
 

6.1 Introduction 
 
The methods presented in this chapter, particularly the Fault Tree Analysis and Event 
Tree Analysis, are the most widely used techniques for analyzing in a qualitative and 
quantitative way the safety and reliability of complex industrial systems. Such 
systems are characterized by the fact that the number and linking of the different 
subsystems are too complex to permit to apply only and directly the elementary 
calculation techniques of Chapter 3.  
  
6.2 Success Path Analysis (SPA) - Reliability Block 

Diagram (RBD) 
 
The SPA method is a graphical representation and calculation tool used to model 
relatively complex systems. To this end, the different components of a system are 
symbolized as individual graphic and functional elements, called “reliability blocks”; 
for this reason, in its industrial applications this method is also known under the 
name of  “Reliability Block Diagram”, or RBD, method. These blocks are reliability-
wise arranged and related, often, but not necessarily, in the same way that the 
corresponding components are physically connected. Such a diagram can be viewed 
as representing how a “system operation signal” would be successfully transmitted 
from the input to the output of the system. Once the blocks are properly configured, 
and reliability data for these blocks is provided, calculations can be performed in 
order to calculate the failure rate, the “mean time to failure” (MTTF), reliability and 
availability of the system. Obviously, as the configuration of the system, and thus of 
the block diagram changes, the calculation results also change. A reliability block 
diagram provides therefore a simple way to compare various possible configurations 
in an attempt to find the best overall system design    
 
Historically, the SPA method was the first to be developed for the analysis of 
industrial systems in view of calculating their reliability. This method is applicable 
when a detailed analysis of the causes of failures is not required and when the 
component failures are independent. Moreover, whereas the SPA can 
straightforwardly be applied to irreparable systems, it can only be used for the 
reliability, availability or maintainability evaluation of repairable systems under quite 
restrictive conditions.   
 
The simplest and most elementary types of reliability blocks configurations are the 
series and active-parallel configurations. Items connected in series must all work for 
the system to fulfill its function (“success path”). In the example of figure 6.1, the 
system will fail if either C1, C2 or C3 fails. 
 
 
 

 
 

 
Figure 6.1   Reliability Block Diagram for a series configuration 
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The reliability Rs of a system made of N independent components, all in series, can 
be calculated from the following expression (Ri: reliability of component i, assumed 
to be known): 
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In the case of constant failure rates λi it comes (from Eq. [3.11]): 
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The corresponding “Mean Time To Failure” MTTFs is thus given by (see Eq. 
[3.15]): 
 

 

∑
∫ ∑

=

∞

= λ

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

λ−= n

i
i

n

i
i tt

1

0
1

s
1'd'expMTTF  [6.3] 

 

Items placed in parallel are considered to be redundant, because the good working of 
only one of them is enough for the system to function. In the example of figure 6.2, 
either C1 or C2 (but not C1 and C2 simultaneously) can fail and the system will 
continue to function. 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2   Reliability Block Diagram for a parallel configuration 
 
The reliability Rp of a system of N independent components, all in active-parallel, is 
given by the following mathematical expression: 
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In the case of constant failure rates, Rp takes the form:  
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and the “Mean Time To Failure” MTTFp becomes: 
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The two elementary configurations described above form the basis of the reliability 
block diagram construct and success path analysis. 
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This concept can be straightforwardly extended further to combinations of series and 
parallel configurations in the same diagram (see example in Fig. 6.3). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.3   Reliability Block Diagram for a combination of series  
and parallel configuration 

 
Considering first the upper branch of the diagram, we have (C1 in series with (C2 and 
C3 in parallel)): 
 

 Rupp = R1⋅(R2 + R3 –R2⋅R3) [6.7] 
 
The reliability of the lower branch (C4 an C5 in series) is simply given by: 
 

 Rlow =  R4⋅R5  [6.8] 
 
Finally, combining this two branches in parallel leads to: 
 
 ( ){ } ( )5432321infsupsys RR1RRRRR1RRR ⋅−⋅⋅−+⋅−=⋅=  [6.9] 
 
and therefore: 
 
 ( )( ) ( )543232154syssys RR1RRRRRRRR-1R ⋅−⋅⋅−+⋅−⋅==  [6.10] 
 
If one takes the approach a step further, “complex block diagrams” can be analyzed. 
A complex block diagram is a diagram that cannot be expressed as a simple 
combination of series and parallel blocks (see example in Fig. 6.4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.4   Reliability Block Diagram for a complex system configuration 
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Several methods exist for obtaining the reliability of complex system, e.g.: 
 

• the decomposition method, 
• the event space method, 
• the path-tracing method, 
• the minimal cut set  method. 
 
To show how these different methods work, they will first be applied below to a very 
simple case, namely (see Fig. 6.5): 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5  Demonstration case for the resolution methods that can be used to 
treat complex system configurations  

 
Decomposition method 
 
The decomposition method is an application of the law of total probability (see 
section 2.4). It involves choosing a “key component” and then calculating the 
reliability of the system in two steps: first considering that the key component failed 
(Rkey = 0) and secondly that it succeeded (Rkey = 1). These two “complementary” 
probabilities are then combined to obtain the reliability of the system. Using 
probability theory, the equation is: 
 
 ( ) ( )keykeysys ESPESPR ∩+∩=  
 

 ( ) ( ) ( ) ( )keykeykeykey EPESPEPESP ⋅+⋅=  [6.11] 
 
where S and Ekey  represent respectively the events: “the system operates” and the 
“component Ckey” operates ( keyE : “the component Ckey fails”). 
 
In the example of the figure 6.5, selecting the component 2 as the “key component”, 
the system reliability can be written as follows: 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )22222222sys R-1ESPRESPEPESPEPESPR ⋅+⋅=⋅+⋅=  [6.12] 
 
If component 2 is known to operate, the probability that the system operates is given 
by the probability that component 1 or component 3 also survives, that is: 
 
  ( ) 31312 RRRRESP ⋅−+=  [6.13]  
 
If, on the contrary this key component fails, the probability that the system still 
operates is simply equals to the probability that the component 3 operates:  
 
 ( ) 32 RESP =  [6.14] 
 
Introducing these two conditional probabilities in Eq. [6.12] leads to: 
 
 Rsys = (R1 + R3 – R1⋅R3)⋅R2 + R3⋅(1-R2) = R3 + R1⋅R2 – R1⋅R2⋅R3 [6.15] 
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Event space method 
 
The event space method is an application of the mutually exclusive events axiom. 
All mutually exclusive events are determined and only those that result in system 
success are retained. The reliability of the system is simply equal to the probability 
of the union of all mutually exclusive events that yield a system success. 
Reciprocally, the unreliability of the system is the probability of the union of 
mutually exclusive events that yield a system failure.  
 
Applied to the example of figure 6.5, this gives:   
 

- all components succeed → 321123 EEEE ∩∩=  

- only component 1 fails  → 321231 EEEE ∩∩=   

- only component 2 fails  → 321321 EEEE ∩∩=  

- only component 3 fails  → 321312 EEEE ∩∩=  

- components 1 and 2 fail → 321321 EEEE ∩∩=  

- components 1 and 3 fail → 321321 EEEE ∩∩=  

- components 2 and 3 fail → 321321 EEEE ∩∩=  

- all components fail  → 321321 EEEE ∩∩=  
 
The five first events result in system success. Thus the total probability of success of 
the system is: 
 
 ( )321312321231123sys EEEEEPR ∪∪∪∪=  [6.16] 
 
Since these five events are mutually exclusive, then: 
 
 ( ) ( ) ( )( )321312321231123sys P(EEPEPEP)EPR ++++=  [6.17] 
 

with:  
 

( ) ( ) 321321123 RRREEEPEP ⋅⋅=∩∩=  

( ) ( ) ( ) 321321231 RRR1EEEPEP ⋅⋅−=∩∩=  

( ) ( ) ( ) 321321321 RR1REEEPEP ⋅−⋅=∩∩=  

( ) ( ) ( )321321312 R1RREEEPEP −⋅⋅=∩∩=  

( ) ( ) ( ) ( ) 321321321 RR1R1EEEPEP ⋅−⋅−=∩∩=  
 
Adding the above five relations gives after simplification: 
 
 Rsys = R3 + R1⋅R2 – R1⋅R2⋅R3 
 
This is of course the same result as the one obtained previously using the 
decomposition method. 
 
Path tracing method 
 
This method is based on the observation that as long as at least one success path exist 
from the input to the output of the RBD, then the system has not failed. It thus 
consists in identifying all of the success paths the “signal” could take and calculating 
the reliability of these paths based on the components that lie along each of them. 
The reliability of the system is simply the probability of the union of these paths.  
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In the example of the figure 6.5, the success paths are: 
 

SP1 = {E1, E2}   and   SP2 = E3 
 
Therefore, the probability of success of the system is given by: 
 
 ( ) ( ) ( ) ( )212121sys SPSPPSPPSPPSPSPPR ∩−+=∪=  [6.18] 
 
Replacing the three probabilities on the left right side of Eq. [6.18] by their 
calculated values, we get: 
 

 Rsys = R1⋅R2 + R3 – R1⋅R2⋅R3 
 
Again, we find the same results as with the previous methods. 
 
Minimal cut set method 
 
As its name implies, this method is based on the search for the “minimal cut sets” of 
the system under study, i.e. a set of system events that, if they all occur, will cause 
system failure (this concept will be developed further in the next section).  The 
unreliability of the system can then be calculated as the probability of the union of 
these events and its reliability by taking the complement of the result thus obtained. 
 
The procedure is developed below for the example of figure 6.5: 
 
a) Create a table (“Incidence Matrix”) with one line for each of the identified 

success paths, and columns representing the different components of the system. 
If a component “belongs” to the considered success path a “1” is entered in the 
corresponding column of the concerned line, and if not, a “0”. In the case of the 
very simple example of figure 6.5 this table takes the form: 

 
Table 6.1   Incidence matrix for the example of figure 6.5  

 

Success paths / components C1 C2 C3 

{E1, E2}    1 1 0 

E3 0 0 1 
 
b) Now, examine each column. If a column contains nothing but “1” numbers, this 

means that the failure of this unique component will induce in any case the failure 
of the whole system (because this component lies along each of the success 
paths). This is called a minimal cut set of order one (one component only 
involved in the success path). There are no minimal cut sets of order one in the 
considered example. 

 
c) Go forward in the analysis of the table, considering this time two by two the 

different columns, with the following rules for combining the scores:  
 

0 + 0 = 0          1 + 0 = 1           0 + 1 = 1          1 + 1 = 1 
 

A combined column full of “1” means that the simultaneous failures of the two 
components involved induce the failure of the system. This defines consequently 
a minimal cut set of order two. We have two such cut sets in the considered 
example, corresponding to the combination of events:  31 EE ∩  and 32 EE ∩ . 
 

d) Continue the search for possible higher order cut sets (3, 4, …) that do not include 
lower order cut sets already considered. There are no such cut sets in our 
illustration example.   
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The unreliability of the system is given by the probability of the union of the above-
defined minimal cut sets MCSi: 
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In our example, this leads to: 
 
 ( ) ( ){ }3231sys EEEEPR ∩∪∩=  [6.20] 
 
which, using Morgan’s theorem and other Boolean Algebra rules (see section 2.3), 
can be written as follows: 
 
 ( ){ } ( ){ }213213sys EEEPEEEPR ∩∩=∪∩=  [6.21] 
  
Therefore: 
 
 ( ) ( ) 321321213sys RRRRRR1RR1R1R ⋅⋅+−⋅−=⋅−⋅−=  [6.22] 
 
and Rsys = 1 - sysR  takes here again the same value as before. 
 
