
 

3.1 Probability Concepts for Failure Analysis 
 
A failure can be defined as any deviation between the actual characteristics of a 
system or component and its expected (or design) characteristics. A failure thus 
represents a non-conformity with given objectives or specification clauses for the 
concerned entity. 
 
The failure of a component is generally function not only of its design and quality of 
construction, but also of the environment in which it is placed. One of the reasons 
why failure data are sometimes not representative of the actual failure probability is 
that the operating conditions and environment of the device may not always be the 
same. It is important to be aware that system reliability is defined as the “probability 
of performing a specified function or mission under given conditions for a prescribed 
time” [McCormick, 1981].  
 
Failures can be instantaneous or by degradation. A simple example of an instanta-
neous failure is for example the sudden axle breakage of a power plant feed pump. 
An example of degradation failure is the gradual wearing out of bushings, used in 
lieu of bearings. The second case raises the question of defining when precisely a 
failure actually takes place. According to the above definition, it is convenient to 
define the failure of a device undergoing degradation as occurring as soon as 
performance parameters lie outside the specified limits of tolerance.    
 
In safety or reliability analyses it is not sufficient to know that a failure has occurred, 
it is in addition necessary to specify the mode of failure of the component in question. 
For example, a valve can fail to open or fail to close; generally, the probability that a 
component fails to open is different from the probability that it fails to close (another 
example is failure to start compared to failure to stop, etc.).  
 
Generally speaking, two different types of system operations should be distinguished: 
systems that operate on demand and systems that operate continuously.  
 
Demand failures occur in systems that operate intermittently or in a repetitive 
manner. Either the system operates at the nth demand, event Dn, or it fails, event .Dn  
The probability that the system fails at the nth demand, after having successfully 
responded to the n-1 preceding demands, event Sn-1, is given by (see Eq.[2.73]): 
 

( ) ( ) ( )1-1-1- SPSDPSDP nnnnn ⋅=∩  
 ( ) ( ) ...D...DDDPD...DDDP 2-211-1-21 ⋅∩∩⋅∩∩= nnnn  
 ( ) ( )112 DPDDP... ⋅   [3.1] 
 
It is often legitimate to assume that the failures are random (independent); in this case 
Eq. [3.1] reduces to: 
 
 ( ) ( ) ( )[ ] ( ) ( )[ ] 11

1-21 DP-1DPDPDPDD...DDP −− ⋅=⋅=∩∩∩ nn
nn  [3.2]  

 
Thus, only one value, the failure probability ( )DP , needs to be known. 
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Note that the probability that a repairable system will fail anytime during n demands 
would be n times the value given by Eq. [3.2]. This is nothing else than the 
expression of a binomial distribution for the particular case xi =1 (1 failure), with p = 

)DP( . 
 
Example: a repairable gas circuit breaker has a demand failure probability of 10-4 per 
demand. On the average, this device has to operate 6 times per month. Calculate the 
probability that it will fail more than one time during one year. 
 
The number of requests in one year will be: 6 ⋅12 = 72.  The probability of more than 
one failure during the year is given by P( X >1 ) = 1 – P(0) – P(1), with: 
 

 ( ) 992826.0101)0(P
724 =−= − and ( ) 007149.01011072)1(P

7144 =−⋅⋅= −−  
 
Thus, P(X > 1) = 1 – 0.992826 – 0.007149 = 2.5 10-5. 
 
For systems in continuous operation, which do not undergo repair, let us define T as 
the random variable measuring the operating time without failure. The cumulative 
probability function of the variable T is by definition (see Chap. 2) given by: 
 

 FT(t) = P(T ≤ t) = 1 –  P(T > t) = 1 – R(t) [3.3] 
 
where fT(t) is the failure probability density and R(t) is the reliability of the device, 
defined as the probability that fault has not occurred in a system for a given period of 
time t and under specified operating conditions. These different functions are linked 
by the following relationships: 
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)dF()(f −===  [3.4] 

 
With these definitions, the analog of Eq. [3.1] takes the form: 
 
 fT(t) dt = Λ(t) dt⋅[1 – F(t)] = Λ(t) dt⋅R(t) [3.5] 
 
In this equation: 
 

-  f(t) dt represents the probability for failure in dt about t, 
− Λ(t) dt represents the conditional probability for failure in dt about t, given 

that no failure has occurred to time t, 
- 1 – F(t) = R(t) represents the probability the device did not fail up to time t. 

