
 

2.1 Elements of Probability Theory 
 
Probability theory plays a central role in risk analysis. Failure data are basically of a 
stochastic nature, involving ever-changing components and environmental 
conditions. This means that even under perfect measurement conditions, failure data 
for a single event cannot be determined by a one-and-only test but rather must be 
evaluated from a great number of independent observations and describe as a 
statistical distribution rather than a single value.  
 
The task of the risk engineer is to gather and select all the pertinent data - sometimes 
the most probable, sometimes the most unfavorable (according to the circumstances) 
- needed to tackle the problem considered, evaluate their quality and predict on this 
basis the expected (most probable) outcomes or consequences. Risk analysis thus 
involves a phase of statistical evaluation (often only in a rudimentary form, for lack 
of information) and a phase of probabilistic analysis (“what is the probability that a 
given value has to be taken into account?”, “what is the occurrence probability of a 
given fracture mode?”, etc.).        
 
In the modern sense of these words,  “statistics” is defined as: 
 

“the set of mathematical interpretation techniques applied to phenomena for 
which an exhaustive study of all involved factors is impossible because of 
their great number and/or complexity”, 

 
and “probability” as:  
 

“a measure of the degree of belief that an event (possible but not certain) 
will occur”. 

 
Different events may have different levels of probability, depending whether we 
think that they are more likely to be true or false (Fig. 2.1).  
 

 
 

Figure 2.1   Probability: from certain to uncertain 
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Defining probability as “degree of belief” seems “a priori” too vague to be of any 
use; we need, then, some explanation of its meaning, a tool to evaluate it. There are 
in fact two basic interpretation of probability: the relative frequency approach and 
the axiomatic or subjective approach. The relative frequency interpretation requires 
that a sample space Ω be defined, with event E being a member of Ω. If event E 
occurs x number of times out of a number N of repeated identical experiments, then 
the probability P(E) of the outcome of event E is given by: 
 

 
N
xE

N ∞→
= lim)P(  [2.1] 

 
For fixed N, the quantity x/N is the relative frequency of occurrence of E. Since it is 
obviously impossible to actually conduct an infinite number of trials, P(E) is in 
practice approximated by the relative frequency of occurrence calculated for a finite 
value N. The law of large numbers and the central limit theorem provide a 
justification that the estimation of P(E) improves with increasing values of N (the 
larger N, the better the estimation of P(E)).   
 
A slightly different formulation is that, “classical”, of Laplace, which states that if 
there are N exhaustive, mutually exclusive and equally likely cases and m of them 
are favorable to an event E, the probability of E happening is defined as: 
 

 
outcomes possible ofnumber  total

outcomes favorable ofnumber )P( ==
N
mE  [2.2] 

 
For example, the probability of randomly drawing a king from a well-shuffled deck 
of cards is 4/52. Since 4 is the number of favorable outcomes (i.e. 4 kings of 
diamond, spade, club and heart) and 52 is the number of total outcomes (the number 
of cards in a deck). This definition of probability is coherent with the concept of 
probability measuring numerically the degree of certainty or uncertainty of the 
occurrence of an event. 
 
By definition, the relative frequency interpretation is only applicable when dealing 
with experiments that can be indefinitely repeated. There are many occasions 
however in the safety/reliability field when this is not the case, in particular in the 
common situation when the engineers have to consider rarely occurring events. Then 
it is necessary to resort to the axiomatic or subjective approach.  
 
The axiomatic interpretation goes back to the literal definition of probability given 
above, i.e. probability is nothing more than a measure of uncertainty about the 
likelihood of an event. Stated more precisely, “a probability assignment is a 
numerical encoding of a state of knowledge when facing uncertainty”. To get a better 
understanding of the subjective definition of probability, let us take the example of 
odds in betting. It seems reasonable to assume that the amount of money A that 
someone is willing to pay in order to possibly receive a sum of money B should an 
event E occurs, is directly proportional to the degree of belief of the better in the 
actual occurrence of this event. To make a coherent bet, if p is the numerical 
evaluation of this degree of belief (“probability”) then our man should not stake 
more than p·B (in any case, to be worth betting, A should obviously always be 
strictly smaller than B) Weather forecasting is another example of subjective 
approach (though a meteorologist might feel offended to hear that evaluating the 
probability of rain tomorrow is “not objective”!). Saying that the probability of rain 
tomorrow is for example 60% doesn’t mean of course that it will rain 60%; it will 
rain (100% occurrence) or it will not rain (0% occurrence). The information is 
nevertheless useful to decide (or “bet”) that it will be wise to take an umbrella when 
going out. In the same way, evaluating at 5% the probability that a bridge could 
collapse under the load of a specific vehicle doesn’t mean that the bridge in question 
will collapse 5% (the bridge will either hold on or break), but it will serve deciding if 
the bridge should be closed to this type of vehicle or not.     
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A stochastic (or random) variable is by definition a function X that maps from the 
sample space Ω to the real numbers ℜ. Stated differently, a variable is a stochastic 
variable if the possible values of the variable have different probabilities.  
 
A stochastic variable can be discrete or continuous. For example, the variable X 
representing the two possible positions – “open” (value: 1) or “close” (value: 0) – of 
a dam gate is a discrete variable, whereas the variable representing the elastic limit of 
the steel used to make a reinforcing bar is a continuous variable that can take any 
value between 0 and infinity.   
 
As each value of a stochastic variable is associated to an occurrence probability, the 
description of the whole set of values is given under the form of a probability 
distribution function, FX(x), also called cumulative probability function: 
 
 FX(x)  ≡  P(X ≤ x) , ∀ x [2.3] 
 
From this definition it follows that the function FX takes values comprised in the 
interval [0, 1] when x varies within the range of xmin (xmin ≥ - ∞) to xmax (xmax > xmin; 
xmax ≤ + ∞). This function is moreover characterized by the following properties: 
 

⋅ Fx is monotonic and non-decreasing; 
. FX(x) ≥ 0; 
. FX(xmin) = 0;  
. FX(xmax) = 1; 

 
If X is a function that takes only discrete values (x1, x2, …xi, … xn), then FX(x) is 
given by:  
 

 )(p) P(X  ) P(X)(F iXiX
ii

xxxx
xxxx

∑∑
≤≤

===≤=  [2.4] 

 

where the pX(xi) are the probabilities (relative “weights”) associated to the different 
possible values xi.  
 
In the case of a continuous variable, the equivalent of equation [2.4] takes the form: 
 

 ∫=≤=
x

x

uuxx
min

d )(f  ) P(X)(F XX  [2.5] 

 

where fX(x) is the probability density, also simply called distribution. 
 
A schematic representation of these two different cases is given in figure 2.2. 

 

 

 

 

 

 

 

Figure 2.2   Variable distributions (a) discrete, (b) continuous 
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Note that it is necessary to bring in the Jacobian of the transformation when 
changing the variable of a probability density function, e.g. from fX(x) to fY(y):  
 

 yxx
y
xy =⋅= )(f

d
d  )(f XY  [2.6] 

 
For example, if we want to express in terms of the variable t, with t = exp(τ), a 
probability density function fn(τ), the new probability density function will take the 
form: 
 
 fln(t)  =  t-1⋅fn(τ) ⎢τ = ln t     
 
By definition, the moment of order n (with respect to the origin) is, for a given 
distribution, given by: 
 

 ( ) )(p iX
i

iX xx nn ⋅=µ ∑  [2.7] 

 
when the stochastic variable is discrete, and by: 
 

 xxx X
x

x
nn x d )(fma

min
X ⋅=µ ∫  [2.8] 

 
when the stochastic variable is continuous. 
 