To show that the above approaches can indeed be used to calculate the reliability of 
complex systems, let us apply the decomposition and minimal cut set methods to the 
following example: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6  Application example  (complex configuration)  for the decomposition 
and minimal cut set methods 

 
Decomposition method 
 
The best choice of key component would here be C4. This will give the results we 
are looking for in just one step. Let us however take another key component first, C3, 
to demonstrate that the decomposition method can be used repetitively to solve a 
given problem.  
 
The probability that the system operates knowing that C3 does not fail corresponds to 
the probability of success of the system represented in figure 6.7, i.e. C1 and C4 in 
parallel.  The corresponding conditional probability is therefore equal to: 
 
 ( ) 41413 RRRRESP ⋅−+=  [6.23] 
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Figure 6.7  Configuration of the example of Fig. 6.6 when the key component C3  

is known to succeed 
 
In the “complementary” case, where C3 is known to fail, we are however still left 
with a system that cannot be broken down in a combination of series and parallel 
configurations (see Fig. 6.7).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.8  Configuration of the example of Fig. 6.6 when the key component C3  
is known to fail 

 
We have therefore to use a second time the decomposition principle, choosing this 
time C2 as new key component. 
 
The probability that the system operates knowing that C2 succeed is again given by 
the probability of having a successful parallel configuration C1 and C4, i.e.: 
 
 ( ) 414132 RRRREESP ⋅−+=∩  [6.24] 
 
In the case where C2 equally fails, the system to consider is the one represented in 
Fig. 6.9 (C4 and C5 in series). Its reliability is given by: 
 
 ( ) 5432 RREESP ⋅=∩  [6.25] 
 
Multiplying the three conditional probabilities (Eqs [6.23] to [6.25]) by the 
corresponding probabilities of occurrence of the concerned events allows us to 
calculate the reliability of the whole system. 
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Figure 6.9  Configuration of the example of Fig. 6.6 when the key components  
C2  and C3 are known to fail 

 
The reliability of the complex system selected as example is thus given by: 
 

Rsys = (R1 + R4 – R1⋅R4)⋅R3 + (R1 + R4 – R1⋅R4)⋅R2⋅(1-R3) + R4⋅R5⋅(1-R2)⋅(1-R3) 

 = (R1 + R4 – R1⋅R4)⋅(R3 + R2 - R2⋅R3) + R4⋅R5⋅(1-R2-R3+ R2⋅R3) [6.26] 
 
Minimal cut set method 
 
The incidence matrix for the selected example takes the form: 

 
Table 6.2   Incidence matrix for the example of figure 6.6  
 
Success paths / components C1 C2 C3 C4 C5 

{E1, E2} 1 1 0 0 0 

{E1, E3} 1 0 1 0 0 

{E2, E4} 0 1 0 1 0 

{E3, E4} 0 0 1 1 0 

{E4, E5} 0 0 0 1 1 
 
There are here no minimal cut sets of order 1, one minimal cut sets of order 2, and 
two minimal cut sets of order 3: 
 

- MCS of order 2  → 41 EE ∩  

- MCS of order 3  → 532432 EEEandEEE ∩∩∩∩   
 
Thus, the unreliability of the whole system can be calculated from the expression: 
 

 ( ) ( ) ( ){ }53243241sys EEEEEEEEPR ∩∩∪∩∩∪∩=  [6.27] 
 
which, with the help of the Poincaré’s theorem (see section 2.3), can be transformed 
in an algebraic sum of probabilities of the form:  
 

( ) ( ) ( )kji EP...EPEP ⋅⋅  
 

Replacing each ( )αEP  by (1-Rα) allows us finally to calculate the system reliability.   
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Until now we have considered only the simplest form of redundancy, i.e. the active 
one. It is also possible to introduce alternative forms of redundancy in the RBD 
“toolkit”, such as the redundancy known as k-out-of-n redundancy for example. A k-
out-of-n configuration is a special form of parallel redundancy; it requires that at 
least k out of the n possible parallel paths leading to a given node (see Fig. 6.10) 
must function for the system to operate.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.10  “k-out-of-n” configuration 

  
For example, suppose that a hydropower plant is equipped with six turbines and that 
at least five of them are required to function for the plant to remain operational. 
This means that the turbines are reliability-wise in a k-out-of-n configuration where 
k=5 and n=6.   
 
This particular example is a good illustration of the fact that although a k-out-of-n 
configuration is in principle classified as a special case of parallel redundancy, the 
system behavior tends towards that of a series system when the number of units 
required to keep the system operating approaches the total number of units in the 
system (see Fig. 6.11, calculated from Eq. [6.28] with R = 0.85).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.11  Reliability vs. k (k-out-of-n, for n=6) 
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The simplest case of a k-out-of-n configuration is when the components are independent and 
identical. In such a case, the reliability of the system can be evaluated using the binomial 
distribution (see section 2.1): 
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where R(t) is the reliability of each unit. Assuming moreover that R(t) = exp(-λt), with λ  
constant, we can write:   
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The integrals Ir can be calculated using integration by parts; it comes out that a recurrence 
relationship exists between Ir and Ir+1 - of the form Ir = {(r+1)/r}⋅Ir+1 - and that In = 1/(nλ). 
From this, we deduce that: 
 

 ∑
= λ⋅

=
n

kr
k/n r

1MTTF  [6.30] 

 
Another type of redundancy is the so-called passive redundancy. It defines a class of systems 
that are load-sharing or sequential in operations in such a way that only one unit of the system 
is in operation at a time. Other units are on stand-by, ready to take the load at their turn should 
a previously operating unit fail. In order to minimize the complexity of the equations, we will 
assume that a unit on stand-by never fails and, furthermore, that the switching from one unit 
to another one is instantaneous and not subject to failure. Such system can be depicted as in 
Fig. 6.12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.12  Passive redundancy configuration 
 
The probability density function of such a system can be written: 
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where the fi are the probability density functions of the different units i.  
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The reliability of the whole system is, by virtue of Eq. [3.4], given by: 
 

 ( ) 'd'f1)(R
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Tsys ttt
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The Laplace transform of the convolution integral on the right-hand side of Eq. 
[6.32] is (see Appendix 3.1): 
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When all the λis are constant, we have (see Table [3.1]): 
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If moreover the λis are all different, taking the inverse transform of the expression on 
the right-hand side of Eq. [6.34] leads to: 
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Thus, finally: 
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If, on the contrary, all the λis take the same constant value λ, Eq.[6.34] becomes: 
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fT(t) is in this case an Erlang distribution: 
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From Eq.[6.32], and after successive integrations by parts, it comes: 
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The MTTF is here given by (see Eq.[3.14] and Appendix 3.1): 
 

 ( )∫
∞

=⋅=
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Therefore, for constant and equal λis (from Eq. [6.37]): 
 

 MTTF = 
λ
n  [6.41] 

S → 0 S → 0 
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Because of the underlying assumption regarding the independence of the 
components, the SPA/RBD approach can only be applied under quite restrictive 
conditions to the evaluation of the availability of repairable systems, in particular: 
 

-  there should be no repeated components in the reliability block diagram; 
-  component repairs should be conducted in a totally independent way (therefore, in 

principle, by different repairmen); 
- there should be only active redundancies in the system (passive redundancies 

imply a direct link between the operating times of the different components).        
 
Series configurations 
 
The availability As(t) of a series system is simply equal to the product of the 
availability ai(t) of its components at the time t: 
 

 ( ) ( )∏
=

=
n

i
i tt

1
s aA  [6.42] 

If the failure and reparation rates are constant and, moreover A(0) = 1, we have from 
Eq. [3.28]:   
 

 ( )∏
=

⋅µ+λ
⎥
⎦

⎤
⎢
⎣

⎡
⋅

µ+λ
λ

+
µ+λ

µ
=

n

i

t

ii

i

ii

i iit
1

-
s e)(A  [6.43] 

 

The asymptotic value of the availability takes thus the form: 
 

 ( ) ∏
= µ+λ

µ
==∞

n

i ii

it
1

ss Alim)(A  [6.44] 

 
In the usual situation where λi/µi <<1, the asymptotic unavailability becomes:  
 

 ( ) ∑
= µ

λ
=∞=∞

n

i i

i

1
ss )(A-1A  [6.45] 

Parallel configurations 
 

The unavailability ( )tpA  of a parallel system is equal to the product of the unavaila-
bility ( )tia  of its components at the time t, therefore: 
 

 ( ) ( ) ( ) ( )( )∏ ∏
= =

−=⇒=
n

i

n

i
tttt

1 1
ipip a-11AaA  [6.46] 

 

If the failure and reparation rates are constant and, moreover A(0) = 1, it comes:   
 

 ( )[ ]∏
=

⋅µ+λ⋅
µ+λ

λ
−=

n

i

t

ii

i iit
1

-
p e-11)(A  [6.47] 

 
The asymptotic unreliability is thus here given by: 
 

 ( ) ∏∏
== µ

λ
≈

µ+λ
λ

=∞=∞
n

i i

i
n

i ii

i

11
pp )(A-1A  [6.48]  

 
As with any approach or methodology, reliability block diagrams have their advan-
tages as well as disadvantages compared to competing methods. The main advantage 
of the SPA/RBD method is rooted in the fact that it is easy to implement and remains 
close to the real configuration of the analyzed system. Because of the limitations in 
the practical use of SPA/RBD, essentially due to the hypothesis of independency of 
the events, methods such as the Failure Modes and Effects Analysis or the Fault Tree 
Analysis are however today generally preferred to the former.   

Application to 
repairable systems 

t → ∞ 

Strengths and 
limitations of SPA/RBD 
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6.3 Fault Tree Analysis (FTA)  

 
Fault Tree Analysis is a deductive, top-down logical and structured process to 
systematic failure analysis. FTA provides a graphic “model” of the pathways within 
a system that can lead to a foreseeable undesirable damaging event. It helps 
identifying potential causes of system failures before the failures actually occur. FTA 
is acknowledged as one of the best and most popular techniques in complex system 
design, development, and operation for systematically identifying and graphically 
displaying the many ways something can go wrong. 
 
The FTA method was originally developed in the U.S.A. at Bell Telephone 
Laboratories in 1962 to evaluate and improve the reliability of the “Minuteman” 
missile launch control system. It has since this time largely been used for reliability 
and/or safety studies in the aerospace, nuclear (in particular, in the beginning of the 
1970s, for the Probabilistic Safety Assessment, or PSA, of light water nuclear 
reactors described in the “Rasmussen Report”, WASH-1400), automotive and 
weapons industries. 
 
