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Assignment #3: Nonlinear analysis of structures considering material and geometric 

nonlinearities 
 
Q1 (65 points): Extend the program you wrote for Assignment #2 to conduct nonlinear 
analysis of frame structures by considering both geometric and material nonlinearities. The 
program can be written at any programming language of your preference. Your program should 
consider the following: 
 

• Zero-length rotational spring with elastic beam-column elements 
• Displacement-based beam-column elements 

 
Your program should be able to determine the nodal displacements, member forces and support 
reactions for planar frames by nonlinear analysis. Assume that the members are all prismatic, 
i.e., the axial and flexural rigidities of the members are constant along their length. 
 
NOTE 1: The constitutive formulation to be considered in the rotational spring (moment – 
rotation relation) should be that of in-class exercise #8 (Week #8 à Material nonlinearity and 
concentrated plasticity) 
 
NOTE 2: The constitutive formulation to be considered in the fibers of your cross section may 
be the same with that developed for the in-class exercise #8, without the softening path (you 
can assume a very large 𝜃!"). In this case, you should be using this as a stress-strain relation. 
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Q2 (35 points): Use your program from Q1 to compute the following: 
 
For 𝑃 = 0.5𝑃!" compare the total base shear versus lateral displacement equilibrium paths for 
the following cases:  

a. Case 1: Elastic material and linear geometry analysis 
b. Case 2: Nonlinear geometric analysis (elastic material) 
c. Case 3: Nonlinear material analysis (inelastic material but elastic geometry) 

i. Case 3a by using a zero-length element 
ii. Case 3b by using a displacement-based element 

d. Case 4: Nonlinear analysis for both material and geometry 
i. Case 4a by using a zero-length element  

ii. Case 4b by using a displacement-based element 
 
Assume the following geometry for the members: 
-Beams: rectangular cross section with width 𝑏# = 300𝑚𝑚 and a height ℎ# = 700𝑚𝑚 (strong 
axis bending) 
-Columns: square section with width 𝑏! = 300𝑚𝑚 and a height ℎ! = 300𝑚𝑚 

 
Comment on your results based on the choice of the analysis and iterative method(s) (e.g., 
displacement / load control). 
Assume that the cross sections are made of S355 steel (𝑓$ = 355𝑀𝑃𝑎, 𝐸 = 200𝐺𝑃𝑎) 

 
Figure 1. Planar frame 

 
NOTE 1: For case 3a and 4a assume the following model parameters: 
 

o 𝜃% = 𝜃! − 𝜃$ = 0,02	𝑟𝑎𝑑 
o 𝜃%! = 𝜃& − 𝜃! = 0,05	𝑟𝑎𝑑 
o 𝑀$

∗ = 𝑊(),$ ∙ 𝑓$ 
o 𝑀& = 1,1𝑀$

∗  
 
NOTE 2: For case 3b and 4b assume 3% strain hardening ratio in the assumed stress-strain 
relationship 
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Solution: 
Elastic beam-column element with two inelastic rotational springs at the member ends: 
Displacement-control is used because the inelastic spring exhibits a snap-through behavior. 
 
To determine the load-displacement relation of the moment frame when it is modeled using an 
elastic beam-column element with two zero-length inelastic flexural springs, the same steps are 
used as shown in the solution of Exercise 3 of Week 8. 
 
The direct method is used to enforce that the first translational degree of freedom of the two 
nodes of the spring element is equal, and similarly for the second translational degree of 
freedom. 
 
The following global degrees of freedom are used 
 

 
Figure 2. Global degrees of freedom with equal DOF constraint – elastic beam-column element with inelastic 

rotational springs modeling approach 
 

The spring rotation 𝜃 is defined as 𝜃 = 𝑣+ − 𝑣,, where 𝐼 and 𝐽 denote the inner and outer nodes 
of the spring (i.e., the inner node refers to the one connected to the elastic beam-column 
element). This convention is very important when the constitutive relation assigned to the 
spring exhibits an asymmetric response in tension and compression. This rotation is then the 
input for the spring constitutive formulation, which returns the spring moment 𝑀-%"./0 and 
tangent stiffness 𝑘-%"./0. The former is used to form the spring resisting force vector 𝑭./1,-%"./0 
and the latter to form the stiffness matrix 𝑲-%"./0 as follows: 

𝑭./1,-%"./0 = @
−𝑀-%"./0
𝑀-%"./0

A	 (1) 

𝑲-%"./0 = 𝑘-%"./0 ⋅ E
1 −1
−1 1 F	

(2) 

 

These quantities are then used when assembling the structure resisting force vector and stiffness 
matrix. 