The first-order moment (n=1) is the mean value or mathematical expectation (E[X]) 
of the variable X. When a sample of limited size is considered, rather than the whole 
sample population, the mean is noted x . Finding a statistic estimator of µX consists 
in putting µX ≅ x .   
 
The moment of second order with respect to the mean value is the variance. For a 
discrete variable, the variance thus takes the form: 
 
 [ ] ( ) )(pXV iX

i

2
Xi xx ⋅µ−= ∑  [2.9] 

 
and for a continuous variable:  
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X
2
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2
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where σX is the standard deviation. As above for the mean value, for a sample of 
limited size the standard deviation is noted sX, with sX ≅ σX.  
 
The ratio between the standard deviation and the mean value is called coefficient of 
variation: 
 

 [ ]
X

XXCOV
µ
σ

=  [2.11] 

 
This coefficient is of course meaningful only for the distributions having a mean 
value different from zero. 
 
Some useful distributions in the context of risk/reliability analysis are briefly 
presented below. A general recapitulative table is given in Appendix 2.1.  
 

Moments 
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The discrete uniform distribution is one of the simplest probability distributions. In 
this distribution, all values of the random variable are assigned identical 
probabilities. There are many situations in which the discrete distribution arises, e.g. 
the outcome of the throw of a single die (Fig. 2.3). 

 
 

Throwing a single die 
xi 1 2 3 4 5 6 

P(X=xi) 6
1  

6
1  
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Figure 2.3   Example of a discrete uniform distribution 

 
The binomial distribution characterizes experiments (Bernouilli sequences) that 
satisfy the following conditions:  
 

1. there are only two possible outcomes on each trial of the experiment; one of the 
outcome is usually referred to as a success and the other as a failure; 

2. the occurrence probabilities of each of the outcomes (success, probability p, or 
failure, probability q=1-p) in a trial are constant;  

3. the experiment consists of n identical, statistically independent, trials. 
 
Tossing a coin 4 times and recording the number of heads is a simple example of 
such an experiment (Fig. 2.4). 

 
Tossing a coin 

Events Number of 
heads (H) 

Probability 

TTTT 0 16
1  

HTTT 
THTT 
TTHT 
TTTH 

1 
16
4  

HHTT 
HTHT 
HTTH 
THHT 
THTH 
TTHH 

2 
16
6  

HHHT 
HHTH 
HTHH 
THHH 

3 
16
4  

HHHH 4 16
1  

 

Figure 2.4   Example of a Bernouilli sequence  
 
The binomial random variable is the count of the number of successes in n trials. The 
probability of obtaining x successes in n trials is given by the binomial distribution: 

 

 nxppx xnxn
x ...,2,1,0)1(C  )  P(X =−== −  [2.12] 

Discrete distributions 

Binomial distribution 
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n
xC (binomial coefficient) represents the number of possible combinations of n 

objects taken x at the time (without replacement); it is given by: 
 

 ( )!!
!C

xnx
nn

x −⋅
=  [2.13] 

 

For example, the probability that x = 3 in the example of Fig. 2.4, given that n = 4 et 
p = 0.5, takes the value:  
 

P(X = 3) = 25.0
16
4

2
11

2
1

)!34(!3
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Let us consider as another example, the case of a hospital manager who considers 
buying three diesel generator sets for power backup. He estimates at 80% the 
probability that a given make of generator set will remain operational for at least four 
years (success). Calculate the probability that x (x = 0, 1, 2, 3) generators of this type 
are still operational after four years.     
 
The binomial random variable X to consider is here the number of operational 
generator sets after four years. The probability of success p is equal to 0.80 and n = 
3. The answer to the question is thus given by the binomial distribution of figure 2.5. 

 

Figure 2.5   Binomial distribution of operational generators after four years 
 
The expected value of a binomial random variable can be computed using the 
expression:  
 
 E[X]  =  n⋅p [2.14] 
 
and its variance using the expression:  
 
 V[X] = n⋅p⋅q = n⋅p⋅(1-p) [2.15] 
 
In a Bernouilli sequence, the number of trials until the first occurrence of an event is 
given by the geometric distribution. If the first success takes place after the tth trial, 
this means that only failures were observed in the t-1 preceding trials. Thus, if T is 
the random variable:   
 
 P(T = t) =  p⋅(1-p) t-1 [2.16] 
 
which is a geometric distribution. 
 
The recurrence time between two events in a Bernouilli sequence is characterized by 
a geometric distribution. 
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The mean recurrence time, also known under the name return period, is given by: 
 

 [ ] ∑
∞

=

− =−⋅⋅==
1

1 1)1(TE  T
t

n
p

ppt  [2.17] 

 
Moreover (variance): 
 

 [ ] 2
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p
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Example: a wind turbine is designed to withstand a wind having a return period of 50 
years. What is the probability that this wind will be exceeded for the first time 5 
years after the wind turbine is brought into service? 
 
The yearly occurrence probability of the design wind is given by:   
 

02.0
50
1

T
1

===p  

 

The answer to the question is thus: 
 

P(T = 5) = 0.02⋅(1 - 0.02)4 = 0.018 
 
The Poisson distribution is similar to the binomial in that the random variable 
represents a count of the total number of "successes". The major difference between 
these two distributions is that the Poisson does not have a fixed number of trials. 
Instead, the Poisson distribution uses a fixed interval of time or space in which the 
number of "successes" is recorded. 
 
Many engineer’s problems concern possible occurrences of events distributed in time 
or space (fatigue rupture anywhere on a cable, pump failures, earthquakes,  …). 
These could be represented by a Bernouilli sequence if time or space were 
discretized, but in this case the event considered could happen only once (occurrence 
or non-occurrence) in the given interval. In the general case, a Poisson process is thus 
a better model for such "experiments".   
 
In order to qualify as a Poisson random variable, an experiment must meet the three 
following conditions: 
 

1. an event can take place randomly at any point in time or space; "successes" occur 
one at a time; that is, two or more "successes" cannot occur at exactly the same 
point in time or exactly at the same point in space; 

2. the occurrence of a "success" in any interval is independent of the occurrence of 
the "successes" in another interval; 

3. the occurrence probability of a "success" in a small interval ∆t (time or space) is 
proportional to ∆t. 

 
The number of occurrences Xt of an event in a (time or space) interval t is in these 
conditions given by a Poisson distribution:  
 

 ( )
!

eXP -
t x

x
xλ

⋅== λ  [2.19] 

 
where λ is the mean number of occurrences of the event in the interval t, which can 
also be written λ = v⋅t, with v the mean occurrence frequency.  
 
The expected value and variance are respectively given by: 
 
 E[X] = V[X] = λ [2.20] Poisson distribution 
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Example: the number of calls received by the dispatching office of a gas utility on 
Monday morning between 8:00 a.m. and 9:00 a.m. has a Poisson distribution with 
λ equal to 4.0. Determine the probability of getting no call between eight and nine in 
the morning. 
 
With Xt = the number of calls received between 8:00 a.m. and 9:00 a.m.: 
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The expected number of calls during the same period is 4.0 and the variance is also 
4.0. 
 
The hypergeometric distribution , like the binomial distribution, counts the number 
of "successes" in n trials of an experiment and describes the behavior of a random 
variable that has only two possible outcomes on each trial of the experiment. It 
differs however from the binomial distribution in the lack of independence between 
trials, which implies that the probability of "success" vary between trials. In addition, 
hypergeometric distributions have finite populations in which the total number of 
"successes" and "failures" are known.  
 
