

6.1 Introduction

The methods presented in this chapter, particularly the Fault Tree Analysis and Event
Tree Analysis, are the most widely used techniques for analyzing in a qualitative and
quantitative way the safety and reliability of complex industrial systems. Such
systems are characterized by the fact that the number and linking of the different
subsystems are too complex to permit to apply only and directly the elementary
calculation techniques of Chapter 3.

6.2 Success Path Analysis (SPA) - Reliability Block

Diagram (RBD)

The SPA method is a graphical representation and calculation tool used to model
relatively complex systems. To this end, the different components of a system are
symbolized as individual graphic and functional elements, called “reliability blocks”;
for this reason, in its industrial applications this method is also known under the
name of “Reliability Block Diagram”, or RBD, method. These blocks are reliability-
wise arranged and related, often, but not necessarily, in the same way that the
corresponding components are physically connected. Such a diagram can be viewed
as representing how a “system operation signal” would be successfully transmitted
from the input to the output of the system. Once the blocks are properly configured,
and reliability data for these blocks is provided, calculations can be performed in
order to calculate the failure rate, the “mean time to failure” (MTTF), reliability and
availability of the system. Obviously, as the configuration of the system, and thus of
the block diagram changes, the calculation results also change. A reliability block
diagram provides therefore a simple way to compare various possible configurations
in an attempt to find the best overall system design

Historically, the SPA method was the first to be developed for the analysis of
industrial systems in view of calculating their reliability. This method is applicable
when a detailed analysis of the causes of failures is not required and when the
component failures are independent. Moreover, whereas the SPA can
straightforwardly be applied to irreparable systems, it can only be used for the
reliability, availability or maintainability evaluation of repairable systems under quite
restrictive conditions.

The simplest and most elementary types of reliability blocks configurations are the
series and active-parallel configurations. Items connected in series must all work for
the system to fulfill its function (“success path”). In the example of figure 6.1, the
system will fail if either C1, C2 or C3 fails.

Figure 6.1 Reliability Block Diagram for a series configuration

Chapter

6 Quantitative Systems Risk
Analysis Methods

General presentation
of the method

Series and active
parallel configurations

C1 C2 C3

“Input” “Output”
C1 C2 C3

“Input” “Output”

 P.-A. Haldi: Reliability & Safety Analysis

96

The reliability Rs of a system made of N independent components, all in series, can
be calculated from the following expression (Ri: reliability of component i, assumed
to be known):

 ∏
=

=
N

i
is tt

1
)(R)(R [6.1]

In the case of constant failure rates λi it comes (from Eq. [3.11]):

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

λ−= ∑
=

tt
n

i
i

1
s exp)(R [6.2]

The corresponding “Mean Time To Failure” MTTFs is thus given by (see Eq.
[3.15]):

∑
∫ ∑

=

∞

= λ

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

λ−= n

i
i

n

i
i tt

1

0
1

s
1'd'expMTTF [6.3]

Items placed in parallel are considered to be redundant, because the good working of
only one of them is enough for the system to function. In the example of figure 6.2,
either C1 or C2 (but not C1 and C2 simultaneously) can fail and the system will
continue to function.

Figure 6.2 Reliability Block Diagram for a parallel configuration

The reliability Rp of a system of N independent components, all in active-parallel, is
given by the following mathematical expression:

 []∏
=

−=−
N

i
i tt

1
p)(R1)(R1 [6.4]

In the case of constant failure rates, Rp takes the form:

 () { }()+⋅λ+λ−−⋅λ−= ∑∑∑
= ≠=

N

i ij
ji

N

i
i ttt

11
p expexp)(R

 { }() ()
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

λ−⋅−+−⋅λ+λ+λ− ∑∑∑ ∑
=

+

= ≠ ≠

tt
N

i
i

N
N

i ij jik
kji

1

1

1 ,
exp)1(...exp [6.5]

and the “Mean Time To Failure” MTTFp becomes:

 ()()

∑
∑∑∑

=

+

= ≠= λ
⋅−++

λ+λ
−

λ
= N

i
i

N
N

i ij ji

N

i i

1

1

11
p

11...11MTTF [6.6]

The two elementary configurations described above form the basis of the reliability
block diagram construct and success path analysis.

C1

C2

C1

C2

6. Quantitative Systems Risk Analysis Methods 97

This concept can be straightforwardly extended further to combinations of series and
parallel configurations in the same diagram (see example in Fig. 6.3).

Figure 6.3 Reliability Block Diagram for a combination of series
and parallel configuration

Considering first the upper branch of the diagram, we have (C1 in series with (C2 and
C3 in parallel)):

 Rupp = R1⋅(R2 + R3 –R2⋅R3) [6.7]

The reliability of the lower branch (C4 an C5 in series) is simply given by:

 Rlow = R4⋅R5 [6.8]

Finally, combining this two branches in parallel leads to:

 (){ } ()5432321infsupsys RR1RRRRR1RRR ⋅−⋅⋅−+⋅−=⋅= [6.9]

and therefore:

 ()() ()543232154syssys RR1RRRRRRRR-1R ⋅−⋅⋅−+⋅−⋅== [6.10]

If one takes the approach a step further, “complex block diagrams” can be analyzed.
A complex block diagram is a diagram that cannot be expressed as a simple
combination of series and parallel blocks (see example in Fig. 6.4).

Figure 6.4 Reliability Block Diagram for a complex system configuration

Complex block diagrams

C4

C1

C5

C2

C3

C4C4

C1C1

C5C5

C2

C3

C3C1 C3 C7

C6C4

C2 C5

C3C1C1 C3C3 C7C7

C6C6C4C4C4

C2C2 C5C5C5

 P.-A. Haldi: Reliability & Safety Analysis

98

Several methods exist for obtaining the reliability of complex system, e.g.:

• the decomposition method,
• the event space method,
• the path-tracing method,
• the minimal cut set method.

To show how these different methods work, they will first be applied below to a very
simple case, namely (see Fig. 6.5):

Figure 6.5 Demonstration case for the resolution methods that can be used to
treat complex system configurations

Decomposition method

The decomposition method is an application of the law of total probability (see
section 2.4). It involves choosing a “key component” and then calculating the
reliability of the system in two steps: first considering that the key component failed
(Rkey = 0) and secondly that it succeeded (Rkey = 1). These two “complementary”
probabilities are then combined to obtain the reliability of the system. Using
probability theory, the equation is:

 () ()keykeysys ESPESPR ∩+∩=

 () () () ()keykeykeykey EPESPEPESP ⋅+⋅= [6.11]

where S and Ekey represent respectively the events: “the system operates” and the
“component Ckey” operates (keyE : “the component Ckey fails”).

In the example of the figure 6.5, selecting the component 2 as the “key component”,
the system reliability can be written as follows:

 () () () () () () ()22222222sys R-1ESPRESPEPESPEPESPR ⋅+⋅=⋅+⋅= [6.12]

If component 2 is known to operate, the probability that the system operates is given
by the probability that component 1 or component 3 also survives, that is:

 () 31312 RRRRESP ⋅−+= [6.13]

If, on the contrary this key component fails, the probability that the system still
operates is simply equals to the probability that the component 3 operates:

 () 32 RESP = [6.14]

Introducing these two conditional probabilities in Eq. [6.12] leads to:

 Rsys = (R1 + R3 – R1⋅R3)⋅R2 + R3⋅(1-R2) = R3 + R1⋅R2 – R1⋅R2⋅R3 [6.15]

C1 C2

C3

C1C1 C2

C3C3

6. Quantitative Systems Risk Analysis Methods 99

Event space method

The event space method is an application of the mutually exclusive events axiom.
All mutually exclusive events are determined and only those that result in system
success are retained. The reliability of the system is simply equal to the probability
of the union of all mutually exclusive events that yield a system success.
Reciprocally, the unreliability of the system is the probability of the union of
mutually exclusive events that yield a system failure.

Applied to the example of figure 6.5, this gives:

- all components succeed → 321123 EEEE ∩∩=

- only component 1 fails → 321231 EEEE ∩∩=

- only component 2 fails → 321321 EEEE ∩∩=

- only component 3 fails → 321312 EEEE ∩∩=

- components 1 and 2 fail → 321321 EEEE ∩∩=

- components 1 and 3 fail → 321321 EEEE ∩∩=

- components 2 and 3 fail → 321321 EEEE ∩∩=

- all components fail → 321321 EEEE ∩∩=

The five first events result in system success. Thus the total probability of success of
the system is:

 ()321312321231123sys EEEEEPR ∪∪∪∪= [6.16]

Since these five events are mutually exclusive, then:

 () () ()()321312321231123sys P(EEPEPEP)EPR ++++= [6.17]

with:

() () 321321123 RRREEEPEP ⋅⋅=∩∩=

() () () 321321231 RRR1EEEPEP ⋅⋅−=∩∩=

() () () 321321321 RR1REEEPEP ⋅−⋅=∩∩=

() () ()321321312 R1RREEEPEP −⋅⋅=∩∩=

() () () () 321321321 RR1R1EEEPEP ⋅−⋅−=∩∩=

Adding the above five relations gives after simplification:

 Rsys = R3 + R1⋅R2 – R1⋅R2⋅R3

This is of course the same result as the one obtained previously using the
decomposition method.

Path tracing method

This method is based on the observation that as long as at least one success path exist
from the input to the output of the RBD, then the system has not failed. It thus
consists in identifying all of the success paths the “signal” could take and calculating
the reliability of these paths based on the components that lie along each of them.
The reliability of the system is simply the probability of the union of these paths.

 P.-A. Haldi: Reliability & Safety Analysis

100

In the example of the figure 6.5, the success paths are:

SP1 = {E1, E2} and SP2 = E3

Therefore, the probability of success of the system is given by:

 () () () ()212121sys SPSPPSPPSPPSPSPPR ∩−+=∪= [6.18]

Replacing the three probabilities on the left right side of Eq. [6.18] by their
calculated values, we get:

 Rsys = R1⋅R2 + R3 – R1⋅R2⋅R3

Again, we find the same results as with the previous methods.

Minimal cut set method

As its name implies, this method is based on the search for the “minimal cut sets” of
the system under study, i.e. a set of system events that, if they all occur, will cause
system failure (this concept will be developed further in the next section). The
unreliability of the system can then be calculated as the probability of the union of
these events and its reliability by taking the complement of the result thus obtained.

The procedure is developed below for the example of figure 6.5:

a) Create a table (“Incidence Matrix”) with one line for each of the identified

success paths, and columns representing the different components of the system.
If a component “belongs” to the considered success path a “1” is entered in the
corresponding column of the concerned line, and if not, a “0”. In the case of the
very simple example of figure 6.5 this table takes the form:

Table 6.1 Incidence matrix for the example of figure 6.5

Success paths / components C1 C2 C3

{E1, E2} 1 1 0

E3 0 0 1

b) Now, examine each column. If a column contains nothing but “1” numbers, this

means that the failure of this unique component will induce in any case the failure
of the whole system (because this component lies along each of the success
paths). This is called a minimal cut set of order one (one component only
involved in the success path). There are no minimal cut sets of order one in the
considered example.

c) Go forward in the analysis of the table, considering this time two by two the

different columns, with the following rules for combining the scores:

0 + 0 = 0 1 + 0 = 1 0 + 1 = 1 1 + 1 = 1

A combined column full of “1” means that the simultaneous failures of the two
components involved induce the failure of the system. This defines consequently
a minimal cut set of order two. We have two such cut sets in the considered
example, corresponding to the combination of events: 31 EE ∩ and 32 EE ∩ .

d) Continue the search for possible higher order cut sets (3, 4, …) that do not include
lower order cut sets already considered. There are no such cut sets in our
illustration example.

6. Quantitative Systems Risk Analysis Methods 101

The unreliability of the system is given by the probability of the union of the above-
defined minimal cut sets MCSi:

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= U

i
isys MCSPR [6.19]

In our example, this leads to:

 () (){ }3231sys EEEEPR ∩∪∩= [6.20]

which, using Morgan’s theorem and other Boolean Algebra rules (see section 2.3),
can be written as follows:

 (){ } (){ }213213sys EEEPEEEPR ∩∩=∪∩= [6.21]

Therefore:

 () () 321321213sys RRRRRR1RR1R1R ⋅⋅+−⋅−=⋅−⋅−= [6.22]

and Rsys = 1 - sysR takes here again the same value as before.

To show that the above approaches can indeed be used to calculate the reliability of
complex systems, let us apply the decomposition and minimal cut set methods to the
following example:

Figure 6.6 Application example (complex configuration) for the decomposition
and minimal cut set methods

Decomposition method

The best choice of key component would here be C4. This will give the results we
are looking for in just one step. Let us however take another key component first, C3,
to demonstrate that the decomposition method can be used repetitively to solve a
given problem.

The probability that the system operates knowing that C3 does not fail corresponds to
the probability of success of the system represented in figure 6.7, i.e. C1 and C4 in
parallel. The corresponding conditional probability is therefore equal to:

 () 41413 RRRRESP ⋅−+= [6.23]

C4 C5

C1

C3

C2

C4C4 C5C5C5

C1C1C1

C3C3

C2C2

 P.-A. Haldi: Reliability & Safety Analysis

102

Figure 6.7 Configuration of the example of Fig. 6.6 when the key component C3

is known to succeed

In the “complementary” case, where C3 is known to fail, we are however still left
with a system that cannot be broken down in a combination of series and parallel
configurations (see Fig. 6.7).

Figure 6.8 Configuration of the example of Fig. 6.6 when the key component C3
is known to fail

We have therefore to use a second time the decomposition principle, choosing this
time C2 as new key component.

The probability that the system operates knowing that C2 succeed is again given by
the probability of having a successful parallel configuration C1 and C4, i.e.:

 () 414132 RRRREESP ⋅−+=∩ [6.24]

In the case where C2 equally fails, the system to consider is the one represented in
Fig. 6.9 (C4 and C5 in series). Its reliability is given by:

 () 5432 RREESP ⋅=∩ [6.25]

Multiplying the three conditional probabilities (Eqs [6.23] to [6.25]) by the
corresponding probabilities of occurrence of the concerned events allows us to
calculate the reliability of the whole system.

