matrix “numerically exact”? How many integration points 
should be used with this method and explain why? 

2. (20 points) Calculate the “numerically exact” stiffness matrix. 
3. (10 points) Is this stiffness matrix the “theoretically exact” stiffness matrix for this 

tapered beam? Explain why? 
4. Bonus: Calculate the “theoretically exact” stiffness matrix (10 extra points) 

 
Solution 
 
Part A 
Question 1: 

• The assumed cubic interpolation functions result in linear curvature and constant axial 
strain along the member. 

• Have well-known issues when it comes to softening 
• Generally require a large number of element segments (fine discretization mesh in the 

inelastic regions) to trace accurately the strain gradient along a member. 
• A fine mesh (i.e., more element segments to discretize a member) increase the number 

of degrees-of-freedom of the problem thereby causing increased computational cost. 
 
Question 2: 
The state determination computation is challenging because (a) the flexibility (not stiffness) 
matrix and (b) the deformation vector that corresponds to the applied forces should be 
computed. 
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Part B 

 

CIVIL 449 Final Exam Problem 2 
Solutions

In[1]:= Clear"Global`*"

1. What type of numerical integration method do you propose in order to calculate the above stiffness 
matrix “numerically exact”? How many integration points should be used with this method and explain 
why?
Since this is a problem with linear elasticity I propose to use Gauss-Legendre (herein just Gauss) quadrature because this method gives the
best accuracy for the number of points required. The number of integration points is to be determined based on the order of the polynomial
function to be integrated.
First the transverse displacement is defined,

In[2]:= v = {3 * (x / l)^2 - 2 (x / l)^3, x^3 / l^2 - x^2 / l};

The second derivative of the displacement field is required to obtain the strain-displacement matrix for flexure, B (strainDispMat),

In[3]:= strainDispMat = D[v, {x, 2}];
strainDispMat // MatrixForm

Out[4]//MatrixForm=
6
l2

- 12 x
l3

- 2
l
+ 6 x

l2

Next, I define the moment of inertia as a function of x (ix),

In[5]:= ix = b / 12 * (2 * d - d * x / l)^3 // FullSimplify

Out[5]=
1

12
b d3 2 -

x

l

3

The term b d^3/12 is defined as I0 (i0) that represents the moment of inertia at the fixed end, and the substitution is made

In[6]:= ix = ix /. b * d^3 / 12 → i0

Out[6]= i0 2 -
x

l

3

The stiffness matrix to be computed is

k = ∫0
LBT ks B dx = ∫0

L f [x] dx,

Since we are using numerical integration I define the integrand f[x] as a function of x. This is a 2x2 matrix function.

In[7]:= f[x_] = ee * ix * OuterTimes, strainDispMat, strainDispMat;

f[x] // MatrixForm
Out[8]//MatrixForm=

ee i0  6
l2

- 12 x
l3


2
2 - x

l
3 ee i0  6

l2
- 12 x

l3
 - 2

l
+ 6 x

l2
 2 - x

l
3

ee i0  6
l2

- 12 x
l3

 - 2
l
+ 6 x

l2
 2 - x

l
3 ee i0 - 2

l
+ 6 x

l2

2
2 - x

l
3

Note  that  the  highest  power  of  x  in  f[x]  is  x5.  Gauss  quadrature  integrates  polynomials  exactly  to  the  order  of  2m-1,  therefore  3-point
integration is required.

2. Calculate the “numerically exact” stiffness matrix.
The integration will now be done with Gauss quadrature. The three Gauss points and associated weights are:
r1 = 0, w1 = 8/9
r2 = -Sqrt[3/5], w2 = 5/9
r3 = Sqrt[3/5], w3 = 5/9.