If N is the total population, S the total number of "successes" possible and n the size 
of the sample drawn, the hypergeometric probability distribution function takes the 
form: 
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where 0 ≤ x ≤ minimum of [S, n]. 
 
Example: suppose that a shipment from a semiconductor manufacturer contains 30 
memory ships of which two are defective. If a memory board requires 16 ships, what 
is the probability distribution for the number of defective ships on the memory 
board? 
 
The random variable to consider here is X = number of defective ships on the 
memory board. The parameters of the distribution are: 
 

S = 2 ("success" in this case means a defective ship); 
N = 30; 
n = 16.. 

 
The maximum value of X in this case is 2. 
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The expected value of a hypergeometric variable is given by: 
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N
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and its variance by: 
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As in the discrete case, the uniform distribution is, from a mathematical viewpoint, 
the simplest of the continuous distribution functions. In this distribution, the 
probability density is spread out evenly over some range from a to b (the two 
parameters of the distribution) as shown in the figure on the left (upper part). 
 
The mathematical expression of the uniform distribution is therefore given by: 
 

  [2.24] 
 

 
The expected value (mean) of the continuous uniform stochastic variable is: 
 

 [ ]
2

XE ba +
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and its variance is: 
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The probability of observing a stochastic variable in some interval is expressed as 
the area under the density function associated with this interval. Because the density 
function for the uniform distribution has the shape of a rectangle, calculating the 
probability for an interval is straightforward. 
 
Example: suppose that a spent nuclear fuel is to be transported along a 100km-long 
railway. The occurrence probability of an accident is assumed to be uniform along 
the 100 km of this railway. If X is the stochastic variable giving the distance (from 
km 0) to the place of the accident, what is the probability to have an accident 
between km 20 and km 35 (should an accident arise)? 
 
The distribution of the variable X is uniform, therefore: 
 
 
fX = c        0 ≤ c ≤ 100 
 
 

with 
100

1
0 - 100

1  c ==  

 
 
The probability distribution function is given  
by: 
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Thus, the probability to have an accident between km 20 and km 35 can easily be 
calculated as follows: 
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The normal distribution is incontestably the best known of the continuous 
distributions. It was originally called the Gaussian distribution, named after Karl 
Gauss who published a work in 1833 describing the mathematical definition of this 
distribution, which he developed to describe the error in predicting the orbits of 
planets.      
 
The general mathematical expression of the normal distribution is: 
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2
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2
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The two parameters are µ (mean) and σ2 (variance). For this reason, the normal 
distribution is often written N(µ, σ) in abbreviated form. The special case of  normal 
distribution with a mean µ of zero and standard deviation σ of one, i.e. N(0, 1), is 
called the standard normal. This is how the normal distribution is usually tabulated; 
the technique used to translate any normal stochastic variable into a standard one is 
called a z-transform:  
 

 
σ

µ−
=

xz  [2.28] 

 
Example: measures made in view of the construction of a hydroelectric scheme have 
shown that the annual precipitations in a given catchment area can be represented by 
a normal distribution N(120 cm, 30 cm). What is the probability that the precipitation 
will exceed 60 cm? 
 
z-transform of the original x value (60 cm) gives in this case:  
 

2
30

12060
−=

−
=z  

 
Tables give 0.47725 for the area under the standard normal curve comprised between 
the abscissas z=0 and z=2. Taking into account the symmetry of the normal 
distribution, this corresponds also to the area under the curve between  z=-2 and z=0. 
To find the answer to the question (probability that the precipitations will exceed 60 
cm) it suffices to add 0.5 to the above value to take into account the half distribution 
to the right of the zero axis, thus P(X ≥ 60 cm) =  0.97725.  
 
One of the most important properties of normal stochastic variables is that within a 
fixed number of standard deviations from the mean, all normals contain the same 
fraction of their probabilities. For example, the probabilities of being within one 
standard deviation (± 1 σ), two standard deviations (± 2 σ) and three standard 
deviations (± 3 σ) of the mean equal respectively 0.683 (68.3%), 0.954 (95.4%) and 
0.997 (99.7%). This explains why in parametric sensitivity studies, the analysis is 
often limited to values situated within three standard deviations from the mean (see 
Fig. 2.6). 
 

 
 68.3% 95.4% 99.7% 

 
Figure 2.6   Probabilities of being within, one, two or three standard deviations 

from the mean in a normal distribution 

Standard normal 
distribution 
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Although the (symmetrical) distribution can range in value from minus infinity to 
positive infinity, values that are a great distance from the mean rarely occur. 
Therefore, even if in principle the normal distribution is not well adapted to variables 
for which negative values are physically ruled out (disintegration time of a 
radionuclide for example), it constitutes nevertheless a good and suitable 
approximation in cases where the COV (coefficient of variation) is less than 30%.  
 
The normal distribution can also be used to approximate discrete distributions, 
specially the binomial and the Poisson. This can prove very useful because as n 
becomes large, calculating these probabilities can become time consuming. Indeed, 
the larger the value of n, the more accurate the approximation. In the case of the 
binomial distribution, the approximation is generally reasonable when the mean n⋅p 
is greater or equal to 5 and n⋅(1-p) is also greater than or equal to 5. The 
approximation becomes quite good when these values are greater than 10. 
Approximating a binomial distribution by a normal one requires that both 
distributions have the same mean and variance: 
 
 µ = n⋅p    and   σ2= n⋅p.(1 – p) [2.29] 
 
Example: to approximate a binomial distribution with n = 20 and p = 0.5 will require 
a normal distribution with: 
 

µ = (20)⋅(0.5) = 10    and   σ2= (20⋅0.5)⋅(1 – 0.5) = 5  
 
In the same way, to approximate a Poisson distribution by a normal one, the mean 
and variance of the normal should be set to the mean and variance of the Poisson. 
Since the mean and variance of the Poisson distribution are both λ, the appropriate 
mean and variance for the normal would be: 
 
 µ = σ2 = λ [2.30] 
 
Example: a company manufacturing metal sheets estimates that the number of 
defects on a 10’ by 10’ sheet of metal follows a Poisson distribution with an average 
defect rate of 5 per sheet. Find the probability of observing at least 10 defects per 
sheet.   
 
Let X be the number of defects on a 10’ by 10’ metal sheet. X has a Poisson 
distribution with a mean and variance of 5. Using the normal distribution with the 
same mean and variance to approximate the Poisson, the answer is given by: 
 

P(X ≥ 10) = P(z ≥ 24.2
5

510
=

−
=

σ
µ−x ) 

 
Tables give 0.4875 for the area under the standard normal curve comprised between 
the abscissas z=0 and z=2.24. Therefore, the probability of observing at least 10 
defects per sheet is approximately equal to 0.5-0.4875 = 0.0125 (the exact answer 
would be 0.0317). 
 
A distribution closely related to the normal distribution is the lognormal distribution. 
A variable X is lognormally distributed if Y = ln(X) is normally distributed. The 
general formula for the probability density function of the lognormal distribution is 
(taking the relation [2.6] into account): 
 

 
( )

π⋅σ⋅
=
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2
e)(f
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X
x

x
x

  x ≥ 0 ; µ, σ > 0 [2.31] 

 
The lognormal distribution is applicable when the quantity of interest must be 
positive, since ln x exists only for positive values of x.  
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The exponential distribution is a commonly used distribution in reliability 
engineering. The exponential distribution is a probability density with only one 
parameter, λ. It is characterized by the fact that its standard deviation is equal to the 
mean, i.e. its coefficient of variation is 1 (100%). As in the previous case, this 
distribution is defined only for positive values of the variable.  
 
