FACULTE ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT
ENAC

INSTITUT D’INGENIERIE CIVILE IIC

Laboratoire des Structures Métalliques Résilientes
RESSLAB

'
"1

Téléphone : +41 21 693 24 27
Fax : +41 21 693 28 68
E-mail : dimitrios.lignos@epfl.ch
Site web : http://resslab.epfl.ch
Address: EPFL ENAC IIC RESSLAB
GC B3 485, Station 18,
CH-1015, Lausanne

In-class Exercise Week #6: Load-displacement constraint methods

Exercise #1:
Consider the following truss structure:

The members have the followings properties:
- ab:E =200GPa,l,,, = 5m, square cross section of dimension bg, = 500mm
- bc:E =200GPa,l,p. =1, qp, square cross section of dimension b,
- bd:E =200 GPa,l,pq = lyqp, square cross section of dimension b,y = by,

1) Analytically, determine the minimum dimension bc,,;;, such that the structure does not
exhibit a snap-back response in the P — v, equilibrium path (v, denotes the vertical
displacement at node c).

Hint: Consider the tangent in the P — v, equilibrium path once members ab and bd are
horizonal (i.e., when P = 0).

2) Derive the corotational formulation for a 2d truss element

3) Model the structure using 2d truss elements and simulate the response of the structure in the
case where node c is displaced vertically up to v, = 8.0m downwards:

a) Using displacement control for b,. = 2 - b,

b) Using arc-length control for by = by /2
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Solution:
1) From the system of equations given in Slide 38 of Week 5, the relation between the external
load P and the vertical displacement v}, at point b is given by

 2EAy < I
lo \J12 - 2v,1,sin(6,) + v?

- 1) (Iosin(6) — vp) €Y
Where 1, = 1y ap = lope = lopa- With respect to the equations given in Slide 38 of Week 5,
the dimensionless displacement a; corresponds to v, /L.

As stated in the hint, snap-back in the P — v, equilibrium path occurs once members ab and
bd become horizonal. At this point, the load P = 0 and v, = H = 3.0m.

From the system of equations given in Slide 38 of Week 5, the relation between the vertical
displacement v, and v, is given by

(Uc - Ub) (2)

EApc

For brevity, let’s define k;. =

Therefore, the vertical displacement at point c is given by
P

vc:k_bc-l'vb 3)

Equation 1 can be rewritten using Equation 3. This gives

 2EAg L,

l
| j -2 (v - k%) losin(80) + (ve = k%)z

Differentiating Equation 4 with respect to P gives

N P
kbc

—1 <losin(90) —v, ) 4)

1 = 2E4a Lo 4 (L_%)+
L 3 k. 0P
l2—2(v —i)l sin(0 )+(v —L)
o] c kbC o 0 c kbC
5 3
2EA,, P b, P P \2] 2
i —v+—) | —2|12 = 2(v, — —) I,sin(6 (——)
L (losm(HO) v, +kbc) > l5 <vc kbc) 0Sin(6y) + | vgg ko
v, 1 Jdv, 1 P
—2 (== ——)1,sin(B) + 2 (== — — ) (v, — — 5
( (ap kbc) osin(8o) + (ap kbc) (”C kbc)) )
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From Equation 3, it is evident that P = 0 corresponds to v;, = v,.. Therefore, Snap-back occurs
when P = 0and v, = v, = H.

. e ]
Moreover, a snap-back response in the P — v, equilibrium path occurs when % =0.

Therefore, solving Equation 5 with % =0,P =0and v, = H gives

o 2EAw < 1 1) ©
beer Lo 1 —sin?(6,)

The axial stiffness of member bc is as follows:

k — EAbc,min — Ebgc,min — ZEbczzb < 1 _ 1) (7)
beer lo lo lo V1= sin? (90)

Therefore, the minimum dimension bc,,;, such that the structure does not exhibit a snap-back
response in the P — v, equilibrium path is given by

1 1
bbc,min = ijﬁb < - 1) = [2:5002| ———=—-1 | =354mm (8)

For by: < bpcmin, the P — v, equilibrium path will exhibit a snap-back response, while for
bpc > bpcmin, the P — v, equilibrium path will exhibit a snap-trough response.

2) The derivation of the corotational formulation for the 2d beam-column element is presented
in Slides 24 to 32 of Week 4. In particular, the rotational degrees of freedom are condensed,

i.e., the axial degree of freedom is only considered.

