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Safety Analysis

2.1 Elements of Probability Theory

The basic nature of Probability theory plays a central role in risk analysis. Failure data are basically of a

failure data stochastic nature, involving ever-changing components and environmental
conditions. This means that even under perfect measurement conditions, failure data
for a single event cannot be determined by a one-and-only test but rather must be
evaluated from a great number of independent observations and describe as a
statistical distribution rather than a single value.

The task of the risk engineer is to gather and select all the pertinent data - sometimes
the most probable, sometimes the most unfavorable (according to the circumstances)
- needed to tackle the problem considered, evaluate their quality and predict on this
basis the expected (most probable) outcomes or consequences. Risk analysis thus
involves a phase of statistical evaluation (often only in a rudimentary form, for lack
of information) and a phase of probabilistic analysis (“what is the probability that a
given value has to be taken into account?”, “what is the occurrence probability of a
given fracture mode?”, etc.).

Statistics & probability  In the modern sense of these words, “statistics” is defined as:

“the set of mathematical interpretation techniques applied to phenomena for
which an exhaustive study of all involved factors is impossible because of
their great number and/or complexity”,

and “probability” as:

“a measure of the degree of belief that an event (possible but not certain)
will occur”.

Different events may have different levels of probability, depending whether we
think that they are more likely to be true or false (Fig. 2.1).
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Figure 2.1 Probability: from certain to uncertain
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Defining probability as “degree of belief” seems “a priori” too vague to be of any
use; we need, then, some explanation of its meaning, a tool to evaluate it. There are
in fact two basic interpretation of probability: the relative frequency approach and
the axiomatic or subjective approach. The relative frequency interpretation requires
that a sample space Q be defined, with event E being a member of Q. If event E
occurs x number of times out of a number N of repeated identical experiments, then
the probability P(E) of the outcome of event E is given by:

P(E) = lim % [2.1]

N—o0

For fixed N, the quantity x/N is the relative frequency of occurrence of E. Since it is
obviously impossible to actually conduct an infinite number of trials, P(E) is in
practice approximated by the relative frequency of occurrence calculated for a finite
value N. The law of large numbers and the central limit theorem provide a
justification that the estimation of P(E) improves with increasing values of N (the
larger N, the better the estimation of P(E)).

A slightly different formulation is that, “classical”, of Laplace, which states that if
there are N exhaustive, mutually exclusive and equally likely cases and m of them
are favorable to an event E, the probability of E happening is defined as:

P(E) = m number of favorable outcomes

— - [2.2]
N  total number of possible outcomes

For example, the probability of randomly drawing a king from a well-shuffled deck
of cards is 4/52. Since 4 is the number of favorable outcomes (i.e. 4 kings of
diamond, spade, club and heart) and 52 is the number of total outcomes (the number
of cards in a deck). This definition of probability is coherent with the concept of
probability measuring numerically the degree of certainty or uncertainty of the
occurrence of an event.

By definition, the relative frequency interpretation is only applicable when dealing
with experiments that can be indefinitely repeated. There are many occasions
however in the safety/reliability field when this is not the case, in particular in the
common situation when the engineers have to consider rarely occurring events. Then
it is necessary to resort to the axiomatic or subjective approach.

The axiomatic interpretation goes back to the literal definition of probability given
above, i.e. probability is nothing more than a measure of uncertainty about the
likelihood of an event. Stated more precisely, “a probability assignment is a
numerical encoding of a state of knowledge when facing uncertainty”. To get a better
understanding of the subjective definition of probability, let us take the example of
odds in betting. It seems reasonable to assume that the amount of money A that
someone is willing to pay in order to possibly receive a sum of money B should an
event E occurs, is directly proportional to the degree of belief of the better in the
actual occurrence of this event. To make a coherent bet, if p is the numerical
evaluation of this degree of belief (“probability”) then our man should not stake
more than p-B (in any case, to be worth betting, A should obviously always be
strictly smaller than B) Weather forecasting is another example of subjective
approach (though a meteorologist might feel offended to hear that evaluating the
probability of rain tomorrow is “not objective!). Saying that the probability of rain
tomorrow is for example 60% doesn’t mean of course that it will rain 60%; it will
rain (100% occurrence) or it will not rain (0% occurrence). The information is
nevertheless useful to decide (or “bet”) that it will be wise to take an umbrella when
going out. In the same way, evaluating at 5% the probability that a bridge could
collapse under the load of a specific vehicle doesn’t mean that the bridge in question
will collapse 5% (the bridge will either hold on or break), but it will serve deciding if
the bridge should be closed to this type of vehicle or not.
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Stochastic variables

A stochastic (or random) variable is by definition a function X that maps from the
sample space Q to the real numbers R. Stated differently, a variable is a stochastic
variable if the possible values of the variable have different probabilities.

A stochastic variable can be discrete or continuous. For example, the variable X
representing the two possible positions — “open” (value: 1) or “close” (value: 0) — of
a dam gate is a discrete variable, whereas the variable representing the elastic limit of
the steel used to make a reinforcing bar is a continuous variable that can take any
value between 0 and infinity.

As each value of a stochastic variable is associated to an occurrence probability, the
description of the whole set of values is given under the form of a probability
distribution function, Fx(x), also called cumulative probability function:

Fx(X) = P(X<X), ¥ X [2.3]

From this definition it follows that the function Fx takes values comprised in the
interval [0, 1] when x varies within the range of Xmin (Xmin = - %) t0 Xmax (Xmax > Xmin;
Xmax < + 00). This function is moreover characterized by the following properties:

- F is monotonic and non-decreasing;

. Fx(x) > 0;
. Fx(Xmin) = 0;
 Fx(Xma) = 1,

If X is a function that takes only discrete values (X1, X2, ...Xj, ... Xn), then Fx(x) is
given by:

Fx () =P(X<x) = Y P(X=x)= D px(X) [2.4]

Xj <X X; <X

where the px(X;) are the probabilities (relative “weights”) associated to the different
possible values x;.

In the case of a continuous variable, the equivalent of equation [2.4] takes the form:

Fe(X) =P(X <x) = jfx (u) du [2.5]

Xmin
where fy(x) is the probability density, also simply called distribution.

A schematic representation of these two different cases is given in figure 2.2.
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Figure 2.2 Variable distributions (a) discrete, (b) continuous
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Note that it is necessary to bring in the Jacobian of the transformation when
changing the variable of a probability density function, e.g. from fx(x) to fy(y):

fy(y) = ‘j—;‘ 0], [26]

For example, if we want to express in terms of the variable t, with t = exp(r), a
probability density function f,(t), the new probability density function will take the
form:

1:In(t) = t_l’fn(r) | t=Int

By definition, the moment of order n (with respect to the origin) is, for a given
distribution, given by:

nk = > 06)" - px () [2.7]
i
when the stochastic variable is discrete, and by:
Xmax
nd = jx X" fx () dx [2.8]

when the stochastic variable is continuous.