 
The failure rate Λ(t), which has units of inverse time, is also sometimes called the 
hazard rate (the first name is however more appropriate). According to its definition, 
this parameter can be evaluated as shown in Fig. 3.1. 
 

 

Figure 3.1   Failure rate definition and illustration 

Fig.: Hyosung Corporation 
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The failure rate is directly related to the failure probability of the considered device: 
 

 
00

0 )(1
)(

)(R
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tNN
t −=

−
=  [3.6] 

 
Utilizing moreover the expression given in Fig. 3.1 (to the limit ∆t → 0), it comes: 
 

 ( ) ( ) tt
t
tN d

d
d

Λ−=  [3.7] 

 
And therefore, after integration: 
 

 ⎥⎦
⎤

⎢⎣
⎡ Λ−⋅= ∫

t
ttNtN

00 'd)'(exp)(  [3.8] 

 
which with Eq. [3.6] leads to: 
 

 ( ) =tR ⎥⎦
⎤

⎢⎣
⎡ Λ−− ∫

t
tt

0
'd)'(exp1  [3.9] 

 
This result can also be directly obtained from Eq. [3.5]: 
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Thus: 
 

 ⎥⎦
⎤

⎢⎣
⎡ Λ−=−= ∫

t
tttt

0
'd)'(exp)(R1)(R  [3.11] 

 
If Λ(t) = λ = constant (often a reasonable assumption, see p.55): 
 
 ( )  small)t for(exp1)(R λλ≅λ−−= ttt  [3.12] 
 
Combining Eqs. [3.10] and [3.11] allows us to write the following important result: 
 

 ⎥⎦
⎤

⎢⎣
⎡ Λ−⋅Λ=⋅Λ= ∫

t
tttttt

0
'd)'(exp)()R()()(f  [3.13] 

 
A summary of formulas relating Λ(t), R(t), F(t) and f(t) is given in Table 3.1. 
 
Table 3.1 Summary of failure formulas  
 

Description Symb. First form Second form Third form 

Failure rate 
 
Reliability 
 
Cumulative 
failure prob. 
 
Failure prob. 
density 

Λ(t) 

R(t) 

F(t) 
 

f(t) 

- (1/R)⋅dR/dt 

∫
∞

t
t 'd)(t'f  

∫
t

t
0

'd)(t'f  

 
dF(t) / dt 

f(t) / [1 – F(t)] 
 
1 – F (t) 
 

1 – R (t) 
 
 
- dR(t) / dt 

f(t) / R(t) 
 

⎥⎦
⎤

⎢⎣
⎡ Λ− ∫

t
tt

0
'd)'(exp  
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Example: It is assumed that the failure rate for a pressure valve is given by the 
expression Λ(t) = 1 / (t+2).  What is the cumulative probability of failure F(t)? What 
is the probability density for failure at time t, f(t)? 
 

We need first to calculate the integral ⎟
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A frequently used indicator to characterize the reliability performance of a device is 
the mean time to failure, or MTTF, which is the first moment of the probability 
density: 
 

 ∫
∞

⋅=
0

d)(fMTTF ttt  [3.14] 
 
The mean time to failure can be expressed in terms of the reliability R(t) by replacing 
f(t) by – dR(t) / dt and then integrating by parts the Eq. [3.14] (assuming that t⋅R(t) 
→ 0 for t → ∞):  
 

 ∫
∞

=
0

d)R(MTTF tt  [3.15] 
 
The MTTF is particularly simple to calculate in the case of a random failure         
(Λ(t) = λ = constant), since: 
 

 MTTF  = 
λ
1  [3.16] 

 
It should be noted that the above expressions of the MTTF are only valid for a device 
that cannot be repaired. If repairs are possible, then the system may remain operable 
for t → ∞, at least part of the time. In such a case, rather than the reliability it is more 
meaningful to consider the instantaneous availability of the system, A(t),  which is 
defined as “the probability a system performs a specified function or mission under 
given conditions at a prescribed time” [McCormick, 1981]. Obviously, reliability 
and availability are related by the following inequality: 
 
 R(t) ≤ A(t) ≤ 1 [3.17] 
 
Since, on one hand, A(t) = R(t) for a device that cannot be repaired, and on the other 
hand, a repairable system may be  “available” again some time after a failure had 
occurred. It follows that, as t becomes large, R(t) approaches zero whereas A(t) 
reaches some steady-state value. 
 