For the elastic-beam column element, the following tangent stiffness matrix is derived using a 
procedure similar to that discussed in Question 1 of Week 8: 
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𝐤H 234 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐸𝐴
𝐿 0 0

0
𝑆55𝐸𝐼(
𝐿

𝑆56𝐸𝐼(
𝐿

0
𝑆65𝐸𝐼(
𝐿

𝑆66𝐸𝐼(
𝐿 ⎦

⎥
⎥
⎥
⎥
⎤

	 (3) 

With 

𝑆55 = 𝑆66 =
12𝑛 + 6
3𝑛 + 2

	 (4) 
 

𝑆56 = 𝑆65 =
6𝑛 + 1
3𝑛 + 2

	 (5) 

 
Where 𝑛 is the stiffness modification factor 
 
To determine the secondary equilibrium path for 𝛼 = 0.1 with this modeling approach, the 
following steps are used: 
 
1) Define the member properties (both for the springs and elastic beam-column elements) 
 
2) Define the connectivity and mapping matrices between local and global degrees of freedom. 
The direct method is used to enforce the equal DOF constraints 
 
3) For each member, determine the transformation matrix 𝑻 between local and global 
coordinates. In this exercise, the local 𝑥-axis is defined in the axial direction of the element; 
therefore, it corresponds to the global 𝑌-axis 
 
4) Assemble the initial structure stiffness matrix 𝑲-1"&!1&"( 
 
5) Define the boundary conditions, the external loads (i.e., apply the reference load 𝑭"(7	), the 
fixed and the free degrees of freedom of the problem 
 
6) Initialize the variables used within the Newton-Raphson procedure 

𝜆 = 0, 𝒗 = 𝟎 
Where 𝜆 denotes the load multiplier (i.e. 𝑭(81 = 𝜆𝑭"(7	) 
 
7) Define the parameters defining the displacement-control algorithm: 
 - The DOF at which the displacement-control algorithm is imposed 
 - The number of steps 𝑛131  
 - The imposed displacement at every step Δ𝑢_	 
 - The tolerance 𝑡𝑜𝑙 

- The maximum number of iterations per iteration of the Newton-Raphson loop 𝑖9:; 
 

8) For load increment 𝑛, perform the Newton-Raphson iterations 
8.1) For 𝑖 = 1, set, Δ𝑭(81

/,.<= = Δ𝜆̅𝑭"(7, 𝑭./1
/,.<= = 𝑭./1/>=, 𝑲-1"?@A?BC

/,= = 𝑲-1"?@A?BC
/>=  and 

𝒗/,= = 𝒗/>= 
 

 8.2) Compute the increment in structure displacements Δ𝒗/,.: 
Δ𝒗7

/,. = e𝑲-1"&!1&"(,7
/,. f

>=
Δ𝑭(81/  
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Where the subscript 𝑓 denotes the free degrees of freedom of the system 
 8.3) Update the structure displacements: 

𝒗/,. = 𝒗/,.>= + Δ𝒗/,. 
 
8.4) Assemble the structure material and geometric stiffness matrices 𝑲(,-1"&!1&"(

/,.  and 
𝑲0,-1"&!1&"(
/,. , as well as the structure resisting force vector 𝑭./1

/,. . With a loop, go over 
all elements (springs and elastic beam-column elements): 

8.4.1) Determine the element displacement vector in the local reference frame 
𝒖/,. 

𝒖()(2
/,. = 𝑻()(2𝒗()(2

/,.  
 
Where the subscript 𝑒𝑙𝑒𝑚 denotes the DOFs corresponding to element 𝑒𝑙𝑒𝑚.  
 
8.4.2) For the elastic beam-column element: using the corotational formulation 
or the linear formulation, compute the element displacements in the basic 
reference frame 𝒖i = [𝑢_=, 𝑢_5, 𝑢_6]D.  
 
For the inelastic rotational springs, the rotations in the local reference frame are 
directly used in the constitutive relation 
 
8.4.3) Compute the element internal forces in the basic reference frame  𝒒i/,. : 
For the elastic beam-column element: 

𝒒i/,. = 𝑲i/,.𝒖i/,. 
For the inelastic rotational springs: use the constitutive relation  
 
8.4.4) Compute the element internal force vector in the local reference frame: 
For the elastic beam-column element: 

𝑸()(2
/,. = e𝑳/,.fD𝒒i/,. 

 
Where 𝑳/>= is the transformation matrix from the basic to the local reference 
frame.  
 