The first-order moment (n=1) is the mean value or mathematical expectation (E[X])
of the variable X. When a sample of limited size is considered, rather than the whole
sample population, the mean is noted X. Finding a statistic estimator of puy consists
in putting ux = X.

The moment of second order with respect to the mean value is the variance. For a
discrete variable, the variance thus takes the form:

VIX]= > (% —ux )P - px (%) [2.9]
i
and for a continuous variable:

VIX]= (0% )= J(x— p P - fx () o [2.10]

where oy is the standard deviation. As above for the mean value, for a sample of
limited size the standard deviation is noted sx, with sx = ox.

The ratio between the standard deviation and the mean value is called coefficient of
variation:

CoV[x]=2% [2.11]
Hx

This coefficient is of course meaningful only for the distributions having a mean
value different from zero.

Some useful distributions in the context of risk/reliability analysis are briefly
presented below. A general recapitulative table is given in Appendix 2.1.
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Discrete distributions The discrete uniform distribution is one of the simplest probability distributions. In
this distribution, all values of the random variable are assigned identical
probabilities. There are many situations in which the discrete distribution arises, e.g.
the outcome of the throw of a single die (Fig. 2.3).
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Figure 2.3 Example of a discrete uniform distribution

The binomial distribution characterizes experiments (Bernouilli sequences) that
satisfy the following conditions:

1.there are only two possible outcomes on each trial of the experiment; one of the
outcome is usually referred to as a success and the other as a failure;

2.the occurrence probabilities of each of the outcomes (success, probability p, or
failure, probability q=1-p) in a trial are constant;

3. the experiment consists of n identical, statistically independent, trials.

Tossing a coin 4 times and recording the number of heads is a simple example of
such an experiment (Fig. 2.4).
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5 p
The binomial random variable is the count of the number of successes in n trials. The
] probability of obtaining x successes in n trials is given by the binomial distribution:

001 2 3 4 3 5 7 % % L1

Binomial distribution PX=x)=CR p*@-p)"™* x=012,..n [2.12]
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CY (binomial coefficient) represents the number of possible combinations of n
objects taken x at the time (without replacement); it is given by:

cn n!

VTP 2.13
* x4{n - x) [2.13]
For example, the probability that x = 3 in the example of Fig. 2.4, given that n = 4 et
p = 0.5, takes the value:

3 (4-3)
p(x:g):L.(l} .(1_1j :i:0.25
A[@4-3)" \2 2 16

Let us consider as another example, the case of a hospital manager who considers
buying three diesel generator sets for power backup. He estimates at 80% the
probability that a given make of generator set will remain operational for at least four
years (success). Calculate the probability that x (x = 0, 1, 2, 3) generators of this type
are still operational after four years.

The binomial random variable X to consider is here the number of operational
generator sets after four years. The probability of success p is equal to 0.80 and n =
3. The answer to the question is thus given by the binomial distribution of figure 2.5.

P(X = Xx) Fx (X) 1000
1.0 1.0
0.8 0.8
0.6 0.512 0.6 0.488
04 0.384 0.4
0.2 0.096 _ 0.2 0.104
00008 | 0.0 0.008 ] | |
0 1 2 3 1 2 3 4
X X

Figure 2.5 Binomial distribution of operational generators after four years

The expected value of a binomial random variable can be computed using the
expression:

E[X] = np [2.14]
and its variance using the expression:
VIX] = n-p-q = n-p-(1-p) [2.15]

In a Bernouilli sequence, the number of trials until the first occurrence of an event is
given by the geometric distribution. If the first success takes place after the t" trial,
this means that only failures were observed in the t-1 preceding trials. Thus, if T is
the random variable:

P(T=t)= p(1-p) " [2.16]
which is a geometric distribution.

The recurrence time between two events in a Bernouilli sequence is characterized by
a geometric distribution.
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Poisson distribution

The mean recurrence time, also known under the name return period, is given by:

Tog[r-3t p-a-pi=t [2.17]
t=1 P
Moreover (variance):
v[T]= 1"—2'0 [2.18]
p

Example: a wind turbine is designed to withstand a wind having a return period of 50
years. What is the probability that this wind will be exceeded for the first time 5
years after the wind turbine is brought into service?

The yearly occurrence probability of the design wind is given by:

1 1

===—=0.02
P T 50

The answer to the question is thus:
P(T =5) = 0.02-(1 - 0.02)* = 0.018

The Poisson distribution is similar to the binomial in that the random variable
represents a count of the total number of "successes". The major difference between
these two distributions is that the Poisson does not have a fixed number of trials.
Instead, the Poisson distribution uses a fixed interval of time or space in which the
number of "successes" is recorded.

Many engineer’s problems concern possible occurrences of events distributed in time
or space (fatigue rupture anywhere on a cable, pump failures, earthquakes, ...).
These could be represented by a Bernouilli sequence if time or space were
discretized, but in this case the event considered could happen only once (occurrence
or non-occurrence) in the given interval. In the general case, a Poisson process is thus
a better model for such "experiments".

In order to qualify as a Poisson random variable, an experiment must meet the three
following conditions:

1. an event can take place randomly at any point in time or space; "successes™ occur
one at a time; that is, two or more "successes” cannot occur at exactly the same
point in time or exactly at the same point in space;

2. the occurrence of a "success" in any interval is independent of the occurrence of
the "successes" in another interval;

3. the occurrence probability of a "success" in a small interval At (time or space) is
proportional to At.

The number of occurrences X, of an event in a (time or space) interval t is in these
conditions given by a Poisson distribution:

X
P(X;=x)=e™* % [2.19]

where A is the mean number of occurrences of the event in the interval t, which can
also be written A = v, with v the mean occurrence frequency.

The expected value and variance are respectively given by:

E[X] = V[X] = A [2.20]
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Example: the number of calls received by the dispatching office of a gas utility on

Monday morning between 8:00 a.m. and 9:00 a.m. has a Poisson distribution with }
A equal to 4.0. Determine the probability of getting no call between eight and nine in
the morning.

With X; = the number of calls received between 8:00 a.m. and 9:00 a.m.:

A4 X -4 40
P[X,=0] =& Ix =8 014 ~ 0.0183
X! !

The expected number of calls during the same period is 4.0 and the variance is also
4.0.

The hypergeometric distribution , like the binomial distribution, counts the number
of "successes" in n trials of an experiment and describes the behavior of a random
variable that has only two possible outcomes on each trial of the experiment. It
differs however from the binomial distribution in the lack of independence between
trials, which implies that the probability of "success" vary between trials. In addition,
hypergeometric distributions have finite populations in which the total number of
"successes" and "failures" are known.

If N is the total population, S the total number of "successes™ possible and n the size
of the sample drawn, the hypergeometric probability distribution function takes the
form:

S N-S
_ Cx i Cnfx

ch

P(X = x) [2.21]

where 0 < x < minimum of [S, n].

Example: suppose that a shipment from a semiconductor manufacturer contains 30
memory ships of which two are defective. If a memory board requires 16 ships, what
is the probability distribution for the number of defective ships on the memory
board?