We also need the conversion between the natural coordinates r, and the given coordinates x:

Printed by Wolfram Mathematica Student Edition
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In[9]:= r1 = 0; w1 = 8. / 9.;
r2 = -Sqrt[3 / 5.]; w2 = 5. / 9;
r3 = Sqrt[3 / 5.]; w3 = 5. / 9;
r[x_] = l / 2 + x * l / 2;
j = D[r[x], x];

I define three functions for each of the entries of the matrix function f[x], note that f_12 = f_21 due to symmetry of the stiffness matrix:

In[14]:= f11[x_] = f[x][[1, 1]]
f12[x_] = f[x][[1, 2]]
f22[x_] = f[x][[2, 2]]

Out[14]= ee i0
6

l2
-
12 x

l3

2

2 -
x

l

3

Out[15]= ee i0
6

l2
-
12 x

l3
-
2

l
+
6 x

l2
2 -

x

l

3

Out[16]= ee i0 -
2

l
+
6 x

l2

2

2 -
x

l

3

Integration point 1 (r1 = 0):
In[17]:= f11pt1 = f11[r[r1]]

Out[17]= 0

In[18]:= f12pt1 = f12[r[r1]]

Out[18]= 0

In[19]:= f22pt1 = f22[r[r1]] // N

Out[19]=
3.375 ee i0

l2

Integration point 2 (r2 = -Sqrt[3/5]):
In[20]:= f11pt2 = f11[r[r2]]

Out[20]=
145.203 ee i0

l4

In[21]:= f12pt2 = f12[r[r2]]

Out[21]= -
41.3588 ee i0

l3

In[22]:= f22pt2 = f22[r[r2]]

Out[22]=
11.7804 ee i0

l2

Integration point 3 (r3 = -Sqrt[3/5]):
In[23]:= f11pt3 = f11[r[r3]]

Out[23]=
29.7571 ee i0

l4

In[24]:= f12pt3 = f12[r[r3]]

Out[24]= -
21.2812 ee i0

l3

In[25]:= f22pt3 = f22[r[r3]]

Out[25]=
15.2196 ee i0

l2

2   civil499_prob2_soln.nb
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Weighted sum
The integral is computed using Gauss quadrature

∫o
L f [x] dx = ∑wi f [ri] J

In[26]:= k = w1 * f11pt1, f12pt1, f12pt1, f22pt1 + w2 * f11pt2, f12pt2, f12pt2, f22pt2 +

w3 * f11pt3, f12pt3, f12pt3, f22pt3 * j;

k // Chop // MatrixForm
Out[27]//MatrixForm=

48.6 ee i0
l3

- 17.4 ee i0
l2

- 17.4 ee i0
l2

9. ee i0
l

The numerically exact stiffness matrix is:

48.6 EI0

L3

-17.4 EI0

L2

-17.4 EI0

L2

9 EI0

L

3. Is this stiffness matrix the “theoretically exact” stiffness matrix for this tapered beam? Explain why or 
why not?
The  stiffness  matrix  computed  using  Gauss  quadrature  is  the  “theoretically  exact”  stiffness  matrix  disregarding  any  round-off  errors
introduced by finite-precision computations. This is because of our choice of 3-point Gaussian quadrature as explained earlier.

4. Bonus: Calculate the “theoretically exact” stiffness matrix (** extra points)
The “theoretically exact” stiffness matrix is found by evaluating the integral of f[x] analytically. 

Evaluating each of the terms of f[x] individually to show potential steps,

The 1,1 entry
In[28]:= Integratef11[x], x

Out[28]=

36 ee i0 8 l5 x - 22 l4 x2 + 86 l3 x3

3
- 73 l2 x4

4
+ 28 l x5

5
- 2 x6

3


l9

In[29]:= Integratef11[x], {x, 0, l}

Out[29]=
243 ee i0

5 l3

The 1,2 entry
In[30]:= Integratef12[x], x

Out[30]= -
12 ee i0 8 l5 x - 26 l4 x2 + 38 l3 x3 - 103 l2 x4

4
+ 41 l x5

5
- x6

l8

In[31]:= Integratef12[x], {x, 0, l}

Out[31]= -
87 ee i0

5 l2

The 2,2 entry
In[32]:= Integratef22[x], x

Out[32]=

4 ee i0 8 l5 x - 30 l4 x2 + 50 l3 x3 - 145 l2 x4

4
+ 12 l x5 - 3 x6

2


l7

In[33]:= Integratef22[x], {x, 0, l}

Out[33]=
9 ee i0

l

civil499_prob2_soln.nb  3
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Complete matrix
In[34]:= kTheory = Integratef[x], {x, 0, l} // FullSimplify;

kTheory // MatrixForm
Out[35]//MatrixForm=

243 ee i0
5 l3

- 87 ee i0
5 l2

- 87 ee i0
5 l2

9 ee i0
l

Evaluating this matrix numerically yields

In[36]:= N[kTheory] // MatrixForm
Out[36]//MatrixForm=

48.6 ee i0
l3

- 17.4 ee i0
l2

- 17.4 ee i0
l2

9. ee i0
l

As expected, the numerical and analytical stiffness matrices correspond.