Fault Tree Analysis is best applied when: 
 

• there are concerns regarding human safety, or perceived threats of important 
material losses, i.e. high risks;  

• the system in question is complex and made of multiple elements; 
• there are numerous potential contributors to a mishap and the causes of this one 

are not directly discernible. 
 
This powerful technique has long been a staple of safety engineering and the safety 
profession and is often used as a design tool, which can help ensure that product 
performance safety objectives are met. Fault trees are particularly adept at 
representing and analyzing redundancy arrangements. In addition common cause 
events are easily handled in this type of approach (a common cause is an event or a 
phenomenon which, if it happens, will induce the concomitant failure of two or more 
other system elements).   
  
FTA is a deductive analysis process that begins with the consideration of a critical 
undesirable event. This undesirable event at the system level is referred to as the top 
event. It generally represents a system failure mode or hazard for which the 
occurrence probability is not directly available, but required. The principle is that if 
there is such a critical failure mode, then all possible ways that mode could occur 
must be discovered and analyzed in a systematic way. 
 
Top events represent potential high-penalty losses. Top events must not be too broad 
in scope; narrowing the scope reduces the effort spent in the analysis by confining it 
to relevant considerations. Typical top events might be: 
 

• loss of power supply; 
• loss of compressed air supply; 
• loss of minimum flow to heat exchanger; 
• reactor loss of coolant; 
• tank rupture; 
• uncommanded ignition; 
• circuit breaker does not open; 
• fire, explosion, etc. 
 
The identification of relevant top events, as well as the further fault tree construction 
and structuring (see below), can often greatly profit from prior Preliminary Hazard, 
Failure Mode and Effect, or Reliability Block Diagram analyses. 

General presentation  
of the method 

Fault tree construction 
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Based on a set of rules and logic symbols from probability theory and Boolean 
algebra, FTA then uses a top-down approach to generate a logic and graphical 
model that provides for both a qualitative description of the failure paths 
(combinations of equipment failures, dependent failures and human failures) and a 
quantitative evaluation of the top event occurrence probability. The approach 
consists in defining successive levels of subordinate failure events (intermediate 
events), each level going a step deeper in the explanation of the possible causes of 
the failures identified at the preceding level. The intermediate events at a given 
level are linked to the events at the immediately superior level by logical connective 
functions. This let us construct in a very systematic way a complete tree structure 
representing the various possible failure paths leading to the occurrence of the top 
event. When a contributing failure event does not need to be divided further, 
because its failure rate is known or readily available, or it is decided to limit further 
analysis of a subsystem for practical reasons, the corresponding branch of the tree 
structure is terminated with a basic event.   
 
The basic event for a branch is termed a primary fault event if the corresponding 
subsystem failed because of a basic “internal” mode such as a structural fault for 
example. The basic event is considered to be a primary one if the failed subsystem 
has not been exposed to environmental or service stresses exceeding its design limits 
(e.g. leakage of a valve seal within its pressure rating). 
 
 If the subsystem is out of tolerance so that it fails because of operational, or 
environmental stresses exceeding its intended ratings, placed on it, the basic event is 
said to be a secondary fault event. It is in particular the case every time the failed 
element has been improperly designed, or selected, or installed, or calibrated for the 
application.  
 
The standard logic symbols used in the construction of the fault tree are described 
below. Note that events and gates are not component parts of the system being 
analyzed, but symbols representing the logic of the analysis. 

 
Table 6.3 Logical symbols most commonly used in the graphical representation 

of fault trees 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Event Symbols

Rectangle

Diamond

Circle

House

Event Symbols

Rectangle

Diamond

Circle

House

Top event : foreseeable, undesirable event, for 
which the occurrence probability is not directly 
available
Intermediate event : describe a system state produ-
ced by “lower level” fault events

Basic “terminal” event : the basic event (assumed 
to be independent) marks the limit of resolution of 
the analysis 

Fault event not fully developed as its causes : it is 
only an assumed basic event

Event normally occurring in the operation of the 
system : it is not a fault event

Event Symbols
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House

Event Symbols
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House
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which the occurrence probability is not directly 
available
Intermediate event : describe a system state produ-
ced by “lower level” fault events

Basic “terminal” event : the basic event (assumed 
to be independent) marks the limit of resolution of 
the analysis 

Fault event not fully developed as its causes : it is 
only an assumed basic event

Event normally occurring in the operation of the 
system : it is not a fault event



  P.-A. Haldi: Reliability & Safety Analysis 
 
110 

 
Table 6.3 Logical symbols most commonly used in the graphical representation 

of fault trees (cont’d.) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Actual construction of fault trees (see summary in Fig. 6.13) requires thorough 
knowledge of how the system works and of the logic relationships in the system 
(interlocks, control interfaces, power supply feeds …). Fault tree construction 
remains however an art as well as a science and comes only through experience. It is 
nevertheless possible to give some conventions and rules that prove helpful in this 
construction process (adapted from [Lambert, 1973] and [McCormick, 1981])::   
 

• Specify in the description of the top event the specific mission phase or portion of 
the mission to which it applies; this often helps to generate a very concise fault 
tree. Do not consider top events too broad in scope (see p. 108). 

• At each level of the tree, the input events to a gate must be “immediate, necessary 
and sufficient” (INS) contributors to the output (upper level) event.  

• Throughout the fault tree construction, systematically apply a consistent 
nomenclature to events. This is critical to identifying the same event in multiple 
fault tree branches. If, for example, a given event is named differently in another 
branch of the fault tree, cutset analysis (see below) identifies multiple events 
leading to different failures, rather than the same event leading to different 
failures. Such a nomenclature error can hide the fact that the event in question is a 
major contributor to the top event and thereby improvements or controls for it will 
fail to be recommended by the analyst.  

Logical Gate Symbols

AND
gate

E1

E2

En

S

S

E1

E2

En

OR
gate

Subtree Symbols

E

INHIBIT
gateX

α

α

Triangle-in

Triangle-out

Logical Gate Symbols

AND
gate

E1

E2

En

S

The output event occurs if and only if all the inputs 
occur (Boolean intersection operation “∩” of the 
input events); all inputs, individually, must be 
necessary and sufficient to cause the input event

S

E1

E2

En

OR
gate

Subtree Symbols

E

INHIBIT
gateX

αα

αα

Triangle-in

Triangle-out

The output event occurs if one or more of the inputs 
occur (Boolean union operation “∪” of the input 
events); any input, individually, must be necessary 
and sufficient to cause the input event

Output exists when the input event E exists and the 
condition X is satisfied; this gate functions  
somewhat like an AND gate and is used for a 
secondary fault event E

Triangle symbols provide a way to avoid repeating 
sections of a fault tree, or to transfer a subtree 
construction from one sheet to the next; the triangle-
in appears at the bottom of a tree structure and 
represents that branch (subtree) of the tree (in the 
example: “α”) shown someplace else

Triangle-out appears at the top of a subtree and 
denotes that the corresponding tree structure (“α” in 
the example) is a subtree of a tree shown someplace 
else  
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represents that branch (subtree) of the tree (in the 
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denotes that the corresponding tree structure (“α” in 
the example) is a subtree of a tree shown someplace 
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Similarly, when two identical components are installed in different locations 
within a system, they must be identified as physically different components by 
using distinct designators in the nomenclature. Otherwise, cutset analysis identifies 
how the same component-type failure contributes to several scenarios when the 
failures are actually caused by different components. 

• Test the type of the fault event. If it is a “state-of-component” statement, always 
use an OR gate. If it is a “state-of-system” statement, either AND, OR or INHIBIT 
gates may be used.  

• Do not let gates feed gates (no “gate-to-gate” relationships), i.e., put an event 
statement between any two gates. 

• Complete the gates first, i.e. identify all the input events of a logical gate before to 
start the detailed analysis of one of them. 

• Consider that “causes are always anterior to consequences”, this allows to 
eliminate certain causes and branches in order to eliminate from the tree any so-
called “looped-systems”.  

• Do not expect miracles to “save” the system”. Those things that would normally 
occur as the result of a fault will happen, and only those things! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.13  Step-by-step fault tree construction 

 
At a given level, under a given gate, each fault event must be independent of all 
others. However, the same fault event may appear at other points on the tree. 
 
Once all failures, events, and conditions that can lead to the occurrence of the top 
event have been properly identified, the resulting fault tree can be “translated” into a 
Boolean algebraic expression. For each gate, the input events (intermediate or basic) 
are the independent variables, and the output event (intermediate or top) is the 
dependent variable. Using the rules of Boolean algebra (see section 2.3), these 
equations can then be solved so that the top event is expressed in terms of minimal 
cut sets (see p. 100) that involve only basic events.  

Fault tree evaluation 

1 

2 

3 

4 

5 

6 

Identify undesirable top event 

Identify first-level 
INS contributors 

Link contributors to top 
event  by logic gates 

Basic events (limit of 
analytical resolution) 

Identify second-level 
INS contributors 

Link second-level contributors to 
first-level events  by logic gates 

Repeat/continue 
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A cut set is any group of basic events that, if all occur, will cause the top event to 
occur. A minimal cut set is a least group of basic events that, if all occur, will cause 
the top event to occur. A cutset can be a single-point failure or event, or can be a set 
of many events. Different cutsets can include different combinations of the same 
event. In large trees, the events that cause the top event to occur are often buried 
deep within the system and are not easily discovered without performing a cutset 
analysis. Generally (but not necessarily), the cutsets that have the highest probability 
of occurrence are the ones that are made of the fewest number of events. 
 
The traditional cut set analysis process is to obtain a reduced expression made of the 
logical union of groups of events linked by AND logical connectors. By definition, 
these groups are the minimal cutsets looked for (because the simultaneous realization 
of each of the events of anyone of these group is a necessary and sufficient condition 
to cause the top event to occur). 
 
Example (from [Villemeur, 1988]): find the minimal cut sets of the fault tree shown 
on the left part of figure 6.14 and represent it in its reduced form.  
 
The Boolean expression of the top event in the original fault tree takes the form: 
 

T = E1 ∩ E2 = (A ∪ E3) ∩ (C ∪ E4) = (A ∪ B ∪ C) ∩ {C ∪ (A ∩ B)} 
 
This expression can be simplified using the rules of the Boolean Algebra to give:
  
 T = (A ∪ B ∪ C) ∩ {C ∪ (A ∩ B)}   
 = (A ∩ C) ∪ (B ∩ C) ∪ C ∪ (A ∩ B) ∪ (A ∩ B) ∪ (A ∩ B ∩ C)   
 
 

 = C ∩ {Ω ∪ A ∪ B ∪ (A ∩ B)} ∪ (A ∩ B)  = C ∪ (A ∩ B)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.14  Example of fault tree reduction process 
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≡
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There are thus two minimal cutsets in this example: C (order 1) and A ∩ B (order 2). 
This means that the original fault tree can be reduced to the much simpler tree 
structure given in the right part of figure 6.14. 
 
There is a more “mechanical” way to find the minimal cutsets, one that does not 
make explicit reference to the rules of Boolean Algebra [Clemens, 2002]. This 
process is explained step-by-step below, with the case study of figure 6.14 as 
practical application. 
 