The random variable to consider here is X = number of defective ships on the
memory board. The parameters of the distribution are:

S =2 ("success" in this case means a defective ship);
N = 30;
n=16..

The maximum value of X in this case is 2.

c§ - ciad =0.209 ; P(X =1) = 0.515 ; P(X = 2) = 0.276
—02160 — 0209 ; P(X =1) = 0.515 ; P(X =2) = 0.

P(X=0)= S
16

The expected value of a hypergeometric variable is given by:
S
E[X]=n N [2.22]

and its variance by:

N N-1

V[x] = {n-%(l—ij}- N-n [2.23]
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Continuous distributions
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Uniform distribution

As in the discrete case, the uniform distribution is, from a mathematical viewpoint,
the simplest of the continuous distribution functions. In this distribution, the
probability density is spread out evenly over some range from a to b (the two
parameters of the distribution) as shown in the figure on the left (upper part).

The mathematical expression of the uniform distribution is therefore given by:

! azuih
fix) = = B-2 [2.24]

1] otherarise

The expected value (mean) of the continuous uniform stochastic variable is:

E[x]=2 ; b [2.25]
and its variance is:
2
V[x] = (b _za) [2.26]

The probability of observing a stochastic variable in some interval is expressed as
the area under the density function associated with this interval. Because the density
function for the uniform distribution has the shape of a rectangle, calculating the
probability for an interval is straightforward.

Example: suppose that a spent nuclear fuel is to be transported along a 100km-long
railway. The occurrence probability of an accident is assumed to be uniform along
the 100 km of this railway. If X is the stochastic variable giving the distance (from
km 0) to the place of the accident, what is the probability to have an accident
between km 20 and km 35 (should an accident arise)?

The distribution of the variable X is uniform, therefore:

Fl )
fx=c 0<c<100 1 T
BT
. 1 1
with c=—— = —
100-0 100 oo . >
n] 100 &
A& Fxl)

The probability distribution function is given
by: o

X
X
X)=|cdx=cCc-Xx=— 0<x<100
Fx (X) { 105

0.0 : .
0 g F
Thus, the probability to have an accident between km 20 and km 35 can easily be
calculated as follows:

35
P(20<x<35)= [cdx =
20

35-20 _ 015
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The normal distribution is incontestably the best known of the continuous
distributions. It was originally called the Gaussian distribution, named after Karl
Gauss who published a work in 1833 describing the mathematical definition of this
distribution, which he developed to describe the error in predicting the orbits of
planets.

The general mathematical expression of the normal distribution is:

(x-p)?
1 o 2d [2.27]

fx (x) =

oV2n

The two parameters are p (mean) and o (variance). For this reason, the normal
distribution is often written N(u, o) in abbreviated form. The special case of normal
distribution with a mean p of zero and standard deviation o of one, i.e. N(0, 1), is
called the standard normal. This is how the normal distribution is usually tabulated;
the technique used to translate any normal stochastic variable into a standard one is
called a z-transform:

=Xk [2.28]

Example: measures made in view of the construction of a hydroelectric scheme have
shown that the annual precipitations in a given catchment area can be represented by
a normal distribution N(120 cm, 30 cm). What is the probability that the precipitation
will exceed 60 cm?

z-transform of the original x value (60 cm) gives in this case:

,_60-120
30

Tables give 0.47725 for the area under the standard normal curve comprised between
the abscissas z=0 and z=2. Taking into account the symmetry of the normal
distribution, this corresponds also to the area under the curve between z=-2 and z=0.
To find the answer to the question (probability that the precipitations will exceed 60
cm) it suffices to add 0.5 to the above value to take into account the half distribution
to the right of the zero axis, thus P(X > 60 cm) = 0.97725.

One of the most important properties of normal stochastic variables is that within a
fixed number of standard deviations from the mean, all normals contain the same
fraction of their probabilities. For example, the probabilities of being within one
standard deviation (£ 1 &), two standard deviations (+ 2 o) and three standard
deviations (= 3 o) of the mean equal respectively 0.683 (68.3%), 0.954 (95.4%) and
0.997 (99.7%). This explains why in parametric sensitivity studies, the analysis is
often limited to values situated within three standard deviations from the mean (see
Fig. 2.6).

1 a 1 z a 4 .4 -3 -1 -1 (8] 2 3 4 4 1 0 1

68.3% 95.4% 99.7%

z 3 4

Figure 2.6 Probabilities of being within, one, two or three standard deviations
from the mean in a normal distribution
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Although the (symmetrical) distribution can range in value from minus infinity to
positive infinity, values that are a great distance from the mean rarely occur.
Therefore, even if in principle the normal distribution is not well adapted to variables
for which negative values are physically ruled out (disintegration time of a
radionuclide for example), it constitutes nevertheless a good and suitable
approximation in cases where the COV (coefficient of variation) is less than 30%.

The normal distribution can also be used to approximate discrete distributions,
specially the binomial and the Poisson. This can prove very useful because as n
becomes large, calculating these probabilities can become time consuming. Indeed,
the larger the value of n, the more accurate the approximation. In the case of the
binomial distribution, the approximation is generally reasonable when the mean np
is greater or equal to 5 and n-(1-p) is also greater than or equal to 5. The
approximation becomes quite good when these values are greater than 10.
Approximating a binomial distribution by a normal one requires that both
distributions have the same mean and variance:

p=np and o’=n-p.(1-p) [2.29]

Example: to approximate a binomial distribution with n = 20 and p = 0.5 will require
a normal distribution with:

1=(20)(05)=10 and o= (20-0.5):(1-0.5)=5

In the same way, to approximate a Poisson distribution by a normal one, the mean
and variance of the normal should be set to the mean and variance of the Poisson.
Since the mean and variance of the Poisson distribution are both A, the appropriate
mean and variance for the normal would be:

p=oc’=2A [2.30]

Example: a company manufacturing metal sheets estimates that the number of
defects on a 10” by 10’ sheet of metal follows a Poisson distribution with an average
defect rate of 5 per sheet. Find the probability of observing at least 10 defects per
sheet.

Let X be the number of defects on a 10° by 10’ metal sheet. X has a Poisson
distribution with a mean and variance of 5. Using the normal distribution with the
same mean and variance to approximate the Poisson, the answer is given by:

x-p 10-5

75

Tables give 0.4875 for the area under the standard normal curve comprised between
the abscissas z=0 and z=2.24. Therefore, the probability of observing at least 10
defects per sheet is approximately equal to 0.5-0.4875 = 0.0125 (the exact answer
would be 0.0317).

P(X>10)=P(z >

=2.24)

A distribution closely related to the normal distribution is the lognormal distribution.
A variable X is lognormally distributed if Y = In(X) is normally distributed. The
general formula for the probability density function of the lognormal distribution is
(taking the relation [2.6] into account):

o-(inx-p)? /20
X-0-4/27

The lognormal distribution is applicable when the quantity of interest must be
positive, since In x exists only for positive values of x.

fx(x) = X>20;u,0>0 [2.31]



32 P.-A. Haldi: Reliability & Safety Analysis

The exponential distribution is a commonly used distribution in reliability
engineering. The exponential distribution is a probability density with only one
parameter, A. It is characterized by the fact that its standard deviation is equal to the
mean, i.e. its coefficient of variation is 1 (100%). As in the previous case, this
distribution is defined only for positive values of the variable.

