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Assignment #3: Nonlinear analysis of structures considering material and geometric
nonlinearities

Q1 (65 points): Extend the program you wrote for Assignment #2 to conduct nonlinear
analysis of frame structures by considering both geometric and material nonlinearities. The
program can be written at any programming language of your preference. Y our program should
consider the following:

e Zero-length rotational spring with elastic beam-column elements
e Displacement-based beam-column elements

Y our program should be able to determine the nodal displacements, member forces and support
reactions for planar frames by nonlinear analysis. Assume that the members are all prismatic,
i.e., the axial and flexural rigidities of the members are constant along their length.

NOTE 1: The constitutive formulation to be considered in the rotational spring (moment —
rotation relation) should be that of in-class exercise #8 (Week #8 = Material nonlinearity and
concentrated plasticity)

NOTE 2: The constitutive formulation to be considered in the fibers of your cross section may
be the same with that developed for the in-class exercise #8, without the softening path (you
can assume a very large 6,.). In this case, you should be using this as a stress-strain relation.
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Q2 (35 points): Use your program from Q1 to compute the following:

For P = 0.5P,, compare the total base shear versus lateral displacement equilibrium paths for
the following cases:
a. Case 1: Elastic material and linear geometry analysis
b. Case 2: Nonlinear geometric analysis (elastic material)
c. Case 3: Nonlinear material analysis (inelastic material but elastic geometry)
i. Case 3a by using a zero-length element
ii. Case 3b by using a displacement-based element
d. Case 4: Nonlinear analysis for both material and geometry
i. Case 4a by using a zero-length element
ii. Case 4b by using a displacement-based element

Assume the following geometry for the members:

-Beams: rectangular cross section with width b, = 300mm and a height h;, = 700mm (strong
axis bending)

-Columns: square section with width b, = 300mm and a height h, = 300mm

Comment on your results based on the choice of the analysis and iterative method(s) (e.g.,
displacement / load control).
Assume that the cross sections are made of S355 steel (f, = 355MPa, E = 200GPa)
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Figure 1. Planar frame

NOTE 1: For case 3a and 4a assume the following model parameters:

o 8,=6.—6,=0,02rad
o b,.=6,—6.=005rad
o My =Wy, fy

o M, =11M,

NOTE 2: For case 3b and 4b assume 3% strain hardening ratio in the assumed stress-strain
relationship
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Solution:
Elastic beam-column element with two inelastic rotational springs at the member ends:
Displacement-control is used because the inelastic spring exhibits a snap-through behavior.

To determine the load-displacement relation of the moment frame when it is modeled using an
elastic beam-column element with two zero-length inelastic flexural springs, the same steps are
used as shown in the solution of Exercise 3 of Week 8.

The direct method is used to enforce that the first translational degree of freedom of the two
nodes of the spring element is equal, and similarly for the second translational degree of

freedom.

The following global degrees of freedom are used
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Figure 2. Global degrees of freedom with equal DOF constraint — elastic beam-column element with inelastic
rotational springs modeling approach

The spring rotation 6 is defined as & = v; — v;, where I and ] denote the inner and outer nodes
of the spring (i.e., the inner node refers to the one connected to the elastic beam-column
element). This convention is very important when the constitutive relation assigned to the
spring exhibits an asymmetric response in tension and compression. This rotation is then the
input for the spring constitutive formulation, which returns the spring moment Mgy, and
tangent stiffness kgpying. The former is used to form the spring resisting force vector Fint spring
and the latter to form the stiffness matrix K,,in4 as follows:

M.
Fintspring = ( Ms:i::;g) "
1 -1
Kspring = Kspring - [—1 1 ] ”

These quantities are then used when assembling the structure resisting force vector and stiffness
matrix.

For the elastic-beam column element, the following tangent stiffness matrix is derived using a
procedure similar to that discussed in Question 1 of Week 8:
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Where n is the stiffness modification factor

To determine the secondary equilibrium path for @ = 0.1 with this modeling approach, the
following steps are used:

1) Define the member properties (both for the springs and elastic beam-column elements)

2) Define the connectivity and mapping matrices between local and global degrees of freedom.