The axial displacement in the basic reference system is given by

u=1L,—L 9
With
2
L, = \/(L + Auy)? + (Au,y) (10)
With
Auy, = uy — Uy (11)
Au, = uz —uy (12)

Where u denote the element displacements in the local reference system. The following
quantities are defined to describe the rigid body rotation:

B = arctan (L -L}‘-lilyu ) (13)
¢ =cos(B) = L -;Aux (14)
s =sin(B) = % (15)
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Condensing out the rotational degrees of freedom in the compatibly matrix L defined in Slide
27 of Week 4 gives
L=[-c —-s c¢ s] (16)

Similarly, condensing out the rotational degrees of freedom in the geometric stiffness matrix
Kgeom defined in Slide 32 of Week 4 gives,

2 2

s —cs —s cs
Kyeom = qil—cs ¢* s —c? 17)

L,|—s?> ¢ s? —cs

cs —c* —cs c?

Where @, is the element internal axial force in the basic reference system.

3) Part (a)

To determine the P — v, equilibrium path using displacement control, the following steps are
used:

1) Define the member properties (E, A and [)

2) Define the connectivity matrix and the mapping matrix between local and global degrees of
freedom.

The figure below shows the global degrees of freedom used for the structure

Figure 1. Global degrees of freedom

The mapping matrix numEq is therefore given by

1 2 3 4
numEq=1|3 4 5 6
3 4 7 8

3) For each member, determine the transformation matrix T between local and global
coordinates. In this exercise, the local x-axis is defined in the axial direction of the element

4) Assemble the initial structure stiffness matrix Kgi oy crure

5) Define the boundary conditions, the fixed and the free degrees of freedom of the problem,
the external loads (i.e., apply the reference load F,,, = [0000 0—1 00]7)

6) Initialize the variables used within the displacement-control procedure

A=0,v=0
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7) Define the parameters defining the displacement-control algorithm:
- The dof controlling the displacement qq,r = 6
- The final displacement at qgo¢: Vemax = 8000.0 mm
- The number of steps n;,; = 500
- At each load step, the increment in external force is given by AV = v, 145 /Mot
- The tolerance tol = 1
- The maximum number of iterations for each iterations of the displacement control

loop imax

8) For displacement increment n, perform the Newton-Raphson iterations
8.1) Fori =1, set:

;{n,i=1 — An—l F'n.l':l — F.Tl—l KTL.l
9

— gn-1 nl _ yn—-1
int int » “*structure T Kstructure and \4 =V

8.2) Determine §v,"'and §v,""
—1_

oV = (Kot re)  Fext

structure
i . -1 ,
nt _ n,i—1 n,i—1
avr, f = (Kstructure) Funb

Where the subscript f denotes the free degrees of freedom of the system

8.3) Compute the increment in the load multiplier §A™*:

AV i1
—ifi = 1 (note, 6v,"” = 0)
sami = 0% .
sv
— - else
sv,"

8.4) Compute the increment in structure displacements Av™*:
svt = SAMSVY 4 Sv
8.5 Update the structure displacements and the load multiplier:
vyl = yni-1 + Syni
Al = ri-1 + AL

8.6) Assemble the structure material and geometric stiffness matrices K™

e,structure and

n,i

Kg;;tmme, as well as the structure resisting force vector F;,;.

elements:
8.6.1) Determine the element displacement vector in the local reference frame
un,i

With a loop, go over all

un,i =T Vn,i
elem elemYelem
Where the subscript elem denotes the degrees of freedom corresponding to

element elem

8.6.2) Using the corotational formulation for the 2d truss element derived in
Question 2, compute the element displacements in the basic reference frame
u= [ﬁ1]T
8.6.3) Compute the element internal forces in the basic reference frame q’** :
ﬁn,l — Kn,lﬁn,l

8.6.4) Determine the transformation matrix "~ from the basic to the local
reference system:

M =[-c —s ¢ s]
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8.6.5) Compute the element internal force vector in the local reference frame:
: \T__. .
Qe = (L) @

8.6.6) Determine the element geometric stiffness matrix in the local reference

frame Kg:;l em -
[s* —cs —s* s
Kyeom = qil—cs ¢* s —c?
L,|-s*> ¢ s?* —cs
cs —c?2 —cs c?