The MTTF is not the only indicator that can be used to quantify the reliability of a 
device. Other indicators of this kind, as well as their relationships, are presented in 
Fig. 3. 2.  
 

Figure 3.2   Different reliability indicators and their relationships 

Reliability indicators 

Fig.: Yokota 
Manufacturing Co., Ltd. 
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3.2 Reliability and Availability of Single Components or 

Units of a System 
 
When analyzing the reliability or availability of a single component or unit of a 
system, two different cases must be considered: 
 

•  the unit cannot be repaired, 
•  the unit can be repaired; the repair is assumed to begin immediately after the 

failure has been detected and, at the end of the repair process, the unit is put back 
into operation “as new”.    

 

Note: to make calculations more simple, from now on the failure rates (λ) and, for 
repairable units, the analog repair rates (µ), will be assumed to be constant 
 
The above assumption is generally well justified for a wide variety of mechanical 
and electronic components and systems, at least for the useful life part of the product 
history. This is because the time behavior of the failure rate of such systems typically 
exhibits what has become widely known as a “bathtub curve” (see Fig. 3.3).  
 

 
Figure 3.3   The “bathtub curve”, hypothetical failure rate versus time  

 
The initial region that begins at time zero when a customer first begins to use the 
product is characterized by a high but rapidly decreasing failure rate. This region is 
known as the Early Failure Period (also referred to as Infant Mortality Period). This 
decreasing failure rate typically lasts several weeks to a few months. Next, the failure 
rate levels off and remains roughly constant for (hopefully) the majority of the useful 
life of the product. This long period of a level failure rate is known as the Intrinsic 
Failure Period (also called the Stable Failure Period) and the constant failure rate 
level is called the Intrinsic Failure Rate. Finally, if units from the population remain 
in use long enough, the failure rate begins to increase as materials wear out and 
degradation failures occur at an ever increasing rate. This is the Wearout Failure 
Period.   
 
Most technical systems spend most of their lifetimes operating in the flat portion 
(stable failure period) of the bathtub curve. 
 
The Bathtub Curve also applies (based on much empirical evidence) to repairable 
systems. In this case, the vertical axis is the repair rate or the rate of occurrence of 
failures (ROOOF).  

Repairable versus 
irreparable units  
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The reliability of a unit that cannot be repaired is, from Eq. [3.11], given by: 
 
 R(t)  =  exp(-λt) [3.18] 
 
As, by definition, the availability of such a device is equal to its reliability, we have 
therefore also: 
 

 A(t)  =  exp(-λt) [3.19] 
 
The usual systems consider by a risk analyst can however be repaired; this means 
that such systems can either be operating or under repair. The determination of A(t) 
for a system with repairable components is thus more complicate than the analysis of 
the reliability of a system without repairable parts.  
 
In addition to the failure rate, it is necessary for such systems to define the same way 
an instantaneous repair rate µ (or M(t) in the general time-dependent case): 
 

 M(t)  ,d   and between  repaired is(unit P
t

1lim ttt +⋅
∆

=   

 [ ]) 0, period  theduringorder  ofout  it was taken that t  [3.20] 
 
Because the fact that a unit can or cannot be repaired does not change its reliability, 
the relation [3.18] remains valid here. The situation is different for the availability, 
which is no more equal to the reliability but responds in this case to the following 
probability equation: 
 
  A(t + dt) = P(unit is in working order at t and does not fail between t and t + dt) + 
  P(unit is out of order at time t and is repaired between t and t + dt) 
 
Using the definitions of the availability as well as of the failure and repair rates, the 
symbolic expression of the above equation becomes: 
 
 ( ) ( ) tttttt d)A(1d-1)A()dA( µ⋅−+λ⋅=+  [3.21] 
 
That is to say: 

 ( ) )A(
d

)dA( t
t
t

⋅µ+λ−µ=  [3.22] 

