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=PFL  Hype cycle for Al 2024
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=PrL

Key Scientific Tasks
Forward Simulation Inverse Simulation Equation Discovery
y = f(x) y = f(x)
i -
_—

Source: JASSEM ABBASI
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Fleet approaches
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=PFL Five levels of condition-based and predictive
maintenance

P - +Prolong the component's lifetime
. I " s Self configuration, optimization and adjustment

t |
+Fleets of machines
*Cyber-physical systems
* Peer-to-peer Monitoring
«Components under different operating conditions

+Fault detection, diagnostics and
prediction of the remaining useful life

+Degradation and performance prediction

+Effective sensor selection
+Connection + data aggregation
+Internet of things infrastructure

+Prioritize and optimize maintenance decisions
*Remote visualization

B 25.11.24
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=P7L  Challenges In Predictive Maintenance

Varying and evolving operating conditions - Even healthy
system conditions are not always representative due to limited
observation time period

- Representative operating conditions (and features) required

Algorithms also for systems required that are newly taken into
operation

B 2511.24
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=PrL  What do we start with?

= Limited number of faults (labels)

= Large variety of condition monitoring data under different operating
conditions

= Several units of the same fleet (but units have variability in their
configurations and operating conditions)

= Heterogenous operating conditions and configurations of the fleet units
= Limited observation time periods

= Limited representativeness of the collected data for the expected
operating conditions

B 2511.24
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=PrL

B 2511.24

What are we trying to achieve?

= Compile representative training datasets that are valid for the specific
units under the specific operating conditions (homogeneous datasets)

= Using labeled and unlabeled data as efficiently as possible at the level
of an entire fleet

= Develop also algorithms for new units

= Transferring knowledge (on operating conditions and faults) between
the single units of a fleet

= |_earn robust features that are invariant to different operating conditions

Olga Fink 10



=PFL  Example Gas Turbines
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Example Gas Turbines
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=PrL

B 2511.24

Different options for fleet leaming (1/4)

?oal: identify similar units of a fleet that could form a homogenous sub-
leet

Problem: What does similar mean? How could similarity be defined?

1. Identify some relevant operating or design parameters of the units
(e.g. average operating regimes)

2. Find sub-fleets (possibly with clustering) defined by similar
characteristics based on the selected parameters;

3. Use the subsets of condition monitoring data of each of the sub-fleets
to train the algorithms

4. Apply “specialized” models for the PHM tasks on all the units within
the sub-fleet

Challenge: Aggregated parameters used for comparison may not cover
all the relevant conditions or the aggregated parameters may not be
representative of the unit specificities

Olga Fink




=PFL  Baslic principle of identifying similar units of a
fleet

Cluster N

Fleet Fleet Clusterin Cluster 2 Local Cluster
Units 9 |Cluster1 Fault Detection
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=PFL  Recelver operating characteristic curves for servo-
gun (left) and wind turbines (right) fault detection
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=PFL  Different options for fleet leaming (2/4)

1. Use the entire time series of condition monitoring signals to identify
similar sub-fleets

Perform time-series clustering to find sub-fleets

Use the subsets of condition monitoring data of each of the sub-fleets
to train the algorithms

4. Apply “specialized” models for the PHM tasks on all the units within
the sub-fleet

Challenges:
1) Comparing the distances between time series is affected by the curse of
dimensionality.
2) Time series cluster analysis becomes even more challenging when operating
conditions evolve over time.

B 2511.24
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B 2511.24

Why Dynamic Time Warping?

A 4

i it2

Any distance (Euclidean, Manhattan, ...)
which aligns the i-th point on one time series
with the i-th point on the other will produce a
poor similarity score.

time

A non-linear (elastic) alignment produces a
more intuitive similarity measure, allowing
similar shapes to match even if they are out
of phase in the time axis.

Source: Elena Tsiporkova

Olga Fink 17
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B 2511.24

Dynamic Time Warping

= Dynamic Time Warping (DTW) is a technique used to measure the
similarity between two temporal sequences, which may vary in speed or
length.

= |t aligns sequences by warping them non-linearly in the time dimension
to minimize the distance between corresponding points.

= DTW is commonly applied in time-series analysis, speech recognition,
and gesture recognition.

= |t computes an optimal alignment path between sequences using
dynamic programming to find the minimal cumulative distance.

= The method is robust to shifts, scaling, and distortions in time, making it
suitable for comparing sequences with varying patterns.

= DTW can be computationally intensive for long sequences.

Olga Fink 18



£PFL  Warping Function

Time Series A
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=PFL  Time-Nommalized Distance Measure

Time Series A
) Time-normalized distance
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EPFL  Qptimisations to the DTW Algorithm L

Time Series A

. ; B The number of possible

" - see warping paths through the grid

eooee oo is exponentially explosive!
o0 o o o
[ J 000 o reduction of
[ o0 e the search
o e e e P
M) 0 [ ® Restrictions on the warping
@ e o O o function:
@ o 00 (] -

il el o0 o (@ M) * monotonicity
: ‘ ® .: o L : « boundary conditions
00000 000 * warping window

Time Series B || |@ 00|00/ 0/0/®

* slope constraint.