For the inelastic rotational springs: the resisting moment obtained from the 
constitutive relation is directly expressed in the local reference frame 

 
8.4.5) For the elastic beam-column element, determine the element geometric 
stiffness matrix in the local reference frame 𝑲0,()(2

/,.  .  
For the inelastic rotational springs, there is no element geometric stiffness 
matrix 
 
8.4.6) Assemble the structure material and geometric stiffness matrices 
𝑲(,-1"&!1&"(
/,.  and 𝑲0,-1"&!1&"(

/,.  as well as the structure internal force vector 𝑭./1
/,.  

with the element quantities 
 

8.5) Compute the unbalanced load vector 𝑭&/#
/,. = 𝑭./1

/,. − 𝑭(81/  
 
8.6) Check if the Newton-Raphson procedure has converged. In the code provided with 
the solution, convergence is achieved once 
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o𝑭&/#,7
/,. o

p𝑭(81,7
/,. p

< 𝑡𝑜𝑙 

 
8.7) If iteration 𝑖 has converged, go to next load step 𝑛, else set 𝑖 = 𝑖 + 1 and Δ𝑭(81

/,. = −𝑭&/#,7
/,.>=  

and go to the next step 
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Displacement-based beam-column element: 
Each beam and column member of the moment frame is modeled using several displacement-
based beam-column elements. This is done because of the assumed shape functions of the 
displacement-based element. If we were to use a force-based element, a single element would 
suffice to idealize a member.  
 
For each one of the displacement-based beam-column elements, five integration sections are 
placed along the element length following the Gauss-Lobatto integration rule. At each of these 
sections, the cross section is discretized using a certain number of fibers. Each fiber is assigned 
with the bilinear uniaxial constitutive formulation representing the engineering stress-strain at 
the material scale. 
 
The following figure shows the elements used in this modeling approach: 
 

 
 

Figure 3. Finite element model using displacement-based beam-column elements 
 
To determine the secondary equilibrium path for 𝛼 = 0.1 with this modeling approach, the 
following steps are used: 
1) Define the member properties:  
 - Number of displacement-based beam-column elements for each member 
 - Numerical integration rule along the element length: location and weight of each 

   integration points 
- Fiber section 

For the solution presented here, each beam and column are modeled using 5 displacement-
based beam-column elements. Five integration points are placed along the length for each 
element, and the section is discretized using 10 fibers  
 
2) Define the connectivity matrix and the mapping matrix between local and global degrees of 
freedom 
 
3) For each member, determine the transformation matrix 𝑻 between local and global 
coordinates. In this assignment, the local 𝑥-axis is defined in the axial direction of the element; 
therefore, it corresponds to the global 𝑌-axis 
 
4) Assemble the initial stiffness matrix 𝑲-1"&!1&"( of the structure 
 
5) Define the boundary conditions, the external loads (i.e., apply the reference load 𝑭"(7	), the 
fixed and the free degrees of freedom of the problem 
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6) Initialize the variables used within the Newton-Raphson procedure 
𝜆 = 0, 𝒗 = 𝟎 

 
Where 𝜆 denotes the load multiplier (i.e. 𝑭(81 = 𝜆𝑭"(7	) 
 
7) Define the parameters defining the displacement-control algorithm: 
 - The DOF at which the displacement-control algorithm is imposed 
 - The number of steps 𝑛131  
 - The imposed displacement at every step Δ𝑢_	 
 - The tolerance 𝑡𝑜𝑙 

- The maximum number of iterations for each iterations of the Newton-Raphson loop 
𝑖9:; 
 

8) For load increment 𝑛, perform the Newton-Raphson iterations 
8.1) For 𝑖 = 1, set, Δ𝑭(81

/,.<= = Δ𝜆̅𝑭"(7, 𝑭./1
/,.<= = 𝑭./1/>=, 𝑲-1"?@A?BC

/,= = 𝑲-1"?@A?BC
/>=  and 

𝒗/,= = 𝒗/>= 
 

 8.2) Compute the increment in structure displacements Δ𝒗/,.: 
Δ𝒗7

/,. = e𝑲-1"&!1&"(,7
/,. f

>=
Δ𝑭(81/  

Where the subscript 𝑓 denotes the free degrees of freedom of the system 
 

 8.3) Update the structure displacements: 
𝒗/,. = 𝒗/,.>= + Δ𝒗/,. 

 
8.4) Assemble the structure material and geometric stiffness matrices 𝑲(,-1"&!1&"(

/,.  and 
𝑲0,-1"&!1&"(
/,. , as well as the structure resisting force vector 𝑭./1

/,. . With a loop, go over 
all elements: 

8.4.1) Determine the element displacement vector in the local reference frame 
𝒖/,. 

𝒖()(2
/,. = 𝑻()(2𝒗()(2

/,.  
Where the subscript 𝑒𝑙𝑒𝑚 denotes the degrees of freedom corresponding to 
element 𝑒𝑙𝑒𝑚.  
 
8.4.2) Using the corotational formulation or the linear formulation, compute the 
element displacements in the basic reference frame 𝒖i = [𝑢_=, 𝑢_5, 𝑢_6]D.  
 