C2

C5

C3

C4

C1

C2

C5C5C5

C3C3

C4C4

C1C1C1

C4 C5

C1

C3

C2

C4C4 C5C5C5

C1C1C1

C3C3

C2C2

6. Quantitative Systems Risk Analysis Methods 103

Figure 6.9 Configuration of the example of Fig. 6.6 when the key components
C2 and C3 are known to fail

The reliability of the complex system selected as example is thus given by:

Rsys = (R1 + R4 – R1⋅R4)⋅R3 + (R1 + R4 – R1⋅R4)⋅R2⋅(1-R3) + R4⋅R5⋅(1-R2)⋅(1-R3)

 = (R1 + R4 – R1⋅R4)⋅(R3 + R2 - R2⋅R3) + R4⋅R5⋅(1-R2-R3+ R2⋅R3) [6.26]

Minimal cut set method

The incidence matrix for the selected example takes the form:

Table 6.2 Incidence matrix for the example of figure 6.6

Success paths / components C1 C2 C3 C4 C5

{E1, E2} 1 1 0 0 0

{E1, E3} 1 0 1 0 0

{E2, E4} 0 1 0 1 0

{E3, E4} 0 0 1 1 0

{E4, E5} 0 0 0 1 1

There are here no minimal cut sets of order 1, one minimal cut sets of order 2, and
two minimal cut sets of order 3:

- MCS of order 2 → 41 EE ∩

- MCS of order 3 → 532432 EEEandEEE ∩∩∩∩

Thus, the unreliability of the whole system can be calculated from the expression:

 () () (){ }53243241sys EEEEEEEEPR ∩∩∪∩∩∪∩= [6.27]

which, with the help of the Poincaré’s theorem (see section 2.3), can be transformed
in an algebraic sum of probabilities of the form:

() () ()kji EP...EPEP ⋅⋅

Replacing each ()αEP by (1-Rα) allows us finally to calculate the system reliability.

C1

C3

C2

C4 C5

C1C1C1

C3C3

C2C2

C4C4 C5C5C5

 P.-A. Haldi: Reliability & Safety Analysis

104

Until now we have considered only the simplest form of redundancy, i.e. the active
one. It is also possible to introduce alternative forms of redundancy in the RBD
“toolkit”, such as the redundancy known as k-out-of-n redundancy for example. A k-
out-of-n configuration is a special form of parallel redundancy; it requires that at
least k out of the n possible parallel paths leading to a given node (see Fig. 6.10)
must function for the system to operate.

Figure 6.10 “k-out-of-n” configuration

For example, suppose that a hydropower plant is equipped with six turbines and that
at least five of them are required to function for the plant to remain operational.
This means that the turbines are reliability-wise in a k-out-of-n configuration where
k=5 and n=6.

This particular example is a good illustration of the fact that although a k-out-of-n
configuration is in principle classified as a special case of parallel redundancy, the
system behavior tends towards that of a series system when the number of units
required to keep the system operating approaches the total number of units in the
system (see Fig. 6.11, calculated from Eq. [6.28] with R = 0.85).

Figure 6.11 Reliability vs. k (k-out-of-n, for n=6)

Alternative forms of
redundancy

C2

C1

k / n

Cn

C3

C2C2C2

C1C1

k / n

CnCnCn

C3C3

Re
lia

bi
lit

y

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6

k

Simple parallel
configuration

Six unit series
configuration

R = 0.85

Re
lia

bi
lit

y

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6

k

Simple parallel
configuration

Six unit series
configuration

R = 0.85

1 2 3 4 5 6

k

Simple parallel
configuration

Six unit series
configuration

R = 0.85

6. Quantitative Systems Risk Analysis Methods 105

The simplest case of a k-out-of-n configuration is when the components are independent and
identical. In such a case, the reliability of the system can be evaluated using the binomial
distribution (see section 2.1):

 () () () ()()()∑
=

−−⋅⋅
−⋅

=
n

kr

rnr
k/n rnr

nt tR1tR
!!

!R [6.28]

where R(t) is the reliability of each unit. Assuming moreover that R(t) = exp(-λt), with λ
constant, we can write:

 () () ()() ∑∑∫
==

∞
−λλ =−⋅⋅

−⋅
=

n

kr
r

n

kr

rnr
k/n t

rnr
n I'de1e

!!
!MTTF

0

t'-t'- [6.29]

The integrals Ir can be calculated using integration by parts; it comes out that a recurrence
relationship exists between Ir and Ir+1 - of the form Ir = {(r+1)/r}⋅Ir+1 - and that In = 1/(nλ).
From this, we deduce that:

 ∑
= λ⋅

=
n

kr
k/n r

1MTTF [6.30]

Another type of redundancy is the so-called passive redundancy. It defines a class of systems
that are load-sharing or sequential in operations in such a way that only one unit of the system
is in operation at a time. Other units are on stand-by, ready to take the load at their turn should
a previously operating unit fail. In order to minimize the complexity of the equations, we will
assume that a unit on stand-by never fails and, furthermore, that the switching from one unit
to another one is instantaneous and not subject to failure. Such system can be depicted as in
Fig. 6.12.

Figure 6.12 Passive redundancy configuration

The probability density function of such a system can be written:

 () () () 1211n
0 0 0

12211T d...ddf...ff...)(f
1

1

2

2

1

−−
= = =

−−⋅= ∫ ∫ ∫
−

−

−

nn

t

x

x

x

x

x

xxxxtxxxt
n

n

n

 [6.31]

where the fi are the probability density functions of the different units i.

C1

C2

C3

Cn

C1C1

C2C2C2

C3C3

CnCnCn

 P.-A. Haldi: Reliability & Safety Analysis

106

The reliability of the whole system is, by virtue of Eq. [3.4], given by:

 () 'd'f1)(R
0

Tsys ttt
t

∫−= [6.32]

The Laplace transform of the convolution integral on the right-hand side of Eq.
[6.32] is (see Appendix 3.1):

 L{ ()tsysR } =
s
1

⋅L{fT(t)} = ∏
=

n

is 1

1
L {fi(t)} [6.33]

When all the λis are constant, we have (see Table [3.1]):

 () t
ii t ⋅λ⋅λ= i-ef ⇒ L{ ()tsysR } = ∏

= λ+
λn

i i

i

ss 1

1 [6.34]

If moreover the λis are all different, taking the inverse transform of the expression on
the right-hand side of Eq. [6.34] leads to:

 () t
n

i
t ⋅λ

=

⋅= ∑ i-

0
isys eBR with:

()∏

∏

≠=

=

λ−λ

λ

= n

ijj
ij

n

j
j

,0

1
iB and λ0 = 0 [6.35]

Thus, finally:

 ()
()

∑
∏=

≠=

⋅λ

λ−λ

⋅λλ⋅λ=
n

i
n

ijj
ij

t

nt
1

,0

-

21sys

ie...R [6.36]

If, on the contrary, all the λis take the same constant value λ, Eq.[6.34] becomes:

 L{ ()tsysR } =
s
1

⋅L{fT(t)} =
()n

n

ss λ+

λ
⋅

1 [6.37]

fT(t) is in this case an Erlang distribution:

 ()
()

()!1
ef

-1

T −
⋅⋅λ

=
⋅λ−

n
tt

tnn
 [6.38]

From Eq.[6.32], and after successive integrations by parts, it comes:

()

()
()()

()∑∫
=

⋅λ−⋅λ− ⋅λ
=

−
⋅⋅λ

−=
n

i

it tnn tt
n

tt
1

t-1

0

'-1

sys !1-i
e'd

!1
e'1)(R [6.39]

The MTTF is here given by (see Eq.[3.14] and Appendix 3.1):

 ()∫
∞

=⋅=
0

T dfMTTF ttt lim L{t⋅fT(t)} = lim -
sd

d L{fT(t)} [6.40]

Therefore, for constant and equal λis (from Eq. [6.37]):

 MTTF =
λ
n [6.41]

S → 0 S → 0

6. Quantitative Systems Risk Analysis Methods 107

Because of the underlying assumption regarding the independence of the
components, the SPA/RBD approach can only be applied under quite restrictive
conditions to the evaluation of the availability of repairable systems, in particular:

- there should be no repeated components in the reliability block diagram;
- component repairs should be conducted in a totally independent way (therefore, in

principle, by different repairmen);
- there should be only active redundancies in the system (passive redundancies

imply a direct link between the operating times of the different components).

Series configurations

The availability As(t) of a series system is simply equal to the product of the
availability ai(t) of its components at the time t:

 () ()∏
=

=
n

i
i tt

1
s aA [6.42]

If the failure and reparation rates are constant and, moreover A(0) = 1, we have from
Eq. [3.28]:

 ()∏
=

⋅µ+λ
⎥
⎦

⎤
⎢
⎣

⎡
⋅

µ+λ
λ

+
µ+λ

µ
=

n

i

t

ii

i

ii

i iit
1

-
s e)(A [6.43]

The asymptotic value of the availability takes thus the form:

 () ∏
= µ+λ

µ
==∞

n

i ii

it
1

ss Alim)(A [6.44]

In the usual situation where λi/µi <<1, the asymptotic unavailability becomes:

 () ∑
= µ

λ
=∞=∞

n

i i

i

1
ss)(A-1A [6.45]

Parallel configurations

The unavailability ()tpA of a parallel system is equal to the product of the unavaila-
bility ()tia of its components at the time t, therefore:

 () () () ()()∏ ∏
= =

−=⇒=
n

i

n

i
tttt

1 1
ipip a-11AaA [6.46]

If the failure and reparation rates are constant and, moreover A(0) = 1, it comes:

 ()[]∏
=

⋅µ+λ⋅
µ+λ

λ
−=

n

i

t

ii

i iit
1

-
p e-11)(A [6.47]

The asymptotic unreliability is thus here given by:

 () ∏∏
== µ

λ
≈

µ+λ
λ

=∞=∞
n

i i

i
n

i ii

i

11
pp)(A-1A [6.48]

As with any approach or methodology, reliability block diagrams have their advan-
tages as well as disadvantages compared to competing methods. The main advantage
of the SPA/RBD method is rooted in the fact that it is easy to implement and remains
close to the real configuration of the analyzed system. Because of the limitations in
the practical use of SPA/RBD, essentially due to the hypothesis of independency of
the events, methods such as the Failure Modes and Effects Analysis or the Fault Tree
Analysis are however today generally preferred to the former.

Application to
repairable systems

t → ∞

Strengths and
limitations of SPA/RBD

 P.-A. Haldi: Reliability & Safety Analysis

108

6.3 Fault Tree Analysis (FTA)

Fault Tree Analysis is a deductive, top-down logical and structured process to
systematic failure analysis. FTA provides a graphic “model” of the pathways within
a system that can lead to a foreseeable undesirable damaging event. It helps
identifying potential causes of system failures before the failures actually occur. FTA
is acknowledged as one of the best and most popular techniques in complex system
design, development, and operation for systematically identifying and graphically
displaying the many ways something can go wrong.

The FTA method was originally developed in the U.S.A. at Bell Telephone
Laboratories in 1962 to evaluate and improve the reliability of the “Minuteman”
missile launch control system. It has since this time largely been used for reliability
and/or safety studies in the aerospace, nuclear (in particular, in the beginning of the
1970s, for the Probabilistic Safety Assessment, or PSA, of light water nuclear
reactors described in the “Rasmussen Report”, WASH-1400), automotive and
weapons industries.

Fault Tree Analysis is best applied when:

• there are concerns regarding human safety, or perceived threats of important
material losses, i.e. high risks;

• the system in question is complex and made of multiple elements;
• there are numerous potential contributors to a mishap and the causes of this one

are not directly discernible.

This powerful technique has long been a staple of safety engineering and the safety
profession and is often used as a design tool, which can help ensure that product
performance safety objectives are met. Fault trees are particularly adept at
representing and analyzing redundancy arrangements. In addition common cause
events are easily handled in this type of approach (a common cause is an event or a
phenomenon which, if it happens, will induce the concomitant failure of two or more
other system elements).

FTA is a deductive analysis process that begins with the consideration of a critical
undesirable event. This undesirable event at the system level is referred to as the top
event. It generally represents a system failure mode or hazard for which the
occurrence probability is not directly available, but required. The principle is that if
there is such a critical failure mode, then all possible ways that mode could occur
must be discovered and analyzed in a systematic way.

Top events represent potential high-penalty losses. Top events must not be too broad
in scope; narrowing the scope reduces the effort spent in the analysis by confining it
to relevant considerations. Typical top events might be:

• loss of power supply;
• loss of compressed air supply;
• loss of minimum flow to heat exchanger;
• reactor loss of coolant;
• tank rupture;
• uncommanded ignition;
• circuit breaker does not open;
• fire, explosion, etc.

The identification of relevant top events, as well as the further fault tree construction
and structuring (see below), can often greatly profit from prior Preliminary Hazard,
Failure Mode and Effect, or Reliability Block Diagram analyses.

General presentation
of the method

Fault tree construction

6. Quantitative Systems Risk Analysis Methods 109

Based on a set of rules and logic symbols from probability theory and Boolean
algebra, FTA then uses a top-down approach to generate a logic and graphical
model that provides for both a qualitative description of the failure paths
(combinations of equipment failures, dependent failures and human failures) and a
quantitative evaluation of the top event occurrence probability. The approach
consists in defining successive levels of subordinate failure events (intermediate
events), each level going a step deeper in the explanation of the possible causes of
the failures identified at the preceding level. The intermediate events at a given
level are linked to the events at the immediately superior level by logical connective
functions. This let us construct in a very systematic way a complete tree structure
representing the various possible failure paths leading to the occurrence of the top
event. When a contributing failure event does not need to be divided further,
because its failure rate is known or readily available, or it is decided to limit further
analysis of a subsystem for practical reasons, the corresponding branch of the tree
structure is terminated with a basic event.

The basic event for a branch is termed a primary fault event if the corresponding
subsystem failed because of a basic “internal” mode such as a structural fault for
example. The basic event is considered to be a primary one if the failed subsystem
has not been exposed to environmental or service stresses exceeding its design limits
(e.g. leakage of a valve seal within its pressure rating).

 If the subsystem is out of tolerance so that it fails because of operational, or
environmental stresses exceeding its intended ratings, placed on it, the basic event is
said to be a secondary fault event. It is in particular the case every time the failed
element has been improperly designed, or selected, or installed, or calibrated for the
application.

The standard logic symbols used in the construction of the fault tree are described
below. Note that events and gates are not component parts of the system being
analyzed, but symbols representing the logic of the analysis.