 
This differential equation can be solved with the help of the Laplace transform (see 
Appendix 3.1).  The Laplace transform of Eq. [3.2] gives: 
 

 s⋅L[A(t)] – A(0) = 
s
µ  – (λ + µ)⋅ L[A(t)] [3.23] 

Therefore: 

 L[A(t)] = ( )
( )µ+λ+s

0A  +  ( ))( µ+λ+⋅
µ

ss
 [3.24] 

 
Applying the inverse transform approach presented in Appendix 3.1, Eq. [3.24] can 
be rewritten as follows:   
 

 L[A(t)] = ( )
( )µ+λ+s

0A  +  ( ))( µ+λ+⋅
µ

ss
 = 

s
q1  +  

)(
q2

µ+λ+s
 [3.25] 

 

with : q1 = lim       ( )
( )µ+λ+

⋅
s

s0A + ( ))( µ+λ+
µ

s
 = 

µ+λ
µ  

  [3.26] 

 q2 = lim        A0 + 
s
µ   =  A0 - 

µ+λ
µ  

Non-repairable units  

Repairable units  

∆t → 0 

s → 0 

s → -(λ+µ)
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The general expression of the availability of a repairable system is thus given by (see 
Table in Appendix 3.1 for the inverse transforms) 
 

 
( ) ( ) tt ⋅µ+λ⋅

µ+λ
−⋅µ−⋅λ

+
µ+λ

µ
= -00 e

A1A
)A(  [3.27] 

 
Two different initial conditions are possible: 
 
a) the unit is in operating order at the time t=0, i.e. A0 = 1; in this case: 
 

 ( ) tt ⋅µ+λ⋅
µ+λ

λ
+

µ+λ
µ

= -e)A(  [3.28] 

 
b) the unit is out of order at the time t=0, i.e. A0 = 0; in this case: 
 

 ( )[ ]tt ⋅µ+λ−⋅
µ+λ

µ
= -e1)A(  [3.29] 

 
We observe that for large time the asymptotic value, towards which the availability 
tends, is the same in both cases:   
 

 lim  
µ+λ

µ
=)A(t  [3.30] 

 
This behavior of the availability function of a repairable unit is represented 
graphically in figure 3.4. 
 

 
Figure 3.4  Time behavior of repairable unit availability 
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Taking into account that for constant failure and repair rates: 
 

 MTTF  = 
λ

== ∫∫
∞ ⋅λ∞ 1ded)R(
0

-
0

ttt t  [3.31] 

and: 

 MTTR = [ ]
µ

==− ∫∫
∞ ⋅µ∞ 1ded)M(1
0

-
0

ttt t  [3.32] 

 

we deduce that: 
 
 

 
MTTRMTTF

MTTF)A()A(lim
+

=
µ+λ

µ
=∞=t  [3.33] 

or 

 
µ
λ

≈
+

=∞=∞
MTTRMTTF

MTTR)A(-1)(A  [3.34] 

 
In Eq. [3.32], M(t) is the cumulative probability function for the random variable 
characterizing the repair time Tr (i.e. P(Tr ≤ t)). The corresponding density function 
will be noted g(t). We have therefore (analogy with Eq. [3.4]): 
 

 
t
tt

d
)dM()(g =  [3.35] 

 
A summary of the expressions of the main reliability and availability characteristics 
for the model of constant failure and repair rates is given in Table 3.2 
 
Table 3.2 Reliability and availability characteristics for units with const. λ and µ  
 
Non-repairable unit Repairable unit 

Λ(t) = λ = constant 

f(t) = λ⋅exp(-λ⋅t) 

R(t) = exp(-λ⋅t) 

)(R t =  1 – exp(-λ⋅t) 

A(t) = R(t) = exp(-λ⋅t) 

 

)(A t  = 1 – exp(-λ⋅t) 

 

M(t) = 0 

g(t) = 0 

M(t) = 0 

MTTF = 1/λ 

MTTR = ∞ 

Λ(t) = λ = constant 

f(t) = λ⋅exp(-λ⋅t) 

R(t) = exp(-λ⋅t) 

)(R t =  1 – exp(-λ⋅t) 

