INSTITUT D'INGÉNIERIE CIVILE IIC

Laboratoire des Structures Métalliques Résilientes RESSLAB

Téléphone: +41 21 693 24 27

Fax: +41 21 693 28 68

E-mail: dimitrios.lignos@epfl.ch

Site web: http://resslab.epfl.ch

Address: EPFL ENAC IIC RESSLAB

GC B3 485, Station 18,

CH-1015, Lausanne

In-class Exercise – Week #8: Assessment models for steel members

The steel moment-resisting frame (MRF) shown in Figure 1 has been designed in a high seismicity zone for gravity and earthquake loading. The cross-sections represent the final design of the steel MRF in the North-South loading direction. Steel beams and columns have been designed with S355J2 profile (i.e., E = 210GPa, $f_y = 355MPa$). End plate beam-to-column connections have been utilized for the seismic design. The total floor weight due to gravity loading is $G = 5kN/m^2$ (all included). Compute the basic properties for modeling the first-floor beam and first story exterior columns with zero length elements. Assume that the steel beams are braced laterally in the middle of the span.

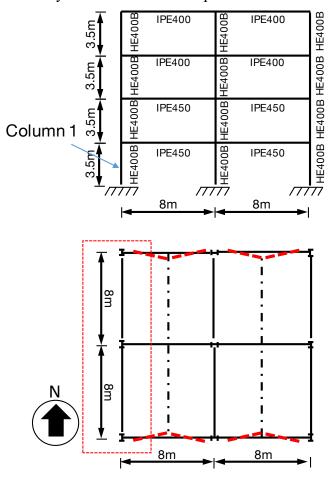
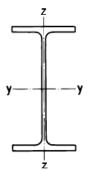



Figure 1. Steel building design

IPE, PEA

IPE- und IPEA-Träger

Profilés IPE et IPEA

$$\begin{split} A_v &= A - 2bt_f + (t_w + 2r) \ t_f \\ A_w &= (h - t_f) \cdot t_w \\ S_y &= \frac{I_y}{2} \ W_{ply} \\ S_z &= \frac{I_y}{2} \ W_{plz} \\ \end{split} \qquad \begin{split} \overline{W}_y &= \frac{I_y}{(h - t_f)/2} \\ W_{elz} &= \frac{I_z}{b/2} \end{split}$$

- O Das Verfahren PP nach SIA 263 ist für dieses Profil aus S355 bei reiner Biegung (n = 0) nicht anwendbar!
- * Auch in S355J0 oder S355J2 ab Schweizer Lager erhältlich.

Maximale Lagerlängen / Longueurs maximales en stock: h ≤ 180 18 m $h \ge 200$ 24 m EURONORM 19 - 57, DIN 1025/5, ASTM A 6, Werksnorm/Norme d'usine

- La méthode PP selon SIA 263 n'est pas applicable pour ce profilé en acier S355 en flexion simple (n = 0)!
- Livrable en S355J0 ou S355J2 du stock suisse.