The direct method is used to enforce the equal DOF constraints

3) For each member, determine the transformation matrix T between local and global
coordinates. In this exercise, the local x-axis is defined in the axial direction of the element;

therefore, it corresponds to the global Y-axis
4) Assemble the initial structure stiffness matrix Ky ctyre

5) Define the boundary conditions, the external loads (i.e., apply the reference load F"¢/ ), the
fixed and the free degrees of freedom of the problem

6) Initialize the variables used within the Newton-Raphson procedure
A=0,v=0
Where A denotes the load multiplier (i.e. Foye = AF™¢)

7) Define the parameters defining the displacement-control algorithm:
- The DOF at which the displacement-control algorithm is imposed
- The number of steps n;,;
- The imposed displacement at every step Au
- The tolerance tol
- The maximum number of iterations per iteration of the Newton-Raphson 100p i;,.x

8) For load increment n, perform the Newton-Raphson iterations
8.1) Fori = 1, set, AF'."! = AAFTeS FMi=1 = FRt K™!

— pn—-1
ext int int » ®*structure — Kstructure and

pl = pn-1

8.2) Compute the increment in structure displacements Av™*:
, , -1
M = (K, ) "AFL,

structure,f
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Where the subscript f denotes the free degrees of freedom of the system
8.3) Update the structure displacements:
i = pi-1 + Ap™i

8.4) Assemble the structure material and geometric stiffness matrices ngsitrucmre and

ngétrucmre, as well as the structure resisting force vector F ?,’lit.
all elements (springs and elastic beam-column elements):
8.4.1) Determine the element displacement vector in the local reference frame

n,i
u

With a loop, go over

n,i
elem

n,i

uelem

= Teiem?
Where the subscript elem denotes the DOFs corresponding to element elem.

8.4.2) For the elastic beam-column element: using the corotational formulation
or the linear formulation, compute the element displacements in the basic
reference frame u = [y, U,, U3]".

For the inelastic rotational springs, the rotations in the local reference frame are
directly used in the constitutive relation

8.4.3) Compute the element internal forces in the basic reference frame g™ :
For the elastic beam-column element:

an,i = Knight
For the inelastic rotational springs: use the constitutive relation

8.4.4) Compute the element internal force vector in the local reference frame:
For the elastic beam-column element:

Qb = (L) g

Where L™ 1 is the transformation matrix from the basic to the local reference
frame.

For the inelastic rotational springs: the resisting moment obtained from the
constitutive relation is directly expressed in the local reference frame

8.4.5) For the elastic beam-column element, determine the element geometric

stiffness matrix in the local reference frame KZ’élem .

For the inelastic rotational springs, there is no element geometric stiffness
matrix

8.4.6) Assemble the structure material and geometric stiffness matrices

n,i n,i . n,i
K. 'structure and K g structure a5 well as the structure internal force vector F,;,

with the element quantities

ni __ FTl.i _ N
unb — T int ext

8.5) Compute the unbalanced load vector F

8.6) Check if the Newton-Raphson procedure has converged. In the code provided with
the solution, convergence is achieved once
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IF gl

8.7) If iteration i has converged, go to next load step n, else seti = i + 1 and AF,;, = —F Z,‘l;}

extf“

and go to the next step
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Displacement-based beam-column element:

Each beam and column member of the moment frame is modeled using several displacement-
based beam-column elements. This is done because of the assumed shape functions of the
displacement-based element. If we were to use a force-based element, a single element would
suffice to idealize a member.

For each one of the displacement-based beam-column elements, five integration sections are
placed along the element length following the Gauss-Lobatto integration rule. At each of these
sections, the cross section is discretized using a certain number of fibers. Each fiber is assigned
with the bilinear uniaxial constitutive formulation representing the engineering stress-strain at
the material scale.

The following figure shows the elements used in this modeling approach:

b §~{1

Figure 3. Finite element model using displacement-based beam-column elements

To determine the secondary equilibrium path for @ = 0.1 with this modeling approach, the
following steps are used:
1) Define the member properties:

- Number of displacement-based beam-column elements for each member

- Numerical integration rule along the element length: location and weight of each

integration points

- Fiber section
For the solution presented here, each beam and column are modeled using 5 displacement-
based beam-column elements. Five integration points are placed along the length for each
element, and the section is discretized using 10 fibers

2) Define the connectivity matrix and the mapping matrix between local and global degrees of
freedom

3) For each member, determine the transformation matrix T between local and global
coordinates. In this assignment, the local x-axis is defined in the axial direction of the element;
therefore, it corresponds to the global Y-axis

4) Assemble the initial stiffness matrix K¢y crure Of the structure

5) Define the boundary conditions, the external loads (i.e., apply the reference load F"¢/ ), the
fixed and the free degrees of freedom of the problem
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6) Initialize the variables used within the Newton-Raphson procedure
A=0,v=0

Where A denotes the load multiplier (i.e. Foye = AF™¢)

