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3.1 Probability Concepts for Failure Analysis

A failure can be defined as any deviation between the actual characteristics of a
system or component and its expected (or design) characteristics. A failure thus
represents a non-conformity with given objectives or specification clauses for the
concerned entity.

The failure of a component is generally function not only of its design and quality of
construction, but also of the environment in which it is placed. One of the reasons
why failure data are sometimes not representative of the actual failure probability is
that the operating conditions and environment of the device may not always be the
same. It is important to be aware that system reliability is defined as the “probability
of performing a specified function or mission under given conditions for a prescribed
time” [McCormick, 1981].

Failures can be instantaneous or by degradation. A simple example of an instanta-
neous failure is for example the sudden axle breakage of a power plant feed pump.
An example of degradation failure is the gradual wearing out of bushings, used in
lieu of bearings. The second case raises the question of defining when precisely a
failure actually takes place. According to the above definition, it is convenient to
define the failure of a device undergoing degradation as occurring as soon as
performance parameters lie outside the specified limits of tolerance.

In safety or reliability analyses it is not sufficient to know that a failure has occurred,
it is in addition necessary to specify the mode of failure of the component in question.
For example, a valve can fail to open or fail to close; generally, the probability that a
component fails to open is different from the probability that it fails to close (another
example is failure to start compared to failure to stop, etc.).

Generally speaking, two different types of system operations should be distinguished:
systems that operate on demand and systems that operate continuously.

Demand failures occur in systems that operate intermittently or in a repetitive
manner. Either the system operates at the nth demand, event D,, or it fails, event D,,.
The probability that the system fails at the nth demand, after having successfully
responded to the n-1 preceding demands, event S,.4, is given by (see Eq.[2.73]):

P(Bn M Sn-l) = P(?n | Sn-l)' P(Sn-l)
=P(B,| D, "D, M..Dys)- P(Dys| Dy A Dy MDDy sy )
..P(D,|Dy)-P(D,) [3.1]

It is often legitimate to assume that the failures are random (independent); in this case
Eq. [3.1] reduces to:

P(D,AD,..D,; A D,)=P[D)[PD)]"* =P(@) [1-PD)]"*  [32]

Thus, only one value, the failure probability P (5) needs to be known.
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Note that the probability that a repairable system will fail anytime during n demands
would be n times the value given by Eq. [3.2]. This is nothing else than the
expression of a binomial distribution for the particular case x; =1 (1 failure), with p =
P(D).

Example: a repairable gas circuit breaker has a demand failure probability of 10 per
demand. On the average, this device has to operate 6 times per month. Calculate the
probability that it will fail more than one time during one year.

The number of requests in one year will be: 6 -12 = 72. The probability of more than
one failure during the year is given by P( X >1) =1 -P(0) — P(1), with:

P(0) = (1-10"* = 0.992826 and P(1) = 72-10~* - {1 —10*)" = 0.007149

Fig.: Hyosung Corporation

Thus, P(X > 1) = 1 — 0.992826 — 0.007149 = 2.5 10°.

For systems in continuous operation, which do not undergo repair, let us define T as
the random variable measuring the operating time without failure. The cumulative
probability function of the variable T is by definition (see Chap. 2) given by:

Fr() =P(T<t)=1- P(T>t)=1-R(t) [3.3]

where fr(t) is the failure probability density and R(t) is the reliability of the device,
defined as the probability that fault has not occurred in a system for a given period of
time t and under specified operating conditions. These different functions are linked
by the following relationships:

dF(t) _dR(®) _ dRr()

f(t 3.4
) = ot ot [34]

With these definitions, the analog of Eq. [3.1] takes the form:
fr(t) dt = A(t) dt-[1 - F(t)] = A(t) dt-R(t) [3.5]

In this equation:

- f(t) dt represents the probability for failure in dt about t,

— A(t) dt represents the conditional probability for failure in dt about t, given
that no failure has occurred to time t,

- 1-F(t) = R(t) represents the probability the device did not fail up to time t.