This distribution can describe a number of physical phenomena, such as the time for
a radioactive nucleus to decay, or the time for a component to fail. This distribution
describes more generally the random variable T, corresponding to the waiting time
till the occurrence of the first event in a process governed by a Poisson law.
According to [2.19], we have in this case:

P(Ty>t) =P(X;=0)=e”=¢"! [2.32]

The complement of this expression is precisely the cumulative function of the
distribution we are interested in:

Fr) =P(Ty<t)=1-¢" [2.33]

Its derivative (relative to t) gives therefore the mathematical expression of the
exponential distribution (substituting here v.t — A-x):

fx(x) = 1-e™* [2.34]
The mean and variance of the exponential distribution are given by :
E[X]=1/A,  V[X]=1/? [2.35]

Example: suppose that the lifetime of a certain electronic component (in hours) is
exponentially distributed with rate parameter v = 0.001.Find the probability that the
component lasts at least 2000 hours.

Let T be the stochastic variable denoting the lifetime of the component, then (Eg.
[2.32]):

P(T > 2000) = ¢ ©%+20%) = 0 1353

Note that the exponential distribution is generally not very useful in modeling data in
the real world. The exponential distribution is only useful for items that have a
constant failure rate. This means that the population should have no wear-out
or infancy problems.

The exponential distribution possesses a special property called the memoryless
property. Suppose that a device (e.g. safety valve) has a lifetime that can be modeled
as an exponential distribution. Then the probability that a new device survives t units
of time is (Eq. [2.32]):

PMT>t)=1-P(T<t)=e™

Now suppose that an identical device has already survived s units of time. We can
think of s as the age of the device. What is the probability that this device survives
an additional t units of time? The event of interest here is the event that the device
survives past time s+t. This probability is a conditional probability since we are
given that lifetime of this device must be greater than its current age s. Therefore:

PX>sand X >s+t) e ()
P(X > ) oS

P(X >s+t|X>s) = =M =p(X>t)

That is, the probability that a used device survives an additional t units of time is the
same for the used device (with age s) as it is for the new device.

o

0

1% 2 306 4% =

Exponential distribution
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Weibull distributions

The exponential distribution is a particular case of the more general Weibull
distribution, named in honor of Wallodi Weibull (Swedish materials science
engineer, 1887-1979). The Weibull family of distributions is immensely popular in
reliability theory, because of the many shapes it attains for various values of its
parameters. It can therefore model a great variety of data and life characteristics.

The formula for the probability density function of the general Weibull distribution,
defined from zero to positive infinity, is:

(p-1)
fy (X) = B«[%J oexp{—[(x—p)/a]ﬁ} X>u B, a>0 [2.36]

(0]

where B is the shape parameter, p is the location parameter, and o is the scale
parameter. The case where u = 0 and o = 1 is called the standard Weibull

©distribution. The case where onlyu = 0 is called the two-parameter Weibull

distribution.

Note that the general form of probability functions can always be expressed in term
of the standard distribution (see normal distribution).

The mean and variance of the general Weibull are respectively given by:

Ex]=pn+a-T@+1/p) [2.37]
V[ = o2 .[r0+ 2/) - T2 +1/p)| [2.38]

where I is the gamma function:

I(a)= Tu(a_l) -exp(-u) du [2.39]
0

When B = 1, the two-parameter Weibull distribution reduces to the exponential
distribution with scale parameter a.. The special case B = 2, is called the Rayleigh
distribution with scale parameter a..

The B value gives clues about the failure mechanism:
— B <1 implies “infant illnesses” (decreasing failure rate);

— B =1 implies random failures, i.e. independent of time, an old device is as good as
a new device (see exponential distribution);

— 1< B <4 implies early wear out (increasing failure rate), due possibly to low
cycle fatigue, bearing failures, corrosion, erosion;

— B > 4 implies old age and rapid wear out; typical failure modes involve some
material properties, some corrosion and erosion.

Example: the lifetime T (in hours) of a fuel pump follows a two-parameter Weibull
life distribution model with shape parameter B = 1.5 and scale parameter a. = 8’000.
If a typical fuel pump is used 800 hours a year, what proportion is likely to fail within
5 years?

The cumulative probability function for a two-parameter Weibull distribution is:

Fr(t) = 1 - exp{-(t/)"}

The probability P(T < 800-5) is thus 0.2978; this means that about 30% of the pumps
will fail in the first 5 years.
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The beta distribution is another versatile two-parameter family of distributions that
has special importance in probability and statistics. The beta distribution presents the
characteristic to be defined over a finite range, with end points a and b (real
numbers); it is therefore often used for representing processes with natural lower and
upper bounds. Depending on the values of its parameters, the beta distribution
generated will have the “U”, the “J”, the triangle or the general bell shape of the
unimodal function..

The general formula for the probability density function of the beta distribution is:

_ 1 (x-a) T b-xf .
fx(x) = Bloup) b_a) P as<x<b;o,p>0

[2.40]
fx(x)=0 outside of this range

where a and 3 are the shape parameters, and B(a., ) is the beta function, given by:

1
B(a, p) = [u Y. - u)fHau [2.41]
0

The beta function can be written in terms of the gamma function (Eq. [2.39]) as
follows:

B(a, B) = I'(a)-T'(B)/T (a+B) [2.42]

The case where a = 0 and b = 1 is called the standard beta distribution. The equation
for the standard distribution thus is:

fx(x) = M X(x—l . (1_ X)B_l 0<x< 1, a, B >0 [2.43] 0 02 04 06 08 1y
F((’*)' F(B) Standard beta distributions

The beta distribution is different from the other distributions in that it is defined in
terms of its lower and upper bounds rather than in terms of location and scale.
However, the location and scale parameters are related to the lower and upper
bounds as follows:

location =a scale=b-a [2.44]

The mean and variance of the beta distribution are:

E[X]=a+ (b-a) [2.45]

o+p

_ a-f (b—aP
V[X]_((x+[3)2-(oc+[3+l) (b-a) [2.46]

Estimating the o and 3 parameters is controlled by data availability. Let us consider
the case where a and b are known, and estimates of the mean, X, and the variance,
Sx, are available. In this case, the parameters o and 3 are given by [Engineering
Statistics Handbook, 2003]:

S R

= 2
where: x=2-2. 5% = (S—Xj [2.48]
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Multivariate distributions When outcomes depend on more than one parameter, a multivariate distribution
function must be defined:

P(Xlgxl; Xo<Xo; .. XnSXn) = Fxlxz ‘_.Xn(Xl, X2, ...Xn) =

X X Xn
I J. Ifxlxz___xn(ul,UZ,...Un)dUldUZ...dUn [249]
Ximin X2min Xn,min

where: Fy, x, ...xn(le X, ...Xn) is the multivariate cumulative probability function,

and:  fy x,  x. (¥, %p,...X,) is the joint distribution function.