Table 6.3 Logical symbols most commonly used in the graphical representation

of fault trees

Event Symbols

Rectangle

Diamond

Circle

House

Event Symbols

Rectangle

Diamond

Circle

House

Top event : foreseeable, undesirable event, for
which the occurrence probability is not directly
available
Intermediate event : describe a system state produ-
ced by “lower level” fault events

Basic “terminal” event : the basic event (assumed
to be independent) marks the limit of resolution of
the analysis

Fault event not fully developed as its causes : it is
only an assumed basic event

Event normally occurring in the operation of the
system : it is not a fault event

Event Symbols

Rectangle

Diamond

Circle

House

Event Symbols

Rectangle

Diamond

Circle

House

Top event : foreseeable, undesirable event, for
which the occurrence probability is not directly
available
Intermediate event : describe a system state produ-
ced by “lower level” fault events

Basic “terminal” event : the basic event (assumed
to be independent) marks the limit of resolution of
the analysis

Fault event not fully developed as its causes : it is
only an assumed basic event

Event normally occurring in the operation of the
system : it is not a fault event

 P.-A. Haldi: Reliability & Safety Analysis

110

Table 6.3 Logical symbols most commonly used in the graphical representation

of fault trees (cont’d.)

Actual construction of fault trees (see summary in Fig. 6.13) requires thorough
knowledge of how the system works and of the logic relationships in the system
(interlocks, control interfaces, power supply feeds …). Fault tree construction
remains however an art as well as a science and comes only through experience. It is
nevertheless possible to give some conventions and rules that prove helpful in this
construction process (adapted from [Lambert, 1973] and [McCormick, 1981])::

• Specify in the description of the top event the specific mission phase or portion of
the mission to which it applies; this often helps to generate a very concise fault
tree. Do not consider top events too broad in scope (see p. 108).

• At each level of the tree, the input events to a gate must be “immediate, necessary
and sufficient” (INS) contributors to the output (upper level) event.

• Throughout the fault tree construction, systematically apply a consistent
nomenclature to events. This is critical to identifying the same event in multiple
fault tree branches. If, for example, a given event is named differently in another
branch of the fault tree, cutset analysis (see below) identifies multiple events
leading to different failures, rather than the same event leading to different
failures. Such a nomenclature error can hide the fact that the event in question is a
major contributor to the top event and thereby improvements or controls for it will
fail to be recommended by the analyst.

Logical Gate Symbols

AND
gate

E1

E2

En

S

S

E1

E2

En

OR
gate

Subtree Symbols

E

INHIBIT
gateX

α

α

Triangle-in

Triangle-out

Logical Gate Symbols

AND
gate

E1

E2

En

S

The output event occurs if and only if all the inputs
occur (Boolean intersection operation “∩” of the
input events); all inputs, individually, must be
necessary and sufficient to cause the input event

S

E1

E2

En

OR
gate

Subtree Symbols

E

INHIBIT
gateX

αα

αα

Triangle-in

Triangle-out

The output event occurs if one or more of the inputs
occur (Boolean union operation “∪” of the input
events); any input, individually, must be necessary
and sufficient to cause the input event

Output exists when the input event E exists and the
condition X is satisfied; this gate functions
somewhat like an AND gate and is used for a
secondary fault event E

Triangle symbols provide a way to avoid repeating
sections of a fault tree, or to transfer a subtree
construction from one sheet to the next; the triangle-
in appears at the bottom of a tree structure and
represents that branch (subtree) of the tree (in the
example: “α”) shown someplace else

Triangle-out appears at the top of a subtree and
denotes that the corresponding tree structure (“α” in
the example) is a subtree of a tree shown someplace
else

Logical Gate Symbols

AND
gate

E1

E2

En

S

S

E1

E2

En

OR
gate

Subtree Symbols

E

INHIBIT
gateX

αα

αα

Triangle-in

Triangle-out

Logical Gate Symbols

AND
gate

E1

E2

En

S

The output event occurs if and only if all the inputs
occur (Boolean intersection operation “∩” of the
input events); all inputs, individually, must be
necessary and sufficient to cause the input event

S

E1

E2

En

OR
gate

Subtree Symbols

E

INHIBIT
gateX

αα

αα

Triangle-in

Triangle-out

The output event occurs if one or more of the inputs
occur (Boolean union operation “∪” of the input
events); any input, individually, must be necessary
and sufficient to cause the input event

Output exists when the input event E exists and the
condition X is satisfied; this gate functions
somewhat like an AND gate and is used for a
secondary fault event E

Triangle symbols provide a way to avoid repeating
sections of a fault tree, or to transfer a subtree
construction from one sheet to the next; the triangle-
in appears at the bottom of a tree structure and
represents that branch (subtree) of the tree (in the
example: “α”) shown someplace else

Triangle-out appears at the top of a subtree and
denotes that the corresponding tree structure (“α” in
the example) is a subtree of a tree shown someplace
else

6. Quantitative Systems Risk Analysis Methods 111

Similarly, when two identical components are installed in different locations
within a system, they must be identified as physically different components by
using distinct designators in the nomenclature. Otherwise, cutset analysis identifies
how the same component-type failure contributes to several scenarios when the
failures are actually caused by different components.

• Test the type of the fault event. If it is a “state-of-component” statement, always
use an OR gate. If it is a “state-of-system” statement, either AND, OR or INHIBIT
gates may be used.

• Do not let gates feed gates (no “gate-to-gate” relationships), i.e., put an event
statement between any two gates.

• Complete the gates first, i.e. identify all the input events of a logical gate before to
start the detailed analysis of one of them.

• Consider that “causes are always anterior to consequences”, this allows to
eliminate certain causes and branches in order to eliminate from the tree any so-
called “looped-systems”.

• Do not expect miracles to “save” the system”. Those things that would normally
occur as the result of a fault will happen, and only those things!

Figure 6.13 Step-by-step fault tree construction

At a given level, under a given gate, each fault event must be independent of all
others. However, the same fault event may appear at other points on the tree.

Once all failures, events, and conditions that can lead to the occurrence of the top
event have been properly identified, the resulting fault tree can be “translated” into a
Boolean algebraic expression. For each gate, the input events (intermediate or basic)
are the independent variables, and the output event (intermediate or top) is the
dependent variable. Using the rules of Boolean algebra (see section 2.3), these
equations can then be solved so that the top event is expressed in terms of minimal
cut sets (see p. 100) that involve only basic events.

Fault tree evaluation

1

2

3

4

5

6

Identify undesirable top event

Identify first-level
INS contributors

Link contributors to top
event by logic gates

Basic events (limit of
analytical resolution)

Identify second-level
INS contributors

Link second-level contributors to
first-level events by logic gates

Repeat/continue

 P.-A. Haldi: Reliability & Safety Analysis

112

A cut set is any group of basic events that, if all occur, will cause the top event to
occur. A minimal cut set is a least group of basic events that, if all occur, will cause
the top event to occur. A cutset can be a single-point failure or event, or can be a set
of many events. Different cutsets can include different combinations of the same
event. In large trees, the events that cause the top event to occur are often buried
deep within the system and are not easily discovered without performing a cutset
analysis. Generally (but not necessarily), the cutsets that have the highest probability
of occurrence are the ones that are made of the fewest number of events.

The traditional cut set analysis process is to obtain a reduced expression made of the
logical union of groups of events linked by AND logical connectors. By definition,
these groups are the minimal cutsets looked for (because the simultaneous realization
of each of the events of anyone of these group is a necessary and sufficient condition
to cause the top event to occur).

Example (from [Villemeur, 1988]): find the minimal cut sets of the fault tree shown
on the left part of figure 6.14 and represent it in its reduced form.

The Boolean expression of the top event in the original fault tree takes the form:

T = E1 ∩ E2 = (A ∪ E3) ∩ (C ∪ E4) = (A ∪ B ∪ C) ∩ {C ∪ (A ∩ B)}

This expression can be simplified using the rules of the Boolean Algebra to give:

 T = (A ∪ B ∪ C) ∩ {C ∪ (A ∩ B)}
 = (A ∩ C) ∪ (B ∩ C) ∪ C ∪ (A ∩ B) ∪ (A ∩ B) ∪ (A ∩ B ∩ C)

 = C ∩ {Ω ∪ A ∪ B ∪ (A ∩ B)} ∪ (A ∩ B) = C ∪ (A ∩ B)

Figure 6.14 Example of fault tree reduction process

T

G1

G2 G3

G4 G5

E1 E2

E3 E4A

B C A B

C

T

G’1

G’2

E’1C

A B

≡

T

G1

G2 G3

G4 G5

E1 E2

E3 E4A

B C A B

C

T

G1

G2 G3

G4 G5

E1 E2

E3 E4A

B C A B

C

T

G’1

G’2

E’1C

A B

T

G’1

G’2

E’1C

A B

≡

A ∩ B

Ω

6. Quantitative Systems Risk Analysis Methods 113

There are thus two minimal cutsets in this example: C (order 1) and A ∩ B (order 2).
This means that the original fault tree can be reduced to the much simpler tree
structure given in the right part of figure 6.14.

There is a more “mechanical” way to find the minimal cutsets, one that does not
make explicit reference to the rules of Boolean Algebra [Clemens, 2002]. This
process is explained step-by-step below, with the case study of figure 6.14 as
practical application.

1. Ignore all tree elements except the gates and the basic events.
2. Proceeding stepwise from top event downward, construct a matrix using the

gates and basic events names. The name of the top event gate becomes the initial
matrix entry.

3. As the construction progresses:
• replace the name of each AND gate by the name of all gates/basic events that

are its inputs; display these horizontally, in matrix row;
• replace the name of each OR gate by the names of all gates/basic events that

are its inputs; display these vertically, in matrix column; each newly formed
OR gate replacement row must also contain all other entries already found in
the original parent row;

G1G1

G2 G3 A G3

G4 G3

A G3

G3B

G3C

A

G5

G3B

G3C

A

CA

G5

G5

B

G3C

A

C

C

B

A

G5

G5

B

G5

C

A

C

C

B

C

C

A

G5

G5

B

G5

C

A

C

C

B

C

C

A

B

C

A

C

C

B

C

C

A B

A B

A B

G2 G3G2 G3 A G3

G4 G3

A G3

G4 G3

A G3

G3B

G3C

A G3

G3B

G3C

A

G5

G3B

G3C

A

CA

G5

G3B

G3C

A

CA

G5

G5

B

G3C

A

C

C

B

A

G5

G5

B

G3C

A

C

C

B

A

G5

G5

B

G5

C

A

C

C

B

C

C

A

G5

G5

B

G5

C

A

C

C

B

C

C

A

G5

G5

B

G5

C

A

C

C

B

C

C

A

G5

G5

B

G5

C

A

C

C

B

C

C

A

B

C

A

C

C

B

C

C

A B

A BA B

A BA B

 P.-A. Haldi: Reliability & Safety Analysis

114

4. A final matrix results, containing only names representing the basic events. Each

row of this matrix is a Boolean indicated cut set. By inspection, then:
a) eliminate redundant elements within rows;
b) eliminate rows that duplicate other rows
c) eliminate any row that contains all elements already found in a lesser

(inferior cut set order) row.
The rows that remain correspond to the minimal cut sets.

The minimal cutset information obtained during qualitative analysis, together with
information about the probability of occurrence of the basic events, can finally be
used during quantitative analysis for computing the unavailability or unreliability
values of the system.

Assuming that the probability of occurrence of the events A, B, C in the above
example are respectively: 0.01, 0.02 and 0.0001, the probability of occurrence of the
top event T becomes:

P[T] = 0.0001 + (0.01*0.02) – [0.0001*(0.01*0.02)] ≅ 0.0003

More generally, if we note MCSi (1 ≤ i ≤ m) the different minimal cut sets of the
analyzed system, the probability of occurrence of the top event (T) is by definition
given by:

 P(T) = P(MCS1 ∪ MCS2 ∪ . . . ∪ MCSm) [6.49]

Using Poincaré’s theorem (Eq. [2.79]), this expression becomes:

 P(T) = ()∑
=

m

i
i

1
MCSP - ()ji

m

j

j

i
MCSMCSP

2

1

1
∩∑∑

=

−

=

 + ()kji

m

k

k

j

j

i
MCSMCSMCSP

3

1

2

1

1
∩∩∑∑∑

=

−

=

−

=

 - . . . + () ()m
m MCS...MCSMCSP1 21 ∩∩∩⋅− [6.50]

In practice, because the failure probabilities, and thus the minimal cut set proba-
bilities, are normally (very) small, it is generally suitable to approximate P(T) by the
first term of the right-hand side of Eq. [6.50] only:

 P(T) ≅ ()∑
=

m

i
i

1

MCSP [6.51]

We know moreover that the following inequality is verified in this case and gives the
bounds of the error margin on the above result:

 ()∑
=

m

i
i

1
MCSP - ()ji

m

j

j

i
MCSMCSP

2

1

1
∩∑∑

=

−

=

 ≤ P(T) ≤ ()∑
=

m

i
i

1
MCSP [6.52]

Quantitative analysis

A

B

C

A

C

C

B

C

C

A B

A B

A B

A

B

C

A

C

C

B

C

B

A

A B

4.a 4.b

A

B

C

A

C

C

C

B

A B

4.c

A

B

C

A

C

C

C

B

A B

A

B

C

A

C

C

B

C

C

A B

A BA B

A BA B

A

B

C

A

C

C

B

C

B

A

A B

A

B

C

A

C

C

B

C

B

A

A BA B

4.a4.a 4.b4.b

A

B

C

A

C

C

C

B

A B

A

B

C

A

C

C

C

B

A BA B

4.c4.c

A

B

C

A

C

C

C

B

A B

A

B

C

A

C

C

C

B

A BA B

6. Quantitative Systems Risk Analysis Methods 115

The evaluation of the probability of each minimal cutest depends on the
characteristics of the basic events. Generally, the probabilities of these events corres-
pond to unavailabilities of components (()tlA = 1 – Al(t)). It is moreover in
principle assumed that the basic events intervening in a given minimal cut set are
independent. In these conditions:

 P(MCSi) = () ()∏
=

=∩∩∩
i

i

m

l

i
l

i
m

ii t
1

21 AA...AAP [6.53]

The calculation of the unavailability of irreparable as well as repairable components
has been tackled in section 3.2.

Contrary to the assumption made above, within industrial systems it is often the case
that the failure of one component directly affects the operation of other components.
Oversight of such common cause failures is a frequently found fault tree flaw. It
should be noted however that it is not always straightforward to identify dependent
failure events. This leads to major uncertainties in qualitative fault tree analysis,
which of course also affect quantitative evaluations; generally, there is a lack of data
of sufficiently good quality.