A(t) = µ/(λ+µ) + [λ/(λ+µ)]⋅exp[-(λ+µ)⋅t], A(0)=1 

A(t) = µ/(λ+µ)⋅{1-exp[-(λ+µ)⋅t]}   A(0)=0 

)(A t  = λ/(λ+µ)⋅{1-exp[-(λ+µ)⋅t]}  A(0)=1 

)(A t  = 1 - µ/(λ+µ)⋅{1-exp[-(λ+µ)⋅t]} A(0)=0 

M(t) = µ = constant 

g(t) = µ⋅exp(-µ⋅t) 

M(t) = 1 − exp(-µ⋅t) 

MTTF = 1/λ 

MTTR = 1/µ 

t → ∞ 
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3.3 Estimation of Reliability Parameters  
 
The basic elements of the estimation theory have been presented in section 2.2. We 
will deal here with the specific question of defining appropriate reliability estimators 
and calculating their confidence intervals.  
 
Assuming the failure rate constant, an estimator of this parameter for a unit in 
continuous operation is given by: 
 

 
f

fˆ
T
N

=λ  [3.36] 

 

where Nf is the total number of failures observed during the cumulating operating 
time Tf. Thus means that the mean time between failures, Tf/Nf, will be equal to 1/ λ̂ , 
in accordance with the fact that MTTF ≈ MTBF = 1/λ (Eq.[3.31]).  
 
Similarly, the failure rate of a unit at rest can in principle be calculated as follows: 
 

 
r

r
r

ˆ
T
N

=λ  [3.37] 

 

where Nr is the total number of failures observed at rest and Tr the cumulated rest 
time. Of course, it could be difficult in practice to become aware that a unit has 
failed while being at rest. 
 
For units operating on demand, the demand failure probability estimator γ̂ is given by 
the ratio of the number Ndf of observed failures to respond to a demand, to the total 
number of demands Nd: 
 

 
d

dfˆ
N
N

=γ  [3.38] 

 
The repair rate (in continuous operation or at rest) can be calculated in a similar way 
as the failure rates in Eqs. [3.36] and [3.37]: 
 

 
rep

repˆ
T
N

=µ  [3.39] 

 
where Nrep is the number of repair processes carried out during the cumulated repair 
time Trep.  
 
Note: if the unit cannot be repaired, it has to be replaced; in such a case, it is more 
appropriate to use the term substitution rate rather than repair rate.  
 
Table 3.3 gives a summary of the way reliability indicators can be estimated from 
observed data.  
 
Table 3.3 Practical estimation of reliability indicators 
 
Relative to failure rate Relative to repair rate 

MTTF ≈ MUT ≈ MTBF ≈ 1/ λ̂  = Tα/Nα MDT ≈ MTTR ≈ 1/ µ̂  = Trep/Nrep 

 
In most cases, the mean time to repair (MTTR) and the mean down time (MDT) are 
very small compared to the operating times (MTTF or MTBF). This justifies the 
approximate relationships used in Table 3.3.  

Reliability estimators 

Failure rate in 
continuous operation 

Failure rate at rest 

Failure rate for 
operation on demand 

Repair rate  
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The reliability parameters being random variables, as pointed out in section 2.2 a 
confidence interval must be associated with the estimators given above, in such a 
way that (for any given parameter p): 
 
 P (pinf ≤ p̂  ≤ psup)  = 1 - α  [3.40] 
 
where pinf and psup are the confidence limits and 1-α is the expected confidence level.  
 
Example: assuming a constant failure rate λ, the number of failures Nf is distributed 
according to a Poisson law. In this case, the confidence limits are given by: 
 

 
f

f
2

2/
inf 2

)2(
T

Nαχ
=λ      ,     

f

f
2

2/1
sup 2

)22(
T

N +χ
=λ α−     [3.41] 

 
( )r2

αχ  is deduced from the chi-square distribution, a special case of the gamma 
distribution, which obeys the equation: 
 

 ( )
( )

( ) ( )
( )

( )2/
2/,2/

2/2

e
F

2

2/
0

t/2-12/
2

2

r
r
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dtt
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Γ
χγ

=
Γ⋅

⋅
=χ

∫
χ −

 [3.42] 

 
The integer r, with r ≥ 1, in this distribution is called the “degree of freedom”. ( )r2

αχ  
is the value of χ2 for which the above expression is equal to α. 
 