Source: Elena Tsiporkova
Olga Fink 21

B 2511.24



=P7L  Example

Cost matrix
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Hendrickx, Kilian, et al. "A fleet-wide approach for condition monitoring of similar machines using time-series clustering." 2019.
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B 2511.24

Case study

= Drivetrains 1-5: Squirrel cage induction motor (SCIM) at the driving side
and DC motor at the load side.

= Drivetrains 6—10: SCIM at the driving side and Wound Rotor
Synchronous Motor (WRSM) at the load side.

= A phase unbalance is introduced at one drivetrain for each of these

groups
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Hendrickx, Kilian, et al. "A fleet-wide approach for condition monitoring of similar machines using time-series clustering." 2019.
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=PrL  Example of alignment
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Fig. 5. Raw signals showing a faulty (red) and two healthy (green) drivetrains
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Fig. 6. Warped signals for a faulty (red) and two healthy (green) waveforms

Hendrickx, Kilian, et al. "A fleet-wide approach for condition monitoring of similar machines using time-series clustering." 2019.
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Different options for fleet leaming (3/4)

Develop models for the functional behaviour of the units

2. Apply the models of the functional bahaviour to other units (train on

one unit =2 apply to other units)
Define thresholds for the similar functional behavior between the units

. Use the subsets of condition monitoring data of each of the sub-fleets
to train the algorithms

5. Apply “specialized” models for the PHM tasks on all the units within
the sub-fleet

Challenge: one of the underlying requirements is that the units
experience a sufficient similarity in their operating regimes. If the units are
operated in a dissimilar way, large fleets may be required to find units
with a sufficient similarity.

Olga Fink




=PFL  Solution: Using the fleet experience! >
Transfer the experience

Transfer of experience with respect to the healthy operating
conditions> Enlarge the set of representative «healthy data»

Transfer the experience with respect to faulty system conditions

But: single units are operated differently, have different configurations and environmental conditions

If fleet units too different> faulty system conditions recognized as healthy

» Challenge: If fleet units too similar-> no additional experience added

B 2511.24
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=PFL  Using the fleet experience
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Dataset dissimilarities
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=PFL  Fleet of Gas Turbines Plant 1: Healthy
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Michau, Gabriel, Thomas Palmé, and Olga Fink. 2018. “Fleet PHM for Critical Systems: Bi-Level Deep Learning Approach for Fault Detection.” In European Prognognostics and Health
Management Conference. Utrecht. 09.05.2019
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Fleet of Gas Turbines Plant 2: Fault
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B 2511.24

Different options for fleet leaming (4/4)

1. Perform domain alignment in the feature space of the different units to
compensate for the distribution shift between different units of a fleet.

—> typically, pairwise transfer of models with source and target units
2. Apply the trained models to the target units.

Challenge:
= alignment is performed in an unsupervised way

—>performance depends on the assumption that the future operating
conditions of the unit of interest will be representative to the aligned
operating conditions

—->no guarantees can be made that the system of interest will be behaving in a
similar way in the future

= (However, this limitation is in fact true for all the fleet PHM approaches
since th§ past experience of other fleet units is transferred to the unit of
interest.

Olga Fink




=PFL Only healthy data for source and target available

Source Target

ﬁ ﬁ

® o\ healthy healthy
[
[
o

B 2511.24
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Naive Alignment Keeping Inter-Sample Relationships

' (b) ARE

------ Anomaly Detection Boundary
A /4 Source/Target Healthy Features
@&/ W Source/Target Anomalies

Michau, G. & O. Fink (2021): Unsupervised Transfer Learning for Anomaly Detection: Application to Complementary Operating Condition Transfer, Knowledge-

Based Systems, 216, 106816
Olga Fink
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=F7L Domain Adaptation

Feature Extractor Domain Discriminator
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Michau, G. & O. Fink (2021): Unsupervised Transfer Learning for Anomaly Detection: Application to Complementary Operating Condition Transfer, Knowledge-Based
Systems, 216, 106816
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=P*L  Proposed Framework for Unsupervised Transfer

Lean!ing

B 2511.24

Systems, 216, 106816
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=FrLSource to Target - Suggested Scaled Domain
Adaptation

» Enforce “scaled” projection between input and latent space

1
Lr= >, g 2 X=X, =l = Fjl,l, = Argmin Lp (7)
SE{Source} (2,7)€S !
Target

Michau, G. & O. Fink (2021): Unsupervised Transfer Learning for Anomaly Detection: Application to Complementary Operating Condition Transfer, Knowledge-Based
Systems, 216, 106816
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=PFL . Number of matched units