The case of a bivariate distribution is represented in Fig. 2.7.

‘ f fx (X) !

fv (V)
i
fl e
X=a
%y (X, y=
Area
e
ty= , R
fv (b) = Area— Surface = fxy (X, y)

fxy (x:a, y)
Figure 2.7 Bivariate distribution (source: Prof. L. Vulliet)

The second joint moment relative to the means uy and py is called covariance of X
and Y:

Cov[X, Y] = E[(X - (Y - w)] = E[Y, Y] - E[X]-E[Y] [2.50]
The covariance measures the degree of correlation between the variables X and Y; if
the variables X and Y are statistically independent, Cov[X, Y] = 0. Instead of the

covariance, it is often considered more meaningful to use its normalized expression,
the correlation coefficient p, defined as:

Cov|X,Y
| _ Coux.]

Ox 'Oy

[2.51]

Example: the bivariate normal distribution is given by:

fxy (X y) = : -exp{— : }
o ZTEG)(Gy\/l—pZ 2‘;—92)

_ (x—px )} ZP(X—HX)'(Y—HY)+ (y-—py)
Ox Gx Oy Sy

where: z
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2.2 Elements of Estimation Theory

The calculation of the occurrence probability of a given event will be based on the
use of an appropriate probability distribution. However, neither the shape (type), nor
the parameters of this distribution are known a priori. These should be inferred from
the observation of the physical system of interest. It is the goal of the estimation
theory to provide a mean of calculating suitable estimates of quantities based on
observations of physical systems.

The problem regarding such estimates is that we usually don’t have statistics about a
whole population but only about some finite-sized sample(s) drawn from the
population in question. The task is then, given the observable variables, to determine
as accurately as possible the actual distribution and the value of its parameters. This
is called statistical inference and estimation (Fig. 2.8). In this context, parameters are
assumed to be themselves random quantities related statistically to the observation.

“Real World” Theoretical Model Experiment
Stochastic variable X _SamP'e
(observation, life test, etc.):
Real number
-0 < X<+ 00 (X1, X2, ++x Xp)
with distribution fy(x)
Real histo m
population |::> () Statistical Istogre
inference
X X
. _ - Statistical - 1
Mean :ux = X X—F'in
Variance: 2 _ .2 2 _ 1 <Y
o2 =s sy =——- X; — X
X7 ostimation « n-1 Z‘( %)

Figure 2.8 Statistical inference and evaluation (adapted from: Prof. L. Vulliet)

The estimation process results in inherent uncertainties affecting for example the
moments (mean, variance, etc.) of the distribution, and therefore the numerical
results of risk analysis.

The moments of a distribution allows us to determine the parameters of this
distribution. In the case of a normal distribution, the parameters p and o are directly
the moments of first order relative to the origin and of second order relative to the
mean respectively. For the other distributions, the reader is referred to the table given
in Appendix 2.1.

It is natural to consider that the moments of a sample constitute a first approximation
of the moments corresponding to the whole population. This is the basic principle of
the moment method of point estimation. Thus, the point estimate of the population
mean can be approximated by the mean of the sample, i.e.:

1
x:?in

i=1

[2.52]

Relationships between a
population and samples
drawn from it

Moment method of point
estimation
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In the same way, a first approximation of the variance relative to the whole
population is simply given by

1 n
== (5 -X)f [2.53]
nia

The sample mean as calculated in Eg. [2.52] is an unbiased estimate i, of the
population mean py. An estimate is said to be unbiased if the expected value of the
estimate equals the true value of the parameter. When we have a biased estimate, the
bias usually depends on the number of observations n. That’s the case of the variance
estimate given in Eq. [2.53]. To obtain an unbiased estimate of the population

variance ci , it is necessary to use instead the following expression:

2 n

n
62 = izLZx—x [2.54]

n-1 n-1=

Now suppose all possible samples of size n are drawn without replacement from a
whole population of size np > n. If the mean and variance of the sampling
distribution of the mean are denoted by 5 and c respectively, and the mean and
variance of the whole population by py and cx as always then [McCormick, 1981]:

6% (np—n
A [2.56]
x n \(np-1

In the case where the population is infinite, or the sampling is done with replace-
ment, Eq. [2.56] simplifies to:

2
o2 =% [2.57]
n

For large enough n, say n > 30, the sampling distribution of means follows
approximately a normal distribution with mean . and variance Gzi , irrespective of
the size of np (provided np > 2n). The sampling distribution of means is said to be
asymptotically normal.

Example: ball bearings used in a wind turbine system come from a batch in which
the mean mass is12 g with a standard deviation of 0.30 g. If a sample of 100 ball
bearings is chosen from a total population of 500, uy =12 g and:

0.30g (500 -100

oy = . = 0.027
X Jioo V 500-1 J
If the batch population was infinite, or the sampling made with replacement, the
standard deviation will be:
0.30g
oy = —— = 0.030g
X 100

The equations used to obtain point estimates in reliability analyses depend upon the
type of experiment the samples are subjected to during a life test. There are two main
possibilities; either the life test is terminated at a given time t, before all n items have
failed (Type I censoring of the life test), or censoring occurs when a predetermined
number of items have failed (k < n), independently of the time needed to achieve this
result (Type Il censoring).
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If the times t;, t5, ... t, represent the actual failure times observed for a set of n
identical units, then a unbiased estimator of the mean time to failure, defined by:

pr = [t-f(t) ot [2.58]
0
is (from Eq. [2.52]):
~ 1<
fr ==t [2.59]
n i
For the variance, defined by:
of = [(t—nrf () ot [2.60]

the unbiased estimator is (from Eq. [2.54]):

n

2
=— t - 2.61
n_ 1 ~ HT [ ]

Combining equations [2.59] and [2.61] with the appropriate expressions of the means
and variances collected from the table in the appendix 2.1 give a couple of equations
that allows us to calculate two unknown parameters for the corresponding failure
probability distributions.

Example: let us assume that ten identical devices (e.g. valves) are tested with the
result of failures occurring at t; = 170 hr, t,= 350 hr, t;=500 hr, t,=650 hr, ts=800 hr,
ts=960 hr, t;=1100 hr, t;= 1300 hr, t;= 1800 hr and t; =2200 hr. Estimate the o and
[ parameters for a two-parameter Weibull distribution, using moment estimators.
The first step is to calculate i and % using Egs. [2.59] and [2.61] respectively
with the ten recorded time failures.