7) Define the parameters defining the displacement-control algorithm:
- The DOF at which the displacement-control algorithm is imposed
- The number of steps n;,;
- The imposed displacement at every step Au
- The tolerance tol
- The maximum number of iterations for each iterations of the Newton-Raphson loop

lmax

8) For load increment n, perform the Newton-Raphson iterations

P ni=1 _ A Jpre ni=1 _ pn-1 n,1 _ pn—-1
8'1) Fori = 1’ set, AFext = AAF f’ Fint - Fint ’ Kstructure - Kstructure and

pl = pn-1

8.2) Compute the increment in structure displacements Av™*:
, , -1
n,t __ n,i
Avf - (Kstructure,f) AF?Xt

Where the subscript f denotes the free degrees of freedom of the system

8.3) Update the structure displacements:
il = pi-1 + Ap™i

n,i

e,structure and

8.4) Assemble the structure material and geometric stiffness matrices K
Kn,i n,i

g,structure>» int-
all elements:
8.4.1) Determine the element displacement vector in the local reference frame

n,i
u

as well as the structure resisting force vector F, .. With a loop, go over

n,i _ n,t
Upiem = Telemvelem

Where the subscript elem denotes the degrees of freedom corresponding to
element elem.

8.4.2) Using the corotational formulation or the linear formulation, compute the
element displacements in the basic reference frame u = (i, i1y, U3]".

8.4.3) Perform the element state determination procedure, i.e., compute the
element internal forces in the basic reference frame g™ and the element
tangent stiffness matrix in the basic reference frame K™*:

8.4.3.1) For every section along the element length: compute the

section displacement vector d™*
d;* = B(x)u™
Where B(x) is the matrix with the displacement interpolation functions

8.4.3.2) Perform the section state determination procedure, i.e.,
compute the section tangent stiffness matrix K" and the section

resisting force vector: Q& :
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Iterate over each fiber iFib of the section:
8.4.3.2.1) Compute the fiber strain:

Eifib = lifib d

8.4.3.2.2) Perform the material state determination: input the
fiber strain &;;, into the constitutive law and return the fiber

stress of;, and tangent modulus k;z;p,

8.4.3.3) Integrate the stress and tangent moduli of all the fibers to form
the section resisting force vector Q% and tangent stiffness matrix Kg*':
A _ nfib
s = il rip - (Girindifin)
nfib

knl Z llflb (kifibAifib) ' lifib

8.4.4) Integrate the section resisting force vector Q?;i and tangent stiffness
matrix K3 to compute the element internal forces in the basic reference frame
g™" and the element tangent stiffness matrix in the basic reference frame K™*

L nSec
ﬁn'i = fBT(x) Q (x) dx = Z B (xLSec) Q (xLSec) Wisec
0 iSec=1
L

K™ = f BT (x) - k™ - B(x) - dx

0
nSec

Z ET(xiSec) ' k?'i(xiSec) ' E(xiSec) " Wisec

iSec=1

Where x;s.. and w;g,. denote the location and weight of the quadrature point
iSec, respectively

8.4.5) Compute the element internal force vector in the local reference frame:

Qelem (Ln l)

Where L™~ 1 is the transformation matrix from the basic to the local reference
frame

8.4.6) Determine the element geometric stiffness matrix in the local reference

frame K™ g elem

8.4.7) Assemble the structure material and geometric stiffness matrices

n,i M,1
Ko structure a0 Kg/seryceure @s well as the structure internal force vector F.

with the element quantities

8.5) Compute the unbalanced load vector F™!, = FI'\ — %,
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8.6) Check if the Newton-Raphson procedure has converged. In the code provided
with the solution, convergence is achieved once

” unbf”

8.7) If iteration i has converged, go to next load step n, else seti = i + 1 and AFL;, = —F Z,‘l;}
and go to step

extf“

Comparison of various modeling approaches:

The following figure compares the results obtained for various analysis methods:

2000 - ) . ;
Case 1
—  (Case 2
Case 3a
1500 —  Case 3b i
— Case 4a
E Case 4b
= 1000} .
2
>
500¢F 1
O 1 1 1 1
0 200 400 600 800 1000

u, [mm)]

Figure 4. Comparison of computed secondary equilibrium paths under various analysis methods

Case 1: Elastic material and linear geometry analysis
Case 2: Nonlinear geometric analysis (elastic material)
Case 3: Nonlinear material analysis (inelastic material but elastic geometry)
Case 3a by using a zero-length element
Case 3b by using a displacement-based element
Case 4: Nonlinear analysis for both material and geometry
Case 4a by using a zero-length element
Case 4b by using a displacement-based element
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