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In-class Exercise Week #6: Load-displacement constraint methods 
 
 
Exercise #1:  
Consider the following truss structure: 

 
 
The members have the followings properties: 

- 𝑎𝑏: 𝐸 = 200	𝐺𝑃𝑎, 𝑙!,#$ = 5𝑚, square cross section of dimension 𝑏#$ = 500𝑚𝑚 
- 𝑏𝑐: 𝐸 = 200	𝐺𝑃𝑎, 𝑙!,$% = 𝑙!,#$, square cross section of dimension 𝑏$% 
- 𝑏𝑑: 𝐸 = 200	𝐺𝑃𝑎, 𝑙!,$& = 𝑙!,#$, square cross section of dimension 𝑏$& = 𝑏#$ 

 
1) Analytically, determine the minimum dimension 𝑏𝑐'()	 such that the structure does not 
exhibit a snap-back response in the 𝑃 − 𝑣% equilibrium path (𝑣% denotes the vertical 
displacement at node 𝑐). 
 
Hint: Consider the tangent in the 𝑃 − 𝑣% equilibrium path once members 𝑎𝑏 and 𝑏𝑑 are 
horizonal (i.e., when 𝑃 = 0). 
 
2) Derive the corotational formulation for a 2d truss element 
 
3) Model the structure using 2d truss elements and simulate the response of the structure in the 
case where node 𝑐 is displaced vertically up to 𝑣% = 8.0𝑚 downwards: 
a) Using displacement control for 𝑏$% = 2 ⋅ 𝑏#$  
b) Using arc-length control for 𝑏$& = 𝑏#$/2 
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Solution: 
1) From the system of equations given in Slide 38 of Week 5, the relation between the external 
load 𝑃 and the vertical displacement 𝑣$ at point 𝑏 is given by 
 

𝑃 =
2𝐸𝐴#$
𝑙!

8
𝑙!

9𝑙!* − 2𝑣$𝑙!𝑠𝑖𝑛(𝜃+) + 𝑣$*
− 1B (l,sin(𝜃+) − 𝑣$) (1) 

 
Where 𝑙! = 𝑙!,#$ = 𝑙!,$% = 𝑙!,$&. With respect to the equations given in Slide 38 of Week 5, 
the dimensionless displacement 𝑎- corresponds to 𝑣$/𝑙!.  
 
As stated in the hint, snap-back in the 𝑃 − 𝑣% equilibrium path occurs once members 𝑎𝑏 and 
𝑏𝑑 become horizonal. At this point, the load 𝑃 = 0 and 𝑣$ = 𝐻 = 3.0𝑚. 
 
From the system of equations given in Slide 38 of Week 5, the relation between the vertical 
displacement 𝑣$ and 𝑣% is given by 

𝑃 =
𝐸𝐴$%
𝑙!

(𝑣% − 𝑣$) (2) 

For brevity, let’s define 𝑘$% =
./!"
0#

 
 
Therefore, the vertical displacement at point 𝑐 is given by 

𝑣% =
𝑃
𝑘$%

+ 𝑣$	 (3) 

 
Equation 1 can be rewritten using Equation 3. This gives 
 

𝑃 =
2𝐸𝐴#$
𝑙!

⎝

⎜
⎜
⎛ 𝑙!

M𝑙!* − 2N𝑣% −
𝑃
𝑘$%

O 𝑙!𝑠𝑖𝑛(𝜃+) + N𝑣% −
𝑃
𝑘$%

O
*
− 1

⎠

⎟
⎟
⎞
Sl,sin(𝜃+) − 𝑣% +

𝑃
𝑘$%

T	(4) 

 
Differentiating Equation 4 with respect to 𝑃 gives   
 

1 =
2𝐸𝐴#$
𝑙!

⎝

⎜
⎜
⎛ 𝑙!

M𝑙!* − 2N𝑣% −
𝑃
𝑘$%

O 𝑙!𝑠𝑖𝑛(𝜃+) + N𝑣% −
𝑃
𝑘$%

O
*
− 1

⎠

⎟
⎟
⎞
S
1
𝑘$%

−
𝜕𝑣%
𝜕𝑃 T +

2𝐸𝐴#$
𝑙!