		I												
		Statische Werte / Valeurs statiques												
IPE	m	A	A _v	A _w	I _y	W _{ely}	W̄ _y	W _{ply}	i _y	I _z	W _{elz}	W _{plz}	i _z	K = I _x
	kg/m	mm²	mm²	mm²	mm ⁴	mm ³	mm³	mm ³	mm	mm ⁴	mm ³	mm ³	mm	mm ⁴
					x 10 ⁶	x 10 ³	x 10 ³	x 10 ³		x 10 ⁶	x 10 ³	x 10 ³		x 10 ⁶
80*	6,0	764	358	284	0,80		21,4	23,2	32,4	0,085	3,69	5,82	10,5	0,0067
100*	8,1	1030	508	387	1,71		36,3	39,4	40,7	0,159	5,79	9,15	12,4	0,0115
120*	10,4	1320	631	500	3,18	77,3	55,9	60,7	49,0	0,277	8,65	13,6	14,5	0,0169
140*	12,9	1640	764	626	5,41		81,3	88,3	57,4	0,449	12,3	19,2	16,5	0,0240
160*	15,8	2010	966	763	8,69		114	124	65,8	0,683	16,7	26,1	18,4	0,0353
180*	18,8	2390	1125	912	13,2		154	166	74,2	1,01	22,2	34,6	20,5	0,0472
200*	22,4	2850	1400	1070	19,4	194	203	221	82,6	1,42	28,5	44,6	22,4	0,0685
220*	26,2	3340	1588	1240	27,7	252	263	285	91,1	2,05	37,3	58,1	24,8	0,0898
240*	30,7	3910	1914	1430	38,9	324	338	367	99,7	2,84	47,3	73,9	26,9	0,127
270*	36,1	4590	2214	1710	57,9	429	446	484	112	4,20	62,2	97,0	30,2	0,157
300*	42,2	5380	2568	2050	83,6	557	578	628	125	6,04	80,5	125	33,5	0,198
330*	49,1	6260	3081	2390	117,7	713	739	804	137	7,88	98,5	154	35,5	0,276
360*	57,1	7270	3514	2780	162,7	904	937	1020	150	10,4	123	191	37,9	0,371
400*	66,3	8450	4269	3320	231,3	1160	1200	1310	165	13,2	146	229	39,5	0,504
450*	77,6	9880	5085	4090	337,4		1550	1700	185	16,8	176	276	41,2	0,661
500*	90,7	11600	5987	4940	482,0		1990	2190	204	21,4	214	336	43,1	0,886
550	106	13400	7234	5910	671,2		2520	2790	223	26,7	254	401	44,5	1,22
600	122	15600	8378	6970	920,8		3170	3510	243	33,9	308	486	46,6	1,65
750 x 750 x 750 x 750 x	147 173	17500 18700 22100 25100	9290 10540 11640 12730	8460 9720 10700 11600	1599 1661 2058 2403	4250 4410 5400 6240	4340 c 4510 5560 6450	4860 5110 6220 7170	303 298 305 310	51,7 52,9 68,7 81,8	393 399 515 610	614 631 810 959	54,4 53,1 55,7 57,1	1,36 1,57 2,71 4,06

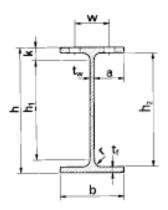
IPE- und IPEA-Träger

Profilés IPE et IPEA

IPE, PEA

Die Profile PER, IPEo und IPEv sind im Walzprogramm einzelner Werke aufgeführt. PEA 80 und PEA 100 sind ebenfalls Les PEA 80 et PEA 100, également normiert, aber kaum wirtschaftlich. normalisés, sont peu économiques.

Im allgemeinen nur ab Werk lieferbar. Mindestmengen und

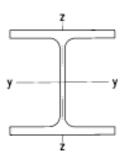

Termine beachten.

Walztoleranzen siehe Seite 116

Les profilés PER, IPEo et IPEv figurent dans le programme de laminage de quelques aciéries.

En général livrable d'usine uniquement. Tenir compte des quantités minimales et des délais.

