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Key Scientific Tasks

5

Forward Simulation
y = f(x)

Inverse Simulation
y = f(x)

Equation Discovery
y = f(x)

Source: JASSEM ABBASI 
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Fleet approaches
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Five levels of condition-based and predictive
maintenance
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Challenges in Predictive Maintenance
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Varying and evolving operating conditions  Even healthy
system conditions are not always representative due to limited 
observation time period
 Representative operating conditions (and features) required

Algorithms also for systems required that are newly taken into
operation



 Limited number of faults (labels)
 Large variety of condition monitoring data under different operating

conditions
 Several units of the same fleet (but units have variability in their

configurations and operating conditions)
 Heterogenous operating conditions and configurations of the fleet units
 Limited observation time periods
 Limited representativeness of the collected data for the expected

operating conditions

What do we start with?
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 Compile representative training datasets that are valid for the specific
units under the specific operating conditions (homogeneous datasets)
 Using labeled and unlabeled data as efficiently as possible at the level

of an entire fleet
 Develop also algorithms for new units
 Transferring knowledge (on operating conditions and faults) between

the single units of a fleet
 Learn robust features that are invariant to different operating conditions

What are we trying to achieve?
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Example Gas Turbines
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Only a short observation period

Winter
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Example Gas Turbines
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Extend the 
observation period
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Goal: identify similar units of a fleet that could form a homogenous sub-
fleet
Problem: What does similar mean? How could similarity be defined?
1. Identify some relevant operating or design parameters of the units 

(e.g. average operating regimes) 
2. Find sub-fleets (possibly with clustering) defined by similar 

characteristics based on the selected parameters; 
3. Use the subsets of condition monitoring data of each of the sub-fleets 

to train the algorithms
4. Apply “specialized” models for the PHM tasks on all the units within 

the sub-fleet
Challenge:  Aggregated parameters used for comparison may not cover 
all the relevant conditions or the aggregated parameters may not be 
representative of the unit specificities

Different options for fleet learning (1/4)
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Basic principle of identifying similar units of a 
fleet
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Lapira, Edzel R. Fault detection in a network of similar machines using clustering approach. Diss. University of Cincinnati, 2012.



Receiver operating characteristic curves for servo-
gun (left) and wind turbines (right) fault detection
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Lapira, Edzel R. Fault detection in a network of similar machines using clustering approach. Diss. University of Cincinnati, 2012.



1. Use the entire time series of condition monitoring signals to identify 
similar sub-fleets 

2. Perform time-series clustering to find sub-fleets 
3. Use the subsets of condition monitoring data of each of the sub-fleets 

to train the algorithms
4. Apply “specialized” models for the PHM tasks on all the units within 

the sub-fleet
Challenges: 

1) Comparing the distances between time series is affected by the curse of 
dimensionality. 

2) Time series cluster analysis becomes even more challenging when operating 
conditions evolve over time.

Different options for fleet learning (2/4)
25

.1
1.

24

Olga Fink



i

i+2

i

i i

timetime

Any distance (Euclidean, Manhattan, …) 
which aligns the i-th point on one time series 
with the i-th point on the other will produce a
poor similarity score.

A non-linear (elastic) alignment produces a
more intuitive similarity measure, allowing 
similar shapes to match even if they are out 
of phase in the time axis.

Why Dynamic Time Warping?

Source: Elena Tsiporkova
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 Dynamic Time Warping (DTW) is a technique used to measure the 
similarity between two temporal sequences, which may vary in speed or 
length.
 It aligns sequences by warping them non-linearly in the time dimension 

to minimize the distance between corresponding points.
 DTW is commonly applied in time-series analysis, speech recognition, 

and gesture recognition.
 It computes an optimal alignment path between sequences using 

dynamic programming to find the minimal cumulative distance.
 The method is robust to shifts, scaling, and distortions in time, making it 

suitable for comparing sequences with varying patterns.
 DTW can be computationally intensive for long sequences.

Dynamic Time Warping
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To find the best alignment between A 
and B one needs to find the path 
through the grid

P = p1, … , ps , … , pk

ps = (is , js )

which minimizes the total distance 
between them.

P is called a warping function.

