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XAl eXplainable Artificial Intelligence: field aiming to make Al systems more interpretable and
trustworthy while maintaining their performance
Explainable Ability of a model to provide clear and understandable reasons for its decisions (active)

Interpretable Ability of a model to be understood and analyzed by human experts (passive).
"the ability to explain or to present in understandable terms to a human”
[Doshi-Velez and Kim, 2017]
"the degree to which a human can understand the cause of a decision” [Miller, 2019]

Black-box model Non-interpretable model due to its complexity, opposed to white-box or transparent
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Why XAI?

In many applications, understanding the model’s predictions is as (or more) important than
performance itself.

Why is this prediction wrong? Is the model correct for the right reasons? How did the model come
to this conclusion? Why was my loan request denied? etc.

Goals:
Who? Domain experts/users of the model (e.g. medical doctors, insurance agents
Why? Trust the model itself, gain scientific knowledge >
R Trust
Who? Users affected by model decisions Who? Regulatory entitics)agencies » Gain knowledge
Why? Understand their situation, verify | ° ‘Why? Certify model compliance wi ..
fair decisions... legislation in force, audits, ... » Understand decisions
Target audience 7 » Improve — ﬁx/debug
in XAI 9
.
» Certify, Assess
‘Who? Data scientists, developers, product owners... ‘Who? Managers and executive board members com Plla nce

Why? Ensure/improve product efficiency, research
new functionalities...

‘Why? Assess regulatory compliance, understand
corporate Al applications...

Figure 1: Target audience in XAl Figure from [Arrieta et al., 2019].
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The Performance-Interpretability Trade-off

m . White-box The output is directly interpretable in
y=pf"z y ternjs. of weight coefficients or
decision rules.

Performance |
Interpretability 1
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The Performance-Interpretability Trade-off

E:I:I:I:D., . White-box The output is directly interpretable in
y=pz y ternjs: of weight coefficients or
decision rules.
Performance |
Interpretability 1
x

e The output is the result of non-linear

00 computations involving millions of
parameters.

Performance 1
Interpretability |

DNN Large deep trees ensembles
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Taxonomies of XAl techniques

v

Type of explanation

v

Model-agnostic VS Model-specific

v
v

Way of obtaining the explanation Post-hoc VS inherent/intrinsic/"by-design”

v

Static VS Interactive
Global VS Local » etc.

v

Type of data

v
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Types of explanation

Feature attribution (a.k.a importance, relevance

or saliency)
How do the input features affect the output?

» Most widely used type of XAl technique
» Perturbation-based: SHAP, LIME, RISE...

» Gradient or Propagation-based: Grad-CAM,
Integrated Gradients, DeepLIFT, LRP...

Explanation-by-example
Case-based reasoning, Prototypes

‘ _ looks like

Model simplification and rule extraction
Extracting a simple model (e.g. decision tree) or sets of
logical rules to approximate a black-box model.

Counterfactual explanations
What is the smallest modification that would modify
the model’s outcome?

You were denied a loan because your annual income
was £30,000. If your income had been £45,000, you
would have been offered a loan.

Concept explanations
TCAV, CBM, CEM...

input x input x
concepts

concepts ¢
sclerosis

bone spurs task y
Regressor [ arthits

nartow joint space
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Feature attribution

Perturbation-based approaches Propagation-based approaches
» Forward » Backward
» Perturb inputs (e.g. occlusion) — Measure » Back-propagate some importance signals
impact on outputs from outputs to inputs
» Often requires many passes (inefficient) » Can be gradients or activation values

» Requires a single pass (efficient)
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Feature attribution | Occlusion

Occlude input features (replace with zero/mean/blur/etc.) and measure impact on model output:

éi = f(X) — f(Xpx;:=py) (1
where ¢; is the importance of feature i, and b is a reference value.

Original (label: "garter snake") Occlusion-1 Occlusion-5x5 Occlusion-10x10 Occlusion-15x15
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» Requires many evaluations — computationally costly!

» Depends on occlusion parameters

Extensions: RISE, D-RISE, masking methods for time series, graphs.
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Feature attribution | Gradients

The gradients of output neurons with respect to input dimensions at a given input quantify the
importance of each input in the neighborhood of the current input.