Tolérances de laminage voir p. 116



		Dime		ilmass s de la		on	Di		nstruk sions (Oberfl Surf					
IPE	m kg/m	h mm	b mm	t _w mm	t _f mm	r mm	h ₁ mm	k mm	a mm	h ₂ mm	w mm	Ø _{max}	U _m m²/m	U _t m²/t	IPE
80	6,0	80	46	3,8	5,2	5	60	10	21	70			0,328	54,8	80
120 140 160 180	8,1 10,4 12,9 15,8 18,8	120 140 160 180	64 73 82 91	4,1 4,4 4,7 5,0 5,3	6,3 6,9 7,4 8,0	7 7 7 9	92 112 126 146	14 14 17 17	25 29 34 38 42	107 126 145 164	36 38 44 50	M10 M10 M12 M12	0,400 0,475 0,551 0,623 0,698	49,5 45,6 42,6 39,4 37,1	100 120 140 160 180
200 220 240 270	22,4 26,2 30,7 36,1	200 220 240 270	100 110 120 135	5,6 5,9 6,2 6,6	8,5 9,2 9,8 10,2	12 12 15 15	158 178 190 220	21 21 25 25	47 52 56 64	183 202 220 250	56 60 68 72	M12 M16 M16 M20	0,768 0,848 0,922 1,04	34,3 32,4 30,0 28,8	200 220 240 270
300 330 360 400	42,2 49,1 57,1 66,3	300 330 360 400	150 160 170 180	7,1 7,5 8,0 8,6	10,7 11,5 12,7 13,5	15 18 18 21	248 270 298 330	26 30 31 35	71 76 81 85	279 307 335 373	80 86 90 96	M20 M24 M24 M27	1,16 1,25 1,35 1,47	27,5 25,5 23,6 22,2	300 330 360 400
450 500 550 600	77,6 90,7 106 122	450 500 550 600	190 200 210 220	9,4 10,2 11,1 12,0	14,6 16,0 17,2 19,0	21 21 24 24	378 426 468 514	36 37 41 43	90 94 99 104	421 468 516 562	106 110 120 120	M27 M27 M27 M27	1,61 1,74 1,88 2,02	20,7 19,2 17,7 16,6	450 500 550 600
750 x 750 x 750 x 750 x	147 173	753 753 762 770	263 265 267 268	11,5 13,2 14,4 15,6	17,0 17,0 21,6 25,4	17 17 17 17	685 685 685 685	34 34 39 42	126 126 126 126	719 719 719 719	120 120 120 120	M27 M27 M27 M27	2,51 2,51 2,53 2,55	18,3 17,1 14,6 13,0	750x 137 750x 147 750x 173 750x 196

HEB

Breitflanschträger HEB

Profilés à larges ailes HEB

$$\begin{split} A_v &= A - 2bt_f + (t_w + 2r) \ t_f \\ A_w &= (h - t_f) \cdot t_w \qquad W_{ely} = \frac{I_y}{h/2} \\ S_y &= \frac{1}{2} \ W_{ply} \\ S_z &= \frac{1}{2} \ W_{plz} \qquad \overline{W}_y \ = \frac{I_y}{(h - t_f)/2} \\ W_{elz} &= \frac{I_z}{b/2} \end{split}$$

*Auch in S355J0 oder S355J2 ab Schweizer Lager erhältlich Maximale Lagerlängen / Longueurs maximales en stock: h ≤ 180 18 m h ≥ 200 24 m