Sl,sin(𝜃+) − 𝑣% +
𝑃
𝑘$%

TW−
𝑙!
2
X𝑙!* − 2S𝑣% −

𝑃
𝑘$%

T 𝑙!𝑠𝑖𝑛(𝜃+) + S𝑣�� −
𝑃
𝑘$%

T
*

Y
12*
Z ⋅

S−2S
𝜕𝑣%
𝜕𝑃

−
1
𝑘$%

T 𝑙! sin(𝜃+) + 2 S
𝜕𝑣%
𝜕𝑃

−
1
𝑘$%

T S𝑣% −
𝑃
𝑘$%

TT (5)
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From Equation 3, it is evident that 𝑃 = 0 corresponds to 𝑣$ = 𝑣%. Therefore, Snap-back occurs 
when	𝑃 = 0 and 𝑣% = 𝑣$ = 𝐻. 
Moreover, a snap-back response in the 𝑃 − 𝑣% equilibrium path occurs when 34"

35
= 0. 

 
Therefore, solving Equation 5 with 34"

35
= 0, 𝑃 = 0 and 𝑣% = 𝐻 gives 

 

𝑘$%,%6 =
2𝐸𝐴#$
𝑙!

8
1

91 − sin*(𝜃+)
− 1B	 (6) 

 
The axial stiffness of member 𝑏𝑐 is as follows: 
 

𝑘$%,%6 =
𝐸𝐴$%,'()	

𝑙!
=
𝐸𝑏$%,'()*

𝑙!
=
2𝐸𝑏#$*

𝑙!
8

1
91 − sin*(𝜃+)

− 1B	 (7) 

 
Therefore, the minimum dimension 𝑏𝑐'()	 such that the structure does not exhibit a snap-back 
response in the 𝑃 − 𝑣% equilibrium path is given by 
 

𝑏$%,'() = M2𝑏#$* 8
1

91 − sin*(𝜃+)
− 1B = ]2 ⋅ 500*

⎝

⎛ 1

^1 − N35O
*
− 1

⎠

⎞ = 354𝑚𝑚	 (8) 

 
For 𝑏$% < 𝑏$%,'(), the 𝑃 − 𝑣% equilibrium path will exhibit a snap-back response, while for 
𝑏$% > 𝑏$%,'(), the 𝑃 − 𝑣% equilibrium path will exhibit a snap-trough response. 
 
2) The derivation of the corotational formulation for the 2d beam-column element is presented 
in Slides 24 to 32 of Week 4. In particular, the rotational degrees of freedom are condensed, 
i.e., the axial degree of freedom is only considered. 
 
The axial displacement in the basic reference system is given by 

𝑢b = 𝐿) − 𝐿	 (9) 
With 

𝐿) = ^(𝐿 + 𝛥𝑢7)* + f𝛥𝑢8g
*	 (10) 

With 
𝛥𝑢8 = 𝑢9 − 𝑢*	 (11) 
𝛥𝑢7 = 𝑢2 − 𝑢-	 (12) 

 
Where 𝑢 denote the element displacements in the local reference system. The following 
quantities are defined to describe the rigid body rotation: 

𝛽 = arctan S
𝛥𝑢8

𝐿 + 𝛥𝑢7
T	 (13) 

𝑐 = cos(𝛽) =
𝐿 + 𝛥𝑢7
𝐿)

	 (14) 

𝑠 = sin(𝛽) =
𝛥𝑢8
𝐿)

	 (15) 
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Condensing out the rotational degrees of freedom in the compatibly matrix 𝐋 defined in Slide 
27 of Week 4 gives 

𝐋 = [−𝑐 −𝑠 𝑐 𝑠]	 (16) 
 
Similarly, condensing out the rotational degrees of freedom in the geometric stiffness matrix 
𝐊:;!' defined in Slide 32 of Week 4 gives, 
 

𝐊:;!' =
𝑞b-
𝐿)
s
𝑠* −𝑐𝑠 −𝑠* 𝑐𝑠
−𝑐𝑠 𝑐* 𝑐𝑠 −𝑐*
−𝑠* 𝑐𝑠 𝑠* −𝑐𝑠
𝑐𝑠 −𝑐* −𝑐𝑠 𝑐*

t	 (17) 

 
Where 𝑞b- is the element internal axial force in the basic reference system. 
 