1 < Fig.: Henry Pratt Company
o Dt =983hr

i=1

!:lT:

[EN

>

5% Z —983) = 4.114-10° hr®

10 - i=1

The two-parameter Weibull distribution takes the form:

(B-1)
fﬂt):%&j expl-(t/a) |

Taking into account the analytical expressions of the mean and variance of this
distribution derived from appendix 2.1 leads to the following system of coupled
equations:

o F(1+ B_l)ZﬁlT

a? -{r(1+ 23*1)— [r(1+ Bfl)]z} =03

These two equations must be solved simultangously by an iterative method to obtain
a.and B. The result is that . = 1095 hrand B = 1.58.
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Interval estimates

There are other methods for estimating distribution parameters — least squares,
maximum likelihood, maximum entropy — that will not be presented here.

Instead of single numbers for the estimates of the unknown mean and variance, it is
often interesting to determine intervals of values in which the true values of these
parameters are most likely to be found. This approach is called interval estimates. As
such estimates are used to indicate the precision or accuracy of a point estimate, this
approach is also sometimes referred to as confidence estimates.

For example, assuming that the sampling distribution of means obeys a normal
distribution (see p. 37), the 95% confidence interval for estimation of the population
mean py from a sample of large size is given by py +1.96c5 , which can also be
written:

P(uy —1.960% <py <py +1.960%) = 0.95 [2.62]

More generally, the confidence limits are given by g+ ts-oy, Where ts is
obtained from a table of Student’s t-distribution for two-sided confidence interval
estimation. Such a table is given in Table 2.1 for the case of a large sample size n.

Table 2.1 Confidence levels for the mean of a normal distribution
[McCormick, 1981]

Two-sided confidence level One-sided confidence level i
[%0] [%0] s
99.73 99.86 3.000
99.00 99.50 2.580
98.00 99.00 2.330
96.00 98.00 2.050
95.45 97.72 2.000
95.00 97.50 1.960
90.00 95.00 1.645
80.00 90.00 1.280
68.27 84.14 1.000
50.00 75.00 0.6745

Example: for the sample of 100 ball bearings considered previously (p. 37), drawn
without replacement, calculate the limits of the: a) 80%, b) 95% confidence interval.

With py =12 g, oy = 0.027g and, from Table 2.1, t; being equal to 1.28 in the
first case (a) and 1.96 in the second case (b), we can write:

Q) P(uyg —ts, -o Spx Spg + ts, -ox) = P(11.965 <y <12.035) = 0.80

a

b) P(ux —ts, -0 SUx Spg +ts, - o) = P(11.947 <py <12.053) = 0.95
A one-sided interval estimate may also be calculated. Because the normal
distribution is symmetric, the one-sided estimates corresponding to Eq. [2.62] are
given by:
P(ux Spy +1.960%) = P(ux 2 puy —1.960%) = 0.975

The one-sided confidence levels from Student’s t-distribution are also listed in Table
2.1 for a sample of large size.
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2.3 Elements of Event Algebra (Boolean Algebra)

Risk analysis is about events and their probabilities of occurrence. When different
events are involved, we need rules to combine them. In other words, we need an
appropriate algebra for events. This mathematical tool is the Boolean algebra, from
George Boole, English mathematician (1815-1864). George Boole made major
contributions to the development of mathematical logic and published a book The
Mathematical Analysis of Logic in 1847. Boole believed in what he called the
‘process of analysis’, that is, the process by which combinations of interpretable
symbols are obtained. It is the use of these symbols according to well-determined
methods of combination that he believed presented ‘true calculus’.

Boolean algebra is thus defined as the study of the manipulation of symbols

. ; : : A Gearge Boole
representing operations according to the rules of logic. The main ingredient in logic (1815-1864)

analysis is the principles and method used to distinguish between arguments that are
valid (“true™) and those that are not (“false”). Logic deals with reasoning and the
ability to deduce or come to some appropriate conclusions. Boolean algebra involves
the operations of intersection (“AND”, symbol “~"), union (“OR”, symbol “U”) and

complement (“NOT”, symbol “ ™) on sets. These are defined in Table 2.2, using two
types of representation: truth tables (with logical operands having the values “1”
when” true” and “0” when “false”) and Venn diagrams (graphical representation of
sets by overlapping oval shapes).

Table 2.2 Definition of the Boolean operators “AND”, “OR” and “complement”

Complement

Logicak —» B
operands  p—t—

Q is the universal event; its complement is the null event, noted @. The universal
event corresponds to the union of all possible events. The null event corresponds to
the intersection of disjoint events. If the intersection of an event with another one
returns the first event itself, this one is said to be included in the second (symbol

[P 1)

C

The most obvious way to simplify Boolean expressions is to manipulate them in the
same way as normal algebraic expressions are manipulated. A set of rules for
symbolic manipulation is needed to this end.
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Basic Boolean laws The basic Boolean laws are presented below. Note that every law has two
expressions (a) and (b). These are obtained bay changing every “AND” to “OR” and
vice-versa. This is known as duality.

- Commutative law

AUB=BUA [2.63 a]

AnB=BnA [2.63 b]
- Associative law

(AuB) uUC=AuUuBUC) [2.64 a]

(AnB) nC=ANn(BNC) [2.64 b]
- Distributive law

ANnBuUuC =(AnB)UA N C) [2.65 a]

AuBNC)=(AuB)Nn(AUC) [2.65 b]
- ldempotent law

AUA=A [2.66 a]

AnA=A [2.66 b]
- Absorption law

AUANB)=A [2.67 a]

ANn(AUuB)=A [2.67 b]

Additional useful Some additional frequently used relationships can also be mentioned:

relationships .
P - Complementation

ANA =Q [2.68 a]
AUA =Q [2.68 b]
A=A [2.68 c]
- Operations with & and Q
INA=J [2.69 a]
GUA=A [2.69 b]
QnA=A [2.69 c]
QUA=Q [2.69 d]
- Simplification
(ANB)UANB) =A [2.70 a]
(AUB)N(AUB) =A [2.70 b]
AU(ANB)=AUB [2.70 c]
ANn(AUB)=ANB [2.70 d]
ANn(AUB)=ANB=(AUB) [2.70 €]
Morgan’s theorem The last equality results from a well-known theorem, often used for simplifying

Boolean expressions:

- Morgan’s theorems
(AnB)=AUB [2.71 a]
(AUB)=ANB [2.71b]

There are several common alternative notations for the Boolean operators, e.g.:

- AN Bcan also be written A-B, or more simply AB,
- éu B can also be written A+B,
- Acanalso be written A', or sometimes —A.
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The laws, theorems and relationships listed in page 41 can be proved by using truth
tables or Venn diagrams.

Example: prove the truthfulness of the relationship A U (A N B) = A UB.

a) Using the truth table approach:

A B A ANB AU (AN B) AUB
0 0 1 0 0 0
0 1 1 1 1 1
1 0 0 0 1 1
1 1 0 0 1 1
b) Using the Venn diagram approach:
Q B Au(Km B) B
A A =AUB 9)

These laws, theorems and relationships are used to simplify Boolean expressions.