Generally speaking, dependent failures can have various causes:

• Common cause initiating events: supply outages (electricity, steam, cooling water,
pneumatic pressure), natural disastrous events (fire, flood, earthquake), man-made
disruptive events (explosion, electromagnetic disturbance).

• Intersystem or intercomponent dependencies: failure of a system/component that
induces failure of another system/component.

• Functional dependencies: dependencies due to process coupling, either direct
(output of one device constitutes an input to another), or indirect (functional
requirements of one device on the state of another).

• Shared-equipment dependencies: common components or supply for several
subsystems.

• Physical interactions: common causes of failures that are not events but e.g.
unfavorable environmental conditions (freezing, overheat, humidity).

• Human-interaction dependencies: anthropogenic actions or behavior that happen
during maintenance/operation.

Ignoring such dependencies can lead to highly optimistic results in safety analysis.

Example: the probability of simultaneous failures of two independent components A
and B, each having a failure probability of 10-3, is:

P(A ∩ B) = 10-3⋅10-3 = 10-6

But if the failure of B is forced by the failure of A (100% dependency), then this
probability rises to:

P(A ∩ B) = P(A)⋅P(B|A) = 10-3⋅1 = 10-3

One way of tackling the common cause failure problem is to use the so-called
implicit β-Factor Model. The β-factor is defined as follows:

t

n

n

n

Q
Q

QQ
Q

failures ofnumber Total
failuresdependent ofNumber

1
=

+
==β [6.54]

where Q1 represents the probability of independent failure of a component i, and Qn
represents the probability that n components failed coincidentally.

Common cause failures

 P.-A. Haldi: Reliability & Safety Analysis

116

If β=0, the events are totally independent; if β=1, they are fully dependent.

From equation [6.54]. we deduce that:

 Qn = β⋅Qt = Qt – Q1 ⇒ Q1 = (1-β)⋅Qt [6.55]

Example: consider the case of a system made of two identical pumps (#1 and #2)
having a total failure probability per pump Qt = Q1 + Qn = 0.01. If during a given
time interval 96 independent failures and 4 dependent failures have been observed,
then:

β = 04.0
496

4
=

+

The system failure probability is given by:

 sysR = P(independent failures of the two pumps) + P(dependent failures)

 = (Q1)2 + Qn=2 = [(1-β)⋅Qt]2 + β⋅Qt = 9.216 10-5 + 4 10-4 ≅ 5 10-5

The exclusive use of such implicit models is however not recommended. It can result
in a poorly detailed fault tree analysis of a technical system. The implicit approach
should not be considered as a substitute of a detailed and explicit modeling of the
dependencies when feasible.

Let us see on an example how such an explicit modeling of the dependencies within
a system can be carried out. The example is that of a detector/alarm system intended
to prevent hostile intrusion in a nuclear power plant. To this end, four wholly
independent alarm systems are provided to detect and alarm about intrusion. A first
analysis of the possible causes of the top event would thus lead to the following
simple fault tree (Fig. 6.15).

Figure 6.15 Initial fault tree for an intrusion detector/alarm system
 (from [Clemens, 2002])

As no two of the alarm systems share a common operating principle, redundancy
appears at first sight to be absolute and the single AND gate to the top event seems
appropriate.

But let us suppose now that these four alarm systems share a single source of power,
with some emergency backup power system ready to take over should the former
fails.

Hostile
intrusion

Alarm systems

Micro-
wave

Electro-
optical

Seismic
footfall

Acoustic

Hostile
intrusion

Alarm systems

Micro-
wave

Electro-
optical

Seismic
footfall

Acoustic

6. Quantitative Systems Risk Analysis Methods 117

Because failures of both power sources are events that will disable all four alarm
systems, they should not be considered as independent INS contributors to each of
the four (provisory) basic events considered in figure 6.15.Power failure should
rather be recognized as a new potential INS contributor to the considered top event,
at the same level (and not at a lower level) as the primary failures of the four alarm
systems, as shown in figure 6.16.

Figure 6.16 Intrusion detector/alarm system fault tree with the common cause
event “power failure” accounted for

 (from [Clemens, 2002])

The search for common cause failures should be conducted systematically in the
framework of a FTA and such failures as far as possible explicitly accounted for in
the fault tree structure.

As an example of practical application of the Fault Tree Analysis, we will consider
the case of the reliability analysis of transmission line protective systems [Schweitzer
and Anderson, 1998]. Transmission line protective systems can be very complex,
incorporating many different equipment groups, often at widely separated places and
often requiring high-speed communications for proper operation.

Figure 6.17 shows a transmission line corresponding to a POTT (Permissive Over-
reaching Transfer Trip) scheme. This transmission line is equipped with a single
circuit breaker and redundant relays at each end. The relays communicate through
tone equipment and analog microwave gear. The protection subsystems operate from
125Vdc batteries, whereas the communication subsystems operate from 48Vdc
batteries.

Example of FTA
practical application

Hostile
intrusion

Micro-
wave

Electro-
optical

Seismic
footfall

Acoustic Basic
power

Emergency
power

Detector/alarm
failure

Detector/alarm
power failure

Hostile
intrusion
Hostile

intrusion

Micro-
wave

Micro-
wave

Electro-
optical
Electro-
optical

Seismic
footfall
Seismic
footfall

AcousticAcoustic Basic
power
Basic
power

Emergency
power

Emergency
power

Detector/alarm
failure

Detector/alarm
power failure

 P.-A. Haldi: Reliability & Safety Analysis

118

Figure 6.17 POTT scheme with redundant relays and single channel microwave
 (from [Schweitzer and Andersons, 1998])

To construct a fault tree for this system, the first step is to choose a top event of
interest. Let us take here as top event: “Protection fails to clear in-section fault in the
prescribed time”.

Proceeding level-by-level, we then identify on the basis of he above scheme all the
events that may directly or indirectly contribute to the occurrence of this undesirable
top event and link them with appropriate logical connectors (gates). The resulting
tree is given in figure 6.18.

 Figure 6.18 Fault Tree for the POTT scheme represented
 in Fig. 6.17 (from [Schweitzer and Andersons, 1998])

52 52

21P

21B

21P

21B

Tone
equipment

Tone
equipment

Microwave
transceiver

Microwave
transceiver

125 Vdc 125 Vdc

48 Vdc 48 Vdc

µ−wave
channel

Bus S Bus R

same as S

same as
primary

G-01

G-11 G-12

G-21

G-31

Protection
fails to

clear fault
0.00162

Protection
at S fails

Protection
at R fails

µ-wave
channel fails

0.0001

0.00076 0.00076

Both primary
and back-up
relays fail

≅ 0

DC power
syst. Fails

0.00005

Breaker
fails

0.0003

125 Vdc 48 Vdc
52

CT or VT
fails

0.00006

Tone equip.
fails

0.0001

µ-wave
equip. fails

0.0002

Comm. DC
power Fails

0.00005

Primary
relay fails

Back-up
relay fails

0.0002 0.0002

Relay
hardw. fails

0.0001

Relay
misapplied

0.0001

6. Quantitative Systems Risk Analysis Methods 119

In the above fault tree construction, it has been assumed that the failures of the
primary and back-up relays are independent (a failure in one relay does not affect the
other relay). On the other hand, other possible common cause failures (e.g common
DC supplies) have been explicitly accounted for under the G-11 gate.

The devices unavailability data required to carry out the quantitative analysis of the
investigated system are given in italic in figure 6.18, under the corresponding basic
event symbols. Note that it is not very useful in this particular example to search
beforehand for the minimal cutsets, because the resulting “reduced” tree would here
not be really simpler that the original fault tree. Because the device unavailabilities
are small, the global unavailability of the considered protection system can easily be
calculated manually using the rare event approximation (i.e. calculating the
unavailability associated with the output of an OR gate as simply the sum of the
unavailability for each input of this gate). The unavailability of this protection
system to clear transmission line faults is thus 1.62 10-3. The reader can easily verify
that the fact that the system has redundant relays indeed reduces its unavailability by
over 20% compared to a system with a single relay (1.62 10-3, instead of 2.02 10-3).

For systems that are more complex than the above example, computer programs are
available to assist in developing and analyzing fault trees.

Generally speaking, the main results produced by a Fault Tree Analysis are the
following:

• graphic display of chains of events/conditions leading to the undesirable event(s);
• improved understanding of the system and of the system behavior;
• identification of those potential contributors to failures that are critical; the corres-

ponding components may need testing or more rigorous quality assurance;
• identification of the root causes of equipment failures;
• qualitative/quantitative insight into probability of the undesirable event selected for

the analysis;
• identification of resources committed to preventing failure; this can provide

guidance for redeploying resources to optimize control of risk.

These and other pertinent information should be thoroughly documented in the FTA
final report. This one should typically include the following headings:

• Executive summary: an abstract of the content of the complete report.
• Scope of the analysis (say what is analyzed and what is not analyzed): a brief

description of the system, as well as of the system and analysis boundaries
(physical boundaries, operational boundaries, operational phases, interfaces
treated, resolution limit, exposure interval, etc.).

• The analysis (show trees as figures, include data sources, cut sets, etc. as tables):
discussion of method and software used, sources of probability data, common
cause search, sensitivity test(s), cutsets and minimal cutsets.

• Findings: occurrence probability, reliability or availability of the top event,
comments on system vulnerability, candidate reduction measures and/or actions.

• Conclusions and recommendations: risk comparisons; is further analysis needed?
by what method?

FTAs greatly help identifying possible system reliability or safety problems at design
time, or assessing system reliability or safety during operation. FTAs identify the
causes of single point failures. FTAs can be used in diagnostic work for a system
failure. FTAs complement FMEAs keying in on the worst identified failure modes.
The limitations of FTA are related to the fact that undesirable events must be
foreseen and are only analyzed singly, that each fault/failure must be constrained to
two conditional modes only when modeled in the tree, and finally that there is a risk
of overlooking common causes.

FTA final report

Strengths and
limitations of FTA

FTA Report

Author(s)
Date

TITLE

 P.-A. Haldi: Reliability & Safety Analysis

120

6.4 Event Tree Analysis (ETA)

ETA is an inductive, of forward logic, technique that is meant to trace the
development or escalation of a potentially hazardous accident, failure or other
unwanted event (initiating event) and assess its foreseeable consequences. Such
events disrupt normal system operation or condition. The method is based on a
graphical representation that provides a convenient way to systematically explore all
the sequences of subsequent events (generic events) resulting from the success or
failure of controlling or mitigating systems and procedures. These include both
specific accident mitigating and normal operating actions; they can be either system
actions or operator actions. ETA is very useful to identify possible accident
scenarios.

As the graphical representation develops by taking into account successive generic
events, the ETA picture fans out like the branches of a tree. Generally, different
event trees (corresponding to different initiating events) must be constructed and
evaluated in the framework of the risk analysis of a given system Event trees are
similar to fault trees but difference is that they are used to examine the possible
consequences of the initiating events and not the causes of a top event. For this
reason, Event Tree Analysis is also sometimes referred to as Consequence Analysis.
It is moreover nothing but an adaptation of the more general Decision Tree Method
that is widely used in business and economic analyzes.

The ETA methodology has changed very little since the conception of the technique
back in the 1960’s when it was successfully used in the WASH 1400 study [WASH
1400, 1975]. It has since then been used in risk analyses of a wide range of
technological systems and is now a natural part of most probabilistic risk assessment
studies.

The ETA approach can be used in the detailed design phase of a proposed system or
plant, during its operational phases or prior to decommissioning. It is often used to
evaluate the effectiveness of safeguards to prevent a failure from becoming an
undesired event and to allow decisions on the necessity for existing or additional
safeguards. A risk analyst may apply this technique in particular when a structure can
partially fail and function (although at a reduced level) at the same time. Example: a
pumping-engine with two pumps can still produce flow when one of the pumps does
not work. However, it does not produce to its rated capacity. It fails, but remains at
least partially operating. The risk analyst cannot use fault tree analysis in this
situation, since FTA only considers total failure of a structure.

ETA is applicable to systems in which all components are continuously operating, or
to systems in which some or all of the components are in standby mode – those that
involve sequential operational logic and switching. In the case of continuously
operated systems, the events to consider can occur (i.e., components success or
failure) in any arbitrary order. In the event tree analysis, such components can be
introduced in any order since they do not operate chronologically with respect to
each other.

A general block diagram of the different steps to be followed in constructing an
event tree is given in figure 6.19.

An Event Tree Analysis starts by identifying possible initiating events, i.e. events
that may give rise to unwanted damaging consequences. The identification of the
initiating events can be based on experience, on a technical or scientific preliminary
analysis of the system under scrutiny, or on the construction of a fault tree having as
top event some general undesirable event considered at the level of the whole system.

General presentation
of the method

Event tree construction

Sequences

Generic events

C
on

se
qu

en
ce

s

Initiating
event

success

failure

Sequences

Generic events

C
on

se
qu

en
ce

s

Initiating
event

success

failure

6. Quantitative Systems Risk Analysis Methods 121

Initiating events are “anticipated”. They are events that designers have put in
physical barriers, systems, procedures alarms, etc., which are meant to respond to the
upset, to terminate the sequence or to mitigate the consequences of the accident.

To be of interest for further analysis, an initiating event must give rise to a number of
consequence sequences. If the initiating event induces only one consequence
sequence, FTA is “a priori” a more suitable technique to analyze the problem.

The selection of relevant initiating events is very important for the analysis, but this
can be done in different ways; various analysts may define slightly different initiating
events.

Figure 6.19 Step-by-step process for constructing an event tree

 (from [Erdmann, 1979])

After an initiating event has been selected, all the safety subsystems/functions
(specific safeguard systems or conditions) that can possibly intervene following the
occurrence of the selected initiating event and prevent an undesirable outcome must
in their turn be identified.

The safety subsystems/functions that respond to a given initiating event may be
thought of as the system’s defense against the potential unacceptable consequences
of the initiating event. These safety subsystems/functions can be classified in various
specific categories.

Identify the
relevant init iating

event(s)

Identify the
applicable safety
systems/functions

Enumerate success
and failu re states
for each safety
system/function

Initial (basic)
event tree

Account for
timing, sequential
and conditional
dependencies

Final (reduced)
event tree

Identify the
relevant init iating

event(s)

Identify the
applicable safety
systems/functions

Enumerate success
and failu re states
for each safety
system/function

Initial (basic)
event tree

Initial (basic)
event tree

Account for
timing, sequential
and conditional
dependencies

Account for
timing, sequential
and conditional
dependencies

Final (reduced)
event tree

Final (reduced)
event tree

 P.-A. Haldi: Reliability & Safety Analysis

122

These categories may for example be [Rausand, 1999]:

• Safety systems that automatically respond to the initiating event (e.g. automatic
shutdown systems).