EURONORM 53 - 62, DIN 1025/2

Andere Bezeichnungen Autres désignations

*Livrable en S355J0 ou S355J2 du stock suisse

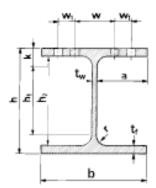
		Statische Werte / Valeurs statiques												
HEB	m kg/m	A mm²	A _v mm²	A _w mm²	I _y mm ⁴	W _{ely} mm ³	\overline{W}_y mm ³	W _{ply} mm ³	i _y mm	I _z mm ⁴	W _{elz} mm ³	W _{plz} mm ³	i _z mm	K – I _x mm ⁴
100* 120* 140* 160*	20,4 26,7 33,7 42,6	2600 3400 4300 5430	904 1096 1308 1759	540 708 896 1180	x 10 ⁶ 4,50 8,64 15,1 24,9	89,9 144 216 311		x 10 ⁴ 165 245 354	41,6 50,4 59,3 67,8	x 10 ^s 1,67 3,18 5,50 8,89	x 10 ² 33,5 52,9 78,5 111	x 10 ³ 51,4 81,0 120 170	25,3 30,6 35,8 40,5	x 10 ⁶ 0,0931 0,139 0,202 0,312
180*	51,2	6530	2024	1410	38,3	426	461	481	76,6	13,6	151	231	45,7	0,422
200*	61,3	7810	2483	1660	57,0	570	616	643	85,4	20,0	200	306	50,7	0,596
220*	71,5	9100	2792	1940	80,9	736	793	827	94,3	28,4	258	394	55,9	0,770
240*	83,2	10600	3323	2230	112,6	938	1010	1050	103	39,2	327	498	60,8	1,04
260*	93,0	11800	3759	2420	149,2	1150	1230	1280	112	51,3	395	602	65,8	1,26
280*	103	13100	4109	2750	192,7	1380	1470	1530	121	65,9	471	718	70,9	1,45
300*	117	14900	4743	3090	251,7	1680	1790	1870	130	85,6	571	870	75,8	1,87
320*	127	16100	5177	3440	308,2	1930	2060	2150	138	92,4	616	939	75,7	2,29
340*	134	17100	5609	3820	366,6	2160	2300	2410	146	96,9	646	986	75,3	2,62
360*	142	18100	6060	4220	431,9	2400	2560	2680	155	101	676	1030	74,9	2,98
400*	155	19800	6998	5080	576,8	2880	3070	3230	171	108	721	1100	74,0	3,61
450*	171	21800	7966	5940	798,9	3550	3770	3980	191	117	781	1200	73,3	4,49
500	187	23900	8982	6840	1072	4290	4540	4820	212	126	842	1290	72,7	5,50
550	199	25400	10010	7820	1367	4970	5250	5590	232	131	872	1340	71,7	6,12
600	212	27000	11080	8840	1710	5700	6000	6420	252	135	902	1390	70,8	6,80
650	225	28600	12200	9900	2106	6480	6800	7320	271	140	932	1440	69,9	7,52
700	241	30600	13710	11400	2569	7340	7690	8330	290	144	963	1490	68,7	8,42
800	262	33400	16180	13400	3591	8980	9360	10230	328	149	994	1550	66,8	9,62
900	291	37100	18880	16000	4941	10980	11400	12580	365	158	1050	1660	65,3	11,5
1000	314	40000	21250	18300	6447	12890	13400	14860	401	163	1090	1720	63,8	12,7

Breitflanschträger HEB

Profilés à larges ailes HEB

HEB

Anstelle des nicht mehr gewalzten Profils HEB 1100 können HL-Profile verwendet werden, siehe Seiten 40/41.


w₁ mit Ø_{max} nur für versetzte Schrauben.

Walztoleranzen siehe Seite 116

Au lieu du profilé HEB 1100 qui n'est plus laminé, on utilisera des profilés HL (voir pages 40/41).

w₁ avec Ø_{max} seulement pour boulons décalés.

Tolérances de laminage voir page 116

		Dim		filmass ns de la		ion	Di		nstruk sions	Oberf Sur						
HEB	m kg/m	h mm	b mm	t _w mm	t _f mm	r mm	h ₁ mm	k mm	a mm	h ₂ mm	w mm	W ₁ mm	Ø _{max}	U _m m²/m	U _t m²/t	HEB
100 120 140 160	20,4 26,7 33,7 42,6	100 120 140 160	100 120 140 160	6 6,5 7 8	10 11 12 13	12 12 12 15	56 74 92 104	22 23 24 28	47 56 66 76	80 98 116 134	56 66 76 86		M12 M16 M20 M20	0,567 0,686 0,805 0,918	27,8 25,7 23,9 21,5	100 120 140 160
180 200 220 240	51,2 61,3 71,5 83,2	180 200 220 240	180 200 220 240	8,5 9 9,5 10	14 15 16 17	15 18 18 21	122 134 152 164	29 33 34 38	85 95 105 115	152 170 188 206	100 110 120 96	35	M24 M24 M24 M24	1,04 1,15 1,27 1,38	20,3 18,8 17,8 16,6	180 200 220 240
260 280 300 320	93,0 103 117 127	260 280 300 320	260 280 300 300	10 10,5 11 11,5	17,5 18 19 20,5	24 24 27 27	176 196 208 224	42 42 46 48	125 134 144 144	225 244 262 279	106 110 120 120	40 45 45 45	M24 M24 M27 M27	1,50 1,62 1,73 1,77	16,1 15,7 14,8 13,9	260 280 300 320
340 360 400 450	134 142 155 171	340 360 400 450	300 300 300 300	12,5 13,5 14	21,5 22,5 24 26	27 27 27 27 27	242 260 298 344	49 50 51 53	144 143 143 143	297 315 352 398	120 120 120 120	45 45 45 45	M27 M27 M27 M27	1,81 1,85 1,93 2,03	13,5 13,0 12,4 11,9	340 360 400 450
500 550 600 650	187 199 212 225	500 550 600 650	300 300 300 300	14,5 15 15,5 16	28 29 30 31	27 27 27 27 27	390 438 486 534	56 56 57 58	142 142 142 142	444 492 540 588	120 120 120 120	45 45 45 45	M27 M27 M27 M27	2,12 2,22 2,32 2,42	11,3 11,2 11,0 10,8	500 550 600 650
700 800 900 1000	241 262 291 314	700 800 900 1000	300 300 300 300	17 17,5 18,5 19	32 33 35 36	27 30 30 30	582 674 770 868	63 65 66	141 141 140 140	636 734 830 928	126 130 130 130	45 40 40 40	M27 M27 M27 M27	2,52 2,71 2,91 3,11	10,5 10,4 10,0 9,9	700 800 900 1000