Example: simplify the expression Z = (A UBU E)m [A U (§ N C)]:
Z=(AmA)u(AmﬁmC)U(Am§)u(§m§mC)u(AmE)u(ngmE)
Z:Au(Amng)u(Amg)u(ng)u(AmE)u(ErN@)
Z:{Am[Qv(ﬁmC)uguEBu(§mC):(AmQ)u(§mC)

z=AU(B~C)

An application P that associates a positive real number to any event included in an Event algebra and

universal set Q, with the following properties: probabilities

-0<P(A) <1,

-P(Q) =1and P(J) =0,
-P(A)=1-P(A),
-P(AUB)=PA)+PB) if ANB=(,
-P(A) <P(B) if AcB,

defines a probability relationship (see Fig. 2.9).

Figure 2.9 Definition of a probability relationship on a set of events
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Intersection of events

Union of events

A AjUA,

AL NA,

A,

The product rule for probabilities states that:
P(A1 N Az) = P(A1] Az)-P(Az) = P(Az| A1)-P(A1) [2.72]

P(Ail A;) represents the conditional probability of event A; given that event A; has
occurred. In the special case that events A; and A; are independent - i.e. the
probability that event A; occurs is independent of the occurrence of event A; - then
P(Ail A)) is simply equal to P(A;).

A second particular case corresponds to events A; and A; that are mutually exclusive
(i.e. “disjoint”), in which case P(Ai| A;) = 0, and therefore P(A; N A;) = 0.

The product rule may be easily generalized to the case of n (n > 2) events:
PAL N Ay ... N A) =PAJA N A ... N A . .. P(And Ay -P(A)  [2.73]
If the n events are all independent, then:
PALN AN ... N A,) =P(A)-P(A) ...P(A) [2.74]
And if they are mutually exclusive:
PAALNAN...NA)=0 [2.75]
The general equation expressing the union of two events, A, U A, is:
P(A1 U Az) =P(A1) + P(A2) —P(A1 N A) [2.76]

The last term of the right-hand side of the equation appears because of the necessity
to avoid possible double counting resulting from the “overlap” caused by the
intersection of the two events.

Of course, if the two events are independent, it follows from Eqgs. [2.74] and [2.76]
that:

P(A1 L A;) = P(Ay) + P(A2) — P(A1)-P(A) [2.77]
On the other hand, if the two events are mutually exclusive, then:
P(Al ) Az) = P(Al) + P(Az) [278]

As in the case of the intersection of events, the preceding equations can be
generalized to the case of more than two events (Poincaré’s theorem):

PALUAU... UA) =

D P(A)-D,
=

n n
j=2

j-1 j-1k-1
D PAINAD+D Y I PA NA;NAY)
i=1 j=3k=2i=1

- A DM PAL N AN NAY) [2.79]

If the events are all mutually exclusive, then only the first term of the right-hand side
of Eq, [2.79] is non vanishing.

If all the events are independent, it is easier to calculate the probability of the union
of events from the probability of its complement (application of Morgan’s theorem):

PALUAU... UA)=1-PALUAL... UA)

=P(A,NA2 ... mKn):ﬁ[l—P(Ai)] [2.80]
i=1
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2.4 Bayes’ Theorem and Bayesian Inference

The "Bayesian inference method" is based on the Bayesian theorem, which
suggests that the degree to which one believes that a proposition is true
depends on the a priori belief one has in the truth of the proposition and in the
evidence collected to investigate this one.

Bayes' theorem is named after Rev. Thomas Bayes, an 18th century English
mathematician who derived a special case of this theorem. Bayes' calculations
were published in 1763, two years after his death. Exactly what Bayes
intended to do with the calculation, if anything, still remains a mystery today.
However, his theorem, as generalized by Laplace, is the basic starting point
for inference problems using probability theory as logic.

Bayes' theorem describes the relationships that exist within a set of simple and
conditional probabilities. Although its primary application is to situations
where "probability” is defined according to the strict relative frequency
interpretation of the concept, it perhaps more often applied to situations where
"probability" is constructed as an index of subjective confidence (see p. 22).

In the classical statistical approach, model parameters are fixed but unknown
constants to be estimated using sample data taken randomly from the
population of interest. The Bayesian approach, on the other hands, treats these
population model parameters as random, not fixed, quantities. Previous
information, or even subjective judgments, are used to construct a prior
distribution model for these parameters. This model expresses a starting
assessment about how likely various values of the unknown parameters are. It
is then made use of the current data (via Bayes’ formula) to revise this starting
assumption and derive what is called the posterior distribution model for the
population parameters. Parameter estimates, along with confidence intervals,
are then calculated from the posterior distribution.

Bayes’ fundamental inverse probability formula derives from the “product
rule for probabilities” (Eq. [2.72]):

P(A nB) =P(A|B)-P(B) =P(B | A)-P(A)

To calculate the probability for event A that incorporates the additional
evidence provided by the occurrence of B, the last equality in the above
expression is solved to give:

Pe|A)

P(A|B)=P(A)- o)

[2.81]

The formula expresses that the conditional probability of an event A
occurring, given that the event B has occurred, written P(A | B), is equal to the
prior unconditional probability of occurrence of A multiplied by a “correction
factor” which represents the relative change in the probability of A when B is
known to have happened.

A more general formulation of the Bayes’ theorem can be developed for a
complete set of mutually exclusive events A; (i = 1, ... n); such a set is
characterized by the fact that (theorem of total probabilities):

P[OAJ -3 P(A) =1 [2.82]
i=1 i=1

Rev. Thomas Bayes
(1702-1761)
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The above equation remains valid if the probabilities are made conditional to the
occurrence of a given event B (this property is general):

SP(A|B) = 1 [2.83]
i=1
If this equation is multiplied by P(B), then (with Eq. [2.72]):
ZP(A|B) P(B ZP(A mB)_ZP(B|A )-P(A,) [2.84]

Equation [2.84] is the extension rule of probabilities. It allows P(B) to be expressed
in terms of the previously known probabilities P(A;) and all the conditional
probabilities P(B | A)). Introduced in Eq. [2.81], this leads to the final form of the
Bayes’ formula:

P(A)-PB|A)

iP(Aj)~P(B|AJ—)
j=1

P(A;|B)= [2.85]

The high degree of symmetry in the last equation shows that once the entire set of
probabilities P(B | A;) is known, then the calculation of the posterior P(A; | B)
becomes straightforward.

The Bayes’ formula is an important tool in reliability analysis when one specifies, by
the subjective approach, the possibility of rarely occurring events, because it enables
one to “reverse” the order of information gathering about a failure process.

Example of application of Bayes’ theorem: consider two oil prospects (drills) A and
B, having respectively a chance of success P(A) and P(B). These prospects are on the
same basin (i.e. they share a common source rock), therefore a success of A will
cause us to revise the chance of success of B and conversely for a failure of A.
Calculate the conditional probability of success of prospect B, given that late case
(failure of A), assuming that P(A) = 0.3, P(B) =0.2 and P(B | A) = 0.6.