This distribution can describe a number of physical phenomena, such as the time for 
a radioactive nucleus to decay, or the time for a component to fail. This distribution 
describes more generally the random variable T1 corresponding to the waiting time 
till the occurrence of the first event in a process governed by a Poisson law. 
According to [2.19], we have in this case: 
 
 P(T1 > t) = P(Xt = 0) = e-λ = e- v⋅t [2.32] 
 
The complement of this expression is precisely the cumulative function of the 
distribution we are interested in:   
 
 FT1(t) = P(T1 ≤ t) = 1 – e-v⋅t [2.33] 
 
Its derivative (relative to t) gives therefore the mathematical expression of the 
exponential distribution (substituting here v.t  →  λ⋅x): 
 
 fX(x) = λ⋅e-λ⋅x [2.34] 
 
The mean and variance of the exponential distribution are given by : 
 
 E[X] = 1/λ,        V[X] = 1/λ2 [2.35]    
 
Example: suppose that the lifetime of a certain electronic component (in hours) is 
exponentially distributed with rate parameter v = 0.001.Find the probability that the 
component lasts at least 2000 hours.  
 
Let T be the stochastic variable denoting the lifetime of the component, then (Eq. 
[2.32]): 
 

P(T > 2000) = e-(0.001⋅2000) = 0.1353 
 
Note that the exponential distribution is generally not very useful in modeling data in 
the real world.  The exponential distribution is only useful for items that have a 
constant failure rate. This means that the population should have no wear-out 
or infancy problems.   
 
The exponential distribution possesses a special property called the memoryless 
property. Suppose that a device (e.g. safety valve) has a lifetime that can be modeled 
as an exponential distribution. Then the probability that a new device survives t units 
of time is (Eq. [2.32]): 
 

P(T > t) = 1 – P(T ≤ t) = e-v⋅t 
 
Now suppose that an identical device has already survived s units of time. We can 
think of s as the age of the device. What is the probability that this device survives 
an additional t units of time? The event of interest here is the event that the device 
survives past time s+t. This probability is a conditional probability since we are 
given that lifetime of this device must be greater than its current age s. Therefore: 
 

P(X >s+t⏐X>s) = t
s

ts

s
tss ⋅λ

⋅λ−

+⋅λ
==

>
+>> -

)(-
e

e
e

)P(X
)X andP(X = P(X>t) 

 
That is, the probability that a used device survives an additional t units of time is the 
same for the used device (with age s) as it is for the new device. 

Exponential distribution 
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The exponential distribution is a particular case of the more general Weibull 
distribution, named in honor of Wallodi Weibull (Swedish materials science 
engineer, 1887-1979). The Weibull family of distributions is immensely popular in 
reliability theory, because of the many shapes it attains for various values of its 
parameters. It can therefore model a great variety of data and life characteristics. 
 
The formula for the probability density function of the general Weibull distribution, 
defined from zero to positive infinity, is: 
 

 
( )

( )[ ]{ }β
−β

αµ−−⋅⎟
⎠

⎞
⎜
⎝

⎛
α

µ−
⋅

α
β

= /exp)(f
1

X xxx    x ≥ µ; β, α > 0   [2.36] 

 
where β is the shape parameter, µ is the location parameter, and α is the scale 
parameter. The case where µ = 0 and α = 1 is called the standard Weibull 
distribution. The case where only µ = 0 is called the two-parameter Weibull 
distribution. 

 
Note that the general form of probability functions can always be expressed in term 
of the standard distribution (see normal distribution).   
 
The mean and variance of the general Weibull are respectively given by: 
 
 [ ] ( )β+Γ⋅α+µ= /11E x  [2.37] 
 

 [ ] ( ) ( )[ ]β+Γ−β+Γ⋅α= /11/21V 22x  [2.38] 
 

where Γ is the gamma function:  
 

 ( ) ( ) ( ) uuua a dexp
0

1∫
∞

− −⋅=Γ  [2.39] 

 
When β = 1, the two-parameter Weibull distribution reduces to the exponential 
distribution with scale parameter α. The special case β = 2, is called the Rayleigh 
distribution with scale parameter α. 
 
The β value gives clues about the failure mechanism: 
 

−  β < 1 implies “infant illnesses” (decreasing failure rate); 
 

− β = 1 implies random failures, i.e. independent of time, an old device is as good as 
a new device (see exponential distribution); 

 

−  1 < β ≤ 4 implies early wear out (increasing failure rate), due possibly to low 
cycle fatigue, bearing failures, corrosion, erosion; 

 

−  β > 4 implies old age and rapid wear out; typical failure modes involve some 
material properties, some corrosion and erosion. 

 
Example: the lifetime T (in hours) of a fuel pump follows a two-parameter Weibull 
life distribution model with shape parameter β = 1.5 and scale parameter α = 8’000. 
If a typical fuel pump is used 800 hours a year, what proportion is likely to fail within 
5 years? 
 
The cumulative probability function for a two-parameter Weibull distribution is:  

FT(t) = 1 – exp{-(t/α)β} 

The probability P(T ≤ 800⋅5) is thus 0.2978; this means that about 30% of the pumps 
will fail in the first 5 years.      

Weibull distributions 
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The beta distribution is another versatile two-parameter family of distributions that 
has special importance in probability and statistics. The beta distribution presents the 
characteristic to be defined over a finite range, with end points a and b (real 
numbers); it is therefore often used for representing processes with natural lower and 
upper bounds. Depending on the values of its parameters, the beta distribution 
generated will have the “U”, the “J”, the triangle or the general bell shape of the 
unimodal function.. 
 
The general formula for the probability density function of the beta distribution is: 
 

 ( )
( ) ( )

( ) 1

11

X
-

 ,B
1)(f

−β+α

−β−α

−

−⋅
⋅

βα
=

ab
xbaxx  a ≤ x ≤ b; α, β > 0  

  [2.40] 
 0)(fX =x  outside of this range                                    
 
where α and β are the shape parameters, and B(α, β) is the beta function, given by:  
 

 ( ) ( )( ) uuu d1  ) ,B( 1
1

0

1- −βα −⋅=βα ∫  [2.41] 

 
The beta function can be written in terms of the gamma function (Eq. [2.39]) as 
follows: 
 

 B(α, β) = Γ(α)⋅Γ(β)/Γ(α+β) [2.42] 
 
The case where a = 0 and b = 1 is called the standard beta distribution. The equation 
for the standard distribution thus is: 
 

 ( )
( ) ( ) ( ) 11

X 1)(f −β−α −⋅⋅
βΓ⋅αΓ

β+αΓ
= xxx    0 ≤ x ≤ 1; α, β > 0 [2.43] 

 
The beta distribution is different from the other distributions in that it is defined in 
terms of its lower and upper bounds rather than in terms of location and scale. 
However, the location and scale parameters are related to the lower and upper 
bounds as follows:  
 

 location = a                  scale = b - a  [2.44]  
 
The mean and variance of the beta distribution are: 
 

 [ ] ( )aba −⋅
β+α

α
+=XE  [2.45] 

 

 [ ]
( ) ( )

( )22 1
XV ab −⋅

+β+α⋅β+α

β⋅α
=  [2.46] 

 
Estimating the α and β parameters is controlled by data availability. Let us consider 
the case where a and b are known, and estimates of the mean, x , and the variance, 
sX, are available. In this case, the parameters α and β are given by [Engineering 
Statistics Handbook, 2003]:  
 

 ( ) ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−⋅
⋅−=β⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−⋅
⋅=α 1~
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22
XX s

xxx
s

xxx       [2.47] 

 

where:  
2

2~;~ ⎟
⎠
⎞

⎜
⎝
⎛

−
=

−
−

=
ab

ss
ab
axx X

X  [2.48] 

Standard beta distributions 
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When outcomes depend on more than one parameter, a multivariate distribution 
function must be defined: 
 

P(X1≤x1; X2≤x2; … Xn≤xn)  = ( )nn
xxx ...,,F 21X...XX 21

 = 

      ( ) n

x

x

x

x

x

x
n uuuuuu

n

n

d...dd...,,f... 2121X...XX

1

min1

2

min2 min,

n21∫ ∫ ∫  [2.49] 

 

where: ( )nn
xxx ...,,F 21X...XX 21

 is the multivariate cumulative probability function, 

and: ( )nxxx ...,,f 21X...XX n21
 is the joint distribution function. 