The failure rate A(t), which has units of inverse time, is also sometimes called the

hazard rate (the first name is however more appropriate). According to its definition,
this parameter can be evaluated as shown in Fig. 3.1.
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Figure 3.1 Failure rate definition and illustration
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The failure rate is directly related to the failure probability of the considered device:

No-N@® _,_ N@

R(t) =
NO N0

[3.6]

Utilizing moreover the expression given in Fig. 3.1 (to the limit At — 0), it comes:

dN(t)
S Alt) dt [3.7]

And therefore, after integration:

N(t) = N, -exp{— j;A(t')dt} [3.6]

which with Eq. [3.6] leads to:

R(t)= 1- exp[— I;A(t') dt‘} [3.9]
This result can also be directly obtained from Eq. [3.5]:
AD) = f) _f®) 1 dR(®) __dInR() [3.10]
1-F(@t) R(t) R(t) dt dt
Thus:
R(t) =1 - R() = exp[— j;A(t')dt} [3.11]
If A(t) =X = constant (often a reasonable assumption, see p.55):
R(t) = 1 - exp(— At) = At (for At small) [3.12]

Combining Egs. [3.10] and [3.11] allows us to write the following important result:
£(t) = A(t) - R(t) = A(t)- exp[— j;A(t')dt} [3.13]

A summary of formulas relating A(t), R(t), F(t) and f(t) is given in Table 3.1.

Table 3.1 Summary of failure formulas

Description Symb. First form Second form Third form

Failure rate At) |- (UR)dR/dt | f()/[1-F@®O] | f(t)/R(®)

Reliability RO | [f ) dr 1-F (1) exp[— j;A(t')dt}
Cumulative too t

failure prob. F() Iof (t) dt 1-R (1) 1- exp[— _[OA(t‘) dt}
Failure prob.

density fy | dF(t) / dt - dR(t) / dt AQ)RQ)
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Example: It is assumed that the failure rate for a pressure valve is given by the
expression A(t) = 1/ (t+2). What is the cumulative probability of failure F(t)? What
is the probability density for failure at time t, f(t)?
t+2
t2+2 — In(T]y

Inx

. ] t 1 t+2
We need first to calculate the integral .[oﬁ dt' = J: L =
+ X

t
then: F(t) =1- exp[— — dt} =1- 2 = o Fig.: Yokota
0t'+2 t+2 t+2 Manufacturing Co., Ltd.
and: f(t) = @ = 2 >
dt (t+2)

A frequently used indicator to characterize the reliability performance of a device is Reliability indicators
the mean time to failure, or MTTF, which is the first moment of the probability
density:

MTTF = j;'i f(t) dt [3.14]

The mean time to failure can be expressed in terms of the reliability R(t) by replacing
f(t) by — dR(t) / dt and then integrating by parts the Eq. [3.14] (assuming that t-R(t)
— 0 fort — oo):

MTTF = I:R(t) dt [3.15]

The MTTF is particularly simple to calculate in the case of a random failure
(A(t) = A = constant), since:

MTTF = % [3.16]

It should be noted that the above expressions of the MTTF are only valid for a device
that cannot be repaired. If repairs are possible, then the system may remain operable
for t — oo, at least part of the time. In such a case, rather than the reliability it is more
meaningful to consider the instantaneous availability of the system, A(t), which is
defined as “the probability a system performs a specified function or mission under
given conditions at a prescribed time” [McCormick, 1981]. Obviously, reliability
and availability are related by the following inequality:

R() <AM) <1 [3.17]

Since, on one hand, A(t) = R(t) for a device that cannot be repaired, and on the other
hand, a repairable system may be “available” again some time after a failure had
occurred. It follows that, as t becomes large, R(t) approaches zero whereas A(t)
reaches some steady-state value.