3) Part (a) 
To determine the 𝑃 − 𝑣% equilibrium path using displacement control, the following steps are 
used: 
1) Define the member properties (𝐸, 𝐴 and 𝑙) 
2) Define the connectivity matrix and the mapping matrix between local and global degrees of 
freedom. 
The figure below shows the global degrees of freedom used for the structure 

 
Figure 1. Global degrees of freedom 

 
The mapping matrix 𝒏𝒖𝒎𝑬𝒒 is therefore given by 

𝒏𝒖𝒎𝑬𝒒 = z
1 2 3 4
3 4 5 6
3 4 7 8

{ 

 
3) For each member, determine the transformation matrix 𝐓 between local and global 
coordinates. In this exercise, the local 𝑥-axis is defined in the axial direction of the element 
 
4) Assemble the initial structure stiffness matrix 𝐊<=6>%=>6;  
 
5) Define the boundary conditions, the fixed and the free degrees of freedom of the problem, 
the external loads (i.e., apply the reference load 𝑭�;7= = [0	0	0	0		0 − 1		0	0]?) 
 
6) Initialize the variables used within the displacement-control procedure 
 

𝜆 = 0, 𝒗 = 𝟎 

!
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7) Define the parameters defining the displacement-control algorithm: 
 - The dof controlling the displacement 𝑞&!@ = 6 
 - The final displacement at 𝑞&!@:  𝑣%,'#7 = 8000.0	𝑚𝑚 
 - The number of steps 𝑛=!= = 500  
 - At each load step, the increment in external force is given by Δvb = 𝑣%,'#7/𝑛=!=	 
 - The tolerance 𝑡𝑜𝑙 = 1 

- The maximum number of iterations for each iterations of the displacement control 
loop 𝑖ABC 
 

8) For displacement increment 𝑛, perform the Newton-Raphson iterations 
8.1) For 𝑖 = 1, set: 
𝜆),(D- = 𝜆)1-, 𝐅()=

),(D- = 𝐅()=)1-, 𝐊<=6EFGEHI
),- = 𝐊<=6EFGEHI)1-  and 𝐯),- = 𝐯)1- 

 
8.2) Determine 𝛿𝐯6

),(and 𝛿𝐯J
),(: 

𝛿𝐯J,@
),(=	f𝐊<=6>%=>6;

),(1- g
1-
𝐅b;7=	

𝛿𝐯6,@
),( = −f𝐊<=6>%=>6;

),(1- g
1-
𝐅>)$
),(1- 

Where the subscript 𝑓 denotes the free degrees of freedom of the system 
 
8.3) Compute the increment in the load multiplier 𝛿𝜆),(: 

𝛿𝜆),( =

⎩
⎪
⎨

⎪
⎧
Δvb)

𝛿𝐯J
),( if	𝑖 = 1	(𝑛𝑜𝑡𝑒, 	𝛿𝐯6

),- = 𝟎)

−
𝛿𝐯6

),(

𝛿𝐯J
),( 	else

 

 8.4) Compute the increment in structure displacements Δ𝐯),(: 
𝛿𝐯),( = 𝛿𝜆),(𝛿𝐯J

),( + 𝛿𝐯6
),( 

 8.5 Update the structure displacements and the load multiplier: 
𝐯),( = 𝐯),(1- + δ𝐯),( 
𝜆),( = 𝜆),(1- + Δ𝜆),( 

8.6) Assemble the structure material and geometric stiffness matrices 𝐊;,<=6>%=>6;
),(  and 

𝐊:,<=6>%=>6;
),( , as well as the structure resisting force vector 𝐅()=

),( . With a loop, go over all 
elements: 

8.6.1) Determine the element displacement vector in the local reference frame 
𝒖),( 

𝐮;0;'
),( = 𝐓;0;'𝐯;0;'

),(  
Where the subscript 𝑒𝑙𝑒𝑚 denotes the degrees of freedom corresponding to 
element 𝑒𝑙𝑒𝑚  
 
8.6.2) Using the corotational formulation for the 2d truss element derived in 
Question 2, compute the element displacements in the basic reference frame 
𝐮� = [𝑢b-]? 
8.6.3) Compute the element internal forces in the basic reference frame  𝐪�),( : 