 
The case of a bivariate distribution is represented in Fig. 2.7. 
 

 
 

Figure 2.7   Bivariate distribution (source: Prof. L. Vulliet) 
 

The second joint moment relative to the means µX and µY is called covariance of X 
and Y:  
 

 Cov[X, Y] =  E[(X – µx) (Y - µy)] = E[Y, Y] – E[X]⋅E[Y] [2.50] 
 
The covariance measures the degree of correlation between the variables X and Y; if 
the variables X and Y are statistically independent, Cov[X, Y] = 0. Instead of the 
covariance, it is often considered more meaningful to use its normalized expression, 
the correlation coefficient ρ, defined as: 
 

 [ ]
YX

YX,Cov
σ⋅σ

=ρ  [2.51] 

 

 Example: the bivariate normal distribution is given by: 
 

 ( ) ( )⎥⎥⎦
⎤

⎢
⎢
⎣

⎡

ρ−
−⋅

ρ−σσπ
= 22

YX
XY

12
exp

12

1,f zyx  

 

where: ( ) ( ) ( ) ( )
Y

2
Y

YX

YX

X

2
X 2

σ
µ−

+
σ⋅σ

µ−⋅µ−ρ
−

σ
µ−

=
yyxxz  

Multivariate distributions 

fXY (x, y=b) 

fXY (x=a, y) 

fX (a) 

fX (x)

y 

fY (y)

fY (b) Surface = fXY (x, y) 
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2.2 Elements of Estimation Theory 

 
The calculation of the occurrence probability of a given event will be based on the 
use of an appropriate probability distribution. However, neither the shape (type), nor 
the parameters of this distribution are known a priori. These should be inferred from 
the observation of the physical system of interest. It is the goal of the estimation 
theory to provide a mean of calculating suitable estimates of quantities based on 
observations of physical systems. 
 
The problem regarding such estimates is that we usually don’t have statistics about a 
whole population but only about some finite-sized sample(s) drawn from the 
population in question. The task is then, given the observable variables, to determine 
as accurately as possible the actual distribution and the value of its parameters. This 
is called statistical inference and estimation (Fig. 2.8). In this context, parameters are 
assumed to be themselves random quantities related statistically to the observation. 
 

 

 
Figure 2.8   Statistical inference and evaluation (adapted from: Prof. L. Vulliet) 

 
The estimation process results in inherent uncertainties affecting for example the 
moments (mean, variance, etc.) of the distribution, and therefore the numerical 
results of risk analysis. 
 
The moments of a distribution allows us to determine the parameters of this 
distribution. In the case of a normal distribution, the parameters µ and σ2 are directly 
the moments of first order relative to the origin and of second order relative to the 
mean respectively. For the other distributions, the reader is referred to the table given 
in Appendix 2.1.      
 
It is natural to consider that the moments of a sample constitute a first approximation 
of the moments corresponding to the whole population. This is the basic principle of 
the moment method of point estimation. Thus, the point estimate of the population 
mean can be approximated by the mean of the sample, i.e.:  
 

 ∑
=

⋅=
n

x
n

x
1i

i
1  [2.52] 

Relationships between a 
population and samples 
drawn from it 

“Real World” Theoretical Model Experiment

Stochastic variable X 

Real number 
-∞ < x < + ∞ 

with distribution fX(x) 

Variance :  2
X

2
X s=σ

Sample 
(observation, life test, etc.): 

Real 
population 

(x1, x2, … xn) 
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Mean      : µX  ≅  x

fX(x) 

x x 

Statistical

Statistical

estimation

inference

Moment method of point 
estimation 
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In the same way, a first approximation of the variance relative to the whole 
population is simply given by : 
 

 ( )∑
=

−⋅=
n

xx
n 1i

2
i

2
X

1s  [2.53] 

 
The sample mean as calculated in Eq. [2.52] is an unbiased estimate Xµ̂ of the 
population mean µX. An estimate is said to be unbiased if the expected value of the 
estimate equals the true value of the parameter. When we have a biased estimate, the 
bias usually depends on the number of observations n. That’s the case of the variance 
estimate given in Eq. [2.53]. To obtain an unbiased estimate of the population 
variance 2

Xσ , it is necessary to use instead the following expression: 
 

 ( )
2

1
i

2
X

2
X 1

1s
1

ˆ ∑
=

−⋅
−

=⋅
−

=σ
n

i
xx

nn
n  [2.54] 

 
Now suppose all possible samples of size n are drawn without replacement from a 
whole population of size nP > n. If the mean and variance of the sampling 
distribution of the mean are denoted by Xµ  and 2

Xσ respectively, and the mean and 
variance of the whole population by Xµ and 2

Xσ as always, then [McCormick, 1981]: 
 
 XX µ=µ  [2.55] 
 

 ⎟⎟
⎠

⎞
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⎝

⎛

−
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⋅
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2
X2

X n
nn
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 [2.56] 

 
In the case where the population is infinite, or the sampling is done with replace-
ment, Eq. [2.56] simplifies to: 
 

 
n

2
X2

X

σ
=σ  [2.57] 

 
For large enough n, say n ≥ 30, the sampling distribution of means follows 
approximately a normal distribution with mean Xµ  and variance 2

Xσ , irrespective of 
the size of nP (provided nP ≥ 2n). The sampling distribution of means is said to be 
asymptotically normal. 
 
Example: ball bearings used in a wind turbine system come from a batch in which 
the mean mass is12 g with a standard deviation of 0.30 g. If a sample of 100 ball 
bearings is chosen from a total population of 500, Xµ = 12 g and: 
 

g027.0
1500

100500
100

g30.0
X =

−
−

⋅=σ  

 
If the batch population was infinite, or the sampling made with replacement, the 
standard deviation will be: 
 

g030.0
100

g30.0
X ==σ  

 

The equations used to obtain point estimates in reliability analyses depend upon the 
type of experiment the samples are subjected to during a life test. There are two main 
possibilities; either the life test is terminated at a given time tc before all n items have 
failed (Type I censoring of the life test), or censoring occurs when a predetermined 
number of items have failed (k ≤ n), independently of the time needed to achieve this 
result (Type II censoring). 
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If the times t1, t2, … tn represent the actual failure times observed for a set of n 
identical units, then a unbiased estimator of the mean time to failure, defined by: 
 

 ( ) ttt df
0

T ∫
∞

⋅=µ  [2.58] 

 

is (from Eq. [2.52]):  
 

 ∑
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⋅=µ
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t
n 1i

iT
1ˆ  [2.59] 

 

For the variance, defined by: 
 

 ( ) ( ) ttt df2
T

2
T ⋅µ−=σ ∫

∞

 [2.60] 

 
the unbiased estimator is (from Eq. [2.54]): 
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=
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2
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1ˆ  [2.61] 

 

Combining equations [2.59] and [2.61] with the appropriate expressions of the means 
and variances collected from the table in the appendix 2.1 give a couple of equations 
that allows us to calculate two unknown parameters for the corresponding failure 
probability distributions. 
 