8.4.3) Perform the element state determination procedure, i.e., compute the  
element internal forces in the basic reference frame  𝒒i/,. and the element  
tangent stiffness matrix in the basic reference frame 𝑲i/,.: 
 8.4.3.1) For every section along the element length: compute the  

section displacement vector 𝐝-
/,. 

𝐝-
/,. = 𝐁i(𝑥)𝐮i/,. 

   Where 𝐁i(𝑥) is the matrix with the displacement interpolation functions 
 
   8.4.3.2) Perform the section state determination procedure, i.e.,  

compute the section tangent stiffness matrix 𝐤-
/,. and the section 

resisting force vector: 𝐐-"
/,.: 
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Iterate over each fiber 𝑖𝐹𝑖𝑏 of the section: 
 8.4.3.2.1) Compute the fiber strain:  

𝜀.7.# = 𝐥.7.#𝐝E 
 

8.4.3.2.2) Perform the material state determination: input the 
fiber strain 𝜀.7.# into the constitutive law and return the fiber 
stress 𝜎.7.# and tangent modulus 𝑘.7.# 
 

8.4.3.3) Integrate the stress and tangent moduli of all the fibers to form 
the section resisting force vector 𝐐-"

/,. and tangent stiffness matrix 𝐤-
/,.: 

𝐐-"
/,. = ∑ 𝐥.7.#D ∙ (𝜎.7.#𝐴.7.#)	

/7.#
F<=     

𝐤-
/,. = { 𝒍.7.#D ∙ (𝑘.7.#𝐴.7.#) ∙ 𝒍.7.#

/7.#

F<=

 

    
8.4.4) Integrate the section resisting force vector 𝐐-"

/,. and tangent stiffness  
matrix 𝐤-

/,. to compute the element internal forces in the basic reference frame   
𝒒i/,. and the element tangent stiffness matrix in the basic reference frame 𝑲i/,. 

𝒒i/,. = }𝑩iD(𝑥) ∙ 𝑸-"
/,.(𝑥) ∙ 𝑑𝑥

G

H

≈ { 𝐁iD(𝑥.I(!) ∙ 𝑸-"
/,.(𝑥.I(!)

/I(!

.I(!<=

⋅ 𝑤.I(! 

 

𝑲i/,. = }𝐁iD(𝑥) ∙ 𝐤-
/,. ∙ 𝐁i(𝑥) ∙ 𝑑𝑥

G

H

≈ { 𝐁iD(𝑥.I(!) ∙ 𝐤-
/,.(𝑥.I(!) ∙ 𝐁i(𝑥.I(!)

/I(!

.I(!<=

⋅ 𝑤.I(! 

 
Where 𝑥.I(! and 𝑤.I(! denote the location and weight of the quadrature point  
𝑖𝑆𝑒𝑐, respectively 
 
8.4.5) Compute the element internal force vector in the local reference frame: 

𝑸()(2
/,. = e𝑳/,.fD𝒒i/,. 

 
Where 𝑳/>= is the transformation matrix from the basic to the local reference 
frame 

 
8.4.6) Determine the element geometric stiffness matrix in the local reference 
frame 𝑲0,()(2

/,.   
 
8.4.7) Assemble the structure material and geometric stiffness matrices 
𝑲(,-1"&!1&"(
/,.  and 𝑲0,-1"&!1&"(

/,.  as well as the structure internal force vector 𝑭./1
/,.  

with the element quantities 
 

8.5) Compute the unbalanced load vector 𝑭&/#
/,. = 𝑭./1

/,. − 𝑭(81/  
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8.6) Check if the Newton-Raphson procedure has converged. In the code provided 
with the solution, convergence is achieved once 
 

o𝑭&/#,7
/,. o

p𝑭(81,7
/,. p

< 𝑡𝑜𝑙 

 
8.7) If iteration 𝑖 has converged, go to next load step 𝑛, else set 𝑖 = 𝑖 + 1 and Δ𝑭(81

/,. = −𝑭&/#,7
/,.>=  

and go to step 
 
Comparison of various modeling approaches: 
 
The following figure compares the results obtained for various analysis methods: 
 

 
Figure 4. Comparison of computed secondary equilibrium paths under various analysis methods 

 
Case 1: Elastic material and linear geometry analysis 
Case 2: Nonlinear geometric analysis (elastic material) 
Case 3: Nonlinear material analysis (inelastic material but elastic geometry) 

Case 3a by using a zero-length element 
Case 3b by using a displacement-based element 

Case 4: Nonlinear analysis for both material and geometry 
Case 4a by using a zero-length element  
Case 4b by using a displacement-based element 

 