Solution

Exterior columns

The column unbraced length is $L_b = 3500mm$; the member is in double curvature:

$$k_e = \frac{6EI_y}{L} = \frac{3 \cdot 210000 \cdot 576.8 \cdot 10^6}{3500} = 2.0765 \cdot 10^8 \frac{Nmm}{rad}$$
 (1)

Using the influence area, the gravity load acting on the exterior columns at floor i is

$$P_g^i = 5 \cdot \frac{8}{2} \cdot \frac{8}{2} = 80kN \tag{2}$$

Hence, the axial force due to the gravity load applied to the exterior first story column is as follows:

$$N_g = P_g^1 = 4 \cdot 80 = 320kN \tag{3}$$

The axial resistance of the member at yield is as follows (assume expected material properties):

$$N_{pl,e} = A \cdot \gamma_{rm} \cdot f_{y} = 19800 \cdot 1.25 \cdot 355 = 8786.25kN \tag{4}$$

Hence

$$\frac{N_g}{N_{pl,e}} = 0.036 < 0.2 \tag{5}$$

The following quantities corresponding to the monotonic backbone curve are computed using the equations provided Week #8 for steel members.

The effective yield strength M_{ν}^* is computed using

$$M_y^* = 1.15 \cdot W_{pl,y} \cdot \gamma_{rm} \cdot f_y \cdot \left(1 - \frac{N_g}{2N_{pl,e}}\right) = 1.15 \cdot 3230 \cdot 10^3 \cdot 1.25 \cdot 355 \cdot \left(1 - \frac{0.046}{2}\right)$$
$$= 1.6183 \cdot 10^6 Nmm$$

The following ratios are computed since they are needed for the next computations

$$\frac{h}{t_w} = \frac{298}{13.5} = 22.07$$

$$\frac{L_b}{i_z} = \frac{3500}{74} = 47.3$$

$$1 - \frac{N_g}{N_{pl,e}} = 0.964$$

The hardening ratio a for monotonic loading is computed as follows:

$$a = 12.5 \cdot \left(\frac{h_1}{t_w}\right)^{-0.2} \cdot \left(\frac{L_b}{i_z}\right)^{-0.4} \cdot \left(1 - \frac{N_g}{N_{pl,e}}\right)^{0.4} = 1.42 > 1.3$$
 (6)

Hence the value a = 1.3 is used.