Unit | HELM [B-VAE [A-VAEs G-VAEw HFA AFAs AFAw HAFAs HAFAw
1 11 74 65 74 83 83 85 86 79
2 0 5 20 13 10 13 24 5 12
3 10 28 22 22 21 23 30 32 34
4 17 30 21 32 54 55 54 52 49
5 94 68 47 67 90 59 63 80 85
6 92 51 68 63 8 77 79 92 93
7 0 13 29 24 29 45 31 34 26
8 95 40 42 43 67 6l 63 65 58
9 2 19 19 18 26 28 32 22 39
10 1 18 15 8 21 28 24 34 29
11 2 20 35 47 59 63 51 60 51
12 0 3 3 4 2 2 1 1 3
R% (5%)| 273 31.1 325 349 460 452 452 474 47.0
R% (1%)| 135 206 22.0 258 305 270 255 328 30.1
u“:)- G.Michau & O. Fink, 2019 “Domain Adaptation for One-Class Classification: Monitoring the Health of Critical Systems Under Limited Information.” International Journal of Prognostics and Health
N Management

Olga Fink 39



Prescriptive
Maintenance/ Operation
(health-aware control)




=PFL Five levels of condition-based and predictive
maintenance

P - +Prolong the component's lifetime
. I " s Self configuration, optimization and adjustment

t |
+Fleets of machines
*Cyber-physical systems
* Peer-to-peer Monitoring
«Components under different operating conditions

+Fault detection, diagnostics and
prediction of the remaining useful life

+Degradation and performance prediction

+Effective sensor selection
+Connection + data aggregation
+Internet of things infrastructure

+Prioritize and optimize maintenance decisions
*Remote visualization

B 25.11.24
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=PrL

04.12.23

Predictive vs. Prescriptive Maintenance
/ Presrciptive Operation

Predict the remaining useful life
Anticipate the failure
Reduce the impact of the failure

Determine the optimal point in time
for maintenance intervention

What can we do to prolong the
remaining useful life?

How can we proactively adjust the
operating conditions?

How can we control the process
parameters?

Olga Fink 42



=PFL  Concept of prescriptive analytics

Analytics Human Input

Descriptive
What happened?

Diagnostic
Why did it happen?
Decision | Action

Predictive
What will happen?

Decision Support

Prescriptive
What should | do?

Decision Automation

Source Gartner

B 25.11.24
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=PrL

B 2511.24

Prescriptive Maintenance / Operation

= Prescribe sequentially optimal operational parameters that have an
impact on the remaining useful lifetime in order to achieve a certain goal
(e.g. finish a mission, finish a production goal, extend the time interval
to the planned maintenance intervention etc. )

= The set of the operational parameters are optimized based on their
impact on the consumption of the remaining useful lifetime

= A good prognostics model required

= A good understanding required of what influences the remaining useful
lifetime

Olga Fink 44



=PFL  Controlling the Remaining Useful Lifetime using i
Self-Optimization
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=PFL A Reinforcement Leaming Approach to Health
Aware Control Strategy
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=PFL A Reinforcement Leaming Approach to Health
Aware Control Strategy

= second order DC (direct current) motor model
= - obtained by discretizing a continuous model with sampling time Ts=0.01s.

Ipo 09 —0.001{| i, 0.01
= + uk
[mnj [0‘001 0.99 }L‘)k} { 0 }
= Simplified wear model (wear rate Hw - function of shaft speed):

Hw,,, =Hw, +TsC, o,

B 2511.24
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=PrL

Prescriptive operation

How can adapt the operating parameters of a

= drone based on the health state of the battery,
the current environmental conditions+ planned
mission proactively - prescribe optimal
parameters!

R \ A
‘_ " -



=PFL  Prescribing Optimal Operation for Urban Air Mobility
Using Deep Reinforcement Leaming

Reward

Simulator (simulate environment)

Action M

[ Next destination, Altitude of the flight]

—»

Deer RL 1 ——
an

» Voltage discharge curve

State » Information extracted from predefined flight to Environment
analyze battery aging

» Location of destination

« Number of destinations reached so far

B 251124

Montazeri, M., Kulkarni, C., & Fink, O.: Prescribing Optimal Operation for Urban Air Mobility Using Deep Reinforcement Learning, in preparation
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=PFL  Prescribing Optimal Operation for Urban Air Mobility
Using Deep Reinforcement Leaming
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Montazeri, M., Kulkarni, C., & Fink, O.: Prescribing Optimal Operation for Urban Air Mobility Using Deep Reinforcement Learning, in preparation
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=PFL  Effect of varying degradation parameters on the

voltage discharge curves
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=PFL  Single mission — altitude optimization
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Montazeri, M., Kulkarni, C., & Fink, O.: Prescribing Optimal Operation for Urban Air Mobility Using Deep Reinforcement Learning, under review
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=PFL  Impact of flight altitude on voltage discharge
curve and the number of reached destinations
(before EOD)
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Montazeri, M., Kulkarni, C., & Fink, O.: Prescribing Optimal Operation for Urban Air Mobility Using Deep Reinforcement Learning, under review
Olga Fink 53



=PrL

B 2511.24

Number of reached destinations and
charging cycles
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