The MTTF is not the only indicator that can be used to quantify the reliability of a
device. Other indicators of this kind, as well as their relationships, are presented in
Fig. 3. 2.
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Figure 3.2 Different reliability indicators and their relationships
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Repairable versus
irreparable units

3.2 Reliability and Availability of Single Components or
Units of a System

When analyzing the reliability or availability of a single component or unit of a
system, two different cases must be considered:

e the unit cannot be repaired,

e the unit can be repaired; the repair is assumed to begin immediately after the
failure has been detected and, at the end of the repair process, the unit is put back
into operation “as new”.

Note: to make calculations more simple, from now on the failure rates (A) and, for
repairable units, the analog repair rates (u), will be assumed to be constant

The above assumption is generally well justified for a wide variety of mechanical
and electronic components and systems, at least for the useful life part of the product
history. This is because the time behavior of the failure rate of such systems typically
exhibits what has become widely known as a “bathtub curve” (see Fig. 3.3).

End of Life Wear-Out

. Increasing Failure Rate
Infant Mortality .

Decreasing Failure Rate

Marmal Life (Useful Life)
Low "Constant” Failure R ate

Increased Failme Rate

Time .

Figure 3.3 The “bathtub curve”, hypothetical failure rate versus time

The initial region that begins at time zero when a customer first begins to use the
product is characterized by a high but rapidly decreasing failure rate. This region is
known as the Early Failure Period (also referred to as Infant Mortality Period). This
decreasing failure rate typically lasts several weeks to a few months. Next, the failure
rate levels off and remains roughly constant for (hopefully) the majority of the useful
life of the product. This long period of a level failure rate is known as the Intrinsic
Failure Period (also called the Stable Failure Period) and the constant failure rate
level is called the Intrinsic Failure Rate. Finally, if units from the population remain
in use long enough, the failure rate begins to increase as materials wear out and
degradation failures occur at an ever increasing rate. This is the Wearout Failure
Period.

Most technical systems spend most of their lifetimes operating in the flat portion
(stable failure period) of the bathtub curve.

The Bathtub Curve also applies (based on much empirical evidence) to repairable
systems. In this case, the vertical axis is the repair rate or the rate of occurrence of
failures (ROOOF).

55
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The reliability of a unit that cannot be repaired is, from Eq. [3.11], given by: Non-repairable units
R(t) = exp(-At) [3.18]
As, by definition, the availability of such a device is equal to its reliability, we have
therefore also:
A(t) = exp(-At) [3.19]
The usual systems consider by a risk analyst can however be repaired; this means Repairable units
that such systems can either be operating or under repair. The determination of A(t)

for a system with repairable components is thus more complicate than the analysis of
the reliability of a system without repairable parts.

In addition to the failure rate, it is necessary for such systems to define the same way
an instantaneous repair rate p (or M(t) in the general time-dependent case):

. 1 - .
M) = lim —-P(unitisrepaired betweentandt +dt,
At—>0 At

taken that it was out of order during the period [0,t))  [3.20]

Because the fact that a unit can or cannot be repaired does not change its reliability,
the relation [3.18] remains valid here. The situation is different for the availability,
which is no more equal to the reliability but responds in this case to the following
probability equation:

A(t + dt) = P(unit is in working order at t and does not fail between t and t + dt) +
P(unit is out of order at time t and is repaired between t and t + dt)

Using the definitions of the availability as well as of the failure and repair rates, the
symbolic expression of the above equation becomes:

At +dt) = A(t) - (1- 1 dt) + (L- A®))- pdt [3.21]
That is to say:
PO = rw)-A0 [322]

This differential equation can be solved with the help of the Laplace transform (see
Appendix 3.1). The Laplace transform of Eq. [3.2] gives:

s-L[A()] - A(0) = % = (A + ) L[A(1)] [3.23]
Therefore:
_ A0 n
LIAMI = s+(h+p) Y (s+(+n) [3.24]

Applying the inverse transform approach presented in Appendix 3.1, Eq. [3.24] can
be rewritten as follows:

_ A(O) I _ 0 _ %
AAOT = s+(7»+u)+ s-(s+(A+w) s ' s+(A+n) e
- . A0)-s H =K
with ‘h‘i‘fo s+(k+u)+(3+(7“+“))_k+u