As a numerical application, let us consider a set of identical pumps that have 
registered 2 failures during a cumulated operation time of 10’000 hours. The failure 
rate of these pumps can thus be estimated as: 
 

[ ]14 h102
000'10
2ˆ −−==λ  

 
The 90% confidence limits are in these conditions given by: 
 

( ) [ ]15
2

05.0
inf h106.3

000'20
711.0

000'20
4 −−==

χ
=λ  

( ) [ ]14
2

95.0
sup h103.6

000'20
1.12

000'20
6 −−==

χ
=λ  

 
Let us assume now that the set of pumps is observed over a longer cumulated time, 
for example 70’000 hours and that 14 failures are registered in this case. Obviously, 
this does not change the estimation of the failure rate, which remains equal to:  
 

[ ]14 h102
000'70

14ˆ −−==λ  

 
This is however not true for the 90% confidence limits, which here become: 
 

( ) [ ]14
2

05.0
inf h102.1

000'140
9.16

000'140
28 −−==

χ
=λ  

( ) [ ]14
2

95.0
sup h101.3

000'140
8.43

000'140
30 −−==

χ
=λ  

 
The ratio λsup/λinf is thus reduced by a factor greater than six (from 17.5 in the first 
case to 2.6 in the second case). This narrowing of the limits expresses the gain in 
confidence obtained thanks to the longer observation time.  

Confidence intervals  
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The fact that more information leads to improved statistical results is a general 
observation. It is at the root of the most classical application of the Bayes’ theorem 
(section 2.4) in safety/reliability analyses, i.e. as a means of revising failure data. 
When applied in this way, it serves as an important link between axiomatic 
probability and relative frequency probability. Additional information tends to 
modify axiomatic probabilities to yield posterior probabilities closer to the relative 
frequency [McCormick, 1981].  
 
Let us note P(θi|Ig) the prior probability of observing, among n discrete possible 
values, the value θi of the parameter we are interested in, taking into account 
“generic” information only (information about the general design and fabrication of 
the device, about the operating performances of devices of the same kind, etc.).  
 
Now, if after some time experimental data about a specific device become available 
(information of the Is type), a revised estimation of the probability of observing the 
value θi of the parameter can be calculated for this particular device using Bayes’ 
equation: 

 

 ( ) ( ) ( )
( ) ( )∑

=

θ⋅θ

θ⋅θ
=θ n

j
jj

ii
i

1
gsg

gsg
sg

I,IPIP

I,IPIP
I,IP  [3.43] 

with: 
 ( )gIP iθ  : prior estimation of the probability of observing the value θi for 

the parameter of interest, based on generic information only; 
 ( )gs I,IP iθ  : probability that the information of type Is will be observed if 

the value of the parameter is indeed θi and given the knowledge 
of the generic information; 

 ( )sg I,IP iθ  : posterior estimation of the probability of observing the value θi 
for the parameter of interest, given the knowledge of the 
generic and specific information.  

 
The above expressions can easily be generalized to the case where the possible 
values of the parameter of interest are given by a continuous function.  
 
The prior probability ( )gIP iθ  is immediately available if the generic law relative to 
the parameter of interest is fully known for the considered type of device. However, 
sometimes only the upper and lower values that the parameter θ can possibly take are 
known. If the type of probability law can be guessed, the parameters of this last one 
can be estimated assuming that the upper and lower limits define for example a 90% 
confidence interval. 
 
It remains to calculate the ( )gs I,IP iθ  probabilities. If we consider for example that 
the parameter to be estimated is the failure probability on demand γ and that k 
failures had actually been observed on n attempts (demands), ( )gs I,IP iγ  is given by 
(binomial distribution): 
 

 ( ) ( ) ( )( )kn
i

k
ii knk

n −γ−⋅γ⋅
−

=γ 1
!!

!I,IP gs  [3.44] 

 
If the k failures are observed during a cumulated operation time of T hours, the 
distribution of the failure rate λ takes this time the form (Poisson distribution): 
 

 ( ) ( ) ( )T
k
T

i

k
i

i ⋅λ−⋅
⋅λ

=λ exp
!

I,IP gs  [3.45] 

Bayesian estimation  
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Example (adapted from [Lemeur, 1988]): the emergency generating unit of a nuclear 
power plant is assumed to have a prior failure probability on demand distributed 
according to a lognormal law. 
 