Warping Function

Source: Elena Tsiporkova
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Best alignment path between A 
and B : 

Time-normalized distance
between A and B :

P0 =                  (D(A , B ))
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Time-Normalized Distance Measure

Source: Elena Tsiporkova25
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The number of possible 
warping paths through the grid 
is exponentially explosive!

Restrictions on the warping 
function:

• monotonicity

• continuity

• boundary conditions

• warping window

• slope constraint.

reduction of 
the search 

space
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Optimisations to the DTW Algorithm
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Example
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Hendrickx, Kilian, et al. "A fleet-wide approach for condition monitoring of similar machines using time-series clustering." 2019.



 Drivetrains 1–5: Squirrel cage induction motor (SCIM) at the driving side 
and DC motor at the load side.
 Drivetrains 6–10: SCIM at the driving side and Wound Rotor 

Synchronous Motor (WRSM) at the load side.
 A phase unbalance is introduced at one drivetrain for each of these 

groups

Case study
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Hendrickx, Kilian, et al. "A fleet-wide approach for condition monitoring of similar machines using time-series clustering." 2019.



Example of alignment
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Hendrickx, Kilian, et al. "A fleet-wide approach for condition monitoring of similar machines using time-series clustering." 2019.



1. Develop models for the functional behaviour of the units 
2. Apply the models of the functional bahaviour to other units (train on 

one unit  apply to other units)
3. Define thresholds for the similar functional behavior between the units
4. Use the subsets of condition monitoring data of each of the sub-fleets 

to train the algorithms
5. Apply “specialized” models for the PHM tasks on all the units within 

the sub-fleet
Challenge: one of the underlying requirements is that the units 
experience a sufficient similarity in their operating regimes. If the units are 
operated in a dissimilar way, large fleets may be required to find units 
with a sufficient similarity.

Different options for fleet learning (3/4)
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Solution: Using the fleet experience! 
Transfer the experience
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Transfer of experience with respect to the healthy operating
conditions Enlarge the set of representative «healthy data»

Transfer the experience with respect to faulty system conditions

But: single units are operated differently, have different configurations and environmental conditions

Challenge: If fleet units too similar no additional experience added
If fleet units too different faulty system conditions recognized as healthy



Using the fleet experience
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Michau, Gabriel, Thomas Palmé, and Olga Fink. 2018. “Fleet PHM for Critical Systems: Bi-Level Deep Learning Approach for Fault Detection.” In European Prognognostics and Health
Management Conference. Utrecht.



Dataset dissimilarities
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Fleet of Gas Turbines Plant 1: Healthy
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Michau, Gabriel, Thomas Palmé, and Olga Fink. 2018. “Fleet PHM for Critical Systems: Bi-Level Deep Learning Approach for Fault Detection.” In European Prognognostics and Health
Management Conference. Utrecht.
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Fleet of Gas Turbines Plant 2: Fault
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Michau, Gabriel, Thomas Palmé, and Olga Fink. 2018. “Fleet PHM for Critical Systems: Bi-Level Deep Learning Approach for Fault Detection.” In European Prognognostics and Health
Management Conference. Utrecht.



1. Perform domain alignment in the feature space of the different units to 
compensate for the distribution shift between different units of a fleet. 
 typically, pairwise transfer of models with source and target units

2. Apply the trained models to the target units. 

Challenge: 
 alignment is performed in an unsupervised way 
performance depends on the assumption that the future operating 

conditions of the unit of interest will be representative to the aligned 
operating conditions
no guarantees can be made that the system of interest will be behaving in a 

similar way in the future
 (However, this limitation is in fact true for all the fleet PHM approaches 

since the past experience of other fleet units is transferred to the unit of 
interest.)