Let x be the current input and f the model function (e.g.,

score of a class):

> y = max(0, x— 10)

» Gradient: &£
ox XX
tant. Of
» InputxGradient: 7

®X

X=X

radient
N
grad*inp

References:
» [ [Baehrens et al., 2010], [Simonyan et al., 2014]

» Related: Deconvolutional networks, Guided Back-propagation
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Limitation of perturbation- and propagation-based methods

y=(iy +i;) when (i, +i,) < 1

@’ =1 when (i, +i,) >= 1

2
I +1y

o
-

Figure 1. Perturbation-based approaches and gradient-based
approaches fail to model saturation. Illustrated is a simple net-
work exhibiting saturation in the signal from its inputs. At the
point where iy = 1 and iz = 1, perturbing either i1 or iz to 0 will
not produce a change in the output. Note that the gradient of the
output w.rt the inputs is also zero when i; + iz > 1.
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Feature attribution | Integrated Gradients

Solve the saturation issue by integrating the gradients between a baseline (e.g. zeros) and the
current input:

...accumulate local gradients

Difference from baseline 1 ——
— 5f(z’ + az — 2’
Hrae) = o) o« [ HEEAEng,
a=0 dx;

From baseline to input. ..

Top label: reflex camera

Score: 0993755

a=10

References:
» [@[Sundararajan et al,, 2017]

» @ distill.pub/2020/attribution-baselines/ 10/16



distill.pub/2020/attribution-baselines/

Feature attribution | Layer-wise Relevance Propagation (LRP)

Relevance scores are propagated from the output to the input using propagation rules.

» Conservation properties
» Numerical stability

» Many different propagation rules, for different types of layers, activations and input ranges

t
Q

FATERY

QO
\f 4

References:
» [@[Bach et al, 2015], [Montavon et al., 2019]
» €) github.com/chr5tphr/zennit
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Feature attribution | Local Interpretable Model-Agnostic Explanations (LIME)

LIME locally approximates the model f around a given input x using a sparse linear model fitted on
simplified inputs.
Steps:
1. Generate x” simplified version of x ("interpretable
inputs”)

2. Sample around x’ in the simplified input space

3. Fit surrogate linear model (LASSO) weighted by a Original Image g’;?;zfszg'tz
similarity kernel

Acoustic guitar

(d) Explaining Labrador

References:
» [d[Ribeiro et al, 2016]

» ©) github.com/marcotcr/lime 12/16



github.com/marcotcr/lime

Feature attribution | Class Activation Mapping (CAM)

Applying a Global Average Pooling (GAP)
over the last convolutional layer in a CNN
before the softmax allows to extract a
localization map for a given class C:

© c C G
o o o o
N N N M
global average pooling v 7 Y
—
1
=Dk Z2Id A
P’ Pl Class Activation Mapplng
~——
class feature weights feature map @
lass
1 + Wy« Wy = Activation
c __ c Ak Map
LYY il - [
i Jj k
S——
L(CT.-'\M

Limitations: Low resolution, and requires specific architecture.

References:
» [@[zhou et al,, 2016]
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Feature attribution | Gradient-weighted Class Activation Mapping (Grad-CAM)

Let Af be feature maps (often last conv layer):

global average pooling
c
af = 1 ) 9y
Z4ieie GAE
i 7 7
eradients via backprop

c c gk B A i b

Ligacam = ReLU ( E ajp A

- (g) Original Image. (h) Guided Backprop ‘Dog’ (i) Grad-CAM "Dog’  (j)Guided Grad-CAM "Dog" (k) Occlus Doz’ (I)ResNet Grad-CAM “Dog’
k

(@) Original Image ~ (b) Guided Backprop "Car”  (¢) Grad-CAM “Car’

linear combination

Does not require GAP, but also limited to CNNs.

References:
» [ [Selvaraju et al., 2017]

» O github.com/jacobgil/pytorch-grad-cam
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github.com/jacobgil/pytorch-grad-cam

Beyond feature attribution

While feature attribution is by far the most widely used XAl approach, is faces important
shortcomings.

v

Does not elucidate the decision-making process

v

Local explanation

v

Can be unreliable and misleading (sensitive to changes in the input, sometimes contradictory)

v

Low-level features — hard to interpret

Other types of explanations or inherently interpretable models might be better suited.

References:
» [ [Rudin, 2019]
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Notebook on Moodle
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