1. Ignore all tree elements except the gates and the basic events. 
2. Proceeding stepwise from top event downward, construct a matrix using the 

gates and basic events names. The name of the top event gate becomes the initial 
matrix entry. 

 
 
 
 
 
 
 

3. As the construction progresses: 
• replace the name of each AND gate by the name of all gates/basic events that 

are its inputs; display these horizontally, in matrix row; 
• replace the name of each OR gate by the names of all gates/basic events that 

are its inputs; display these vertically, in matrix column; each newly formed 
OR gate replacement row must also contain all other entries already found in 
the original parent row; 
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4. A final matrix results, containing only names representing the basic events. Each 

row of this matrix is a Boolean indicated cut set. By inspection, then: 
a) eliminate redundant elements within rows; 
b) eliminate rows that duplicate other rows 
c) eliminate any row that contains all elements already found in a lesser 

(inferior cut set order) row. 
The rows that remain correspond to the minimal cut sets.   

 
 
 
 
 
 
 
 
 
 
 
 
The minimal cutset information obtained during qualitative analysis, together with 
information about the probability of occurrence of the basic events, can finally be 
used during quantitative analysis for computing the unavailability or unreliability 
values of the system.  
 
Assuming that the probability of occurrence of the events A, B, C in the above 
example are respectively: 0.01, 0.02 and 0.0001, the probability of occurrence of the 
top event T becomes:  
 

P[T] = 0.0001 + (0.01*0.02) – [0.0001*(0.01*0.02)] ≅ 0.0003 
 
More generally, if we note MCSi (1 ≤ i ≤ m) the different minimal cut sets of the 
analyzed system, the probability of occurrence of the top event (T) is by definition 
given by: 
 

 P(T) = P(MCS1 ∪ MCS2 ∪ . . .  ∪ MCSm) [6.49] 
 
Using Poincaré’s theorem (Eq. [2.79]), this expression becomes: 
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In practice, because the failure probabilities, and thus the minimal cut set proba-
bilities, are normally (very) small, it is generally suitable to approximate P(T)  by the 
first term of the right-hand side of Eq. [6.50] only: 
 

 P(T) ≅ ( )∑
=

m

i
i

1

MCSP  [6.51] 

We know moreover that the following inequality is verified in this case and gives the 
bounds of the error margin on the above result: 
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Quantitative analysis 
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The evaluation of the probability of each minimal cutest depends on the 
characteristics of the basic events. Generally, the probabilities of these events corres-
pond to unavailabilities of components ( ( )tlA  = 1 – Al(t)). It is moreover in 
principle assumed that the basic events intervening in a given minimal cut set are 
independent. In these conditions: 
 

 P(MCSi) = ( ) ( )∏
=

=∩∩∩
i

i

m

l

i
l

i
m

ii t
1

21 AA...AAP  [6.53] 

 
The calculation of the unavailability of irreparable as well as repairable components 
has been tackled in section 3.2.   
 
Contrary to the assumption made above, within industrial systems it is often the case 
that the failure of one component directly affects the operation of other components. 
Oversight of such common cause failures is a frequently found fault tree flaw. It 
should be noted however that it is not always straightforward to identify dependent 
failure events. This leads to major uncertainties in qualitative fault tree analysis, 
which of course also affect quantitative evaluations; generally, there is a lack of data 
of sufficiently good quality.   
 
Generally speaking, dependent failures can have various causes: 
 

• Common cause initiating events: supply outages (electricity, steam, cooling water, 
pneumatic pressure), natural disastrous events (fire, flood, earthquake), man-made 
disruptive events (explosion, electromagnetic disturbance). 

• Intersystem or intercomponent dependencies: failure of a system/component that 
induces failure of another system/component. 

• Functional dependencies: dependencies due to process coupling, either direct 
(output of one device constitutes an input to another), or indirect (functional 
requirements of one device on the state of another). 

• Shared-equipment dependencies: common components or supply for several 
subsystems. 

• Physical interactions: common causes of failures that are not events but e.g. 
unfavorable environmental conditions (freezing, overheat, humidity). 

• Human-interaction dependencies: anthropogenic actions or behavior that happen 
during maintenance/operation. 

 
Ignoring such dependencies can lead to highly optimistic results in safety analysis. 
 
Example: the probability of simultaneous failures of two independent components A 
and B, each having a failure probability of 10-3, is: 
 

P(A ∩ B) = 10-3⋅10-3 = 10-6 
 
But if the failure of B is forced by the failure of A (100% dependency), then this 
probability rises to: 
 

P(A ∩ B) = P(A)⋅P(B|A) = 10-3⋅1 = 10-3 
 
One way of tackling the common cause failure problem is to use the so-called 
implicit β-Factor Model. The β-factor is defined as follows: 
 

 
t

n

n

n

Q
Q

QQ
Q

failures ofnumber  Total
failuresdependent  ofNumber 

1
=

+
==β  [6.54] 

 
where Q1 represents the probability of independent failure of a component i, and Qn 
represents the probability that n components failed coincidentally.  

Common cause failures 
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If β=0, the events are totally independent; if β=1, they are fully dependent. 
 
From equation [6.54]. we deduce that: 
 
 Qn = β⋅Qt = Qt – Q1  ⇒  Q1 = (1-β)⋅Qt [6.55] 
 
Example: consider the case of a system made of two identical pumps (#1 and #2) 
having a total failure probability per pump Qt = Q1 + Qn = 0.01. If during a given 
time interval 96 independent failures and 4 dependent failures have been observed, 
then: 
 

β = 04.0
496

4
=

+
 

 
The system failure probability is given by: 
 

 sysR  = P(independent failures of the two pumps) + P(dependent failures) 

 = (Q1)2 + Qn=2 = [(1-β)⋅Qt]2 + β⋅Qt = 9.216 10-5 + 4 10-4 ≅ 5 10-5 
 
The exclusive use of such implicit models is however not recommended. It can result 
in a poorly detailed fault tree analysis of a technical system. The implicit approach 
should not be considered as a substitute of a detailed and explicit modeling of the 
dependencies when feasible. 
 
Let us see on an example how such an explicit modeling of the dependencies within 
a system can be carried out. The example is that of a detector/alarm system intended 
to prevent hostile intrusion in a nuclear power plant. To this end, four wholly 
independent alarm systems are provided to detect and alarm about intrusion. A first 
analysis of the possible causes of the top event would thus lead to the following 
simple fault tree (Fig. 6.15). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.15  Initial fault tree for an intrusion detector/alarm system 
 (from [Clemens, 2002])  

 
As no two of the alarm systems share a common operating principle, redundancy 
appears at first sight to be absolute and the single AND gate to the top event seems 
appropriate. 
 
But let us suppose now that these four alarm systems share a single source of power, 
with some emergency backup power system ready to take over should the former 
fails. 

Hostile 
intrusion

Alarm systems

Micro-
wave

Electro-
optical

Seismic 
footfall

Acoustic

Hostile 
intrusion

Alarm systems

Micro-
wave

Electro-
optical

Seismic 
footfall

Acoustic



6. Quantitative Systems Risk Analysis Methods  117  
   

 

 
Because failures of both power sources are events that will disable all four alarm 
systems, they should not be considered as independent INS contributors to each of 
the four (provisory) basic events considered in figure 6.15.Power failure should 
rather be recognized as a new potential INS contributor to the considered top event, 
at the same level (and not at a lower level) as the primary failures of the four alarm 
systems, as shown in figure 6.16.   
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.16  Intrusion detector/alarm system fault tree with  the common cause 
event “power failure” accounted for 

 (from [Clemens, 2002]) 
 
The search for common cause failures should be conducted systematically in the 
framework of a FTA and such failures as far as possible explicitly accounted for in 
the fault tree structure. 
 
As an example of practical application of the Fault Tree Analysis, we will consider 
the case of the reliability analysis of transmission line protective systems [Schweitzer 
and Anderson, 1998]. Transmission line protective systems can be very complex, 
incorporating many different equipment groups, often at widely separated places and 
often requiring high-speed communications for proper operation. 
 
Figure 6.17 shows a transmission line corresponding to a POTT (Permissive Over-
reaching Transfer Trip) scheme. This transmission line is equipped with a single 
circuit breaker and redundant relays at each end. The relays communicate through 
tone equipment and analog microwave gear. The protection subsystems operate from 
125Vdc batteries, whereas the communication subsystems operate from 48Vdc 
batteries.   
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Figure 6.17  POTT scheme with redundant relays and single channel microwave 
 (from [Schweitzer and Andersons, 1998]) 

 
To construct a fault tree for this system, the first step is to choose a top event of 
interest. Let us take here as top event: “Protection fails to clear in-section fault in the 
prescribed time”. 
 
Proceeding level-by-level, we then identify on the basis of he above scheme all the 
events that may directly or indirectly contribute to the occurrence of this undesirable 
top event and link them with appropriate logical connectors (gates). The resulting 
tree is given in figure 6.18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 6.18   Fault Tree for the POTT scheme represented 
 in Fig. 6.17 (from [Schweitzer and Andersons, 1998]) 
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In the above fault tree construction, it has been assumed that the failures of the 
primary and back-up relays are independent (a failure in one relay does not affect the 
other relay). On the other hand, other possible common cause failures (e.g common 
DC supplies) have been explicitly accounted for under the G-11 gate.    
 
The devices unavailability data required to carry out the quantitative analysis of the 
investigated system are given in italic in figure 6.18, under the corresponding basic 
event symbols. Note that it is not very useful in this particular example to search 
beforehand for the minimal cutsets, because the resulting “reduced” tree would here 
not be really simpler that the original fault tree. Because the device unavailabilities 
are small, the global unavailability of the considered protection system can easily be 
calculated manually using the rare event approximation (i.e. calculating the 
unavailability associated with the output of an OR gate as simply the sum of the 
unavailability for each input of this gate). The unavailability of this protection 
system to clear transmission line faults is thus 1.62 10-3. The reader can easily verify 
that the fact that the system has redundant relays indeed reduces its unavailability by 
over 20% compared to a system with a single relay (1.62 10-3, instead of 2.02 10-3).   
 
For systems that are more complex than the above example, computer programs are 
available to assist in developing and analyzing fault trees. 
 
Generally speaking, the main results produced by a Fault Tree Analysis are the 
following: 
 

• graphic display of chains of events/conditions leading to the undesirable event(s); 
• improved understanding of the system and of the system behavior;  
• identification of those potential contributors to failures that are critical; the corres-

ponding components may need testing or more rigorous quality assurance; 
• identification of the root causes of equipment failures; 
• qualitative/quantitative insight into probability of the undesirable event selected for 

the analysis; 
• identification of resources committed to preventing failure; this can provide 

guidance for redeploying resources to optimize control of risk. 
 

These and other pertinent information should be thoroughly documented in the FTA 
final report. This one should typically include the following headings: 
 

• Executive summary: an abstract of the content of the complete report. 
• Scope of the analysis (say what is analyzed and what is not analyzed): a brief 

description of the system, as well as of the system and analysis boundaries 
(physical boundaries, operational boundaries, operational phases, interfaces 
treated, resolution limit, exposure interval, etc.). 

