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 Domain generalization focuses on training models that generalize to 
unseen target domains.
 Unlike domain adaptation, it does not require access to target domain 

data during training.
 It aims to learn robust and invariant features from source domains that 

perform well under different conditions.
 Useful when target environments are unknown or change dynamically.
 Helps create models that are more adaptable and resilient to 

distribution shifts or novel scenarios.
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 Continuous domain adaptation focuses on adapting a model 
continuously as the target domain evolves over time.
 Unlike traditional domain adaptation, it handles scenarios where data 

distributions change dynamically and require ongoing adjustments.
 It seeks to maintain model performance by adapting incrementally to 

new conditions without needing to retrain from scratch.
 Useful for real-world applications where environments and data 

distributions are constantly shifting.
 Often involves strategies for updating learned representations, retaining 

past knowledge, and mitigating catastrophic forgetting.

Continuous domain adaptation
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 Test-time adaptation refers to adapting a model to distribution shifts in 
the target domain during inference, without further training on the 
source domain.
 It focuses on updating model parameters or representations using only 

test data, typically through self-supervised or unsupervised strategies.
 Allows models to respond to domain shifts or changes at the point of 

inference, improving performance in unseen or evolving conditions.
 Reduces the reliance on having a large amount of labeled data in the 

target domain.
 Useful for scenarios where models encounter dynamic environments or 

previously unseen data distributions at test time.

Test-time adaptation
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Digital Twins
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 A digital twin is defined as “a living model of the physical asset or 
system, which continually adapts to operational changes based on the 
collected online data and information, and can forecast the future of the 
corresponding physical counterpart”. 

1. Definition: Digital twins
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M. Grieves and J. Vickers, “Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems,” in Transdisciplinary Perspectives on Complex Systems: New Findings and 
Approaches, Springer International Publishing, 2016, pp. 85–113.



 A digital twin is a set of virtual information constructs that mimics the 
structure, context, and behavior of a natural, engineered, or social 
system (or system-of-systems), is dynamically updated with data from 
its physical twin, has a predictive capability, and informs decisions that 
realize value. The bidirectional interaction between the virtual and the 
physical is central to the digital twin. 

2. Definition: Digital twins
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National Academies 2023: Foundational Research Gaps and Future Directions for Digital Twins



Digital Twin integration
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R. Stark, C. Fresemann, and K. Lindow, “Development and operation of Digital Twins for technical systems and services,” 
CIRP Ann., vol. 68, no. 1, pp. 129–132, Jan. 2019.



Elements of a digital twin
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Digital twin of a patient
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 Verification.Does a computer program correctly solve the equations of 
the mathematical model?
 Validation.To what degree is a model an accurate representation of the 

real world, from the perspective of the intended model uses?
 Uncertainty Quantification.What are uncertainties in model 

calculations of quantities of interest?

Verification, Validation, Uncertainty
Quantification
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Application fields
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Manufacturing

Smart Cities

Health care

Energy Sector

Aerospace and Defense

Automotive Industry

Building Energy Systems

Agriculture

Climate

…



Application cases of DT
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Product development

Design + Testing

PHM / Maintenance

Optimizing product life-cycle management

Process Optimization

Prescriptive Operation



 Balancing required fidelity for prediction, available resources, and 
acceptable costs
 Different digital twin purposes drive different fitness requirements 

related to modeling fidelity, data availability, visualization, time-to-
solution, etc.
 For many potential use cases, achieving fitness-for-purpose is currently 

intractable

A Digital Twin should be Fit for Purpose 
11

.1
1.

24

Olga Fink 20
National Academies 2023: Foundational Research Gaps and Future Directions for Digital Twins



Hybrid Models
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Space of potential solutions
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Physics-informed ML for prognostics and 
health management (PHM)
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Source: M. Arias



Different ways of fusing DL and physics
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Combining Physics-Based 
and Deep Learning 
Models
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Physics-informed ML
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Thelen, A., X. Zhang, O. Fink, Y. Lu, S. Ghosh, B.D. Youn, M.D. Todd, S. Mahadevan, C. Hu, Z. Hu. "A Comprehensive Review of Digital Twin - Part 1: Modeling and Twinning Enabling 
Technologies]{A Comprehensive Review of Digital Twin - Part 1: Modeling and Twinning Enabling Technologies.“¨, accepted for publication in Structural and Multidisciplinary Optimization 
journal



Data Augmentation
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Thelen, A., X. Zhang, O. Fink, Y. Lu, S. Ghosh, B.D. Youn, M.D. Todd, S. Mahadevan, C. Hu, Z. Hu. "A Comprehensive Review of Digital Twin - Part 1: Modeling 
and Twinning Enabling Technologies]{A Comprehensive Review of Digital Twin - Part 1: Modeling and Twinning Enabling Technologies.“¨, accepted for publication in 
Structural and Multidisciplinary Optimization journal



Residual-model
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Rausch, Randal T., et al. "Integrated in-flight fault detection and accommodation: A model-based study." (2007): 962-969.