4   civil499_prob2_soln.nb
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Solutions

In[1]:= Clear"Global`*"

1. What type of numerical integration method do you propose in order to calculate the above stiffness 
matrix “numerically exact”? How many integration points should be used with this method and explain 
why?
Since this is a problem with linear elasticity I propose to use Gauss-Legendre (herein just Gauss) quadrature because this method gives the
best accuracy for the number of points required. The number of integration points is to be determined based on the order of the polynomial
function to be integrated.
First the transverse displacement is defined,

In[2]:= v = {3 * (x / l)^2 - 2 (x / l)^3, x^3 / l^2 - x^2 / l};

The second derivative of the displacement field is required to obtain the strain-displacement matrix for flexure, B (strainDispMat),

In[3]:= strainDispMat = D[v, {x, 2}];
strainDispMat // MatrixForm

Out[4]//MatrixForm=
6
l2

- 12 x
l3

- 2
l
+ 6 x

l2

Next, I define the moment of inertia as a function of x (ix),

In[5]:= ix = b / 12 * (2 * d - d * x / l)^3 // FullSimplify

Out[5]=
1

12
b d3 2 -

x

l

3

The term b d^3/12 is defined as I0 (i0) that represents the moment of inertia at the fixed end, and the substitution is made

In[6]:= ix = ix /. b * d^3 / 12 → i0

Out[6]= i0 2 -
x

l

3

The stiffness matrix to be computed is

k = ∫0
LBT ks B dx = ∫0

L f [x] dx,

Since we are using numerical integration I define the integrand f[x] as a function of x. This is a 2x2 matrix function.

In[7]:= f[x_] = ee * ix * OuterTimes, strainDispMat, strainDispMat;

f[x] // MatrixForm
Out[8]//MatrixForm=

ee i0  6
l2

- 12 x
l3


2
2 - x

l
3 ee i0  6

l2
- 12 x

l3
 - 2

l
+ 6 x

l2
 2 - x

l
3

ee i0  6
l2

- 12 x
l3

 - 2
l
+ 6 x

l2
 2 - x

l
3 ee i0 - 2

l
+ 6 x

l2

2
2 - x

l
3

Note  that  the  highest  power  of  x  in  f[x]  is  x5.  Gauss  quadrature  integrates  polynomials  exactly  to  the  order  of  2m-1,  therefore  3-point
integration is required.

2. Calculate the “numerically exact” stiffness matrix.
The integration will now be done with Gauss quadrature. The three Gauss points and associated weights are:
r1 = 0, w1 = 8/9
r2 = -Sqrt[3/5], w2 = 5/9
r3 = Sqrt[3/5], w3 = 5/9.

We also need the conversion between the natural coordinates r, and the given coordinates x:

Printed by Wolfram Mathematica Student Edition



In[9]:= r1 = 0; w1 = 8. / 9.;
r2 = -Sqrt[3 / 5.]; w2 = 5. / 9;
r3 = Sqrt[3 / 5.]; w3 = 5. / 9;
r[x_] = l / 2 + x * l / 2;
j = D[r[x], x];

I define three functions for each of the entries of the matrix function f[x], note that f_12 = f_21 due to symmetry of the stiffness matrix:

In[14]:= f11[x_] = f[x][[1, 1]]
f12[x_] = f[x][[1, 2]]
f22[x_] = f[x][[2, 2]]

Out[14]= ee i0
6

l2
-
12 x

l3

2

2 -
x

l

3

Out[15]= ee i0
6

l2
-
12 x

l3
-
2

l
+
6 x

l2
2 -

x

l

3

Out[16]= ee i0 -
2

l
+
6 x

l2

2

2 -
x

l

3

Integration point 1 (r1 = 0):
In[17]:= f11pt1 = f11[r[r1]]