Given that the unit had been found to fail to start 5 times on 227 attempts, give the 
posterior distribution taking this new information into account.   
 
The details of the required calculations are given in the following table. 

 
Table 3.4 Detailed calculations of the posterior distribution of the failure 

probability on demand for the considered emergency generating unit 
 

 

 
γi 

A 

( )gIP iγ  

B 

( )gs I,IP iγ  

C   
A *  B 

 

( )sg I,IP iγ  

8.70 10-3 
1.15 10-2 
1.54 10-2 

2.05 10-2 
2.74 10-2 
3.65 10-2 
4.87 10-2 

6.49 10-2 
8.66 10-2 
1.16 10-1 

0.048 
0.054 
0.096 
0.134 
0.161 
0.160 
0.141 
0.097 
0.053 
0.051 

3.44 10-2 
7.41 10-2 
1.33 10-1 
1.75 10-1 
1.56 10-1 
8.10 10-2 
2.02 10-2 

1.88 10-3 
4.33 10-5 
1.45 10-7 

1.65 10-3 
4.00 10-3 
1.27 10-2 
2.35 10-2 
2.50 10-2 
1.30 10-2 
2.85 10-3 
1.82 10-4 
2.29 10-6 
7.40 10-9 

1.99 10-2 
4.83 10-2 
1.54 10-1 
2.83 10-1 
3.02 10-1 
1.56 10-1 
3.44 10-2 
2.20 10-3 
2.77 10-5 
8.92 10-8 

 Lognormal Total   →   8.29 10-2 C/Total 

 
The corresponding graphical representations of the prior and posterior distributions 
are given in Fig. 3.5. 
 

 
Figure 3.5  Prior and posterior distributions of the failure probability on demand  

 
The figure shows that the prior distribution has been, on one hand, shifted towards 
lower probabilities and, on the other hand, narrowed (reduction of the distribution 
dispersion) as could be expected from the use of additional information. 
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Appendix 3.1 Laplace Transform 
 
• General definition of the Laplace transform: 
 
The Laplace transform is a powerful mathematical tool formulated to solve a wide variety of initial-value 
problems. The strategy is to transform the difficult differential equations solving into simple algebra problems 
where solutions can be easily obtained. One then applies the Inverse Laplace transform to retrieve the solutions 
in the original problem space (usually, time space). This can be illustrated as follows: 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Mathematical definition of the Laplace transform: 
 
The Laplace Transform - denoted F(s) - of a function f(t) defined on the interval [0, ∞[ is given by the following 
integral: 
 

L{f(t)}  ≡  F(s)  = ttst∫
∞ − ⋅
0

d)f(e  
 
Where s is real and L is called the Laplace Transform Operator. 
 
For F(s) to exist, it is sufficient (but not necessary) that f(t) fulfill the following conditions: 
 

1) f(t) is piecewise continuous on 0 ≤ t < ∞, 
2) f(t) is of exponential order as t → ∞; that is, there exist real constant K, a and T such that: 
 

|f(t)| ≤ K⋅eat  ,   for all t > T. 
 

• Mathematical definition of the Inverse Laplace Transform: 
 

By definition: 
 

L-1{F(s)} = f(t) 
 
where L-1 is the Inverse Laplace Transform Operator. 
 
For the inverse Laplace transform to exist, it is necessary that: 1) lim   F(s) = 0 and 2) lim  s⋅F(s) remains finite.  

Time space
(variable t)

Laplace space

(variable s)

Initial-Value Problem Algebra Problem

Solution of the
Initial-Value Problem

Solution of the 
Algebra Problem

Laplace Transform

Inverse Laplace 
Transform

difficult
very 
easy

easy

Relatively 
easy

Time space
(variable t)

Laplace space

(variable s)

Initial-Value Problem Algebra Problem

Solution of the
Initial-Value Problem

Solution of the 
Algebra Problem

Laplace Transform

Inverse Laplace 
Transform

difficult
very 
easy

easy

Relatively 
easy

s → ∞ s → ∞ 
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The table below gives some important Laplace transforms and Laplace transform properties: 
 

Function Laplace Transform Function Laplace Transform 

1 
s
1  t 

2
1
s

 

t n                            n ∈ Z > 0 1
!
+ns

n  t a                                        a > 0 
( )