The capping moment is therefore computed using

$$M_u = a \cdot M_v^* = 1.3 \cdot 1.6183 \cdot 10^6 = 2.2952 \cdot 10^6 Nmm$$
 (7)

The column's residual flexural strength M_r is given by

$$M_r = \left(0.5 - 0.4 \cdot \frac{N_g}{N_{pl,e}}\right) \cdot M_y^* = 7.8557 \cdot 10^5 Nmm \tag{8}$$

The column's pre-peak plastic rotation θ_p is obtained from

$$\theta_p = 294 \cdot \left(\frac{h}{t_w}\right)^{-1.7} \cdot \left(\frac{L_b}{i_z}\right)^{-0.7} \cdot \left(1 - \frac{N_g}{N_{pl,e}}\right)^{1.6} = 0.097 \, rad < 0.2 \, rad \tag{9}$$

Similarly, the column's post-peak plastic rotation θ_{pc} is obtained from

$$\theta_{pc} = 90 \cdot \left(\frac{h}{t_w}\right)^{-0.8} \cdot \left(\frac{L_b}{i_z}\right)^{-0.8} \cdot \left(1 - \frac{N_g}{N_{pl,e}}\right)^{2.5} = 0.315 rad > 0.3 rad$$
 (10)

Therefore, $\theta_{pc} = 0.30 rad$

The ultimate rotation θ_u which represents the total chord rotation at which the steel column loses its axial load carrying capacity is given by

$$\theta_{\nu} = 0.15 \, rad \tag{11}$$

First-floor beam

The beam unbraced length, $L_b = 4000mm$ and a span, L = 8000mm ((assuming centreline dimensions). The member is in double curvature; therefore, the elastic rotational stiffness is,

$$k_e = \frac{6EI_y}{L - 2 \cdot h} = \frac{6 \cdot 210000 \cdot 337.4 \cdot 10^6}{8000 - 2 \cdot 400} = 5.904 \cdot 10^7 \frac{Nmm}{rad}$$
 (12)

The following ratios are computed since they are needed for the next computations

$$\frac{h_1}{t_w} = \frac{378}{9.4} = 40.2$$

$$\frac{b}{2t_f} = \frac{190}{2 \cdot 14.6} = 6.51$$

$$\frac{L_o}{d} = \frac{4000}{450} = 8.89$$

$$\frac{d}{533} = \frac{400}{533} = 0.844$$

$$\frac{1.25f_y}{355} = \frac{1.25 \cdot 355}{355} = 1.25$$

The following quantities are computed based on the presented assessment models for steel beams:

The effective yield strength M_y^* is computed using

$$M_y^* = 1.17 \cdot M_{pl} = 1.15 \cdot W_{pl,y} \cdot \gamma_{rm} \cdot f_y = 1.15 \cdot 1700 \cdot 10^3 \cdot 1.25 \cdot 355$$

= $8.8262 \cdot 10^5 Nmm$

The capping moment is,

$$M_u = 1.11 \cdot M_y^* = 1.11 \cdot 8.8262 \cdot 10^5 = 9.7971 \cdot 10^5 Nmm$$
 (13)

The beam's residual flexural strength M_r is given by

$$M_r = 0.4 \cdot M_{\nu}^* = 3.5305 \cdot 10^6 Nmm \tag{14}$$

The beam's pre-peak plastic rotation θ_p is obtained as follows,

$$\theta_p = 0.0885 \cdot \left(\frac{h}{t_w}\right)^{-0.365} \cdot \left(\frac{b}{2t_f}\right)^{-0.140} \cdot \left(\frac{L_o}{d}\right)^{0.340} \cdot \left(\frac{d}{533}\right)^{-0.721} \cdot \left(\frac{f_y}{355}\right)^{-0.23} = 0.039 \, rad \, (15)$$

Similarly, the post-peak plastic rotation θ_{pc} is obtained as follows,

$$\theta_{pc} = 5.63 \cdot \left(\frac{h}{t_w}\right)^{-0.565} \cdot \left(\frac{b}{2t_f}\right)^{-0.800} \cdot \left(\frac{d}{533}\right)^{-0.280} \cdot \left(\frac{f_y}{355}\right)^{-0.430} = 0.149 \, rad \qquad (16)$$

The ultimate rotation capacity θ_u is given by

$$\theta_u = 0.20 \, rad \tag{17}$$