• The analysis (show trees as figures, include data sources, cut sets, etc. as tables): 
discussion of method and software used, sources of probability data, common 
cause search, sensitivity test(s), cutsets and minimal cutsets. 

• Findings: occurrence probability, reliability or availability of the top event, 
comments on system vulnerability, candidate reduction measures and/or actions. 

• Conclusions and recommendations: risk comparisons; is further analysis needed? 
by what method? 

 
FTAs greatly help identifying possible system reliability or safety problems at design 
time, or assessing system reliability or safety during operation. FTAs identify the 
causes of single point failures. FTAs can be used in diagnostic work for a system 
failure. FTAs complement FMEAs keying in on the worst identified failure modes. 
The limitations of FTA are related to the fact that undesirable events must be 
foreseen and are only analyzed singly, that each fault/failure must be constrained to 
two conditional modes only when modeled in the tree, and finally that there is a risk 
of overlooking common causes.  
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6.4 Event Tree Analysis (ETA)  
 
ETA is an inductive, of forward logic, technique that is meant to trace the 
development or escalation of a potentially hazardous accident, failure or other 
unwanted event (initiating event) and assess its foreseeable consequences. Such 
events disrupt normal system operation or condition. The method is based on a 
graphical representation that provides a convenient way to systematically explore all 
the sequences of subsequent events (generic events) resulting from the success or 
failure of controlling or mitigating systems and procedures. These include both 
specific accident mitigating and normal operating actions; they can be either system 
actions or operator actions. ETA is very useful to identify possible accident 
scenarios.  
 
As the graphical representation develops by taking into account successive generic 
events, the ETA picture fans out like the branches of a tree. Generally, different 
event trees (corresponding to different initiating events) must be constructed and 
evaluated in the framework of the risk analysis of a given system Event trees are 
similar to fault trees but difference is that they are used to examine the possible 
consequences of the initiating events and not the causes of a top event. For this 
reason, Event Tree Analysis is also sometimes referred to as Consequence Analysis. 
It is moreover nothing but an adaptation of the more general Decision Tree Method 
that is widely used in business and economic analyzes.  
 
The ETA methodology has changed very little since the conception of the technique 
back in the 1960’s when it was successfully used in the WASH 1400 study [WASH 
1400, 1975]. It has since then been used in risk analyses of a wide range of 
technological systems and is now a natural part of most probabilistic risk assessment 
studies.  
 
The ETA approach can be used in the detailed design phase of a proposed system or 
plant, during its operational phases or prior to decommissioning.  It is often used to 
evaluate the effectiveness of safeguards to prevent a failure from becoming an 
undesired event and to allow decisions on the necessity for existing or additional 
safeguards. A risk analyst may apply this technique in particular when a structure can 
partially fail and function (although at a reduced level) at the same time. Example: a 
pumping-engine with two pumps can still produce flow when one of the pumps does 
not work. However, it does not produce to its rated capacity. It fails, but remains at 
least partially operating. The risk analyst cannot use fault tree analysis in this 
situation, since FTA only considers total failure of a structure.  
 
ETA is applicable to systems in which all components are continuously operating, or 
to systems in which some or all of the components are in standby mode – those that 
involve sequential operational logic and switching. In the case of continuously 
operated systems, the events to consider can occur (i.e., components success or 
failure) in any arbitrary order. In the event tree analysis, such components can be 
introduced in any order since they do not operate chronologically with respect to 
each other. 
 
A general block diagram of the different steps to be followed in constructing an 
event tree is given in figure 6.19. 

 
An Event Tree Analysis starts by identifying possible initiating events, i.e. events 
that may give rise to unwanted damaging consequences. The identification of the 
initiating events can be based on experience, on a technical or scientific preliminary 
analysis of the system under scrutiny, or on the construction of a fault tree having as 
top event some general undesirable event considered at the level of the whole system.   

General presentation  
of the method 

Event tree construction 

Sequences

Generic events

C
on

se
qu

en
ce

s

Initiating
event

success

failure

Sequences

Generic events

C
on

se
qu

en
ce

s

Initiating
event

success

failure



6. Quantitative Systems Risk Analysis Methods  121  
   

 

 
Initiating events are “anticipated”. They are events that designers have put in 
physical barriers, systems, procedures alarms, etc., which are meant to respond to the 
upset, to terminate the sequence or to mitigate the consequences of the accident. 
 
To be of interest for further analysis, an initiating event must give rise to a number of 
consequence sequences. If the initiating event induces only one consequence 
sequence, FTA is “a priori” a more suitable technique to analyze the problem. 
 
The selection of relevant initiating events is very important for the analysis, but this 
can be done in different ways; various analysts may define slightly different initiating 
events.   
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.19  Step-by-step process for constructing  an event tree  

 (from [Erdmann, 1979]) 
 

After an initiating event has been selected, all the safety subsystems/functions 
(specific safeguard systems or conditions) that can possibly intervene following the 
occurrence of the selected initiating event and prevent an undesirable outcome must 
in their turn be identified.  
 
The safety subsystems/functions that respond to a given initiating event may be 
thought of as the system’s defense against the potential unacceptable consequences 
of the initiating event. These safety subsystems/functions can be classified in various 
specific categories. 
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These categories may for example be [Rausand, 1999]: 
 

• Safety systems that automatically respond to the initiating event (e.g. automatic 
shutdown systems). 

• Alarms that alert the operator(s) when the initiating event occurs (e.g. fire alarm 
systems). 

• Operator procedures following an alarm. 
• Barriers or containment methods that are intended to limit the effects of he 

initiating event.   
 

The fate (success or failure, which could be total or partial see below) of these 
subsystems/functions is then examined to determine the sequences of generic events 
that can lead to unacceptable consequences. 
 
The diagram is usually drawn from left to right, starting from the initiating event (see 
Fig. 6.20). The branch points in the event tree are called nodes, and are formulated 
either as an event description or as a question regarding actions that may be taken. 
The development is continued to the resulting consequences. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fire in the storehouse may cause the explosion of fuel containers.  For the time gap 
until the fire brigade arrives, the containers must be cooled down; this is normally 
achieve by a sprinkler system. Alarm is triggered automatically to alert the fire 
brigade. 

 
Figure 6.20  A simple example of event tree for a fire in a  

fuel containers storehouse  
 
Usually, only a two-state modeling (binary branching logic: complete success or 
complete failure, “yes” or “no”, “go” or “no go”) is considered. In some cases, it 
could be necessary to introduce a greater number of discrete states (e.g. partial 
failure states); a separate branch must then be included for each additional state.  
  
The last step in the qualitative part of the ETA is to describe the different event 
sequences arising from the initiating event. One or more of the sequences may 
represent a safe recovery or an orderly shutdown of the system (see Fig. 6.20). 
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From a safety viewpoint, the sequences of importance are however those that result 
in accidents. When these have been defined, the analyst may rank them according to 
their criticality. This information, together with the structure of the diagram clearly 
showing the progression of the accident, helps specifying where additional 
procedures or safety systems will be most effective in protecting against 
unacceptable consequences.   
 
It could prove beneficial in some cases to split the outcomes (end consequences) of 
the event tree into various consequence categories as illustrated in figure 6.21. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.21 Split presentation of the event tree outcomes (probability distribution 

over the subcategories) [Rausand, 1999] 
 

The tree evaluation has normally for final goal the quantification of the sequences in 
order to be able to predict the frequency, or probability of occurrence, of each of the 
resulting consequences (or at least of those leading to undesirable consequences). 
 

Prior to this operation, the initial (basic) tree must be reduced to its most elementary 
form. The reduction process in fact already takes place throughout the construction 
phase of the event tree. Two factors assist in simplifying the tree structure: timing, 
and functional interactions. Taking the time into account allows considering only one 
well-defined arrangement of the generic events, which greatly reduces the number of 
sequences. For example, there are 24 = 16 sequences to study for a well-ordered 
binary tree of 4 generic events, but 4! times more, i.e. 384 sequences, if the generic 
events can “a priori” be arranged in every possible orders (see Fig. 6.22).   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.22 Event tree reduction by ordered timing of generic events 
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The functional dependencies between events allow to “prune” an event tree by 
eliminating the branches that have a zero conditional probability. This has been done 
in the example of figure 6.20; if the alarm does not sound, coming after either a 
success or a failure of the sprinkler system, the consideration of a possible success of 
the following event “fire brigade” becomes pointless.                 
 

When the branch point (generic) events are independent of each other, quantification 
of the diagram is trivial and is simply achieved by calculating the product of the 
frequency of the initiating event with the probabilities of passing along each branch 
leading to a given outcome consequence (see example in Fig. 6.23).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.23 Quantification of the sequences of Fig. 6.20 assuming a total 
independency of the generic events 

 
In principle, however, the subsystem states on a given branch of the event tree are 
conditional on the previous states having already occurred (dependencies between 
the branch events). For example, in figure 6.23, the success or failure of the generic 
event “fire brigade” must be defined under the condition that the preceding events     
- “alarming”,  “sprinkler” and, of course, the initiating event I itself - had previously 
occurred (conditional probability, which in this particular case leads to a zero 
success probability should the alarm subsystem have previously failed). In the 
general case, we have therefore for a given sequence of genetic events {E1 , E2 , … 
En}: 
 
 P(event sequence) = P(E1 | I)⋅P(E2 | E1, I)⋅ … P(En | En-1 … E1, I) [6.56] 
 
The quantification of the probability of passing along different branch points of an 
event tree becomes more complex in the non-trivial situations when there are 
dependencies between the subsystems. The quantification is then performed by 
quantifying fault trees whose top events are defined as combination (through an 
AND gate) of occurrence and non-occurrence of the branch point events that have in 
turn been developed as fault tree structures. 
 

To illustrate this use of fault trees in the event tree approach, we will consider the 
simple example given in figure 6.24. The failure mechanisms of the subsystems SS1 
and SS2 are shown in figures 6.25a and 6.25b respectively. 
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 Ei: “failure of subsystem SSi” event 

 Ei: “success of subsystem SSi” event 
 

Figure 6.24  Simple event tree example (from [Andrews & Dunnett, 2000] ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.25  Subsystems SS1 (a) and SS2 (b) fault tress (see Fig. 6.24)  

(from [Andrews & Dunnett, 2000] ) 
 

The basic events “A” and “D” occur in both subsystem fault trees; the subsystem 
failure events are thus not totally independent. Taking into account this “weak” 
dependency on some common basic events, the four possible outcomes 
corresponding to the sequences (1) to (4) described in figure 6.24 are represented by 
the fault tree structures given in figure 6.26. In trees (1) to (3), a new gate, the “NOT 
gate”, has been introduced, which symbol is: 

 
 
 
 
 
 
 

As it name implies, the  “NOT gate” is used to indicate that the output occurs when 
the input event does not occur.   
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Figure 6.26  Fault trees representing the different outcomes described in Fig. 6.24  
 
The presence of “NOT gates” in the above diagrams has an important consequence. 
It may give rise to “non-coherent” fault trees, i.e. trees in which the non-occurrence 
of an event causes the top event to occur. Whereas the Boolean reduction of the logic 
function representing the top event leads to the identification of the minimal cutsets 
in the case of a coherent fault tree, the equivalent of these logic expressions are 
called prime implicants in the case of a non-coherent fault-tree: 
 

- a minimal cutest is a combination of component failure events that are necessary 
and sufficient to cause the top event; 

 

- a prime implicant is a combination of basic events – corresponding to failures or 
successes – that are necessary and sufficient to cause the top event.   