Example: let us assume that ten identical devices (e.g. valves) are tested with the 
result of failures occurring at t1 = 170 hr, t2= 350 hr, t3=500 hr, t4=650 hr, t5=800 hr, 
t6=960 hr, t7=1100 hr, t8= 1300 hr, t9= 1800 hr and t10 =2200 hr. Estimate the α and 
β parameters for a two-parameter Weibull distribution, using moment estimators. 
 
The first step is to calculate Tµ̂ and 2

Tσ̂  using Eqs. [2.59] and [2.61] respectively 
with the ten recorded time failures. 
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The two-parameter Weibull distribution takes the form: 
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Taking into account the analytical expressions of the mean and variance of this 
distribution derived from appendix 2.1 leads to the following system of coupled 
equations: 
 

 ( ) T
1 ˆˆ1ˆ µ=β+Γ⋅α −  

 

 ( ) ( )[ ] 2
T

2112 121ˆ σ=
⎭⎬
⎫

⎩⎨
⎧ β+Γ−β+Γ⋅α −−  

 

These two equations must be solved simultaneously by an iterative method to obtain 
α̂ and β̂ . The result is that α̂  = 1095 hr and β̂  = 1.58. 

Fig.: Henry Pratt Company
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There are other methods for estimating distribution parameters – least squares, 
maximum likelihood, maximum entropy – that will not be presented here. 
 
Instead of single numbers for the estimates of the unknown mean and variance, it is 
often interesting to determine intervals of values in which the true values of these 
parameters are most likely to be found. This approach is called interval estimates. As 
such estimates are used to indicate the precision or accuracy of a point estimate, this 
approach is also sometimes referred to as confidence estimates.  
 
For example, assuming that the sampling distribution of means obeys a normal 
distribution (see p. 37), the 95% confidence interval for estimation of the population 
mean Xµ from a sample of large size is given by XX 96.1 σ±µ , which can also be 
written: 
 
 95.0)96.196.1(P XXXXX =σ+µ≤µ≤σ−µ  [2.62] 
 
More generally, the confidence limits are given by XX σ⋅±µ St , where tS is 
obtained from a table of Student’s t-distribution for two-sided confidence interval 
estimation. Such a table is given in Table 2.1 for the case of a large sample size n. 
 
Table 2.1 Confidence levels for the mean of a normal distribution   

                 [McCormick, 1981] 
 
Two-sided confidence level 

[%] 
One-sided confidence level 

[%] tS 

99.73 
99.00 
98.00 
96.00 
95.45 
95.00 
90.00 
80.00 
68.27 
50.00 

99.86 
99.50 
99.00 
98.00 
97.72 
97.50 
95.00 
90.00 
84.14 
75.00 

3.000 
2.580 
2.330 
2.050 
2.000 
1.960 
1.645 
1.280 
1.000 

0.6745 

 
Example: for the sample of 100 ball bearings considered previously (p. 37), drawn 
without replacement, calculate the limits of the: a) 80%, b) 95% confidence interval. 
 
With Xµ = 12 g, g027.0X =σ  and, from Table 2.1, ts being equal to 1.28 in the 
first case (a) and 1.96 in the second case (b), we can write: 
 
 a) 80.0)035.12965.11(P)(P XXXXXX =≤µ≤=σ⋅+µ≤µ≤σ⋅−µ

aa SS tt  
 
 b) 95.0)053.12947.11(P)(P XXXXXX =≤µ≤=σ⋅+µ≤µ≤σ⋅−µ

bb SS tt  
 
A one-sided interval estimate may also be calculated. Because the normal 
distribution is symmetric, the one-sided estimates corresponding to Eq. [2.62] are 
given by: 
 

975.0)96.1(P)96.1(P XXXXXX =σ−µ≥µ=σ+µ≤µ  
 
The one-sided confidence levels from Student’s t-distribution are also listed in Table 
2.1 for a sample of large size.  

Interval estimates 
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2.3 Elements of Event Algebra (Boolean Algebra) 

 
Risk analysis is about events and their probabilities of occurrence. When different 
events are involved, we need rules to combine them. In other words, we need an 
appropriate algebra for events. This mathematical tool is the Boolean algebra, from 
George Boole, English mathematician (1815-1864). George Boole made major 
contributions to the development of mathematical logic and published a book The 
Mathematical Analysis of Logic in 1847. Boole believed in what he called the 
‘process of analysis’, that is, the process by which combinations of interpretable 
symbols are obtained. It is the use of these symbols according to well-determined 
methods of combination that he believed presented ‘true calculus’. 
 
Boolean algebra is thus defined as the study of the manipulation of symbols 
representing operations according to the rules of logic. The main ingredient in logic 
analysis is the principles and method used to distinguish between arguments that are 
valid (“true”) and those that are not (“false”). Logic deals with reasoning and the 
ability to deduce or come to some appropriate conclusions. Boolean algebra involves 
the operations of intersection (“AND”, symbol “∩”), union (“OR”, symbol “∪”) and 
complement (“NOT”, symbol “¯”) on sets. These are defined in Table 2.2, using two 
types of representation: truth tables (with logical operands having the values “1” 
when” true” and “0” when “false”) and Venn diagrams (graphical representation of 
sets by overlapping oval shapes).   
 
Table 2.2 Definition of the Boolean operators “AND”, “OR” and “complement” 
 

 
Ω is the universal event; its complement is the null event, noted Ø. The universal 
event corresponds to the union of all possible events. The null event corresponds to 
the intersection of disjoint events. If the intersection of an event with another one 
returns the first event itself, this one is said to be included in the second (symbol 
“⊂”). 
 
The most obvious way to simplify Boolean expressions is to manipulate them in the 
same way as normal algebraic expressions are manipulated. A set of rules for 
symbolic manipulation is needed to this end. 

Gearge Boole 
(1815-1864) 

AND OR Complement 

A 

Logical 
operands 

B 

A 

0 1 

0 

1 

0 0 

0 1 

B 

0 1 

0 

1 

0 

1 1 

1 A 
0 

1 

1 

0 

Ω 
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B Ω 
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B 
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Ω 

A A

BA ∪BA ∩



2. Mathematics of Reliability & Safety Analysis  41  
   

 

 
The basic Boolean laws are presented below. Note that every law has two 
expressions (a) and (b). These are obtained bay changing every “AND” to “OR” and 
vice-versa. This is known as duality.  
 