[3.26]

q2:|im A0+£:A0' H
5> -(u41) Aru
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The general expression of the availability of a repairable system is thus given by (see
Table in Appendix 3.1 for the inverse transforms)

Al = M neAg —u~(1—Ao),e-(x+u)-t [3.27]
A+ A+p

Two different initial conditions are possible:

a) the unitis in operating order at the time t=0, i.e. Ay = 1; in this case:

Al) = —H s el [3.28]
A+p A+p

b) the unit is out of order at the time t=0, i.e. Ag = 0; in this case:

Alt) = xi " b e lemt] [3.29]

We observe that for large time the asymptotic value, towards which the availability
tends, is the same in both cases:

lim A(t) = —* [3.30]
t— o A+p

This behavior of the availability function of a repairable unit is represented
graphically in figure 3.4.
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Figure 3.4 Time behavior of repairable unit availability
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Taking into account that for constant failure and repair rates:

MTTF = j:’ R(t)dt = j: et :%

and:

MTTR= [“f-M@)]dt = [~ e*tdt =+
Jo M@t = |

we deduce that:

lim A(t) = A(w) = -2

n

3 MTTF
A+p  MTTF+MTTR

t—> oo
or
A@) =1-A@w) = — TR 2
MTTF+ MTTR pn

[3.31]

[3.32]

[3.33]

[3.34]

In Eq. [3.32], M(t) is the cumulative probability function for the random variable
characterizing the repair time T, (i.e. P(T, < t)). The corresponding density function
will be noted g(t). We have therefore (analogy with Eq. [3.4]):

_dM(1)
a(t) = T

[3.35]

A summary of the expressions of the main reliability and availability characteristics
for the model of constant failure and repair rates is given in Table 3.2

Table 3.2 Reliability and availability characteristics for units with const. 4 and g

Non-repairable unit

Repairable unit

A(t) = A = constant
f(t) = A-exp(-A-t)
R(t) = exp(-A-t)
R(t) = 1 - exp(-A-t)

A®) = R(t) = exp(-A-t)

A(t) =1 —exp(-A-t)

M(t) = 0
g(t)=0
M(t) = 0
MTTF = 1/A

MTTR =0

A(t) = A = constant

f(t) = A-exp(-A-t)

R(t) = exp(-A-t)

R(t) = 1—exp(-A-t)

A = W(rtp) + Mt )]-expl-(i+p)-,
A = p/(A+p)-{1-exp[-(A+p) ]}
At) =10+ p)-{L-exp[-(rp) A1}
A(t) =1 - p/(htp)-{1-exp[-(A+p) 1]}
M(t) = p = constant

g(t) = pexp(-p-t)

M(t) = 1 — exp(-u-t)

MTTF = 1/A

MTTR = 1/p

A(0)=1
A(0)=0
A(0)=1

A(0)=0




3. Reliability & Safety Analysis of Elementary Systems

Reliability estimators

Failure rate in
continuous operation

Failure rate at rest

Failure rate for
operation on demand

Repair rate

3.3 Estimation of Reliability Parameters

The basic elements of the estimation theory have been presented in section 2.2. We
will deal here with the specific question of defining appropriate reliability estimators
and calculating their confidence intervals.

Assuming the failure rate constant, an estimator of this parameter for a unit in
continuous operation is given by:

A=t [3.36]

where Nt is the total number of failures observed during the cumulating operating
time T;. Thus means that the mean time between failures, T¢/N¢, will be equal to 1/X,
in accordance with the fact that MTTF ~ MTBF = 1/ (Eq.[3.31]).

Similarly, the failure rate of a unit at rest can in principle be calculated as follows:

S N

r

where N, is the total number of failures observed at rest and T, the cumulated rest
time. Of course, it could be difficult in practice to become aware that a unit has
failed while being at rest.