𝐪�),( = 𝐊�),(𝐮�),( 
8.6.4) Determine the transformation matrix 𝐋)1- from the basic to the local 
reference system: 

𝐋),( = [−𝑐 −𝑠 𝑐 𝑠]	 
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8.6.5) Compute the element internal force vector in the local reference frame: 
𝐐;0;'
),( = f𝐋),(g?𝐪�),( 

 
8.6.6) Determine the element geometric stiffness matrix in the local reference 
frame 𝐊:,;0;'

),(  : 

𝐊:;!' =
𝑞b-
𝐿)
s
𝑠* −𝑐𝑠 −𝑠* 𝑐𝑠
−𝑐𝑠 𝑐* 𝑐𝑠 −𝑐*
−𝑠* 𝑐𝑠 𝑠* −𝑐𝑠
𝑐𝑠 −𝑐* −𝑐𝑠 𝑐*

t 

 
8.6.7) Assemble the structure material and geometric stiffness matrices 
𝐊;,<=6>%=>6;
),(  and 𝐊:,<=6>%=>6;

),(  as well as the structure internal force vector 𝐅()=
),(  

with the element quantities 
8.7) Compute the unbalanced load vector 𝐅>)$

),( = 𝐅()=
),( − 𝐅;7=)  

8.8) Check if the Newton-Raphson procedure has converged. In the source code, 
convergence is achieved once 

�𝑭>)$,@
),( � < 𝑡𝑜𝑙 

8.9) If iteration 𝑖 has converged, go to next load step 𝑛, else set 𝑖 = 𝑖 + 1 and go back 
to step (8.2) 

 
The following figure shows the results obtained in this case:  
 

 
Figure 2. Vertical load-displacement relation at point 𝑐 for 𝑏$% > 𝑏$%,'() 
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Part (b) 
To determine the 𝑃 − 𝑣% equilibrium path using arc-length control, the following steps are 
used: 
1) Define the member properties (𝐸, 𝐴 and 𝑙) 
2) Define the connectivity matrix and the mapping matrix between local and global degrees of 
freedom. 
 
Figure 1 above shows the global degrees of freedom used for the structure. The mapping 
matrix 𝒏𝒖𝒎𝑬𝒒 is the same as for part (a) and is given by 
 

𝒏𝒖𝒎𝑬𝒒 = z
1 2 3 4
3 4 5 6
3 4 7 8

{ 

 
3) For each member, determine the transformation matrix 𝐓 between local and global 
coordinates. In this exercise, the local 𝑥-axis is defined in the axial direction of the element 
 
4) Assemble the initial structure stiffness matrix 𝐊<=6>%=>6;  
5) Define the boundary conditions, the fixed and the free degrees of freedom of the problem 
the external loads, i.e., apply the reference load 𝐅b;7= = [0	0	0	0		0 − 1		0	0]? 	) 
 
6) Initialize the variables used within the arc-length control procedure 

𝜆 = 0, 𝐯 = 𝟎 
 
7) Define the parameters defining the arc-length control algorithm: 
 - The dof controlling the displacement 𝑞&!@ = 6 
 - The final displacement at 𝑞&!@:  𝑣%,'#7 = 8000.0	𝑚𝑚 
 - The number of steps 𝑛=!= = 500  
 - The arc-length, Δ𝑙 ̅ = 20, which is kept constant for all analysis steps 
 - The parameter 𝜓 used for the arc length. Here the cylindrical arc-length is used (i.e.,
  𝜓 = 0) 
 - The tolerance 𝑡𝑜𝑙 = 1 

- The maximum number of iterations for each iterations of the arc-length control loop 
𝑖ABC 
 

8) For increment 𝑛, perform the Newton-Raphson iterations 
8.1) For 𝑖 = 1, set,  
𝜆),(D- = 𝜆)1-, 𝐅()=

),(D- = 𝐅()=)1-, 𝐊<=6EFGEHI
),- = 𝐊<=6EFGEHI)1-  and 𝐯),- = 𝐯)1- 

8.2) Determine 𝛿𝐯6
),(and 𝛿𝐯J

),(: 