- Commutative law 

A ∪ B = B ∪ A  [2.63 a] 
A ∩ B = B ∩ A [2.63 b] 

 
- Associative law 

(A ∪ B)  ∪ C = A ∪ (B ∪ C)  [2.64 a] 
(A ∩ B)  ∩ C = A ∩ (B ∩ C) [2.64 b] 

 
- Distributive law 

A ∩ (B ∪ C) = (A ∩ B) ∪ (A  ∩  C)  [2.65 a] 
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) [2.65 b] 

 
- Idempotent law 

A ∪ A = A     [2.66 a] 
A ∩ A = A   [2.66 b] 

 
- Absorption law 

A ∪ (A ∩ B) = A      [2.67 a] 
A ∩ (A ∪ B) = A [2.67 b] 
 

Some additional frequently used relationships can also be mentioned: 
 
- Complementation  

AA ∩  = ∅ [2.68 a] 
AA ∪  = Ω   [2.68 b] 

A = A [2.68 c] 
 

- Operations with ∅ and Ω 
∅ ∩ A = ∅      [2.69 a] 
∅ ∪ A = A [2.69 b] 
Ω ∩ A = A [2.69 c] 
Ω ∪ A = Ω [2.69 d] 

 
- Simplification 

)B(AB)(A ∩∪∩  = A      [2.70 a] 
)B(AB)(A ∪∩∪  = A      [2.70 b] 

BAB)A(A ∪=∩∪  [2.70 c] 
BAB)A(A ∩=∪∩  [2.70 d] 

B)(A  BA)B(AA ∪=∩=∪∩  [2.70 e] 
 

The last equality results from a well-known theorem, often used for simplifying 
Boolean expressions: 
 
- Morgan’s theorems  

BAB)(A ∪=∩  [2.71 a] 
BAB)(A ∩=∪  [2.71 b] 

 
There are several common alternative notations for the Boolean operators, e.g.:    
  

- A ∩ B can also be written A⋅B, or more simply AB, 
- A ∪ B can also be written A+B, 
-  sometimesor  ,A' written be alsocan  A ¬A. 

Basic Boolean laws 

Additional useful 
relationships 

Morgan’s theorem 
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The laws, theorems and relationships listed in page 41 can be proved by using truth 
tables or Venn diagrams. 
 
Example: prove the truthfulness of the relationship BAB)A(A ∪=∩∪ . 
 

a) Using the truth table approach: 
 

A B A  BA ∩  B)A(A ∩∪  BA ∪  
0 
0 
1 
1 

0 
1 
0 
1 

1 
1 
0 
0 

0 
1 
0 
0 

0 
1 
1 
1 

0 
1 
1 
1 

 
b) Using the Venn diagram approach: 
 

 
These laws, theorems and relationships are used to simplify Boolean expressions. 
 
Example: simplify the expression Z = ( ) ( )[ ]CBACBA ∩∪∩∪∪ : 
 

( ) ( ) ( ) ( ) ( ) ( )CCBCACBBBACBAAAZ ∩∩∪∩∪∩∩∪∩∪∩∩∪∩=  

( ) ( ) ( ) ( ) ∩∪∩∪∩∪∩∪∩∩∪= B(CACBBACBAAZ ∅) 

( )[ ]{ } ( ) ( ) ( )CBACBCBCBAZ ∩∪Ω∩=∩∪∪∪∩∪Ω∩=  

( )CBAZ ∩∪=  
 
An application P that associates a positive real number to any event included in an 
universal set Ω, with the following properties:    
 

- 0 ≤ P(A) ≤ 1, 
- P(Ω) = 1 and P(∅) = 0, 
- P( A ) = 1 – P(A), 
- P(A ∪ B) = P(A) + P(B)  if  A ∩ B = ∅, 
- P(A) ≤ P(B)  if  A ⊂ B, 
 

defines a probability relationship (see Fig. 2.9).  

 
Figure 2.9   Definition of a probability relationship on a set of events 

Event algebra and 
probabilities 

Ω 

A 

B 

BA ∩

Ω A 

B ( )BAA ∩∪

BA ∪=
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The product rule for probabilities states that:                                                                                        
 
 P(A1 ∩ A2) = P(A1| A2)⋅P(A2) = P(A2| A1)⋅P(A1) [2.72] 
 
P(Ai| Aj) represents the conditional probability of event Ai given that event Aj has 
occurred. In the special case that events Ai and Aj are independent - i.e. the 
probability that event Ai occurs is independent of the occurrence of event Aj - then 
P(Ai| Aj) is simply equal to P(Ai). 
 
A second particular case corresponds to events Ai and Aj that are mutually exclusive 
(i.e. “disjoint”), in which case P(Ai| Aj) = 0, and therefore P(Ai ∩ Aj) = 0. 
 
The product rule may be easily generalized to the case of n (n ≥ 2) events: 
 
 P(A1 ∩ A2 ∩ … ∩ An) = P(A1|A2 ∩ A3 ∩ … ∩ An) . . . P(An-1| An) ⋅P(An) [2.73] 
 
If the n events are all independent, then: 
 
 P(A1 ∩ A2 ∩ … ∩ An) = P(A1)⋅P(A2)  . . . P(An) [2.74] 
 
And if they are mutually exclusive: 
 
 P(A1 ∩ A2 ∩ … ∩ An) = 0 [2.75] 
 
The general equation expressing the union of two events, A1 ∪ A2, is:  
 
 P(A1 ∪ A2) = P(A1) + P(A2) – P(A1 ∩ A2) [2.76] 
 
The last term of the right-hand side of the equation appears because of the necessity 
to avoid possible double counting resulting from the “overlap” caused by the 
intersection of the two events. 
 
Of course, if the two events are independent, it follows from Eqs. [2.74] and [2.76] 
that: 
 

 P(A1 ∪ A2) = P(A1) + P(A2) – P(A1)⋅P(A2) [2.77] 
 
On the other hand, if the two events are mutually exclusive, then: 
 
 P(A1 ∪ A2) = P(A1) + P(A2) [2.78] 
 
As in the case of the intersection of events, the preceding equations can be 
generalized to the case of more than two events (Poincaré’s theorem): 
 
 P(A1 ∪ A2 ∪ . . .  ∪ An) = 
 

 )AAP(A)AP(A)P(A
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 - . . . + (-1)n⋅ P(A1 ∩ A2 ∩ . . .  ∩ An) [2.79] 
 
If the events are all mutually exclusive, then only the first term of the right-hand side 
of Eq, [2.79] is non vanishing.  
 
If all the events are independent, it is easier to calculate the probability of the union 
of events from the probability of its complement (application of Morgan’s theorem): 
 
 P(A1 ∪ A2 ∪ . . .  ∪ An) =  1 – P(A1 ∪ A2 ∪ . . .  ∪ An)  

   = P( 1A ∩ 2A  ∩ . . .  ∩ nA ) = [ ]∏
=

−
n

i
i

1
)A(P1  [2.80] 
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2.4 Bayes’ Theorem and Bayesian Inference 

 
The "Bayesian inference method" is based on the Bayesian theorem, which 
suggests that the degree to which one believes that a proposition is true 
depends on the a priori belief one has in the truth of the proposition and in the 
evidence collected to investigate this one. 
 
Bayes' theorem is named after Rev. Thomas Bayes, an 18th century English 
mathematician who derived a special case of this theorem. Bayes' calculations 
were published in 1763, two years after his death. Exactly what Bayes 
intended to do with the calculation, if anything, still remains a mystery today. 
However, his theorem, as generalized by Laplace, is the basic starting point 
for inference problems using probability theory as logic. 
 
Bayes' theorem describes the relationships that exist within a set of simple and 
conditional probabilities. Although its primary application is to situations 
where "probability" is defined according to the strict relative frequency 
interpretation of the concept, it perhaps more often applied to situations where 
"probability" is constructed as an index of subjective confidence (see p. 22).  
 