For units operating on demand, the demand failure probability estimator vy is given by
the ratio of the number Ny of observed failures to respond to a demand, to the total
number of demands Ng:

y=—2 [3.38]
The repair rate (in continuous operation or at rest) can be calculated in a similar way
as the failure rates in Eqgs. [3.36] and [3.37]:

N
=—2 [3.39]
Trep

where N, is the number of repair processes carried out during the cumulated repair
time Tep.

Note: if the unit cannot be repaired, it has to be replaced; in such a case, it is more
appropriate to use the term substitution rate rather than repair rate.

Table 3.3 gives a summary of the way reliability indicators can be estimated from
observed data.

Table 3.3 Practical estimation of reliability indicators

Relative to failure rate Relative to repair rate

—_—— —_——

MTTF ~ MUT = MTBF = 1/5\\. = Tu/Na MDT = MTTR = 1/11 = Trep/Nrep

In most cases, the mean time to repair (MTTR) and the mean down time (MDT) are
very small compared to the operating times (MTTF or MTBF). This justifies the
approximate relationships used in Table 3.3.
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The reliability parameters being random variables, as pointed out in section 2.2 a  Confidence intervals
confidence interval must be associated with the estimators given above, in such a
way that (for any given parameter p):

P(Pinf< P <psp) =1-0 [3.40]
where pins and pg,p are the confidence limits and 1-a is the expected confidence level.

Example: assuming a constant failure rate A, the number of failures N is distributed
according to a Poisson law. In this case, the confidence limits are given by:

her = tar2(2Ng)

_ Xi-a12(2Ng +2)
inf 2Tf

3.41
2T; [3:41]

! 7\'sup

xﬁ(r) is deduced from the chi-square distribution, a special case of the gamma
distribution, which obeys the equation:

I (r/2)-1 ,-t2
t -ecdt 2
P2 r)= ! iz r2) [3.42]
2012 .1 (r/2) (r/2)

The integer r, with r > 1, in this distribution is called the “degree of freedom”. %2 (r)
is the value of y for which the above expression is equal to o.

As a numerical application, let us consider a set of identical pumps that have
registered 2 failures during a cumulated operation time of 10’000 hours. The failure
rate of these pumps can thus be estimated as:

=2 210 [n]
10000

The 90% confidence limits are in these conditions given by:

. _ Xoos(4) _ 0711
" 20000 20000

_ %5.95(6) _ 121 :6310_4[h_1]
P 20000 20000

=3610"° [h‘l]

Let us assume now that the set of pumps is observed over a longer cumulated time,
for example 707000 hours and that 14 failures are registered in this case. Obviously,
this does not change the estimation of the failure rate, which remains equal to:

A= 1,—4 =210 [h’l]
70000

This is however not true for the 90% confidence limits, which here become:

2
o= XO.05(28) _ 16.9 -1.210* [h—l]
140'000  140'000

_ %6s(30) _ 438
140000 140000

31107 [h‘l]

The ratio Aqg/Ains IS thus reduced by a factor greater than six (from 17.5 in the first
case to 2.6 in the second case). This narrowing of the limits expresses the gain in
confidence obtained thanks to the longer observation time.



3. Reliability & Safety Analysis of Elementary Systems

Bayesian estimation

The fact that more information leads to improved statistical results is a general
observation. It is at the root of the most classical application of the Bayes’ theorem
(section 2.4) in safety/reliability analyses, i.e. as a means of revising failure data.
When applied in this way, it serves as an important link between axiomatic
probability and relative frequency probability. Additional information tends to
modify axiomatic probabilities to yield posterior probabilities closer to the relative
frequency [McCormick, 1981].

Let us note P(6jly) the prior probability of observing, among n discrete possible
values, the value 6; of the parameter we are interested in, taking into account
“generic” information only (information about the general design and fabrication of
the device, about the operating performances of devices of the same kind, etc.).