𝛿𝐯J,@
),(=	f𝐊<=6>%=>6;

),(1- g
1-
𝐅b;7=	

𝛿𝐯6,@
),( = −f𝐊<=6>%=>6;

),(1- g
1-
𝐅>)$
),(1- 

 
Where the subscript 𝑓 denotes the free degrees of freedom of the system 
 
8.3) Compute the increment in the load multiplier 𝛿𝜆),(: 
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𝛿𝜆),( =

⎩
⎪
⎨

⎪
⎧±

	Δ𝑙 ̅

^f𝛿𝐯J
),(D-g

?
𝛿𝐯J

),(D- + 𝜓*

𝑖𝑓	𝑖 = 1(𝑛𝑜𝑡𝑒, 𝛿𝐯6
),- = 𝟎)

−
f𝛿𝐯),(D-g

?
𝛿𝐯6

),(

(𝛿𝐯),(D-)?𝛿𝐯J
),( + 𝜓*𝛿𝜆),(D-

	𝑒𝑙𝑠𝑒

 

The sign of the first line is taken as the one corresponding to the sign of the structure 
tangent stiffness matrix 
 

 8.4) Compute the increment in structure displacements Δ𝐯),(: 
𝛿𝐯),( = 𝛿𝜆),(𝛿𝐯J

),( + 𝛿𝐯6
),( 

 
 8.5) Update the structure displacements and the load multiplier: 

𝐯),( = 𝐯),(1- + δ𝐯),( 
𝜆),( = 𝜆),(1- + Δ𝜆),( 

 
8.6) Assemble the structure material and geometric stiffness matrices 𝐊;,<=6>%=>6;

),(  and 
𝐊:,<=6>%=>6;
),( , respectively, as well as the structure resisting force vector 𝐅()=

),( . With a 
loop, go over all elements: 

8.6.1) Determine the element displacement vector in the local reference frame 
𝒖),( 

𝐮;0;'
),( = 𝐓;0;'𝐯;0;'

),(  
Where the subscript 𝑒𝑙𝑒𝑚 denotes the degrees of freedom corresponding to 
element 𝑒𝑙𝑒𝑚  
 
8.6.2) Using the corotational formulation for the 2d truss element derived in 
Question 2, compute the element displacements in the basic reference frame 
𝐮� = [𝑢b-]? 
8.6.3) Compute the element internal forces in the basic reference frame  𝐪�),( : 

𝐪�),( = 𝐊�),(𝐮�),( 
8.6.4) Determine the transformation matrix 𝐋)1- from the basic to the local 
reference system: 

𝐋),( = [−𝑐 −𝑠 𝑐 𝑠]	 
 
8.6.5) Compute the element internal force vector in the local reference frame: 

𝐐;0;'
),( = f𝐋),(g?𝐪�),( 

 
8.6.6) Determine the element geometric stiffness matrix in the local reference 
frame 𝐊:,;0;'

),(  : 

𝐊:;!' =
𝑞b-
𝐿)
s
𝑠* −𝑐𝑠 −𝑠* 𝑐𝑠
−𝑐𝑠 𝑐* 𝑐𝑠 −𝑐*
−𝑠* 𝑐𝑠 𝑠* −𝑐𝑠
𝑐𝑠 −𝑐* −𝑐𝑠 𝑐*

t 

 
8.6.7) Assemble the structure material and geometric stiffness matrices 
𝐊;,<=6>%=>6;
),(  and 𝐊:,<=6>%=>6;

),(  as well as the structure internal force vector 𝐅()=
),(  

with the element quantities 
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8.7) Compute the unbalanced load vector 𝐅>)$
),( = 𝐅()=

),( − 𝐅;7=)  
8.8) Check if the Newton-Raphson procedure has converged. In this source code, 
convergence is achieved once 
 

�𝐅>)$,@
),( � < 𝑡𝑜𝑙 

 
8.9) If iteration 𝑖 has converged, go to next load step 𝑛, else set 𝑖 = 𝑖 + 1  

 
The following figure shows the results obtained in this case:  
 

 
Figure 3. Vertical load-displacement relation at point 𝑐 𝑏$% < 𝑏$%,'(), 

 
 

 
 