 
A shown by the figures 6.24 and 6.26, evaluating the frequencies of the different 
event tree outcomes implies to know the probabilities of the events Ei (“subsystem 
SSi fails”) as well as Ei (“subsystem SSi succeeds”)   
 
The Boolean expressions of the branch point events E1 and E2 (failure top events of 
coherent fault trees, see Fig. 6.25) are:  
 
 E1 = (A ∩ B)  ∪ (A ∩ C) ∪ D   (minimal cutsets: A ∩ B,  A ∩ C, D) [6.57] 
 
 E2 = (A ∩ E) ∪ D ∪ F (minimal cutsets: A ∩ E, D, F)       [6.58] 
 

Outcome (1)

Subsystem SS1 
fails

Subsystem SS2 
fails

Outcome (2)

Subsystem SS1 
fails

Subsystem SS2 
fails

Outcome (3)

Subsystem SS1 
fails

Subsystem SS2 
fails

Outcome (4)

Subsystem SS1 
fails

Subsystem SS2 
fails

Outcome (1)

Subsystem SS1 
fails

Subsystem SS2 
fails

Outcome (1)

Subsystem SS1 
fails

Subsystem SS2 
fails

Outcome (2)

Subsystem SS1 
fails

Subsystem SS2 
fails

Outcome (2)

Subsystem SS1 
fails

Subsystem SS2 
fails

Outcome (3)

Subsystem SS1 
fails

Subsystem SS2 
fails

Outcome (3)

Subsystem SS1 
fails

Subsystem SS2 
fails

Outcome (4)

Subsystem SS1 
fails

Subsystem SS2 
fails

Outcome (4)

Subsystem SS1 
fails

Subsystem SS2 
fails
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To deduce the expressions corresponding to the success of the concerned sub-
systems, we have first to establish the dual formulation of the two fault trees 
presented in figure 6.25. Compared to the original formulation, in the dual 
formulation all AND gates are replaced by OR gates and vice-versa, moreover all 
failed component states become working component states (in pursuance of the 
Morgan’s theorem, see section 2.3). The dual formulations of the fault trees of figure 
6.25 therefore become: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6.27  Dual formulations of the fault trees of Fig. 6.25 (“success trees”) 
 
The Boolean expressions of the branch point events 1E and 2E  (success top events 
of non-coherent trees) take respectively the forms: 
 
 ( ) ( ) ( )[ ] DCBADCABAE1 ∩∩∪=∩∪∩∪=  

 ( ) ( )DCBDA ∩∩∪∩=  

 (prime implicants: DA ∩ ,  DCB ∩∩ ) [6.59] 
 
 ( ) ( ) ( )FEDFDAFDEAE2 ∩∩∪∩∩=∩∩∪=  

 (prime implicants: FDA ∩∩ , FED ∩∩ ) [6.60] 
 
Using Eqs. [6.57] to [6.50], the Boolean expressions of the four sequences of our 
example event tree are thus given by:  
 

 T(1) =  21 EE ∩   

 = ( ) ( )[ ] ( ) ( )[ ]FEDFDADCBDA ∩∩∪∩∩∩∩∩∪∩  

 = ( ) ( ) ( )FDCBAFEDAFDA ∩∩∩∩∪∩∩∩∪∩∩  

 ( )FEDCB ∩∩∩∩∪  

 = ( ) ( )FEDCBFDA ∩∩∩∩∪∩∩  [6.61] 
 

 T(2) =  21 EE ∩   

 = ( ) ( )[ ] ( )[ ]FDEA DCBDA ∪∪∩∩∩∩∪∩  

 = ( ) ( ) ( )EDCBA FDCBFDA ∩∩∩∩∪∩∩∩∪∩∩  [6.62] 

A B A C

D

Subsystem 
SS1 works

Subsystem 
SS2 works

A E

D F

A B A C

D

Subsystem 
SS1 works

A B A C

D

Subsystem 
SS1 works

Subsystem 
SS2 works

A E

D F

Subsystem 
SS2 works

A E

DD FF
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 T(3) = 21 EE ∩  

 = ( ) ( )[ ] ( ) ( )[ ]FEDFDADCABA ∩∩∪∩∩∩∪∩∪∩  
 = ( ) ( )FEDCAFEDBA ∩∩∩∩∪∩∩∩∩  [6.63] 

 

 T(4) = 21 EE ∩  

 = ( ) ( )[ ] ( )[ ]FDEADCABA ∪∪∩∩∪∩∪∩  
 = ( ) ( ) ( ) ( ) D EAFCAEBAFBA ∪∩∩∪∩∩∪∩∩∪∩∩ C  [6.64] 
 
We are now in a position, using Poincaré’s theorem (“inclusion-exclusion” expan-
sion technique, see section 2.3), to calculate the frequencies of each of the possible 
outcomes of the example. To make possible a numerical comparison of these exactly 
computed frequencies with the result of some commonly used approximation we will 
assign a failure probability of 0.1 (not very realistic of course for usual technical 
systems) to each component and a frequency of 1.0 per year to the initiating event.  
The results of the exact calculations are then the following: 
 

 λ (1) = λI⋅P(T(1))  

 = λI⋅P{ ( ) ( )FEDCBFDA ∩∩∩∩∪∩∩ } 

 = λI⋅{P ( ) ( )FEDCBPFDA ∩∩∩∩+∩∩  

 ( )FEDCBAP ∩∩∩∩∩− } 

 = 1.0/yr⋅{0.729 + 0.59049 – 0.531441} = 0.788049/yr [6.65] 
 

 λ(2) = λI⋅P(T(2)) 

 = λI⋅P{ ( ) ( ) ( )EDCBA FDCBFDA ∩∩∩∩∪∩∩∩∪∩∩ } 

 = λI⋅{P ( ) ( ) ( )EDCBA PFDCBPFDA ∩∩∩∩+∩∩∩+∩∩  

- P ( ) ( )FEDCBA APFDCBA ∩∩∩∩∩∩−∩∩∩∩  

- P ( )FEDCBA ∩∩∩∩∩ +P ( )FEDCBA A ∩∩∩∩∩∩ } 

 = 1.0/yr⋅{0.081+0.0729+0.00729-0.06561-0-0.000729+0}  

 = 0.094851/yr [6.66] 
 

 λ(3) = λI⋅P(T(3)) 

 = λI⋅P{ ( ) ( )FEDCAFEDBA ∩∩∩∩∪∩∩∩∩ } 

 = λI⋅{P ( ) ( )FEDCAPFEDBA ∩∩∩∩+∩∩∩∩  

 - P ( )FEDCBA ∩∩∩∩∩ } 
 = 1.0/yr⋅{0.00729+0.00729-0.000729} = 0.013851/yr [6.67] 

 

 λ(4) = λI⋅P(T(4)) 

 = λI⋅P{ ( ) ( ) ( ) ( ) D EAFCAEBAFBA ∪∩∩∪∩∩∪∩∩∪∩∩ C } 

 = λI⋅{P ( ) ( ) ( )FCAPEBAPFBA ∩∩+∩∩+∩∩  

 ( ) ( ) ( )FEDCBAP...DP EAP ∩∩∩∩∩+−+∩∩+ C } 
 = 1.0/yr⋅{0.001+0.001+0.001+0.001+0.1 - . . . +0.000001} 

 = 0.103249/yr [6.68] 
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Although a little tedious (specially when carried out “by hand”) the process of exact 
calculations just described in the preceding pages is relatively easy to perform for a 
system as simple as the one considered above. When the system to be studied is 
much more complex however, leading to several thousands, perhaps hundreds of 
thousands, of minimal cut sets and/or prime implicants and very large fault trees, it is 
beyond the capability of even modern day computers to evaluate the full expansion 
in any reasonable time. Approximate ways of performing the sequence frequency 
calculations are therefore required in ad hoc computer programs.       
 
When the probabilities of the operands linked by OR gates are small, as in the case 
of the minimal cutsets of coherent fault trees (the probability of each minimal cutest 
being the product of basic event probabilities much smaller than one in principle), 
the series expansion resulting from the Poincaré’s theorem can be validly truncated 
after the first one or two terms (“rare events approximation”). Alternatively, the 
following upper bound inequality (this inequality becoming equality when the 
minimal cutsets are independent, see Eq.[2.80]) can also be used to approximate the 
results of the expansion: 
 

 P(T) ≤ 1 - ( )∏
=

n

1i
iC-1  [6.69] 

 
where the Ci’s represent the minimal cutset probabilities. 
 
For non-coherent fault trees however, the convergence of the inclusion-exclusion 
expansion can be very slow, requiring the evaluation of a large number of terms. 
This can prove excessively time-consuming for large fault trees and thus unfeasible 
in practice. For this reason, many commercial computer programs make use of the 
so-called coherent approximation to shorten the required computing time. In the 
coherent approximation, any working states for the components in the expression to 
be calculated are set to TRUE and it is assumed that P(component works) ≈ 1. The 
calculation of the minimal cutsets/prime implicants can then be minimized and 
approximations such as the one given in Eq. [6.69] used.  
 
For the simple example, this leads to the following results: 
 

 λ (1) = λI⋅P(T(1))  

 = λI⋅P{ ( ) ( )FEDCBFDA ∩∩∩∩∪∩∩ } 

 = λI⋅{P ( ) ( )FEDCBPFDA ∩∩∩∩+∩∩  

 ( )FEDCBAP ∩∩∩∩∩− } ≅ 1.0/yr⋅(1 + 1 - 1) = 1.0/yr [6.70] 
 

 λ(2) = λI⋅P(T(2)) 

 = λI⋅P{ ( ) ( ) ( )EDCBA FDCBFDA ∩∩∩∩∪∩∩∩∪∩∩ } 

 = λI⋅{P ( ) ( )EA PF ∩+ -P ( )FEA ∩∩ } 

 = 0.1/yr⋅{0.1+0.01-0.001} = 0.109/yr [6.71] 
 

 λ(3) = λI⋅P(T(3)) 

 = λI⋅P{ ( ) ( )FEDCAFEDBA ∩∩∩∩∪∩∩∩∩ } 

 = λI⋅{P ( ) ( ) ( )CBAPCAPBA ∩∩−∩+∩ } 
 = 0.1/yr⋅{0.01+0.01-0.001} = 0.019/yr [6.72] 
 

 λ(4) = λI⋅P(T(4)) = 0.103249/yr [6.73] 
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A direct comparison of the exact and approximate (coherent approximation) results 
is given in Table 6.3. 
 