Now, if after some time experimental data about a specific device become available
(information of the I type), a revised estimation of the probability of observing the
value 6; of the parameter can be calculated for this particular device using Bayes’

equation:
Pl0;| 1] Pll| 6;,1
P(6i||g,|5): g | 9) (S| : g) [3.43]
>Plof1g)-Pl6;.1,)
j=t
with:
P1O;| | . prior estimation of the probability of observing the value 6; for
i|'g
the parameter of interest, based on generic information only;
P(IS| 0;, Ig) . probability that the information of type Is will be observed if
the value of the parameter is indeed 6; and given the knowledge
of the generic information;
P(6i| Iy, IS) . posterior estimation of the probability of observing the value 6;

for the parameter of interest, given the knowledge of the
generic and specific information.

The above expressions can easily be generalized to the case where the possible
values of the parameter of interest are given by a continuous function.

| g) is immediately available if the generic law relative to
the parameter of interest is fully known for the considered type of device. However,
sometimes only the upper and lower values that the parameter 6 can possibly take are
known. If the type of probability law can be guessed, the parameters of this last one
can be estimated assuming that the upper and lower limits define for example a 90%
confidence interval.

The prior probability P(ei I

It remains to calculate the P(ISJ 0;, Ig) probabilities. If we consider for example that
the parameter to be estimated is the failure probability on demand y and that k
failures had actually been observed on n attempts (demands), P Is| i Igj is given by
(binomial distribution):

P 1010) = gy ) [3.44]

If the k failures are observed during a cumulated operation time of T hours, the
distribution of the failure rate A takes this time the form (Poisson distribution):

(L 24.14) = (Xil'(—-:—)k-exp(— % T) [3.45]

61
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Example (adapted from [Lemeur, 1988]): the emergency generating unit of a nuclear
power plant is assumed to have a prior failure probability on demand distributed
according to a lognormal law.

Given that the unit had been found to fail to start 5 times on 227 attempts, give the
posterior distribution taking this new information into account.

The details of the required calculations are given in the following table.

Table 3.4  Detailed calculations of the posterior distribution of the failure
probability on demand for the considered emergency generating unit
h 2271/(51-2221) 5. (1+v;)??
A B C

Ti P(yi||g) P(|s|yi,|g) A* B P(yi||g,ls)
8.7010°° 0.048 3.44 10 1.65 10 1.99 102
115102 0.054 7.41 1072 4.00 10°® 4.83 10
1.54 102 0.096 1.3310% 1.27 102 154 10%
2.0510° 0.134 1.7510% 2.35107° 2.8310*
2.7410° 0.161 1.56 10t 2.50 10 3.0210%
3.65 107 0.160 8.10 102 1.30 102 156 10
4.87 10 0.141 2.02 1072 2.8510° 3.44 10
6.49 102 0.097 1.8810° 1.82 10* 22010
8.66 10 0.053 4.3310° 2.2910° 2.7710°
1.16 10* 0.051 1.45 10, 7.40 10° 8.9210°
Lognormal Total — 829107 C/Total

The corresponding graphical representations of the prior and posterior distributions
are given in Fig. 3.5.
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Figure 3.5 Prior and posterior distributions of the failure probability on demand

The figure shows that the prior distribution has been, on one hand, shifted towards
lower probabilities and, on the other hand, narrowed (reduction of the distribution
dispersion) as could be expected from the use of additional information.
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Appendix 3.1 Laplace Transform

o General definition of the Laplace transform:

The Laplace transform is a powerful mathematical tool formulated to solve a wide variety of initial-value
problems. The strategy is to transform the difficult differential equations solving into simple algebra problems
where solutions can be easily obtained. One then applies the Inverse Laplace transform to retrieve the solutions
in the original problem space (usually, time space). This can be illustrated as follows:

Time space Laplace space
(variable t) (variable s)

e ——————— i ————— . ——————

1
]
Initial-Value Problem I Algebra Problem I E
:
1 ] 1
: ! :
! : I : :
1 ] \ ] \
- ! ! ] 1
difficult) ' ! i
] | \ ' 1
AN P -7 : ' :
g ! Relatively ) :
eas '

4 y i
Solution of the Inverse Laplace Solution of the :
Initial-Value Problem Transform Algebra Problem :
{

/

< / \\ //

e ——————————— = e ——————— v —— =

e Mathematical definition of the Laplace transform:

The Laplace Transform - denoted F(s) - of a function f(t) defined on the interval [0, oo is given by the following
integral:

LIF()} = F(s) = j: et f(t) dt

Where s is real and £ is called the Laplace Transform Operator.