8.6.7) Assemble the structure material and geometric stiffness matrices
KZ:;thmre and Kg:étmcture as well as the structure internal force vector F::l;
with the element quantities
8.7) Compute the unbalanced load vector F/%, = F/:! — F%,
8.8) Check if the Newton-Raphson procedure has converged. In the source code,
convergence is achieved once
1F o I < tol
8.9) If iteration i has converged, go to next load step n, else set i = i + 1 and go back
to step (8.2)

The following figure shows the results obtained in this case:

%10’

Figure 2. Vertical load-displacement relation at point ¢ for by, > bpc min
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Part (b)

To determine the P — v, equilibrium path using arc-length control, the following steps are
used:

1) Define the member properties (E, A and [)

2) Define the connectivity matrix and the mapping matrix between local and global degrees of
freedom.

Figure 1 above shows the global degrees of freedom used for the structure. The mapping
matrix numeEgq is the same as for part (a) and is given by

1 2 3 4
numEq=1|3 4 5 6
3 4 7 8

3) For each member, determine the transformation matrix T between local and global
coordinates. In this exercise, the local x-axis is defined in the axial direction of the element

4) Assemble the initial structure stiffness matrix Kgipycrure
5) Define the boundary conditions, the fixed and the free degrees of freedom of the problem
the external loads, i.e., apply the reference load F,,, =[0000 0—1 00]7)

6) Initialize the variables used within the arc-length control procedure
A=0,v=0

7) Define the parameters defining the arc-length control algorithm:
- The dof controlling the displacement qq,r = 6
- The final displacement at qgo¢: Ve max = 8000.0 mm
- The number of steps n;,; = 500
- The arc-length, Al = 20, which is kept constant for all analysis steps
- The parameter 1 used for the arc length. Here the cylindrical arc-length is used (i.e.,
Y =0)
- The tolerance tol = 1
- The maximum number of iterations for each iterations of the arc-length control loop

lmax

8) For increment n, perform the Newton-Raphson iterations
8.1) Fori =1, set,

ni=1 _ n-1 gni=1 _ gn-1 gnl
A =1 ’ Fint - Fint > Kstructure

8.2) Determine §v,"'and §v,"
—1_

oV = (Kot re)  Fext

— gn-1 nl _ yn—-1
- Kstructure and \4 =V

structure
: . -1 ,
nt _ n,i—1 n,i—1
avr, f = (Kstructure) Funb

Where the subscript f denotes the free degrees of freedom of the system

8.3) Compute the increment in the load multiplier §A™*:
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( Al . n1
+ if i = 1(note,év, =0)

Jewey vy
B (5v"'i=1)T5vf'i .
L (6vn,i=1)T6‘V;lni + 1,[)2617”:1

The sign of the first line is taken as the one corresponding to the sign of the structure
tangent stiffness matrix

SA™E =4

lse

8.4) Compute the increment in structure displacements Av™*:
SVt = Ay + vy

8.5) Update the structure displacements and the load multiplier:
vyl = yni-1 + Syni
Al = pri-1 + AL

n,i

e,structure and

8.6) Assemble the structure material and geometric stiffness matrices K

ngétructure, respectively, as well as the structure resisting force vector F/y;. With a
loop, go over all elements:
8.6.1) Determine the element displacement vector in the local reference frame
un,i
Ugiem = TetemVeiem
Where the subscript elem denotes the degrees of freedom corresponding to

element elem

8.6.2) Using the corotational formulation for the 2d truss element derived in
Question 2, compute the element displacements in the basic reference frame
u= [ﬁ1]T
8.6.3) Compute the element internal forces in the basic reference frame q™** :
ﬁn,l — Kn,lﬁn,l

8.6.4) Determine the transformation matrix "~ from the basic to the local
reference system:

M =[-c —s ¢ s]

8.6.5) Compute the element internal force vector in the local reference frame:
: \T__. .
Qeiem = (L)

8.6.6) Determine the element geometric stiffness matrix in the local reference

frame Kg:;l em -
[s* —cs —s* s
Kyeom = qil—cs ¢* s —c?
L,|-s?> ¢ s?* —cs
cs —c?2 —cs c?

8.6.7) Assemble the structure material and geometric stiffness matrices
Ky structure and Kg:;tmcture as well as the structure internal force vector F/y;
with the element quantities
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8.7) Compute the unbalanced load vector F/%, = F/:! — F%,

8.8) Check if the Newton-Raphson procedure has converged. In this source code,
convergence is achieved once
u

IF5sz | < tol

8.9) If iteration i has converged, go to next load step n, else seti =i + 1

The following figure shows the results obtained in this case:

6

x 10

10

Figure 3. Vertical load-displacement relation at point ¢ by, < bpc min.
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