Table 6.3   Comparison of exact and approximate sequence frequency results 
 
Event tree sequence Exact  

frequency  
[yr-1] 

Approximate  
frequency  

[yr-1] 

Relative 
error 
[%] 

(1) 0.788049 1.000000  26.8 

(2) 0.094851 0.109000  14.9 

(3) 0.013851 0.019000  37.2 

(4) 0.103249 0.103249  0.0 

 
It can be seen that the use of the coherent approximation in this particular example 
leads to relatively large percentage errors for at least two of the sequences. 
 
Recent developments in digital logic provide an alternative analysis procedure for 
fault trees. This alternative approach, based on the use of Binary Decision Diagrams 
(BDD), works directly with the logical expressions instead of the cutsets/prime 
implicants. A BDD can be thought of as a graphical representation of a data structure 
for a logical function. With this approach, the exact system failure probability can be 
deduced without the need to resort to any approximations. This results in both 
accuracy and efficiency improvements compared with the traditional minimal cutest 
analysis. Different investigations have shown that orders of magnitude reduction in 
processing time for large fault trees can be achieved. These improvements would be 
expected to be even more significant for non-coherent fault trees, which tend to 
produce a great number of system failure modes that include component success 
states (prime implicants) There is however a cost to pay, which is the effort required 
to convert the fault tree structure to the BDD. 
 
The BDD that is used for fault tree analysis is more exactly referred to as Reduced 
Ordered BDD. “Reduced” means that the BDD is in minimal form. “Ordered” means 
that the variables appear in the same order (to be defined initially) on each path.  
 
Rules for the detailed fault tree to BDD conversion process are given in the appendix 
6.1. Essentially, the diagram features a series of vertices or nodes, representing the 
basic events of the fault tree, linked by logical “0” or “1” branches. A “0” branch 
indicates the non-occurrence (success) of the basic event, whereas a “1” branch 
indicates the occurrence (failure) of this same event. Starting from a root node - the 
first of the ordered basic events - placed at the top of the tree structure, each 
successive (in the ordered list) basic events is connected to the preceding one in a 
way that respects the AND or OR (according to the gate case) “truth table” outputs 
respectively (see Appendix 6.1).  
 
Paths through the BDD terminate at one of two types of terminal node, labeled “0” 
and “1”. Paths terminating in a “0” node represent the top event non-occurrence. 
Conversely, paths that lead to a terminal “1” node specify the conditions for the fault 
tree top event to occur. Listing just the failure events on such a path is equivalent to 
producing the cutsets for the fault tree. Unless the basic event ordering selected has 
produced a minimal form BDD, this will have to be processed to remove redundant 
cutsets and produce the minimal cutsets. Whilst this is an important source of 
information to the analyst, it is however not required to evaluate the event tree 
sequence frequencies. 

The use of Binary 
Decision Diagrams 
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The equivalent BDD structures for the fault trees of figure 6.25 are given in figure 
6.28 for the basic events ordered according to the alphabetical order (A→B→C→D / 
A→D→E→F). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.28  BDD (left) and dual BDD (right) structures for the fault trees  
of Fig. 6.25  (from [Andrews & Dunnett, 2000] ) 
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Using the BDD approach to analyze the sequences of event trees such as the one 
shown in figure 6.24 requires both the BDD and dual BDD formulation of fault trees. 
The dual BDD structures of the two subsystems SS1 (a) and SS2 (b) are also given in 
figure 6.28. As shown, the dual of a BDD is created by simply changing the terminal 
“1”s to terminal “0”s and vice-versa. Note that the dual nodes on the BDD still 
represent in this formulation component failure states.   
 
The path through the dual BDD to a terminal node “1”, which includes each node 
passed through on the “0” branch (working component) represents the path sets of 
the fault tree. A path set is a list of working components that result in the system 
working if they all occur at the same time.    
 
Table 6.4 resumes the cut and path sets for the two subsystems SS1 and SS2. 
 
Table 6.4   Cut and path sets for the two subsystems SS1 and SS2 (see Fig. 6.28) 
 
Subsystem Cut sets Minimal cut sets  Path sets (minimal) 

SS1 AB, AC, AD, D AB, AC, D BCD, AD 

SS2 AD, AE, AF, D, F AE, D, F DEF, ADF 

 
Applying the rules to manipulate BDD structures (see Appendix 6.1), the diagrams 
shown in figure 6.28 can be combined to obtain the BDD’s representing the four 
possible outcomes (sequences 21EE , 21EE , 21EE , 21EE ) of the example event tree 
(see Fig. 6.24).  These are given in figure 6.29a and 6.29b.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.29a  BDD structures for the 21EE and 21EE sequences of Fig. 6.24 
 (from [Andrews & Dunnett, 2000] ) 
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Figure 6.29b  BDD structures for the 21EE and 21EE sequences of Fig. 6.24 

(from [Andrews & Dunnett, 2000] ) 
 

By construction, the different paths in a BDD are mutually exclusive (binary 
branching). The probability of system failure is thus obtained by simply summing the 
probabilities of all the disjoint implicant paths leading to a terminal “1” node. 
Applied to the above diagram, this leads to the following top event probabilities: 
 
Table 6.5   Top event probabilities from BDD structures of Fig. 6.29a and 6.29b 
 

(1) Sequence 21EE  (see Table 6.3) (3) Sequence 21EE  (see Table 6.3) 

I mplicant paths Probabilities 

F E D C BA  0.059049 
F D A  0.729000 

 0.788049 

I mplicant paths Probabilities 

FEDBA  0.007290 
F E D C BA  0.006561 

 0.013851 

(2) Sequence 21EE  (see Table 6.3) (4) Sequence 21EE  (see Table 6.3) 

E D C BA  0.007290 
F E D C BA  0.006561 

F D A  0.081000 
 0.094851 
 

DBA  0.001000 
EDBA  0.000900 

FEDBA  0.000810 
D C BA  0.000900 

E D C BA  0.000810 
F E D C BA  0.000729 

D C BA  0.008100 
DA  0.090000 

 0.103249 
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6.5 Cause-Consequence Analysis (CCA)  

 
The Cause-Consequence Analysis or Cause-Consequence Diagram Method is a well-
structured technique that combines cause analysis (described by fault trees) and 
consequence analysis (described by event trees). This way, both inductive and 
deductive analyses are used in this approach. The consequences evaluated include 
those that characterize the system functioning as well as those that describe an 
undesirable failure sequence of events. 
 
Compared with the FTA method, the CCA technique, which also documents the 
failure logic, has the extra capability of enabling the analysis of systems subject to 
sequential failures. Contrary to FTA, CCA is moreover capable of identifying both 
the possible causes of an undesirable event and all the possible consequences 
resulting from it The CCA method is also superior to ETA, which can similarly 
identify all consequences of a given critical event, as it models at component level 
and therefore is functionality driven and not subsystem driven. In addition to this, 
CCA can account for time delays, which is not a feature available in the ETA 
technique. CCA is thus a method to explore time-sequenced system responses to 
initiating “challenges” and to enable probability assessments of success/failure 
outcomes at staged increments. 
 
The CCA technique was initially invented by RIS∅ Laboratories in Denmark to 
assist in the risk analysis of nuclear power plants [Nielsen, 1971]. It was then 
adopted (and adapted) by other industries in the estimation of the safety of protective 
or other types of systems  
 

The basis of the CCA technique is the consideration of a critical event, i.e. an event 
that disturbs the normal (and safe) behavior of the system under study. Once such 
critical event has been identified, all relevant causes of this event and potential 
consequences are developed using FTA (see section 6.3) and ETA (see section 6.4) 
conventional analysis methods. The FTA method is as a matter of fact used in two 
independent situations in the CCA process. Firstly, this approach is used to precise 
the causes of the critical event. The second function for the FTA method is to 
clarify the causes of the possible failures of the accident-limiting subsystems. The 
ETA method is for its part used as a link between the causes of the critical event 
and the various consequences that could result (see Fig. 6.30).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.30  Basic structure of the Cause-Consequence Analysis method 
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Rules for the construction of a cause-consequence diagram can be classified in two 
separate classes: those for the cause part of the diagram and those for the consequence 
part of the diagram [Ridley and Andrews, 2001]. 
 
The cause-consequence diagram construction starts with the identification of the 
critical event, which is problem dependent. Choosing the right place to start is 
important as there are many possible initiating events, but not all of them have 
serious consequences. This choice can prove particularly difficult in complex 
situations; in theory at least, such “central” event could be anywhere along the chain 
of linked events. A useful solution to get round this difficulty is for the analyst to 
use an energy damage model and to say that the critical event is the point at which 
control of the potentially damaging energy is lost. This is however sometimes not 
totally obvious. For example, in an analysis for an electrical authority with high 
voltage transmission lines, the point of loss of control of energy was defined as 
when someone or something penetrated the flashover envelope of the high voltage 
conductor [Robinson. 2000]. That is, despite having entered this region with a 
fishing pole on the back of a vehicle, the flashover may not occur with fatal results 
to the occupants. They might be insulated from the road or it may be a very dray 
day and the envelope was a little smaller than usual, with the result that the event in 
such a case cannot be considered as “critical” anymore. 
 
After the critical event has been identified, the causes of this undesired event are 
discovered and connected by means of logical gates, using the same rules and 
symbols developed in the FTA section (which will therefore not be repeated here). 
 
Starting from the initiating component, the functionality of each component/sub-
system is then investigated and the consequences of the corresponding sequences 
determined. For the construction of this consequence part of the diagram some new 
symbols are introduced, which are presented in Table 6.6. 

 
Table 6.6 Specific logical symbols used in Cause-Consequence diagrams 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
If the branching box is governed by a sub-system, then the probability of failure of 
this one is obtained via a fault tree diagram. If any branching box is found irrelevant, 
e.g. the boxes attached to the “No” and “Yes” branches are identical and their 
outcomes and consequences are the same, then these should be removed to reduce the 
CCA diagram to a minimal form (this has no effect on the end result). 

Construction of the 
Cause-Consequence 
Diagram 

Branching 
BoxNO YES

Component/System 
functions as expected?

Fault Tree
ArrowFTα

The fault tree arrow indicates under which desi-
gnation (FTα here) the fault tree corresponding to 
the undesirable fulfillment of the condition given in 
the branching box it points to can be found

Time 
Delay

t = x hrs
The time delay is used to indicate that the following 
event in the diagram cannot occur before the time 
interval given in the symbol is elapsed

Consequence 
Box

Consequence 
description

The consequence box represents the event/condi-
tion to which analysis of a particular sequence 
leads, with, usually, severity level stated

The branching box represents a functionality con-
dition to be fulfilled by a component/subsystem; 
output is “yes” if the condition is met, “no” if it is  
not met (note that the branching operator may be 
written in either fault or success domain
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gnation (FTα here) the fault tree corresponding to 
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the branching box it points to can be found
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Delay

t = x hrs
The time delay is used to indicate that the following 
event in the diagram cannot occur before the time 
interval given in the symbol is elapsed

Consequence 
Box

Consequence 
description

The consequence box represents the event/condi-
tion to which analysis of a particular sequence 
leads, with, usually, severity level stated

The branching box represents a functionality con-
dition to be fulfilled by a component/subsystem; 
output is “yes” if the condition is met, “no” if it is  
not met (note that the branching operator may be 
written in either fault or success domain
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To illustrate the application of the CCA approach, we will consider the example of a 
pressure tank system [Hassl et al., 1981]. In addition to its operational phase, the 
system includes a start-up, shutdown sequence.  The system configuration is given in 
figure 6.31. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.31  Pressure tank example for CCA application 
 
 

The components individual functions and failures modes are described in Table 6.7. 
 

