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In-class Exercise – Week #8: Zero length elements for material nonlinearity 
 
Exercise #1:  
 
Derive the stiffness matrix for an element that is comprised of a zero-length rotational 
element and an elastic beam-column element as shown in Figure 1.1 in the basic reference 
system. Assume that the rotational stiffness of the zero-length element is 𝑛 !"#!

$
 where 𝐼% =

&'(
&
𝐼. 

 

 
Figure 1.1.  Zero length rotational element and elastic beam-column element in series 

 
Hint: By using static condensation, determine the coefficients 𝑆)), 𝑆)!, 𝑆!) and 𝑆!! of the 
stiffness matrix 𝐤& *+, of the elastic beam-column element given by 
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such that a beam-column member can be modeled with the derived elastic beam-column 
element and a rotational spring. 
 
Recall that the elastic stiffness matrix, 𝐤&  of an elastic beam-column element in the basic 
reference system is as follows:  
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Exercise #2:  
 
Write a script for a zero-length rotational element that utilizes the moment-rotation 
constitutive relation shown in Figure 2.1. Consider both the loading and unload paths in your 
model. Validate your implementation for the following input parameters: 
 

o 𝑘% = 400000𝑘𝑁.𝑚𝑚/𝑟𝑎𝑑 
o 𝜃- = 𝜃. − 𝜃/ = 0,02	𝑟𝑎𝑑 
o 𝜃-. = 𝜃0 − 𝜃. = 0,05	𝑟𝑎𝑑 
o 𝑀/

∗ = 	4000𝑘𝑁.𝑚𝑚 and 𝑀0 	= 4500𝑘𝑁.𝑚𝑚 
 

1. Load case #1: Rotational monotonic loading, 𝜃 = {0, 0,08}2𝑟𝑎𝑑 
2. Load case #2: Rotational cyclic loading, 𝜃 = {0, 0,06, −0,06, 0}2𝑟𝑎𝑑 

 
Figure 2.1.  Moment-rotation relation for zero length element 
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Exercise #3:  
 
Consider the following column from Week #5: 
 

𝐴 = 1.27 ⋅ 103𝑚𝑚), 𝐼 = 3.66 ⋅ 104𝑚𝑚), 𝐸 = 200,000𝑀𝑃𝑎 

 
Figure 1. Column under axial and lateral loading 

 
Consider material nonlinearity with the element model you developed in Exercise #2 and the 
element stiffness matrix you derived in Exercise #1. For a=0.05, determine the load-
displacement relationship (secondary equilibrium path) of the cantilever member when: 
 

•  𝜃- = 𝜃. − 𝜃/ = 0,02	𝑟𝑎𝑑 
• 𝜃-. = 𝜃0 − 𝜃. = 0,05	𝑟𝑎𝑑 
• 𝑀/

∗ = 	4000𝑘𝑁.𝑚𝑚 and 𝑀0 	= 4500𝑘𝑁.𝑚𝑚 
 

1. Would you use a displacement or load-control scheme for your solution? Explain 
your answer. 
 

2. Compare the computed secondary equilibrium path for the following cases: 
 

a. Case #1: Linear elastic analysis (from Week #5) 
b. Case #2: Nonlinear geometric analysis and linear material (from Week #5) 
c. Case #3: Nonlinear analysis with material nonlinearity and linear geometric 

transformation 
d. Case #4: Nonlinear analysis with both material and geometric nonlinearities  

 
3. Calculate the displacement at which the cantilever member reaches zero lateral 

strength (i.e., collapse) with your program. 
 
Notes:  

• The spring should be considered to be n times stiffer than the flexural stiffness of the 
elastic element:,  

o 𝑘%
5-67&8 = &!"#!

$
, 𝐼% =

&'(
&
𝐼 

• The post-yield stiffness of the spring should be adjusted accordingly,  
o 𝑘5

5-67&8 = 𝑎5 ∙ 𝑘%
5-67&8 = 9"#!#$!%

('&∙;(<9"#!#$!%=
∙ 𝑘%

5-67&8 
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o Strain hardening ratio of the member: 𝑎5*%*>%6 =
?&<?'∗

@!#!#$!%∙A)
 

• The post-capping stiffness of the spring should be adjusted accordingly, 

o 𝑘-.
5-67&8 = 𝑎-. ∙ 𝑘%

5-67&8 = 9)*#!#$!%

('&∙;(<9)*#!#$!%=
∙ 𝑘%

5-67&8 

o Post-capping hardening ratio of the member: 𝑎-.*%*>%6 = − ?&
@!#!#$!%∙A)*

 

 