Out[17]= 0

In[18]:= f12pt1 = f12[r[r1]]

Out[18]= 0

In[19]:= f22pt1 = f22[r[r1]] // N

Out[19]=
3.375 ee i0

l2

Integration point 2 (r2 = -Sqrt[3/5]):
In[20]:= f11pt2 = f11[r[r2]]

Out[20]=
145.203 ee i0

l4

In[21]:= f12pt2 = f12[r[r2]]

Out[21]= -
41.3588 ee i0

l3

In[22]:= f22pt2 = f22[r[r2]]

Out[22]=
11.7804 ee i0

l2

Integration point 3 (r3 = -Sqrt[3/5]):
In[23]:= f11pt3 = f11[r[r3]]

Out[23]=
29.7571 ee i0

l4

In[24]:= f12pt3 = f12[r[r3]]

Out[24]= -
21.2812 ee i0

l3

In[25]:= f22pt3 = f22[r[r3]]

Out[25]=
15.2196 ee i0

l2

2   civil499_prob2_soln.nb
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Weighted sum
The integral is computed using Gauss quadrature

∫o
L f [x] dx = ∑wi f [ri] J

In[26]:= k = w1 * f11pt1, f12pt1, f12pt1, f22pt1 + w2 * f11pt2, f12pt2, f12pt2, f22pt2 +

w3 * f11pt3, f12pt3, f12pt3, f22pt3 * j;

k // Chop // MatrixForm
Out[27]//MatrixForm=

48.6 ee i0
l3

- 17.4 ee i0
l2

- 17.4 ee i0
l2

9. ee i0
l

The numerically exact stiffness matrix is:

48.6 EI0

L3

-17.4 EI0

L2

-17.4 EI0

L2

9 EI0

L

3. Is this stiffness matrix the “theoretically exact” stiffness matrix for this tapered beam? Explain why or 
why not?
The  stiffness  matrix  computed  using  Gauss  quadrature  is  the  “theoretically  exact”  stiffness  matrix  disregarding  any  round-off  errors
introduced by finite-precision computations. This is because of our choice of 3-point Gaussian quadrature as explained earlier.

4. Bonus: Calculate the “theoretically exact” stiffness matrix (** extra points)
The “theoretically exact” stiffness matrix is found by evaluating the integral of f[x] analytically. 

Evaluating each of the terms of f[x] individually to show potential steps,

The 1,1 entry
In[28]:= Integratef11[x], x

Out[28]=

36 ee i0 8 l5 x - 22 l4 x2 + 86 l3 x3

3
- 73 l2 x4

4
+ 28 l x5

5
- 2 x6

3


l9

In[29]:= Integratef11[x], {x, 0, l}

Out[29]=
243 ee i0

5 l3

The 1,2 entry
In[30]:= Integratef12[x], x

Out[30]= -
12 ee i0 8 l5 x - 26 l4 x2 + 38 l3 x3 - 103 l2 x4

4
+ 41 l x5

5
- x6

l8

In[31]:= Integratef12[x], {x, 0, l}

Out[31]= -
87 ee i0

5 l2

The 2,2 entry
In[32]:= Integratef22[x], x

Out[32]=

4 ee i0 8 l5 x - 30 l4 x2 + 50 l3 x3 - 145 l2 x4

4
+ 12 l x5 - 3 x6

2


l7

In[33]:= Integratef22[x], {x, 0, l}

Out[33]=
9 ee i0

l
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Complete matrix
In[34]:= kTheory = Integratef[x], {x, 0, l} // FullSimplify;

kTheory // MatrixForm
Out[35]//MatrixForm=

243 ee i0
5 l3

- 87 ee i0
5 l2

- 87 ee i0
5 l2

9 ee i0
l

Evaluating this matrix numerically yields

In[36]:= N[kTheory] // MatrixForm
Out[36]//MatrixForm=

48.6 ee i0
l3

- 17.4 ee i0
l2

- 17.4 ee i0
l2

9. ee i0
l

As expected, the numerical and analytical stiffness matrices correspond.
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