• Alarms that alert the operator(s) when the initiating event occurs (e.g. fire alarm
systems).

• Operator procedures following an alarm.
• Barriers or containment methods that are intended to limit the effects of he

initiating event.

The fate (success or failure, which could be total or partial see below) of these
subsystems/functions is then examined to determine the sequences of generic events
that can lead to unacceptable consequences.

The diagram is usually drawn from left to right, starting from the initiating event (see
Fig. 6.20). The branch points in the event tree are called nodes, and are formulated
either as an event description or as a question regarding actions that may be taken.
The development is continued to the resulting consequences.

Fire in the storehouse may cause the explosion of fuel containers. For the time gap
until the fire brigade arrives, the containers must be cooled down; this is normally
achieve by a sprinkler system. Alarm is triggered automatically to alert the fire
brigade.

Figure 6.20 A simple example of event tree for a fire in a

fuel containers storehouse

Usually, only a two-state modeling (binary branching logic: complete success or
complete failure, “yes” or “no”, “go” or “no go”) is considered. In some cases, it
could be necessary to introduce a greater number of discrete states (e.g. partial
failure states); a separate branch must then be included for each additional state.

The last step in the qualitative part of the ETA is to describe the different event
sequences arising from the initiating event. One or more of the sequences may
represent a safe recovery or an orderly shutdown of the system (see Fig. 6.20).

Fire
(initiating event) Sprinkler Alarming Fire brigade Ssytem

in danger

success

failure

no explosion

explosion

explosion

explosion

explosion

explosion

Fire
(initiating event) Sprinkler Alarming Fire brigade Ssytem

in danger

success

failure

no explosion

explosion

explosion

explosion

explosion

explosion

6. Quantitative Systems Risk Analysis Methods 123

From a safety viewpoint, the sequences of importance are however those that result
in accidents. When these have been defined, the analyst may rank them according to
their criticality. This information, together with the structure of the diagram clearly
showing the progression of the accident, helps specifying where additional
procedures or safety systems will be most effective in protecting against
unacceptable consequences.

It could prove beneficial in some cases to split the outcomes (end consequences) of
the event tree into various consequence categories as illustrated in figure 6.21.

Figure 6.21 Split presentation of the event tree outcomes (probability distribution

over the subcategories) [Rausand, 1999]

The tree evaluation has normally for final goal the quantification of the sequences in
order to be able to predict the frequency, or probability of occurrence, of each of the
resulting consequences (or at least of those leading to undesirable consequences).

Prior to this operation, the initial (basic) tree must be reduced to its most elementary
form. The reduction process in fact already takes place throughout the construction
phase of the event tree. Two factors assist in simplifying the tree structure: timing,
and functional interactions. Taking the time into account allows considering only one
well-defined arrangement of the generic events, which greatly reduces the number of
sequences. For example, there are 24 = 16 sequences to study for a well-ordered
binary tree of 4 generic events, but 4! times more, i.e. 384 sequences, if the generic
events can “a priori” be arranged in every possible orders (see Fig. 6.22).

Figure 6.22 Event tree reduction by ordered timing of generic events

Out-
come
descr.

Fre-
quency

Loss of lives Material damages Environ. damages

0 1-2 3-5 6-
20

>
20 N L M H N L M H

N
L
M
H

:
:
:
:

Negligible
Low
Medium
High

Out-
come
descr.

Fre-
quency

Loss of lives Material damages Environ. damages

0 1-2 3-5 6-
20

>
20 N L M H N L M H

N
L
M
H

:
:
:
:

Negligible
Low
Medium
High

Out-
come
descr.

Fre-
quency

Loss of lives Material damages Environ. damages

0 1-2 3-5 6-
20

>
20 N L M HN L M H N L M HN L M H

N
L
M
H

:
:
:
:

Negligible
Low
Medium
High

N
L
M
H

:
:
:
:

Negligible
Low
Medium
High

s.s.1 s.s.2 s.s.3 s.s.4

16 sequences

ordered

t

4! = 24 permutations ⇒
24 x 16 = 384 sequences

s.s.1 s.s.2 s.s.3 s.s.4
s.s.1 s.s.2 s.s.4 s.s.3
s.s.1 s.s.3 s.s.2 s.s.4
s.s.1 s.s.4 s.s.2 s.s.3
s.s.1 s.s.3 s.s.4 s.s.2
s.s.1 s.s.4 s.s.3 s.s.2
s.s.2 s.s.1 s.s.3 s.s.4
s.s.2 s.s.1 s.s.4 s.s.3
s.s.3 s.s.1 s.s.2 s.s.4
s.s.4 s.s.1 s.s.2 s.s.3
s.s.3 s.s.1 s.s.4 s.s.2.

non-ordered

ts.s.1 s.s.2 s.s.3 s.s.4s.s.1 s.s.2 s.s.3 s.s.4

16 sequences

ordered

t

4! = 24 permutations ⇒
24 x 16 = 384 sequences

s.s.1 s.s.2 s.s.3 s.s.4
s.s.1 s.s.2 s.s.4 s.s.3
s.s.1 s.s.3 s.s.2 s.s.4
s.s.1 s.s.4 s.s.2 s.s.3
s.s.1 s.s.3 s.s.4 s.s.2
s.s.1 s.s.4 s.s.3 s.s.2
s.s.2 s.s.1 s.s.3 s.s.4
s.s.2 s.s.1 s.s.4 s.s.3
s.s.3 s.s.1 s.s.2 s.s.4
s.s.4 s.s.1 s.s.2 s.s.3
s.s.3 s.s.1 s.s.4 s.s.2.

s.s.1 s.s.2 s.s.3 s.s.4s.s.1 s.s.2 s.s.3 s.s.4
s.s.1 s.s.2 s.s.4 s.s.3s.s.1 s.s.2 s.s.4 s.s.3
s.s.1 s.s.3 s.s.2 s.s.4s.s.1 s.s.3 s.s.2 s.s.4
s.s.1 s.s.4 s.s.2 s.s.3s.s.1 s.s.4 s.s.2 s.s.3
s.s.1 s.s.3 s.s.4 s.s.2s.s.1 s.s.3 s.s.4 s.s.2
s.s.1 s.s.4 s.s.3 s.s.2s.s.1 s.s.4 s.s.3 s.s.2
s.s.2 s.s.1 s.s.3 s.s.4s.s.2 s.s.1 s.s.3 s.s.4
s.s.2 s.s.1 s.s.4 s.s.3s.s.2 s.s.1 s.s.4 s.s.3
s.s.3 s.s.1 s.s.2 s.s.4s.s.3 s.s.1 s.s.2 s.s.4
s.s.4 s.s.1 s.s.2 s.s.3s.s.4 s.s.1 s.s.2 s.s.3
s.s.3 s.s.1 s.s.4 s.s.2s.s.3 s.s.1 s.s.4 s.s.2.

non-ordered

t

Event tree reduction
process

 P.-A. Haldi: Reliability & Safety Analysis

124

The functional dependencies between events allow to “prune” an event tree by
eliminating the branches that have a zero conditional probability. This has been done
in the example of figure 6.20; if the alarm does not sound, coming after either a
success or a failure of the sprinkler system, the consideration of a possible success of
the following event “fire brigade” becomes pointless.

When the branch point (generic) events are independent of each other, quantification
of the diagram is trivial and is simply achieved by calculating the product of the
frequency of the initiating event with the probabilities of passing along each branch
leading to a given outcome consequence (see example in Fig. 6.23).

Figure 6.23 Quantification of the sequences of Fig. 6.20 assuming a total
independency of the generic events

In principle, however, the subsystem states on a given branch of the event tree are
conditional on the previous states having already occurred (dependencies between
the branch events). For example, in figure 6.23, the success or failure of the generic
event “fire brigade” must be defined under the condition that the preceding events
- “alarming”, “sprinkler” and, of course, the initiating event I itself - had previously
occurred (conditional probability, which in this particular case leads to a zero
success probability should the alarm subsystem have previously failed). In the
general case, we have therefore for a given sequence of genetic events {E1 , E2 , …
En}:

 P(event sequence) = P(E1 | I)⋅P(E2 | E1, I)⋅ … P(En | En-1 … E1, I) [6.56]

The quantification of the probability of passing along different branch points of an
event tree becomes more complex in the non-trivial situations when there are
dependencies between the subsystems. The quantification is then performed by
quantifying fault trees whose top events are defined as combination (through an
AND gate) of occurrence and non-occurrence of the branch point events that have in
turn been developed as fault tree structures.

To illustrate this use of fault trees in the event tree approach, we will consider the
simple example given in figure 6.24. The failure mechanisms of the subsystems SS1
and SS2 are shown in figures 6.25a and 6.25b respectively.

Fire
(initiating event) Sprinkler Alarming Fire brigade Ssytem

in danger

success

failure

9.89 10-1 / year

frequency

λI = 1.0/year

0.9990

0.0010

0.9999

0.0001

0.9999

0.0001

0.9900

0.0100

0.9900

0.0100

probabilities

9.99 10-3 / year

9.99 10-5 / year

9.90 10-4 / year

1.00 10-5 / year

1.00 10-7 / year

1.00 / year

Fire
(initiating event) Sprinkler Alarming Fire brigade Ssytem

in danger

success

failure

9.89 10-1 / year

frequency

λI = 1.0/year

0.9990

0.0010

0.9999

0.0001

0.9999

0.0001

0.9900

0.0100

0.9900

0.0100

probabilities

9.99 10-3 / year

9.99 10-5 / year

9.90 10-4 / year

1.00 10-5 / year

1.00 10-7 / year

1.00 / year

Event tree quantification

6. Quantitative Systems Risk Analysis Methods 125

 Ei: “failure of subsystem SSi” event

 Ei: “success of subsystem SSi” event

Figure 6.24 Simple event tree example (from [Andrews & Dunnett, 2000])

Figure 6.25 Subsystems SS1 (a) and SS2 (b) fault tress (see Fig. 6.24)

(from [Andrews & Dunnett, 2000])

The basic events “A” and “D” occur in both subsystem fault trees; the subsystem
failure events are thus not totally independent. Taking into account this “weak”
dependency on some common basic events, the four possible outcomes
corresponding to the sequences (1) to (4) described in figure 6.24 are represented by
the fault tree structures given in figure 6.26. In trees (1) to (3), a new gate, the “NOT
gate”, has been introduced, which symbol is:

As it name implies, the “NOT gate” is used to indicate that the output occurs when
the input event does not occur.

A B A C

D

Subsystem
SS1 fails

Subsystem
SS2 fails

A E

D F

A B A C

D

Subsystem
SS1 fails

A B A C

D

Subsystem
SS1 fails

Subsystem
SS2 fails

A E

D F

Subsystem
SS2 fails

Subsystem
SS2 fails

A E

DD FF

a) b)

success (S)

failure (F)

Sequence FrequencyInitiator
I

Subsystem
SS1

Subsystem
SS2

(1) E1 E2

(2) E1 E2

(3) E1 E2

(4) E1 E2

λI·P(E1|I)·P(E2| E1,I)

λI·P(E1|I)·P(E2| E1,I)

λI·P(E1|I)·P(E2| E1,I)

λI·P(E1|I)·P(E2| E1,I)

success (S)

failure (F)

Sequence FrequencyInitiator
I

Subsystem
SS1

Subsystem
SS2

(1) E1 E2

(2) E1 E2

(3) E1 E2

(4) E1 E2

λI·P(E1|I)·P(E2| E1,I)

λI·P(E1|I)·P(E2| E1,I)

λI·P(E1|I)·P(E2| E1,I)

λI·P(E1|I)·P(E2| E1,I)

 P.-A. Haldi: Reliability & Safety Analysis

126

Figure 6.26 Fault trees representing the different outcomes described in Fig. 6.24

The presence of “NOT gates” in the above diagrams has an important consequence.
It may give rise to “non-coherent” fault trees, i.e. trees in which the non-occurrence
of an event causes the top event to occur. Whereas the Boolean reduction of the logic
function representing the top event leads to the identification of the minimal cutsets
in the case of a coherent fault tree, the equivalent of these logic expressions are
called prime implicants in the case of a non-coherent fault-tree:

- a minimal cutest is a combination of component failure events that are necessary
and sufficient to cause the top event;

- a prime implicant is a combination of basic events – corresponding to failures or
successes – that are necessary and sufficient to cause the top event.

