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Terminology

XAI eXplainable Artificial Intelligence: field aiming to make AI systems more interpretable and
trustworthy while maintaining their performance

Explainable Ability of a model to provide clear and understandable reasons for its decisions (active)
Interpretable Ability of a model to be understood and analyzed by human experts (passive).

”the ability to explain or to present in understandable terms to a human”
[Doshi-Velez and Kim, 2017]
”the degree to which a human can understand the cause of a decision” [Miller, 2019]

Black-box model Non-interpretable model due to its complexity, opposed to white-box or transparent
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Why XAI?

In many applications, understanding the model’s predictions is as (or more) important than
performance itself.
Why is this prediction wrong? Is the model correct for the right reasons? How did the model come
to this conclusion? Why was my loan request denied? etc.

Figure 1: Target audience in XAI. Figure from [Arrieta et al., 2019].

Goals:
▶ Trust
▶ Gain knowledge
▶ Understand decisions
▶ Improve→ fix/debug
▶ Certify, Assess
compliance
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The Performance-Interpretability Trade-off

White-box The output is directly interpretable in
terms of weight coefficients or
decision rules.

Performance ↓
Interpretability ↑

Black-box

DNN Large deep trees ensembles

x100
The output is the result of non-linear
computations involving millions of
parameters.

Performance ↑
Interpretability ↓
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Taxonomies of XAI techniques

▶ Type of explanation
▶ Way of obtaining the explanation
▶ Type of data
▶ Global VS Local

▶ Model-agnostic VS Model-specific
▶ Post-hoc VS inherent/intrinsic/”by-design”
▶ Static VS Interactive
▶ etc.
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Types of explanation

Feature attribution (a.k.a importance, relevance
or saliency)
How do the input features affect the output?

▶ Most widely used type of XAI technique
▶ Perturbation-based: SHAP, LIME, RISE…
▶ Gradient or Propagation-based: Grad-CAM,
Integrated Gradients, DeepLIFT, LRP…

Explanation-by-example
Case-based reasoning, Prototypes

Model simplification and rule extraction
Extracting a simple model (e.g. decision tree) or sets of
logical rules to approximate a black-box model.

Counterfactual explanations
What is the smallest modification that would modify
the model’s outcome?

Concept explanations
TCAV, CBM, CEM…
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Feature attribution

Perturbation-based approaches
▶ Forward
▶ Perturb inputs (e.g. occlusion)→ Measure
impact on outputs

▶ Often requires many passes (inefficient)

Propagation-based approaches
▶ Backward
▶ Back-propagate some importance signals
from outputs to inputs

▶ Can be gradients or activation values
▶ Requires a single pass (efficient)
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Feature attribution | Occlusion

Occlude input features (replace with zero/mean/blur/etc.) and measure impact on model output:

ϕi = f(x)− f(x[xi:=b]) (1)

where ϕi is the importance of feature i, and b is a reference value.

▶ Requires many evaluations→ computationally costly!
▶ Depends on occlusion parameters

Extensions: RISE, D-RISE, masking methods for time series, graphs.
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Feature attribution | Gradients

The gradients of output neurons with respect to input dimensions at a given input quantify the
importance of each input in the neighborhood of the current input.

Let x be the current input and f the model function (e.g.,
score of a class):

▶ Gradient: ∂f
∂x

∣∣∣
x=x

▶ Input×Gradient: ∂f
∂x

∣∣∣
x=x

⊙ x

References:
▶ [Baehrens et al., 2010], [Simonyan et al., 2014]
▶ Related: Deconvolutional networks, Guided Back-propagation
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Limitation of perturbation- and propagation-based methods
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Feature attribution | Integrated Gradients

Solve the saturation issue by integrating the gradients between a baseline (e.g. zeros) and the
current input:

References:
▶ [Sundararajan et al., 2017]
▶ distill.pub/2020/attribution-baselines/ 10/16
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Feature attribution | Layer-wise Relevance Propagation (LRP)

Relevance scores are propagated from the output to the input using propagation rules.

▶ Conservation properties
▶ Numerical stability
▶ Many different propagation rules, for different types of layers, activations and input ranges

References:
▶ [Bach et al., 2015], [Montavon et al., 2019]
▶ github.com/chr5tphr/zennit
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Feature attribution | Local Interpretable Model-Agnostic Explanations (LIME)

LIME locally approximates the model f around a given input x using a sparse linear model fitted on
simplified inputs.

Steps:
1. Generate x′ simplified version of x (”interpretable
inputs”)

2. Sample around x′ in the simplified input space
3. Fit surrogate linear model (LASSO) weighted by a
similarity kernel

References:
▶ [Ribeiro et al., 2016]
▶ github.com/marcotcr/lime 12/16
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Feature attribution | Class Activation Mapping (CAM)

Applying a Global Average Pooling (GAP)
over the last convolutional layer in a CNN
before the softmax allows to extract a
localization map for a given class C:

Limitations: Low resolution, and requires specific architecture.
References:

▶ [Zhou et al., 2016]
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Feature attribution | Gradient-weighted Class Activation Mapping (Grad-CAM)

Let Ak be feature maps (often last conv layer):

Does not require GAP, but also limited to CNNs.
References:

▶ [Selvaraju et al., 2017]
▶ github.com/jacobgil/pytorch-grad-cam
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Beyond feature attribution

While feature attribution is by far the most widely used XAI approach, is faces important
shortcomings.

▶ Does not elucidate the decision-making process
▶ Local explanation
▶ Can be unreliable and misleading (sensitive to changes in the input, sometimes contradictory)
▶ Low-level features→ hard to interpret

Other types of explanations or inherently interpretable models might be better suited.
References:

▶ [Rudin, 2019]
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Exercise

Notebook on Moodle
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