For F(s) to exist, it is sufficient (but not necessary) that f(t) fulfill the following conditions:

1) f(t) is piecewise continuous on 0 <t < o,
2) f(t) is of exponential order as t — oo; that is, there exist real constant K, a and T such that:

f(t) < K-e* , forallt>T.
o Mathematical definition of the Inverse Laplace Transform:

By definition:
LHF(s)} = ()

where £ is the Inverse Laplace Transform Operator.

For the inverse Laplace transform to exist, it is necessary that: 1) lim F(s) = 0 and 2) lim s-F(s) remains finite.
S —> S— ™

63



64

P.-A. Haldi: Reliability & Safety Analysis

The table below gives some important Laplace transforms and Laplace transform properties:

Function Laplace Transform Function Laplace Transform
1 1
- t il
1 S 2
n! . I(a+1)
t" nezZ>0 w t a>0 ga+l
He(t) Heaviside e” c>0 |e* 1 s>a
step function S s—a
-1
LS L =123, |1 a
(n-2)! (s+a) s-(s+a)
- bt 1
L e gn] |l opaa |, et e |1,
@-D) [e € ] (s+a)-(s+b) ab a-(a-b) b-(b-a) | s-(s+a)(s+b)
1 at bt ; bza i . e'at 1
el T =
-1 A B
3(t-c) Dirac | e® c>0 | ¥ 't(lli(ﬁ))' = Gamma B J}:k)ﬁ
] ) (0]
cos(wt) ER sin(wt) R
s . o)
cosh(wt) 7o s>o| | sinh(ot) 7o s> ||
Jo(at) zero-order Bessel ! lo(at) Modified Bessel !
zero- SS —_— ifi sS
’ Vs? +a? ’ s —a’
t 1 t 1
—|-Jy(at — |- 1y (at
(a) 1(at) (sz+a2)3/2 [aj 1(at) (52—612)3/2
k k-1
K s"-F(s)-s"-f(0) -
ar s-F(s) - f(0) d” f(t)
k
at dt o df ki
e T k_l
dt|, dt 0
]t f(t") dt’ L F(s) j C () dt F(0)
0 S 0
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Function Laplace Transform Function Laplace Transform
1 S )
f(at) a>0 P F(;) f(t-a) e-F(s)

Convolution integral
j; f(t 1) - g(r) dr F(5)-G(5) e £(t) F(s-a)

The Laplace transform has moreover the following interesting properties:

lim f(t) = lim s-F(s)

t—> oo s—>0

lim f(t) = lim s-F(s)

t—>0 S —

e Inverse Laplace Transform of the ratio of two polynomials in s:

Consider the following Laplace transform function:

F(s) :% , with R(s) = (s-a1)-(s-ap) . . . (s-an)

Q(s) and R(s) are two polynomials in s, with degree Q(s) < degree R(s).

In this case, F(s) can be written as follows:

F9 =39 g - tim A-(-2)

im1 S -8 S a R(s)

The inverse transform of 1/(s-a;) being the function exp(ait) (see Table above), f(t) takes thus the form:
: t
ft) = > aia;)-e™
i=1

e Laplace Transforms in the case of the sum of random variables:
Consider for example two independent random variables X and Y with probability distributions f;(x) and f,(y)

respectively. If Z is the random variable corresponding to the sum of X and Y, its probability distribution is
given by:

f,(z2) = J'OZ f,(x)- f,(z — x)dx = J'OZ f,(z — x)- f,(x)dx

Therefore (see Table):

L[f2(2)] = LIf.09]- L[F(y)]

This example can straightforwardly be generalized to the case of the sum of n > 2 random variables.
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