Different options for fleet learning (4/4)
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Only healthy data for source and target available
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Source Target  

healthy healthy



Transfer operational experience between units
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Combine Data Naïve Alignment Keeping Inter-Sample Relationships

Michau, G. & O. Fink (2021): Unsupervised Transfer Learning for Anomaly Detection: Application to Complementary Operating Condition Transfer, Knowledge-
Based Systems, 216, 106816



Domain Adaptation
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Michau, G. & O. Fink (2021): Unsupervised Transfer Learning for Anomaly Detection: Application to Complementary Operating Condition Transfer, Knowledge-Based 
Systems, 216, 106816



Proposed Framework for Unsupervised Transfer 
Learning
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Michau, G. & O. Fink (2021): Unsupervised Transfer Learning for Anomaly Detection: Application to Complementary Operating Condition Transfer, Knowledge-Based 
Systems, 216, 106816



 Enforce “scaled” projection between input and latent space

Source to Target - Suggested Scaled Domain
Adaptation
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Michau, G. & O. Fink (2021): Unsupervised Transfer Learning for Anomaly Detection: Application to Complementary Operating Condition Transfer, Knowledge-Based 
Systems, 216, 106816



Number of matched units
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G.Michau & O. Fink, 2019 “Domain Adaptation for One-Class Classification: Monitoring the Health of Critical Systems Under Limited Information.” International Journal of Prognostics and Health
Management



Prescriptive
Maintenance/ Operation 
(health-aware control)
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Five levels of condition-based and predictive
maintenance

25
.1

1.
24

Olga Fink 41



Predictive vs. Prescriptive Maintenance 
/Presrciptive Operation
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Predict the remaining useful life
Anticipate the failure

Reduce the impact of the failure
Determine the optimal point in time 

for maintenance intervention

What can we do to prolong the
remaining useful life?

How can we proactively adjust the
operating conditions?

How can we control the process
parameters?
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Concept of prescriptive analytics
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 Prescribe sequentially optimal operational parameters that have an 
impact on the remaining useful lifetime in order to achieve a certain goal
(e.g. finish a mission, finish a production goal, extend the time interval
to the planned maintenance intervention etc. ) 
 The set of the operational parameters are optimized based on their

impact on the consumption of the remaining useful lifetime
 A good prognostics model required
 A good understanding required of what influences the remaining useful

lifetime

Prescriptive Maintenance / Operation
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Controlling the Remaining Useful Lifetime using 
Self-Optimization
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Meyer, Tobias, et al. "Controlling the remaining useful lifetime using self-optimization." Chemical Engineering Transactions 33 (2013).



A Reinforcement Learning Approach to Health 
Aware Control Strategy
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Jha, Mayank S., et al. "A reinforcement learning approach to health aware control strategy." 2019 27th Mediterranean Conference on Control and Automation 
(MED). IEEE, 2019.



A Reinforcement Learning Approach to Health 
Aware Control Strategy
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 second order DC (direct current) motor model
  obtained by discretizing a continuous model with sampling time Ts=0.01s. 

 Simplified wear model (wear rate Hw function of shaft speed):

Jha, Mayank S., et al. "A reinforcement learning approach to health aware control strategy." 2019 27th Mediterranean Conference on Control and Automation 
(MED). IEEE, 2019.



Prescriptive operation

How can adapt the operating parameters of a 
drone based on the health state of the battery, 
the current environmental conditions+ planned 
mission proactively  prescribe optimal 
parameters!

Olga Fink 48



Prescribing Optimal Operation for Urban Air Mobility 
Using Deep Reinforcement Learning
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Montazeri, M., Kulkarni, C., & Fink, O.: Prescribing Optimal Operation for Urban Air Mobility Using Deep Reinforcement Learning, in preparation



Prescribing Optimal Operation for Urban Air Mobility 
Using Deep Reinforcement Learning
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Montazeri, M., Kulkarni, C., & Fink, O.: Prescribing Optimal Operation for Urban Air Mobility Using Deep Reinforcement Learning, in preparation



Effect of varying degradation parameters on the 
voltage discharge curves
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Single mission altitude optimization
25

.1
1.

24

Olga Fink 52

Mission #1
Mission #2

Charging
Station

Montazeri, M., Kulkarni, C., & Fink, O.: Prescribing Optimal Operation for Urban Air Mobility Using Deep Reinforcement Learning, under review



Impact of flight altitude on voltage discharge 
curve and the number of reached destinations 
(before EOD)
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Montazeri, M., Kulkarni, C., & Fink, O.: Prescribing Optimal Operation for Urban Air Mobility Using Deep Reinforcement Learning, under review



Number of reached destinations and 
charging cycles
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Montazeri, M., Kulkarni, C., & Fink, O.: Prescribing Optimal Operation for Urban Air Mobility Using Deep Reinforcement Learning, in preparation
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