1
1

+

+Γ
as

a  

Hc(t)                Heaviside 
                    step function s

s-ce                      c ≥ 0 eat 
as −

1                    s > a 

( )
t

n

n
t a-

1
e

!1
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−

 ( )nas +

1 , n = 1, 2, 3 … 1- e-at ( )ass
a
+⋅

 

( ) [ ]tt b-a- ee
ba

1
−⋅

−
 ( ) ( )ba

1
+⋅+ ss

     b ≠ a 
( ) ( )a-bb

e
b-aa

e
ab
1 -b-a

⋅
+

⋅
+

tt
 ( ) ( )ba

1
+⋅+⋅ sss

   b ≠ a 

( ) [ ]tt b-a- ebea
ba

1
⋅−⋅⋅

−
 ( ) ( )ba +⋅+ ss

s      b ≠ a t

t
a-e1

⋅
π

 
a

1
+s

 

δ(t-c)                       Dirac s-ce                        c > 0 
( )

( )βΓ
⋅⋅λ λ−ββ t-1 et    Gamma ( )β

β

λ+

λ

s
 

cos(ωt) 22 ϖ+s
s  sin(ωt) 22 ϖ+

ϖ

s
 

cosh(ωt) 22 ϖ−s
s             s > |ω| sinh(ωt) 22 ϖ−

ϖ

s
            s > |ω| 

J0(at)    zero-order Bessel 
22 a

1

+s
 I0(at)       Modified Bessel 

22 a

1

−s
 

)a(J
a 1 tt

⋅⎟
⎠

⎞
⎜
⎝

⎛  ( ) 2/322 a

1

+s
 )a(I

a 1 tt
⋅⎟

⎠

⎞
⎜
⎝

⎛  ( ) 2/322 a

1

−s
 

t
t

d
)f(d  

 

s⋅F(s) – f(0) 
kd

)f(d
t

tk
 

−⋅⋅ − )f(0-)F( 1kk sss  

0
1

1

0

2

d

fd
...

d
df

−
− −⋅

k

k-
k

tt
s  

∫
t

tt
0

'd)'f(  )F(
s
1 s⋅  ∫

∞

0
'd)'f( tt  F(0) 
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Function Laplace Transform Function Laplace Transform 

f(at)                    a > 0 ⎟
⎠
⎞

⎜
⎝
⎛⋅

a
F

a
1 s  f(t –a) e-as⋅F(s) 

Convolution integral 

ττ⋅τ−∫ d)(g)f(
0

t
t  F(s)⋅G(s) eat⋅f(t) F(s-a) 

 
 
The Laplace transform has moreover the following interesting properties: 
 

lim f(t) =  lim s⋅F(s) 
 
 

lim f(t) =  lim s⋅F(s) 
 

 
• Inverse Laplace Transform of the ratio of two polynomials in s: 

 
Consider the following Laplace transform function: 
 

)R(
)Q(  )F(

s
ss = ,           with R(s) = (s-a1)⋅(s-a2) . . . (s-an) 

 
Q(s) and R(s) are two polynomials in s, with degree Q(s) < degree R(s). 
 
In this case, F(s) can be written as follows: 
 

( )
)R(

a-)Q(
lim)q(awith,

a-
)q(a

)F(
1 s

ss
s

s i
i

n

i i

i ⋅
== ∑

=

 

 
The inverse transform of 1/(s-ai) being the function exp(ait) (see Table above), f(t) takes thus the form: 
 

( ) t
i

n

i
i

it a

1
eaq    )f( ⋅= ∑

=

 

 
• Laplace Transforms in the case of the sum of random variables: 

 
Consider for example two independent random variables X and Y with probability distributions f1(x) and f2(y) 
respectively. If Z is the random variable corresponding to the sum of X and Y, its probability distribution is 
given by: 
 

( ) ( ) ( ) ( ) ( ) xxxzxxzxz
zz

dffdfff 21020 1Z ⋅−=−⋅= ∫∫  

 
Therefore (see Table): 
 

L[fZ(z)] = L[f1(x)]⋅ L[f2(y)] 
 
This example can straightforwardly be generalized to the case of the sum of n > 2 random variables. 
 
 
 
 

t → ∞

s → ∞

s → 0

t → 0

s → ai
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