A shown by the figures 6.24 and 6.26, evaluating the frequencies of the different
event tree outcomes implies to know the probabilities of the events Ei (“subsystem
SSi fails”) as well as Ei (“subsystem SSi succeeds”)

The Boolean expressions of the branch point events E1 and E2 (failure top events of
coherent fault trees, see Fig. 6.25) are:

 E1 = (A ∩ B) ∪ (A ∩ C) ∪ D (minimal cutsets: A ∩ B, A ∩ C, D) [6.57]

 E2 = (A ∩ E) ∪ D ∪ F (minimal cutsets: A ∩ E, D, F) [6.58]

Outcome (1)

Subsystem SS1
fails

Subsystem SS2
fails

Outcome (2)

Subsystem SS1
fails

Subsystem SS2
fails

Outcome (3)

Subsystem SS1
fails

Subsystem SS2
fails

Outcome (4)

Subsystem SS1
fails

Subsystem SS2
fails

Outcome (1)

Subsystem SS1
fails

Subsystem SS2
fails

Outcome (1)

Subsystem SS1
fails

Subsystem SS2
fails

Outcome (2)

Subsystem SS1
fails

Subsystem SS2
fails

Outcome (2)

Subsystem SS1
fails

Subsystem SS2
fails

Outcome (3)

Subsystem SS1
fails

Subsystem SS2
fails

Outcome (3)

Subsystem SS1
fails

Subsystem SS2
fails

Outcome (4)

Subsystem SS1
fails

Subsystem SS2
fails

Outcome (4)

Subsystem SS1
fails

Subsystem SS2
fails

6. Quantitative Systems Risk Analysis Methods 127

To deduce the expressions corresponding to the success of the concerned sub-
systems, we have first to establish the dual formulation of the two fault trees
presented in figure 6.25. Compared to the original formulation, in the dual
formulation all AND gates are replaced by OR gates and vice-versa, moreover all
failed component states become working component states (in pursuance of the
Morgan’s theorem, see section 2.3). The dual formulations of the fault trees of figure
6.25 therefore become:

Figure 6.27 Dual formulations of the fault trees of Fig. 6.25 (“success trees”)

The Boolean expressions of the branch point events 1E and 2E (success top events
of non-coherent trees) take respectively the forms:

 () () ()[] DCBADCABAE1 ∩∩∪=∩∪∩∪=

 () ()DCBDA ∩∩∪∩=

 (prime implicants: DA ∩ , DCB ∩∩) [6.59]

 () () ()FEDFDAFDEAE2 ∩∩∪∩∩=∩∩∪=

 (prime implicants: FDA ∩∩ , FED ∩∩) [6.60]

Using Eqs. [6.57] to [6.50], the Boolean expressions of the four sequences of our
example event tree are thus given by:

 T(1) = 21 EE ∩

 = () ()[] () ()[]FEDFDADCBDA ∩∩∪∩∩∩∩∩∪∩

 = () () ()FDCBAFEDAFDA ∩∩∩∩∪∩∩∩∪∩∩

 ()FEDCB ∩∩∩∩∪

 = () ()FEDCBFDA ∩∩∩∩∪∩∩ [6.61]

 T(2) = 21 EE ∩

 = () ()[] ()[]FDEA DCBDA ∪∪∩∩∩∩∪∩

 = () () ()EDCBA FDCBFDA ∩∩∩∩∪∩∩∩∪∩∩ [6.62]

A B A C

D

Subsystem
SS1 works

Subsystem
SS2 works

A E

D F

A B A C

D

Subsystem
SS1 works

A B A C

D

Subsystem
SS1 works

Subsystem
SS2 works

A E

D F

Subsystem
SS2 works

A E

DD FF

 P.-A. Haldi: Reliability & Safety Analysis

128

 T(3) = 21 EE ∩

 = () ()[] () ()[]FEDFDADCABA ∩∩∪∩∩∩∪∩∪∩
 = () ()FEDCAFEDBA ∩∩∩∩∪∩∩∩∩ [6.63]

 T(4) = 21 EE ∩

 = () ()[] ()[]FDEADCABA ∪∪∩∩∪∩∪∩
 = () () () () D EAFCAEBAFBA ∪∩∩∪∩∩∪∩∩∪∩∩ C [6.64]

We are now in a position, using Poincaré’s theorem (“inclusion-exclusion” expan-
sion technique, see section 2.3), to calculate the frequencies of each of the possible
outcomes of the example. To make possible a numerical comparison of these exactly
computed frequencies with the result of some commonly used approximation we will
assign a failure probability of 0.1 (not very realistic of course for usual technical
systems) to each component and a frequency of 1.0 per year to the initiating event.
The results of the exact calculations are then the following:

 λ (1) = λI⋅P(T(1))

 = λI⋅P{ () ()FEDCBFDA ∩∩∩∩∪∩∩ }

 = λI⋅{P () ()FEDCBPFDA ∩∩∩∩+∩∩

 ()FEDCBAP ∩∩∩∩∩− }

 = 1.0/yr⋅{0.729 + 0.59049 – 0.531441} = 0.788049/yr [6.65]

 λ(2) = λI⋅P(T(2))

 = λI⋅P{ () () ()EDCBA FDCBFDA ∩∩∩∩∪∩∩∩∪∩∩ }

 = λI⋅{P () () ()EDCBA PFDCBPFDA ∩∩∩∩+∩∩∩+∩∩

- P () ()FEDCBA APFDCBA ∩∩∩∩∩∩−∩∩∩∩

- P ()FEDCBA ∩∩∩∩∩ +P ()FEDCBA A ∩∩∩∩∩∩ }

 = 1.0/yr⋅{0.081+0.0729+0.00729-0.06561-0-0.000729+0}

 = 0.094851/yr [6.66]

 λ(3) = λI⋅P(T(3))

 = λI⋅P{ () ()FEDCAFEDBA ∩∩∩∩∪∩∩∩∩ }

 = λI⋅{P () ()FEDCAPFEDBA ∩∩∩∩+∩∩∩∩

 - P ()FEDCBA ∩∩∩∩∩ }
 = 1.0/yr⋅{0.00729+0.00729-0.000729} = 0.013851/yr [6.67]

 λ(4) = λI⋅P(T(4))

 = λI⋅P{ () () () () D EAFCAEBAFBA ∪∩∩∪∩∩∪∩∩∪∩∩ C }

 = λI⋅{P () () ()FCAPEBAPFBA ∩∩+∩∩+∩∩

 () () ()FEDCBAP...DP EAP ∩∩∩∩∩+−+∩∩+ C }
 = 1.0/yr⋅{0.001+0.001+0.001+0.001+0.1 - . . . +0.000001}

 = 0.103249/yr [6.68]

6. Quantitative Systems Risk Analysis Methods 129

Although a little tedious (specially when carried out “by hand”) the process of exact
calculations just described in the preceding pages is relatively easy to perform for a
system as simple as the one considered above. When the system to be studied is
much more complex however, leading to several thousands, perhaps hundreds of
thousands, of minimal cut sets and/or prime implicants and very large fault trees, it is
beyond the capability of even modern day computers to evaluate the full expansion
in any reasonable time. Approximate ways of performing the sequence frequency
calculations are therefore required in ad hoc computer programs.

When the probabilities of the operands linked by OR gates are small, as in the case
of the minimal cutsets of coherent fault trees (the probability of each minimal cutest
being the product of basic event probabilities much smaller than one in principle),
the series expansion resulting from the Poincaré’s theorem can be validly truncated
after the first one or two terms (“rare events approximation”). Alternatively, the
following upper bound inequality (this inequality becoming equality when the
minimal cutsets are independent, see Eq.[2.80]) can also be used to approximate the
results of the expansion:

 P(T) ≤ 1 - ()∏
=

n

1i
iC-1 [6.69]

where the Ci’s represent the minimal cutset probabilities.

For non-coherent fault trees however, the convergence of the inclusion-exclusion
expansion can be very slow, requiring the evaluation of a large number of terms.
This can prove excessively time-consuming for large fault trees and thus unfeasible
in practice. For this reason, many commercial computer programs make use of the
so-called coherent approximation to shorten the required computing time. In the
coherent approximation, any working states for the components in the expression to
be calculated are set to TRUE and it is assumed that P(component works) ≈ 1. The
calculation of the minimal cutsets/prime implicants can then be minimized and
approximations such as the one given in Eq. [6.69] used.

For the simple example, this leads to the following results:

 λ (1) = λI⋅P(T(1))

 = λI⋅P{ () ()FEDCBFDA ∩∩∩∩∪∩∩ }

 = λI⋅{P () ()FEDCBPFDA ∩∩∩∩+∩∩

 ()FEDCBAP ∩∩∩∩∩− } ≅ 1.0/yr⋅(1 + 1 - 1) = 1.0/yr [6.70]

 λ(2) = λI⋅P(T(2))

 = λI⋅P{ () () ()EDCBA FDCBFDA ∩∩∩∩∪∩∩∩∪∩∩ }

 = λI⋅{P () ()EA PF ∩+ -P ()FEA ∩∩ }

 = 0.1/yr⋅{0.1+0.01-0.001} = 0.109/yr [6.71]

 λ(3) = λI⋅P(T(3))

 = λI⋅P{ () ()FEDCAFEDBA ∩∩∩∩∪∩∩∩∩ }

 = λI⋅{P () () ()CBAPCAPBA ∩∩−∩+∩ }
 = 0.1/yr⋅{0.01+0.01-0.001} = 0.019/yr [6.72]

 λ(4) = λI⋅P(T(4)) = 0.103249/yr [6.73]

 P.-A. Haldi: Reliability & Safety Analysis

130

A direct comparison of the exact and approximate (coherent approximation) results
is given in Table 6.3.

Table 6.3 Comparison of exact and approximate sequence frequency results

Event tree sequence Exact

frequency
[yr-1]

Approximate
frequency

[yr-1]

Relative
error
[%]

(1) 0.788049 1.000000 26.8

(2) 0.094851 0.109000 14.9

(3) 0.013851 0.019000 37.2

(4) 0.103249 0.103249 0.0

It can be seen that the use of the coherent approximation in this particular example
leads to relatively large percentage errors for at least two of the sequences.

Recent developments in digital logic provide an alternative analysis procedure for
fault trees. This alternative approach, based on the use of Binary Decision Diagrams
(BDD), works directly with the logical expressions instead of the cutsets/prime
implicants. A BDD can be thought of as a graphical representation of a data structure
for a logical function. With this approach, the exact system failure probability can be
deduced without the need to resort to any approximations. This results in both
accuracy and efficiency improvements compared with the traditional minimal cutest
analysis. Different investigations have shown that orders of magnitude reduction in
processing time for large fault trees can be achieved. These improvements would be
expected to be even more significant for non-coherent fault trees, which tend to
produce a great number of system failure modes that include component success
states (prime implicants) There is however a cost to pay, which is the effort required
to convert the fault tree structure to the BDD.

The BDD that is used for fault tree analysis is more exactly referred to as Reduced
Ordered BDD. “Reduced” means that the BDD is in minimal form. “Ordered” means
that the variables appear in the same order (to be defined initially) on each path.

Rules for the detailed fault tree to BDD conversion process are given in the appendix
6.1. Essentially, the diagram features a series of vertices or nodes, representing the
basic events of the fault tree, linked by logical “0” or “1” branches. A “0” branch
indicates the non-occurrence (success) of the basic event, whereas a “1” branch
indicates the occurrence (failure) of this same event. Starting from a root node - the
first of the ordered basic events - placed at the top of the tree structure, each
successive (in the ordered list) basic events is connected to the preceding one in a
way that respects the AND or OR (according to the gate case) “truth table” outputs
respectively (see Appendix 6.1).

Paths through the BDD terminate at one of two types of terminal node, labeled “0”
and “1”. Paths terminating in a “0” node represent the top event non-occurrence.
Conversely, paths that lead to a terminal “1” node specify the conditions for the fault
tree top event to occur. Listing just the failure events on such a path is equivalent to
producing the cutsets for the fault tree. Unless the basic event ordering selected has
produced a minimal form BDD, this will have to be processed to remove redundant
cutsets and produce the minimal cutsets. Whilst this is an important source of
information to the analyst, it is however not required to evaluate the event tree
sequence frequencies.

The use of Binary
Decision Diagrams

6. Quantitative Systems Risk Analysis Methods 131

The equivalent BDD structures for the fault trees of figure 6.25 are given in figure
6.28 for the basic events ordered according to the alphabetical order (A→B→C→D /
A→D→E→F).

Figure 6.28 BDD (left) and dual BDD (right) structures for the fault trees
of Fig. 6.25 (from [Andrews & Dunnett, 2000])

1

0 1

A

D

B

C
1

root node

terminal node

0

1

1
0

0

0

1 0

A

D

B

C
0

0

1

1
0

0
1

10

1

10

1

0 1

A

D

B

C
1

11

00 11

AA

DD

BB

CC
11

root node

terminal node

0

1

1
0

0

0

1 0

A

D

B

C
0

00

11 00

AA

DD

BB

CC
00

0

1

1
0

0
1

10

1

10

a)

b)

0

1

1

0

0

1

1

0

1

0 1

0

1

1

1

D D

A

E

F

0

1

1

0

0

1

1

0

0

1 0

0

0

0

1

D D

A

E

F

0

1

1

0

0

1

1

0

1

0 1

0

1

1

1

D D

A

E

F

0

1

1

0

0

1

1

0

11

00 11

0

11

11

1

DD DD

AA

EE

FF

0

1

1

0

0

1

1

0

0

1 0

0

0

0

1

D D

A

E

F

0

1

1

0

0

1

1

0

00

11 00

0

00

00

1

DD DD

AA

EE

FF

 P.-A. Haldi: Reliability & Safety Analysis

132

Using the BDD approach to analyze the sequences of event trees such as the one
shown in figure 6.24 requires both the BDD and dual BDD formulation of fault trees.
The dual BDD structures of the two subsystems SS1 (a) and SS2 (b) are also given in
figure 6.28. As shown, the dual of a BDD is created by simply changing the terminal
“1”s to terminal “0”s and vice-versa. Note that the dual nodes on the BDD still
represent in this formulation component failure states.

The path through the dual BDD to a terminal node “1”, which includes each node
passed through on the “0” branch (working component) represents the path sets of
the fault tree. A path set is a list of working components that result in the system
working if they all occur at the same time.

Table 6.4 resumes the cut and path sets for the two subsystems SS1 and SS2.

Table 6.4 Cut and path sets for the two subsystems SS1 and SS2 (see Fig. 6.28)

Subsystem Cut sets Minimal cut sets Path sets (minimal)

SS1 AB, AC, AD, D AB, AC, D BCD, AD

SS2 AD, AE, AF, D, F AE, D, F DEF, ADF

Applying the rules to manipulate BDD structures (see Appendix 6.1), the diagrams
shown in figure 6.28 can be combined to obtain the BDD’s representing the four
possible outcomes (sequences 21EE , 21EE , 21EE , 21EE) of the example event tree
(see Fig. 6.24). These are given in figure 6.29a and 6.29b.