Table 6.7 Component functions and failure modes of the pressure tank example 
 

Component Function Failure Modes Effect on system 

Switch S1 To apply power to 
coil of R1 relay 

S1C: switch fails 
closed 
 
S1O: switch fails 
open 

Cct remains energi-
zed but can be bro-
ken by R2 
No power to ener-
gize cct  

Relay R1 Electrically self-la-
tched applying po-
wer to relay R2 

R1D: relay fails de-
energized 

R1CC: contact fails 
closed 
 

R1CO:contact fails 
open 

No power to cct 
 
Cct remains energi-
zed but can be bro-
ken by R2 
No power to cct 

Relay R2 Deliver power to 
the motor 

R2D: relay fails de-
energized 

R2CC: contact fails 
closed 

R2CO:contact fails 
open 

No power to motor 
 
Continuous power 
to motor 

No power to motor 

Timer Relay 
(TIM) 

Provides emergen-
cy shut-down in 
event of pressure 
switch failing 

TIMCC: timer con-
tact fails closed 

TIMCO: timer con-
tact fails open 

Cct energized but 
PRSW can open 

No power to motor 

Application example of 
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Table 6.7 Component functions and failure modes of the pressure tank example 

(cont’d) 
 

Pressure Switch 
(PRSW) 

De-energizes coil 
of R2 when tank is 
full 

PSWC: switch fails 
closed 

PSWO: switch fails 
open 

Continuous power 
to motor 

No power to motor 

Fuse To prevent power 
surge 

F: fuse fails broken No power to motor 

Power supplies 
1 & 2 

Supplies power to 
relays and motor 

PS1, PS2: no po-
wer 

No power to motor 

Motor Pumps fluid into 
tank 

M: pump fails bro-
ken 

No power to pump 

 
Initially, the system is considered to be in dormant state and therefore de-energized. 
In this state, the switch S1, the relay contacts R1 and R2 are all open and the timer 
and pressure switch are closed. Depressing the switch S1 provides power to the coil 
of R1, which results in the closure of the R1 contacts. R1 self latches when S1 being 
released opens and power is also supplied to R2 resulting in R2 contacts closing. 
This starts the pump motor. It is assumed that the tank takes 30 minutes to fill and 
once the pressure threshold is reached the pressure switch contacts open, de-
energizing R2, which results in the removal of power from the pump motor. After a 
period of time, the tank becomes empty and the pressure switch closes, which 
energizes R2. The pump restarts and the filling process commences again. The tank 
is filled twice daily and the system is inspected at 6 monthly intervals for latent 
failures. In the event of the pressure switch failing to open, a safety feature is 
included in the form of a timer relay. Power is applied to the timer relay following 
the closure the R1 contacts, which initiates a stopwatch. If the stopwatch registers 30 
minutes of continuous pumping the timer relay contacts are open; this results in a 
break in the circuit to R1 and system shutdown. 
 
The first step in constructing the cause-consequence diagram of this system is to 
order the component failure events. This is done by considering the temporal patterns 
of the system and leads to the order: 

 

S1, R1, R2, PRSW, TIM, R1, R2 
 

It comes out that the components R1 and R2 both occur twice in the ordering 
sequence. This results from the system containing two different phases and hence 
some components perform different actions in each different phases. Components R1 
and R2 are both required to close in the start-up sequence and open in the shutdown 
sequence. 
 
The cause-consequence diagram is then constructed by considering the effect of each 
component in the chosen order on the system operation. The resulting cause-
consequence diagram is given in figure 6.32 and the corresponding fault trees 
illustrated in figure 6.33. 
 
Note that this is not the final form of the cause-consequence diagram. Prior to 
multiplying the probabilities associated with each decision box to quantify each of 
the sequences, the diagram must be checked for any dependent failure events and 
then appropriately modified.  For example, a common failure event (PS1) is present 
on FT7 and FT8. PS1 should thus be extracted and placed in a new decision box 
preceding decision box 7. Other modifications are required to take into account 
inconsistent failure events.  
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Figure 6.32  Primary cause-consequence diagram for the pressure tank example  
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Figure 6.33  Fault trees associated to the cause-consequence diagram of Fig. 6.32  
 
Inconsistent failure events are encountered when, in certain systems, components are 
required to perform different functions, which if successfully accomplished results in 
the components residing in different states at different times of operation. For 
example, initially a valve may be required to be closed and later in the sequence of 
operation to be open.  The identification of such events and the resulting modified 
cause-consequence diagram and associated fault trees for the above example can be 
found in the paper of Ridley and Andrews [Ridley and Andrews, 2001]. 

 
6.6 Other Methods  
 
The methods presented in the preceding pages are only a sample of the existing 
methods that can be used for safety/reliability assessments. Without pretending to be 
exhaustive, some additional methods are presented very briefly below.   

 

Markov Modeling is a classical modeling technique for assessing the time-dependent 
behavior of dynamic systems. The state probabilities of the system P(t) in a 
continuous Markov system analysis are obtained by the solution of a coupled set of 
first order, constant coefficient differential equations: dP/dt = M⋅P(t), where M is the 
matrix of coefficients whose off-diagonal elements are the transition rate and whose 
diagonal elements are such that the matrix columns sum to zero. 
 

The GO Method can be used to compute the probability that a system exists in each 
of a few states. The system being studied is modeled in the form of a “GO chart”, 
which consists in selecting functional operators (or “building blocks”) to represent 
each component and logical junction, and connecting them with arrows to represent 
the flow of information. The GO method can be considered a competitor of FTA. 
 

Dynamic Event Tree Analysis Method is an approach that treats time-dependent 
evolution of systems states, process variable values, and operator states over the 
course of a scenario. In general, a dynamic tree is an event tree in which branchings 
are allowed at different points in time.  
 

Monte Carlo Simulation can also be a useful general technique for risk analyses. 
First, the random numbers are sampled for each of the uncertain assumptions. 
Secondly, the random numbers obtained are used together with the other assumption 
values to perform the basic analysis.     
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Appendix 6.1 Binary Decision Diagrams (from [NASA, 2002]) 
 
The construction of a Binary Decision Diagram (BDD) from a fault tree is a recursive, “bottom-up” process. 
Each basic event has an associated single-node, with “0” and “1” children, BDD. For example, the BDD for a 
basic event A is shown in figure 6.34. 
 
 
 
 
 
 
 
 

Figure 6.34  BDD for a basic event A 
 
Starting at the bottom of the tree, a BDD is constructed for each basic event and these (in an order pre-defined) 
are then combined according to the type of logic (“truth table”) represented by the gate to which the events in 
question are connected. 
 
The first step in the construction of the BDD for the OR relation A ∪ B is schematized in figure 6.35. Since A 
is first in the OR relation, it becomes the “root” node; the B BDD is then combined with each “child” node of 
A. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.35  BDD for A ∪ B (first step) 
 
To this end, consider respectively the left and right “children” of A (terminal nodes “0” and “1”). According to 
the OR  “truth table”, 0 ∪ X = X and 1 ∪ X = 1. Thus, the left child reduces to B and the right child reduces to 
1 as represented in figure 6.36. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.36  BDD for A ∪ B (final step) 
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Applying the same combinatorial process to the case of the AND gate leads to the result presented in figure 
6.37, which takes into account that here 0 ∩ X = 0 and 1 ∩ X = X. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 6.37  BDD for A ∩ B  

 
Consider now the case of a basic event C that is OR’ed with the AND gate of A and B, i.e. C ∪ (A ∩ B). Since 
A comes first, A remains the root node of the combined diagram and the OR operation is applied to A’s 
children. The left child reduces by Boolean algebra to C and the right child to the result of figure 6.36, as shown 
in figure 6.38. 
 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 

Figure 6.38  BDD for (A ∩ B) ∪ C (initial steps) 
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The resulting BDD can be reduced further, noticing that there are two identical instances of the node 
representing C in the diagram. One is redundant and can thus be removed, which leads to the final diagram 
represented in figure 6.39. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.39  BDD for (A ∩ B) ∪ C (final steps) 
 
Each path from the root node to a terminal node with value “1” represents a disjoint combination of events that, 
by definition, causes system failure. Thus, for the system represented by the diagram of figure 6.39, the failure 
paths are; C A , BA , C BA .  Since the paths are disjoint, the calculation of the system probability of failure is 
straightforward (i.e. sum of the probabilities associated with the paths, see Fig. 6.40).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.40  Quantification of the BDD of Fig. 6.39 

 
The transformation and calculation of any fault tree would proceed in the above manner until all the gates have 
been linked in the BDD.  
 
The BDD approach is a complementary approach to the minimal cutest (MCS) approach, each approach having 
its advantages and features. The MCS approach identifies the minimal sets (combinations) of basic events that 
could cause the top event. This approach thus highlights the most significant failure combinations and show 
where designs changes can eliminate or reduce undesirable combinations. Minimal cutsets also support fault 
tree validation in that specific minimal cutsets can be checked to determine if they indeed can cause the top 
event. They also support recovery actions by focusing the attention on the failures present in the dominant 
minimal cutsets. Minimal cutsets can furthermore be reviewed for dependencies and susceptibilities to common 
cause failure potentials. 
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For very large fault trees having many AND and OR gates, in which many minimal cutsets can be generated, 
the MCS approach must often truncate the lowest probability minimal cutsets to calculate the probability of the 
top event in reasonably short time. Results of such calculations are generally accurate to at least two significant 
figures, which is typically more accurate than the uncertainties on the basic event probabilities that are used. 
Present fault tree software packages have algorithms for bounding truncation error. When this error is out of 
pre-specified bounds, the truncation limit can be lowered and more minimal cutsets generated and calculated. 
Because of the speed of present personal computers, evaluating a sufficient number of minimal cutsets is 
usually, but not always, not a problem.  
 
Because the minimal paths generated in the BDD approach are disjoint, this approach provides an easy-to-
perform exact calculation of the top event probability; it is the most efficient method for calculating failure 
probabilities. The exact probability is useful when many high-probability events appear in the model.   
 
The BDD is thus more efficient and precise in quantifying probabilities and importances. The MCS approach 
provides, for its part, important qualitative information as well as quantitative information. The most 
information is provided by using both approaches. The use of binary decision diagrams therefore does not 
preclude the determination and evaluation of minimal cutsets. Most available software packages only use the 
MCS approach, which has been the standard method for fault tree evaluation for many decades. There are now 
however available packages that use the BDD approach, and a few that use both approaches. In the future, more 
software packages are expected to include both the MCS and BDD approaches. 
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