The probability we are looking for is P(B|A ). From the first form of the Bayes’
formula (Eq. [2.81]), we have:
P(aB)

Gl

P(‘ ) P(B)-

Now, P(A)=1-P(A)=1-0.3=0.7,
and P(A | B) + P(A | B) = 1 (because P(A) + P(A ) = 1 from Eq. [2.68 b]),
P(B[A)

P(B)

thus: P(A|B)=1- P(A|B)=1-P(A)- =1-(0.3-06/02),

i.e.P(A |B)=0.1.
Finally: P(B|A ) = (0.2 -0.1)/ 0.7 = 0.03.

Taking into account the knowledge that A has failed thus lower the probability of
having a successful prospect B by a factor of seven compared to the prior
unconditional evaluation of the success probability of B. This is probably much less
that most people would have guessed.
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The Bayes’ formula can also be written in terms of probability density functions as
follows:

f (x| ) -9()
j;mf* £(x| 1) - gy

g(r|x) = [2.86]

where f(x | A) is the probability model, or likelihood function, for the observed data x
given the unknown parameter(s) A, g(A) is the prior distribution model for A and
g(X | x) is the posterior distribution model for A given that the data x have been
observed.

A common way to construct a prior distribution is to assume that the prior is a
member of a particular parametric family of densities, then choose the parameter of
the prior so that the prior represents prior beliefs as closely as possible. When
possible, it is very convenient to choose the prior from a parametric family that has
the same functional form as the likelihood function; g(A) and f(x | A) are in this case
called conjugate distributions and g(1) is the conjugate prior for f(x | A).

Example 1: estimating the binomial probability p.
Let us consider a binomial process with parameter p and assume that we have
undertaken n trials and obtained s success. Estimate the uncertainty about the value

of p.

Initially, we assume a uniform prior for p, that is no prior information about p; thus,
g(p) =1 (0 < p <1). The likelihood function is the binomial probability:

f(s| p)=Cs p*-p)"*
and the posterior distribution is therefore given by (Eq. [2.86]):

p*-(L-p)""
1 _
J‘o pl S, (1_ pl) n-s dpn

9(p|s) =

which is the probability density of a beta(s + 1, n — s + 1) distribution in the interval
[0, 1]. Note that the beta distribution should only be used to describe the uncertainty
about p if the sample size n is much smaller than the population size, because we
assume sampling with replacement.

If, instead of an uniformed prior, we consider now a beta(c, B) prior (conjugate
prior), i.e.:

plet). (1- p)(ﬁ—l)
P’ (a—l).(l _ p-)(ﬁ—l) dp'

a(p)=—
X

the posterior distribution becomes:

p(a+s—1) ) (1_ p)([}+n—s—1)
1
J‘O P (u+s—1).(1_ p.)(B+n—s—1) dp’

olp|s)=

which is a beta(a + s, B + n - s) distribution. The posterior belief is in this case just a
“rescaling” of the prior belief.
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Example 2: estimating the Poisson intensity A (mean rate at which events occurred).

Let us assume that o events have been observed during a time period t. Estimate the
uncertainty associated with .

Initially, we assume an uninformed prior for A, that is:

1L o<as<L
g(n) =

0 otherwise

where L is some large number representing an upper limit for the possible values of
A.

The likelihood function is here the Poisson probability:

f((l| }\/) — e—M . (kt)a
al

The posterior distribution is thus given by:

e-?\.t 3 7\/0(

9(7*| 0‘) Tl ot e
[ et aredn
0
Now, because L is large, we can go to the limit L — o and thus replace the
denominator in the above equation by (see Appendix 2.1):

w M1 , , F(a+1)
J, e G e

Therefore, the posterior distribution becomes:

tOH'l' -\t Y
oble)- 50

which is a gamma(a+1, t) distribution.

In short, Bayesian inference consists in:

1. determining a prior estimate of the parameter in the form of a probability density
function;

2. finding an appropriate likelihood function for the observed data;

3. calculating the posterior (revised) estimate of the parameter by multiplying the
prior distribution and likelihood function and then normalizing.

One issue of concern in Bayesian inference is how strongly the particular selection of
a prior distribution influences the results of the process. An uninformative prior is
one that provides little or no information. Depending on the situation, uninformative
priors may be quite disperse or lead to impossible or quite preposterous values of the
parameter. Particularly when results are to be used by people who may question the
expert’s initial opinion, it is desirable to have enough data available to make the
influence of the prior choice slight.
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Appendix 2.1 Main Probability Distribution Functions
S Probability Density Function Mean
Distribution Cumulative Distribution Function Variance
Discrete
|
Binomial Xi L 1-p)" xi=0,12,..n =n
pX(I) x'(n— |)' “(1-p) i E[X]=n-p
POX<X) = > px (%) VIX] = n-p-(1-p)
X <X
Geometric px(x)=p-@-p) x=0L2..n |EX=1p
P(X<x) = > px (%) VIX] = (1-p)/p®
X <X
Poisson px(x) =e™ Tl x=012..n E[X] =2
i.
PX<x) = D px(x) VIX]=2
X <X
cS .cN-s
Hypergeometric | py (x;) = — CN”_Xi 0<x <min[S,n] | E[X]= n-%
n
S S N-n
P(X<X) = 3 px(x) Vx| = n._.[l__j .
xizs:x s [X] N TN NZ1
Continuous
. 1 b+a
Uniform f = a<x<bh E[X]|=
x () = - X XI==
(b-af
F - V|X|=
}(X) = — X]==
L (x-p)?
Normal fo (X) = e 29 — < X<+ 00 E[X] =
orma X oion [X]=n
1 ¢ 1 _ 2
F(X) = —— |V du = =[L—erflz]|, x V[X]=o
x (%) JEL Sh-erflg], x<u
:%[1+erf(z)], X>p
where erf(z) is the error function [McCormick, 1981]:
erf(z) = —
f!
and: ( )
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Distributi Probability Density Function Mean
Istribution Cumulative Distribution Function Variance
e(in x-p)? 1252
Lognormal fy(X) = ———— x>0 1
9 R e[ - e+ 30
— 1 h -u? — 1 2 o?
Fy (X) = ﬁ:[oe du = E[l—erf|z|], Inx<p v[x] = E?[X]- (e _1)
= %[1+erf(z)], Inx>p
with: z= (Inx—u)/(\/i-c)
Exponential fu(x) = 2-e™ xz0 E[X]=L/A
Fx(x) = 1 ¢ VIX]=1/2
(p-1) .
X - E[X] = Ta+p*
Weibull fx(x):%(Tuj expl-[(x—u)/o]’ XI=p+otd+67)
O<pus<x<oo | VIXI=
Fx(x) = 1 - exp{-[(x - W)’} o’ {T(Q+2p%) - [C@+pHI%
where I'(x) is the gamma function:
r(x) = J.yx‘l-e‘y dy
0
a1 (B
Beta fy (X) = L (-af™ b 1X) as<x<b EX]=a+ (b-a)
B(a, B) (b—a)**P- o+
V[X] = P (b-af

where :

1
B(a, B) = J u@ . @ -u)PY gy
0

-a)* (b - x)f

_ 1 t(x
Fx(X) = B(a, B) ! (b B a)oH—B—l dx
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