Figure 6.29a BDD structures for the 21EE and 21EE sequences of Fig. 6.24
 (from [Andrews & Dunnett, 2000])

0

A

1

0

D

1 0

0 1

1
0

0

0

0

1

1

1

0

0

0
F

E

D0

C
0

B

1

0

A

1

0

D

0 1

0 1

1
0

0

0

0

1

1

1

0

0

1
F

E

D0

C
0

B

1

0

A

1

0

D

1 0

0 1

1
0

0

0

0

1

1

1

0

0

0
F

E

D0

C
0

B

1

00

AA

1

0

D

11 00

0 1

1
0

0

0

0

1

1

1

00

00

00
FF

E

D0

C
00

B

1

0

A

1

0

D

0 1

0 1

1
0

0

0

0

1

1

1

0

0

1
F

E

D0

C
0

B

1

00

AA

1

0

D

00 11

0 1

1
0

0

0

0

1

1

1

00

00

11
FF

E

D0

C
00

B

1

(1) (2)

6. Quantitative Systems Risk Analysis Methods 133

Figure 6.29b BDD structures for the 21EE and 21EE sequences of Fig. 6.24

(from [Andrews & Dunnett, 2000])

By construction, the different paths in a BDD are mutually exclusive (binary
branching). The probability of system failure is thus obtained by simply summing the
probabilities of all the disjoint implicant paths leading to a terminal “1” node.
Applied to the above diagram, this leads to the following top event probabilities:

Table 6.5 Top event probabilities from BDD structures of Fig. 6.29a and 6.29b

(1) Sequence 21EE (see Table 6.3) (3) Sequence 21EE (see Table 6.3)

I mplicant paths Probabilities

F E D C BA 0.059049
F D A 0.729000

 0.788049

I mplicant paths Probabilities

FEDBA 0.007290
F E D C BA 0.006561

 0.013851

(2) Sequence 21EE (see Table 6.3) (4) Sequence 21EE (see Table 6.3)

E D C BA 0.007290
F E D C BA 0.006561

F D A 0.081000
 0.094851

DBA 0.001000
EDBA 0.000900

FEDBA 0.000810
D C BA 0.000900

E D C BA 0.000810
F E D C BA 0.000729

D C BA 0.008100
DA 0.090000

 0.103249

1

0

1

0

0

0

1

1

0

0

1

1

1

0

A

0 B

C

D

0

E

0

F

0

1

0

1

0

0

0

1

1

1

1

0

0

A

B

C

1

E

1

DD

1

1

0

0

1

F

0

1

0

1

0

0

0

1

1

0

0

1

1

1

0

A

0 B

C

D

0

E

0

F

0

1

0

1

0

0

0

1

1

00

0

1

1

11

0

AA

00 BB

CC

DD

00

EE

00

FF

00

1

0

1

0

0

0

1

1

1

1

0

0

A

B

C

1

E

1

DD

1

1

0

0

1

F

0

1

0

1

0

0

0

1

1

1

1

00

0

AA

BB

CC

11

EE

11

DDDD

11

1

00

0

11

FF

0

(3) (4)

 P.-A. Haldi: Reliability & Safety Analysis

134

6.5 Cause-Consequence Analysis (CCA)

The Cause-Consequence Analysis or Cause-Consequence Diagram Method is a well-
structured technique that combines cause analysis (described by fault trees) and
consequence analysis (described by event trees). This way, both inductive and
deductive analyses are used in this approach. The consequences evaluated include
those that characterize the system functioning as well as those that describe an
undesirable failure sequence of events.

Compared with the FTA method, the CCA technique, which also documents the
failure logic, has the extra capability of enabling the analysis of systems subject to
sequential failures. Contrary to FTA, CCA is moreover capable of identifying both
the possible causes of an undesirable event and all the possible consequences
resulting from it The CCA method is also superior to ETA, which can similarly
identify all consequences of a given critical event, as it models at component level
and therefore is functionality driven and not subsystem driven. In addition to this,
CCA can account for time delays, which is not a feature available in the ETA
technique. CCA is thus a method to explore time-sequenced system responses to
initiating “challenges” and to enable probability assessments of success/failure
outcomes at staged increments.

The CCA technique was initially invented by RIS∅ Laboratories in Denmark to
assist in the risk analysis of nuclear power plants [Nielsen, 1971]. It was then
adopted (and adapted) by other industries in the estimation of the safety of protective
or other types of systems

The basis of the CCA technique is the consideration of a critical event, i.e. an event
that disturbs the normal (and safe) behavior of the system under study. Once such
critical event has been identified, all relevant causes of this event and potential
consequences are developed using FTA (see section 6.3) and ETA (see section 6.4)
conventional analysis methods. The FTA method is as a matter of fact used in two
independent situations in the CCA process. Firstly, this approach is used to precise
the causes of the critical event. The second function for the FTA method is to
clarify the causes of the possible failures of the accident-limiting subsystems. The
ETA method is for its part used as a link between the causes of the critical event
and the various consequences that could result (see Fig. 6.30).

Figure 6.30 Basic structure of the Cause-Consequence Analysis method

General presentation
of the method

Critical Event

Consequences of
Critical Event:

Event Tree Analysis

Causes of
Critical Event:

Fault Tree Analysis

Causes of failu res of
accident-limit ing systems:

Fault Tree Analysis

Critical Event

Consequences of
Critical Event:

Event Tree Analysis

Causes of
Critical Event:

Fault Tree Analysis

Causes of failu res of
accident-limit ing systems:

Fault Tree Analysis

6. Quantitative Systems Risk Analysis Methods 135

Rules for the construction of a cause-consequence diagram can be classified in two
separate classes: those for the cause part of the diagram and those for the consequence
part of the diagram [Ridley and Andrews, 2001].

The cause-consequence diagram construction starts with the identification of the
critical event, which is problem dependent. Choosing the right place to start is
important as there are many possible initiating events, but not all of them have
serious consequences. This choice can prove particularly difficult in complex
situations; in theory at least, such “central” event could be anywhere along the chain
of linked events. A useful solution to get round this difficulty is for the analyst to
use an energy damage model and to say that the critical event is the point at which
control of the potentially damaging energy is lost. This is however sometimes not
totally obvious. For example, in an analysis for an electrical authority with high
voltage transmission lines, the point of loss of control of energy was defined as
when someone or something penetrated the flashover envelope of the high voltage
conductor [Robinson. 2000]. That is, despite having entered this region with a
fishing pole on the back of a vehicle, the flashover may not occur with fatal results
to the occupants. They might be insulated from the road or it may be a very dray
day and the envelope was a little smaller than usual, with the result that the event in
such a case cannot be considered as “critical” anymore.

After the critical event has been identified, the causes of this undesired event are
discovered and connected by means of logical gates, using the same rules and
symbols developed in the FTA section (which will therefore not be repeated here).

Starting from the initiating component, the functionality of each component/sub-
system is then investigated and the consequences of the corresponding sequences
determined. For the construction of this consequence part of the diagram some new
symbols are introduced, which are presented in Table 6.6.

Table 6.6 Specific logical symbols used in Cause-Consequence diagrams

If the branching box is governed by a sub-system, then the probability of failure of
this one is obtained via a fault tree diagram. If any branching box is found irrelevant,
e.g. the boxes attached to the “No” and “Yes” branches are identical and their
outcomes and consequences are the same, then these should be removed to reduce the
CCA diagram to a minimal form (this has no effect on the end result).

Construction of the
Cause-Consequence
Diagram

Branching
BoxNO YES

Component/System
functions as expected?

Fault Tree
ArrowFTα

The fault tree arrow indicates under which desi-
gnation (FTα here) the fault tree corresponding to
the undesirable fulfillment of the condition given in
the branching box it points to can be found

Time
Delay

t = x hrs
The time delay is used to indicate that the following
event in the diagram cannot occur before the time
interval given in the symbol is elapsed

Consequence
Box

Consequence
description

The consequence box represents the event/condi-
tion to which analysis of a particular sequence
leads, with, usually, severity level stated

The branching box represents a functionality con-
dition to be fulfilled by a component/subsystem;
output is “yes” if the condition is met, “no” if it is
not met (note that the branching operator may be
written in either fault or success domain

Branching
BoxNO YES

Component/System
functions as expected?

Fault Tree
ArrowFTα

The fault tree arrow indicates under which desi-
gnation (FTα here) the fault tree corresponding to
the undesirable fulfillment of the condition given in
the branching box it points to can be found

Time
Delay

t = x hrs
The time delay is used to indicate that the following
event in the diagram cannot occur before the time
interval given in the symbol is elapsed

Consequence
Box

Consequence
description

The consequence box represents the event/condi-
tion to which analysis of a particular sequence
leads, with, usually, severity level stated

The branching box represents a functionality con-
dition to be fulfilled by a component/subsystem;
output is “yes” if the condition is met, “no” if it is
not met (note that the branching operator may be
written in either fault or success domain

 P.-A. Haldi: Reliability & Safety Analysis

136

To illustrate the application of the CCA approach, we will consider the example of a
pressure tank system [Hassl et al., 1981]. In addition to its operational phase, the
system includes a start-up, shutdown sequence. The system configuration is given in
figure 6.31.

Figure 6.31 Pressure tank example for CCA application

The components individual functions and failures modes are described in Table 6.7.

Table 6.7 Component functions and failure modes of the pressure tank example

Component Function Failure Modes Effect on system

Switch S1 To apply power to
coil of R1 relay

S1C: switch fails
closed

S1O: switch fails
open

Cct remains energi-
zed but can be bro-
ken by R2
No power to ener-
gize cct

Relay R1 Electrically self-la-
tched applying po-
wer to relay R2

R1D: relay fails de-
energized

R1CC: contact fails
closed

R1CO:contact fails
open

No power to cct

Cct remains energi-
zed but can be bro-
ken by R2
No power to cct

Relay R2 Deliver power to
the motor

R2D: relay fails de-
energized

R2CC: contact fails
closed

R2CO:contact fails
open

No power to motor

Continuous power
to motor

No power to motor

Timer Relay
(TIM)

Provides emergen-
cy shut-down in
event of pressure
switch failing

TIMCC: timer con-
tact fails closed

TIMCO: timer con-
tact fails open

Cct energized but
PRSW can open

No power to motor

Application example of
the CCA method

pump

outlet valve

pr
es

su
re

 ta
nk

pressure
switch

motor

TIMRelay
R2

Relay
R1

switch S1

pump

outlet valve

pr
es

su
re

 ta
nk

pump

outlet valve

pr
es

su
re

 ta
nk

pressure
switch

motor

TIMTIMRelay
R2

Relay
R2

Relay
R1

Relay
R1

switch S1

6. Quantitative Systems Risk Analysis Methods 137

Table 6.7 Component functions and failure modes of the pressure tank example

(cont’d)

Pressure Switch
(PRSW)

De-energizes coil
of R2 when tank is
full

PSWC: switch fails
closed

PSWO: switch fails
open

Continuous power
to motor

No power to motor

Fuse To prevent power
surge

F: fuse fails broken No power to motor

Power supplies
1 & 2

Supplies power to
relays and motor

PS1, PS2: no po-
wer

No power to motor

Motor Pumps fluid into
tank

M: pump fails bro-
ken

No power to pump

Initially, the system is considered to be in dormant state and therefore de-energized.
In this state, the switch S1, the relay contacts R1 and R2 are all open and the timer
and pressure switch are closed. Depressing the switch S1 provides power to the coil
of R1, which results in the closure of the R1 contacts. R1 self latches when S1 being
released opens and power is also supplied to R2 resulting in R2 contacts closing.
This starts the pump motor. It is assumed that the tank takes 30 minutes to fill and
once the pressure threshold is reached the pressure switch contacts open, de-
energizing R2, which results in the removal of power from the pump motor. After a
period of time, the tank becomes empty and the pressure switch closes, which
energizes R2. The pump restarts and the filling process commences again. The tank
is filled twice daily and the system is inspected at 6 monthly intervals for latent
failures. In the event of the pressure switch failing to open, a safety feature is
included in the form of a timer relay. Power is applied to the timer relay following
the closure the R1 contacts, which initiates a stopwatch. If the stopwatch registers 30
minutes of continuous pumping the timer relay contacts are open; this results in a
break in the circuit to R1 and system shutdown.

The first step in constructing the cause-consequence diagram of this system is to
order the component failure events. This is done by considering the temporal patterns
of the system and leads to the order:

S1, R1, R2, PRSW, TIM, R1, R2

It comes out that the components R1 and R2 both occur twice in the ordering
sequence. This results from the system containing two different phases and hence
some components perform different actions in each different phases. Components R1
and R2 are both required to close in the start-up sequence and open in the shutdown
sequence.

The cause-consequence diagram is then constructed by considering the effect of each
component in the chosen order on the system operation. The resulting cause-
consequence diagram is given in figure 6.32 and the corresponding fault trees
illustrated in figure 6.33.

Note that this is not the final form of the cause-consequence diagram. Prior to
multiplying the probabilities associated with each decision box to quantify each of
the sequences, the diagram must be checked for any dependent failure events and
then appropriately modified. For example, a common failure event (PS1) is present
on FT7 and FT8. PS1 should thus be extracted and placed in a new decision box
preceding decision box 7. Other modifications are required to take into account
inconsistent failure events.

 P.-A. Haldi: Reliability & Safety Analysis

138

Figure 6.32 Primary cause-consequence diagram for the pressure tank example

YESNO

YESNO

FT1

S1 closes

YESNO

S1 opens

FT2

YESNOFT3

E

R2 contacts
close

YESNOFT4

Motor starts

E

YESNOFT5

Pressure
switch opens

O

YESNO

R2 contacts
open

O S

YESNO

R2 contacts
open

O N

FT6

FT14

YESNOFT10

YESNOFT11

Ti mer contacts
open

O

YESNOFT12

R1 contacts
open

O

YESNOFT13

O S

Pressure
switch opens

YESNO

E

FT9

Motor starts

YESNOFT8

R2 contacts
close

FT7

R1 contacts
close

E

E

E

YESNO YESNO

YESNO YESNO

FT1

S1 closes

YESNO YESNO

S1 opens

FT2

YESNO YESNOFT3

E

R2 contacts
close

YESNO YESNOFT4

Motor starts

E

YESNO YESNOFT5

Pressure
switch opens

O

YESNO YESNO YESNO YESNO

R2 contacts
open

O S

YESNO YESNO YESNO YESNO

R2 contacts
open

O N

FT6

FT14

YESNO YESNOFT10

YESNO YESNOFT11

Ti mer contacts
open

O

YESNO YESNOFT12

R1 contacts
open

O

YESNO YESNO YESNO YESNOFT13

O S

Pressure
switch opens

YESNO YESNO

E

FT9

Motor starts

YESNO YESNOFT8

R2 contacts
close

FT7

R1 contacts
close

E

E

E

E : “Empty”
O : “Overpressurized”
S : “Safe”
N : “Normal”

6. Quantitative Systems Risk Analysis Methods 139

Figure 6.33 Fault trees associated to the cause-consequence diagram of Fig. 6.32

Inconsistent failure events are encountered when, in certain systems, components are
required to perform different functions, which if successfully accomplished results in
the components residing in different states at different times of operation. For
example, initially a valve may be required to be closed and later in the sequence of
operation to be open. The identification of such events and the resulting modified
cause-consequence diagram and associated fault trees for the above example can be
found in the paper of Ridley and Andrews [Ridley and Andrews, 2001].

6.6 Other Methods

The methods presented in the preceding pages are only a sample of the existing
methods that can be used for safety/reliability assessments. Without pretending to be
exhaustive, some additional methods are presented very briefly below.