In the classical statistical approach, model parameters are fixed but unknown 
constants to be estimated using sample data taken randomly from the 
population of interest. The Bayesian approach, on the other hands, treats these 
population model parameters as random, not fixed, quantities. Previous 
information, or even subjective judgments, are used to construct a prior 
distribution model for these parameters. This model expresses a starting 
assessment about how likely various values of the unknown parameters are. It 
is then made use of the current data (via Bayes’ formula) to revise this starting 
assumption and derive what is called the posterior distribution model for the 
population parameters. Parameter estimates, along with confidence intervals, 
are then calculated from the posterior distribution. 
 
Bayes’ fundamental inverse probability formula derives from the “product 
rule for probabilities” (Eq. [2.72]): 

 
 P(A ∩ B) = P(A | B)⋅P(B) = P(B | A)⋅P(A)  

 

To calculate the probability for event A that incorporates the additional 
evidence provided by the occurrence of B, the last equality in the above 
expression is solved to give: 
 

 ( ) ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅=

BP
ABP

(A)PBAP  [2.81] 

 

The formula expresses that the conditional probability of an event A 
occurring, given that the event B has occurred, written P(A | B), is equal to the 
prior unconditional probability of occurrence of A multiplied by a “correction 
factor”  which represents the relative change in the probability of A when B is 
known to have happened. 
 
A more general formulation of the Bayes’ theorem can be developed for a 
complete set of mutually exclusive events Ai (i = 1, … n); such a set is 
characterized by the fact that (theorem of total probabilities):  
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The above equation remains valid if the probabilities are made conditional to the 
occurrence of a given event B (this property is general): 
 

 1)BP(A
1i

=∑
=

n

i  [2.83] 

 
If this equation is multiplied by P(B), then (with Eq. [2.72]): 
 

 ( ) ( ) ( )i
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i
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i AP)AP(B)BP(ABP)BP(ABP
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 [2.84] 

 
Equation [2.84] is the extension rule of probabilities. It allows P(B) to be expressed 
in terms of the previously known probabilities P(Ai) and all the conditional 
probabilities P(B | Ai). Introduced in Eq. [2.81], this leads to the final form of the 
Bayes’ formula: 
 

 ( ) ( )
( )∑
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⋅
= n
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jj

ii
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1
ABP)(AP

ABP)(AP
BAP  [2.85] 

 
The high degree of symmetry in the last equation shows that once the entire set of 
probabilities P(B | Ai) is known, then the calculation of the posterior P(Ai | B) 
becomes straightforward.  
 
The Bayes’ formula is an important tool in reliability analysis when one specifies, by 
the subjective approach, the possibility of rarely occurring events, because it enables 
one to “reverse” the order of information gathering about a failure process. 
 
Example of application of Bayes’ theorem: consider two oil prospects (drills) A and 
B, having respectively a chance of success P(A) and P(B). These prospects are on the 
same basin (i.e. they share a common source rock), therefore a success of A will 
cause us to revise the chance of success of B and conversely for a failure of A. 
Calculate the conditional probability of success of prospect B, given that late case 
(failure of A), assuming that P(A) = 0.3, P(B) = 0.2 and P(B | A) = 0.6. 
 
The probability we are looking for is P(B| A ). From the first form of the Bayes’ 
formula (Eq. [2.81]), we have: 
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AP
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(B)PABP  

 

Now, P( A ) = 1 – P(A) = 1 – 0.3 = 0.7, 

and P(A | B) + P( A  | B) = 1 (because P(A) + P( A ) = 1 from Eq. [2.68 b]),  

thus: P( A | B) = 1 – ( ) ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅−=

BP
ABP

(A)P1BAP  =  1 – (0.3 ⋅ 0.6 / 0.2),  

i.e. P( A  | B) = 0.1. 

Finally: P(B| A ) = (0.2 ⋅0.1) / 0.7 ≅ 0.03. 
 
Taking into account the knowledge that A has failed thus lower the probability of 
having a successful prospect B by a factor of seven compared to the prior 
unconditional evaluation of the success probability of B. This is probably much less 
that most people would have guessed.   
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The Bayes’ formula can also be written in terms of probability density functions as 
follows: 
 

 
∫

λ

λ
λλ⋅λ

λ⋅λ
=λ

max

min
'd)'g()'(f

)g()(f
)g(

x

x
x  [2.86] 

 
where f(x | λ) is the probability model, or likelihood function, for the observed data x 
given the unknown parameter(s) λ, g(λ) is the prior distribution model for λ and    
g(λ | x) is the posterior distribution model for λ given that the data x have been 
observed. 
 
A common way to construct a prior distribution is to assume that the prior is a 
member of a particular parametric family of densities, then choose the parameter of 
the prior so that the prior represents prior beliefs as closely as possible. When 
possible, it is very convenient to choose the prior from a parametric family that has 
the same functional form as the likelihood function; g(λ) and f(x | λ) are in this case 
called conjugate distributions and g(λ) is the conjugate prior for f(x | λ).  
 
Example 1: estimating the binomial probability p.  
 
Let us consider a binomial process with parameter p and assume that we have 
undertaken n trials and obtained s success. Estimate the uncertainty about the value 
of p.   
 
Initially, we assume a uniform prior for p, that is no prior information about p; thus, 
g(p) = 1 (0 ≤ p ≤ 1). The likelihood function is the binomial probability: 
 

snsn
s ppps −−= )1(C  )(f  

 
and the posterior distribution is therefore given by (Eq. [2.86]): 
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which is the probability density of a beta(s + 1, n – s + 1) distribution in the interval 
[0, 1]. Note that the beta distribution should only be used to describe the uncertainty 
about p if the sample size n is much smaller than the population size, because we 
assume sampling with replacement. 
 
If, instead of an uniformed prior, we consider now a beta(α, β) prior (conjugate 
prior), i.e.: 
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the posterior distribution becomes: 
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which is a beta(α + s, β + n - s) distribution. The posterior belief is in this case just a 
“rescaling” of the prior belief.  
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Example 2: estimating the Poisson intensity λ (mean rate at which events occurred). 
 
Let us assume that α events have been observed during a time period t. Estimate the 
uncertainty associated with λ. 
 
Initially, we assume an uninformed prior for λ, that is: 
 
 1/L        0≤ λ ≤ L 
                   g(λ) = 
 0           otherwise  
 
where L is some large number representing an upper limit for the possible values of 
λ. 

 
The likelihood function is here the Poisson probability: 
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The posterior distribution is thus given by: 
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Now, because L is large, we can go to the limit L → ∞ and thus replace the 
denominator in the above equation by (see Appendix 2.1):  
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Therefore, the posterior distribution becomes: 
 

( ) ( )1
etg
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+αΓ
λ⋅⋅

=αλ
αλ+α t

 

 
which is a gamma(α+1, t) distribution. 

 
In short, Bayesian inference consists in: 
 

1. determining a prior estimate of the parameter in the form of a probability density 
function; 

2. finding an appropriate likelihood function for the observed data; 
3. calculating the posterior (revised) estimate of the parameter by multiplying the 

prior distribution and likelihood function and then normalizing. 
 
One issue of concern in Bayesian inference is how strongly the particular selection of 
a prior distribution influences the results of the process. An uninformative prior is 
one that provides little or no information. Depending on the situation, uninformative 
priors may be quite disperse or lead to impossible or quite preposterous values of the 
parameter. Particularly when results are to be used by people who may question the 
expert’s initial opinion, it is desirable to have enough data available to make the 
influence of the prior choice slight. 
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Appendix 2.1 Main Probability Distribution Functions 
 
 

Distribution Probability Density Function 
Cumulative Distribution Function 

Mean 
Variance 
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Distribution Probability Density Function 
Cumulative Distribution Function 

Mean 
Variance 
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