Markov Modeling is a classical modeling technique for assessing the time-dependent
behavior of dynamic systems. The state probabilities of the system P(t) in a
continuous Markov system analysis are obtained by the solution of a coupled set of
first order, constant coefficient differential equations: dP/dt = M⋅P(t), where M is the
matrix of coefficients whose off-diagonal elements are the transition rate and whose
diagonal elements are such that the matrix columns sum to zero.

The GO Method can be used to compute the probability that a system exists in each
of a few states. The system being studied is modeled in the form of a “GO chart”,
which consists in selecting functional operators (or “building blocks”) to represent
each component and logical junction, and connecting them with arrows to represent
the flow of information. The GO method can be considered a competitor of FTA.

Dynamic Event Tree Analysis Method is an approach that treats time-dependent
evolution of systems states, process variable values, and operator states over the
course of a scenario. In general, a dynamic tree is an event tree in which branchings
are allowed at different points in time.

Monte Carlo Simulation can also be a useful general technique for risk analyses.
First, the random numbers are sampled for each of the uncertain assumptions.
Secondly, the random numbers obtained are used together with the other assumption
values to perform the basic analysis.

R2 fails
open

PS1

R2D R2CO PSWO

FT3
R1 fails
open

PS1

R1D R1CO TIM
CO

FT7
Motor
fails FT4

M PS2F

S1 fails
open FT1

S1O

S1 fails
closed FT2

S1C

PRSW fails
closed FT5

PSWC

R2 contacts fails
closed FT6

R2CC

TIM fails
closed FT11

TIM
CC

R1 contacts fails
closed FT12

R1CC

R2 fails
open

PS1

R2D R2CO PSWO

FT3
R2 fails
open

PS1

R2D R2CO PSWO

FT3
R1 fails
open

PS1

R1D R1CO TIM
CO

FT7
R1 fails
open

PS1

R1D R1CO TIM
CO

FT7
Motor
fails FT4

M PS2F

Motor
fails FT4

M PS2F

S1 fails
open FT1

S1O

S1 fails
open FT1

S1O

S1 fails
closed FT2

S1C

S1 fails
closed FT2

S1C

PRSW fails
closed FT5

PSWC

PRSW fails
closed FT5

PSWC

R2 contacts fails
closed FT6

R2CC

R2 contacts fails
closed FT6

R2CC

TIM fails
closed FT11

TIM
CC

TIM fails
closed FT11

TIM
CC

R1 contacts fails
closed FT12

R1CC

R1 contacts fails
closed FT12

R1CC

FT13=FT14=FT6
FT8 = FT3

FT9=FT4
FT10=FT5

 P.-A. Haldi: Reliability & Safety Analysis

140

Appendix 6.1 Binary Decision Diagrams (from [NASA, 2002])

The construction of a Binary Decision Diagram (BDD) from a fault tree is a recursive, “bottom-up” process.
Each basic event has an associated single-node, with “0” and “1” children, BDD. For example, the BDD for a
basic event A is shown in figure 6.34.

Figure 6.34 BDD for a basic event A

Starting at the bottom of the tree, a BDD is constructed for each basic event and these (in an order pre-defined)
are then combined according to the type of logic (“truth table”) represented by the gate to which the events in
question are connected.

The first step in the construction of the BDD for the OR relation A ∪ B is schematized in figure 6.35. Since A
is first in the OR relation, it becomes the “root” node; the B BDD is then combined with each “child” node of
A.

Figure 6.35 BDD for A ∪ B (first step)

To this end, consider respectively the left and right “children” of A (terminal nodes “0” and “1”). According to
the OR “truth table”, 0 ∪ X = X and 1 ∪ X = 1. Thus, the left child reduces to B and the right child reduces to
1 as represented in figure 6.36.

Figure 6.36 BDD for A ∪ B (final step)

A

0 1

AA

0 1

B

0 1

B

0 1

A

1

=

B

0 1

A

0 1∪ ∪ B

0 1

BB

0 1

B

0 1

A

1B

0 1

BB

0 1

AA

1

=

B

0 1

BB

0 1

A

0 1

AA

0 1∪ ∪

B

0 1 B

0 1

A

0 1

∪ =

B

0 1

A

0 1∪ ∪

B

A0 1
0
1

0 1
1 1

OR

B

0 1

BB

0 1 B

0 1

BB

0 1

A

0 1

AA

0 1

∪ =

B

0 1

BB

0 1

A

0 1

AA

0 1∪ ∪

B

A0 1
0
1

0 1
1 1

OR A0 1
0
1

0 1
1 11 1

OR

6. Quantitative Systems Risk Analysis Methods 141

Applying the same combinatorial process to the case of the AND gate leads to the result presented in figure
6.37, which takes into account that here 0 ∩ X = 0 and 1 ∩ X = X.

Figure 6.37 BDD for A ∩ B

Consider now the case of a basic event C that is OR’ed with the AND gate of A and B, i.e. C ∪ (A ∩ B). Since
A comes first, A remains the root node of the combined diagram and the OR operation is applied to A’s
children. The left child reduces by Boolean algebra to C and the right child to the result of figure 6.36, as shown
in figure 6.38.

Figure 6.38 BDD for (A ∩ B) ∪ C (initial steps)

B

0 1 B

0 1

A

0 1

∩ =

B

0 1

A

0 1∩ ∩

B

A0 1
0
1

0 0
0 1

AND

B

0 1

A

0

B

0 1

BB

0 1 B

0 1

BB

0 1

A

0 1

AA

0 1

∩ =

B

0 1

BB

0 1

A

0 1

AA

0 1∩ ∩

B

A0 1
0
1

0 0
0 10 1

AND

B

0 1

BB

0 1

AA

0

∪

B

0 1

C

0 1

=

C

0 1

A

0∪ ∪B

0 1

A

0 C

0 1

A

C

0 1 C

0 1

B

1

B

0 1

BB

0 1

C

0 1

CC

0 1

=

C

0 1

CC

0 1

AA

0∪ ∪B

0 1

A

0 B

0 1

BB

0 1

AA

0 C

0 1

CC

0 1

A

C

0 1 C

0 1

B

1

AA

C

0 1

CC

0 1 C

0 1

B

1C

0 1

CC

0 1

BB

1

∪

B

0 1

BB

0 1

C

0 1

CC

0 1

=

C

0 1

CC

0 1

AA

0∪ ∪B

0 1

A

0 B

0 1

BB

0 1

AA

0 C

0 1

CC

0 1

A

C

0 1 C

0 1

B

1

AA

C

0 1

CC

0 1 C

0 1

B

1C

0 1

CC

0 1

BB

1

BB

0 1

BB

0 1

CC

0 1

CC

0 1

=

CC

0 1

CC

0 1

AA

0∪ ∪B

0 1

BB

0 1

AA

0 BB

0 1

BB

0 1

AA

0 CC

0 1

CC

0 1

AA

C

0 1

CC

0 1 C

0 1

B

1C

0 1

CC

0 1

BB

1

AA

CC

0 1

CC

0 1 C

0 1

CC

0 1

BB

1CC

0 1

CC

0 1

BB

1

 P.-A. Haldi: Reliability & Safety Analysis

142

The resulting BDD can be reduced further, noticing that there are two identical instances of the node
representing C in the diagram. One is redundant and can thus be removed, which leads to the final diagram
represented in figure 6.39.

Figure 6.39 BDD for (A ∩ B) ∪ C (final steps)

Each path from the root node to a terminal node with value “1” represents a disjoint combination of events that,
by definition, causes system failure. Thus, for the system represented by the diagram of figure 6.39, the failure
paths are; C A , BA , C BA . Since the paths are disjoint, the calculation of the system probability of failure is
straightforward (i.e. sum of the probabilities associated with the paths, see Fig. 6.40).

Figure 6.40 Quantification of the BDD of Fig. 6.39

The transformation and calculation of any fault tree would proceed in the above manner until all the gates have
been linked in the BDD.

The BDD approach is a complementary approach to the minimal cutest (MCS) approach, each approach having
its advantages and features. The MCS approach identifies the minimal sets (combinations) of basic events that
could cause the top event. This approach thus highlights the most significant failure combinations and show
where designs changes can eliminate or reduce undesirable combinations. Minimal cutsets also support fault
tree validation in that specific minimal cutsets can be checked to determine if they indeed can cause the top
event. They also support recovery actions by focusing the attention on the failures present in the dominant
minimal cutsets. Minimal cutsets can furthermore be reviewed for dependencies and susceptibilities to common
cause failure potentials.

0 1

A

1

B

C

0 1

AA

1

BB

CC

A B

C

0.1 0.1

0.01

0.01

0.0199

From Fig. 6.39 (disjoint failure paths):

C A (1 - 0.1) ⋅ 0.01 = 0.0090

BA 0.1 ⋅ 0.1 = 0.0100

C BA 0.1 ⋅ (1-0.1) ⋅ 0.01 = 0.0009

 0.0199

0

0

0

1

1

1

6. Quantitative Systems Risk Analysis Methods 143

For very large fault trees having many AND and OR gates, in which many minimal cutsets can be generated,
the MCS approach must often truncate the lowest probability minimal cutsets to calculate the probability of the
top event in reasonably short time. Results of such calculations are generally accurate to at least two significant
figures, which is typically more accurate than the uncertainties on the basic event probabilities that are used.
Present fault tree software packages have algorithms for bounding truncation error. When this error is out of
pre-specified bounds, the truncation limit can be lowered and more minimal cutsets generated and calculated.
Because of the speed of present personal computers, evaluating a sufficient number of minimal cutsets is
usually, but not always, not a problem.

Because the minimal paths generated in the BDD approach are disjoint, this approach provides an easy-to-
perform exact calculation of the top event probability; it is the most efficient method for calculating failure
probabilities. The exact probability is useful when many high-probability events appear in the model.

The BDD is thus more efficient and precise in quantifying probabilities and importances. The MCS approach
provides, for its part, important qualitative information as well as quantitative information. The most
information is provided by using both approaches. The use of binary decision diagrams therefore does not
preclude the determination and evaluation of minimal cutsets. Most available software packages only use the
MCS approach, which has been the standard method for fault tree evaluation for many decades. There are now
however available packages that use the BDD approach, and a few that use both approaches. In the future, more
software packages are expected to include both the MCS and BDD approaches.

 P.-A. Haldi: Reliability & Safety Analysis

144

6. Quantitative Systems Risk Analysis Methods 145

American Chemical Society, Understanding Risk Analysis, A Short Guide for health, Safety and Environmental
Policy Making, Internet Edition, 1998

Andrews J.D. and Dunnett S.J., Event Tree Analysis using Binary Decision Diagrams, IEEE Transactions on
Reliability, Vol 49, No 2, June 2000

Brander R., The Titanic: An Enduring Example of Money management vs. Risk management, original essay,
1995

BUWAL (Bundesamt für Umwelt, Wald und Landschaft), Risikoanalyse bei gravitativen Naturgefahren,
Method, Dokumentation, 107/I , 3003 Bern, Switzerland, 1999

Clemens P.L., Fault Tree Analysis, 4th Edition, web site: http://www.sverdrup.com/safety/fta.pdf, 2002

DMTP (Disaster Management Training Programme), Vulnerability and Risk Assessment, 2nd Edition, UNDP,
DHA, Cambridge Architectural Research Limited, The Oast House, Malting Lane, Cambridge, United
Kingdom, 1994

Engineering Statistics Handbook, High Performance Computing and Communications/Systems Integration for
Manufacturing Applications, NIST/SEMATECH e-Handbook of Statistical Methods, web site:
http://www.itl.nist.gov/div898/handbook/, 2003

Erdmann R.C., A Risk methodology Presentation, Electric Power Research Institute Informal Rep. NP-79-1-LD,
1979

Hendershot D.C., Vinson J.W., Lorenzo D.K., Putting “OP” Back in “HAZOP”, Rohm and Haas Company, PO
Box 584, Bristol, PA 19007, USA, Paper prepared for presentation at the MAINTECH South ’98 Conference
and Exhibition, Houston, Texas, December 2-3, 1998

Hassl D.F., Roberts N.H., Vesely W.E., Goldberg F.F., Fault Tree Handbook, US Nuclear Regulatory
Commission, NUREG-0492, 1981

Lambert H.E., System Safety Analysis and Fault Tree Analysis, Lawrence Livermore Laboratory, Rep. UCID-
16238, 1973

McCormick N.J., Reliability and Risk Analysis: Methods and Nuclear Power Applications, Academic Press Inc.,
New York, 1981

Mohr R.R., Failure Modes and Effects Analysis, Sverdrup, web site:
http://www.fmeainfocentre.com/download/fmeamanual.pdf, 1994

NASA, Fault Tree Handbook with Aerospace Applications, Prepared for NASA Office of Safety and Mission
Assurance, NASA Headquarters, Washington, DC 20546, August 2002

Nielsen D.S, The Cause/Consequence Diagram Method as a Basis for Quantitative Accident Analysis, Danish
Atomic Energy Commission, RISO-M-1374, 1971

Périlhon P., Logiciel MADS-MOSAR II, CD Rom version2.09, Ed.Fox Média, Grenoble, 1999

 Bibliography

 P.-A. Haldi: Reliability & Safety Analysis

146

Rausand M., Supplement SIO3020 Safety and Reliability Engineering Event Tree Analysis, Dpt. Of Production
and Quality Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway, 1999

Ridley L.M. and Andrews J.D.: Reliability of Sequential Systems using the Cause-Consequence Diagram
Method, Dep. of Mathematical Sciences, Laughborough University, Laughborough, Leicestershire, LE11 3TU,
Great Britain, 2001

Robinson R.M. et al., Risk & Reliability - An Introductory Text, fourth edition, 2000

Schweitzer E.O., Anderson P.M., Reliability Analysis of Transmission Protection using Fault Tree Methods,
SEL, web site: http://www.selinc.com/techpprs/6060.pdf, 1998

UNDRO (Office of the united Nations Disaster Relief Coordinator), Natural Disasters and Vulnerability
Analysis, Report of Expert Group Meeting, Geneva, 9-12 July 1979

Villemeur A., Sûreté de fonctionnement des systèmes industriels Collection de la Direction des Etudes et
Recherches d’Electricité de France, Editions Eyrolles, Paris, 1997

WASH-1400, Reactor Safety Study, an Assessment of Accident Risks in U.S. Commercial Nuclear Power
Plants, Nuclear Regulatory Commission Rep. (“Rasmussen Report”), NUREG-75, October 1975