Transfer learning
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Thelen, A., X. Zhang, O. Fink, Y. Lu, S. Ghosh, B.D. Youn, M.D. Todd, S. Mahadevan, C. Hu, Z. Hu. "A Comprehensive Review of Digital Twin - Part 1: Modeling 
and Twinning Enabling Technologies]{A Comprehensive Review of Digital Twin - Part 1: Modeling and Twinning Enabling Technologies.“¨, accepted for publication in 
Structural and Multidisciplinary Optimization journal

First-principle
Model

Pre-trained
Model

Final Model

Simulated
Data

Real Data

Fine-Tuning



Delta Learning (Missing Physics)
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Thelen, A., X. Zhang, O. Fink, Y. Lu, S. Ghosh, B.D. Youn, M.D. Todd, S. Mahadevan, C. Hu, Z. Hu. "A Comprehensive Review of Digital Twin - Part 1: Modeling 
and Twinning Enabling Technologies]{A Comprehensive Review of Digital Twin - Part 1: Modeling and Twinning Enabling Technologies.“¨, accepted for publication in 
Structural and Multidisciplinary Optimization journal



Delta Learning (ML Prediction) 
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Thelen, A., X. Zhang, O. Fink, Y. Lu, S. Ghosh, B.D. Youn, M.D. Todd, S. Mahadevan, C. Hu, Z. Hu. "A Comprehensive Review of Digital Twin - Part 1: Modeling 
and Twinning Enabling Technologies]{A Comprehensive Review of Digital Twin - Part 1: Modeling and Twinning Enabling Technologies.“¨, accepted for publication in 
Structural and Multidisciplinary Optimization journal



ML-Assisted Prediction
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Thelen, A., X. Zhang, O. Fink, Y. Lu, S. Ghosh, B.D. Youn, M.D. Todd, S. Mahadevan, C. Hu, Z. Hu. "A Comprehensive Review of Digital Twin - Part 1: Modeling 
and Twinning Enabling Technologies]{A Comprehensive Review of Digital Twin - Part 1: Modeling and Twinning Enabling Technologies.“¨, accepted for publication in 
Structural and Multidisciplinary Optimization journal



Fusing physical performance models and deep
learning
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M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” Reliability Engineering & System Safety.



Inductive bias
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 Inductive bias refers to the set of assumptions a learning algorithm uses 
to generalize from training data to unseen data.
 It helps guide the learning process and shapes the predictions that a 

model makes.
 Strongly impacts how well a model generalizes to new data.
 Examples include:

• Linear regression assumes a linear relationship between input and output.
• Convolutional Neural Networks (CNNs) assume spatial hierarchies and local 

dependencies for image data.
 Enables efficient learning by reducing the hypothesis space.
 Can lead to poor generalization if the assumptions do not match the 

underlying data distribution.

Inductive bias
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Inductive bias / Physics Informed Neural Networks 
(1/2)
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Inductive bias / Physics Informed Neural Networks
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Calibration-based hybrid framework for 
prognostics
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Physics-based models
11

.1
1.

24

Olga Fink 39

M. Arias, Algorithm for Fleet Diagnostics and Prognostics Combining Deep Learning and Physics-based Performance Models (2021)

Focus in this research



General topology of an aero-thermodynamic 
performance model
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M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” Reliability Engineering & System Safety.



Basic idea of the hybrid approach
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Proposed framework
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M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” Reliability Engineering & System Safety.



Enhancing the input space with inputs from
physics-based models
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System Model
�𝑋𝑋𝑠𝑠, �𝑋𝑋𝑣𝑣 = S(w,𝜃𝜃) -

Real Process
𝒘𝒘 𝑿𝑿𝒔𝒔

[�𝑿𝑿𝒔𝒔, �𝑿𝑿𝒗𝒗, �𝜽𝜽]�𝑿𝑿𝒔𝒔

𝜽𝜽

Model Calibration

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” Reliability Engineering & System Safety.

Purely data-driven Inferred from physics-based models



Estimation of the Remaining Useful Life
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RUL

Engine 
Data

Engine 
Prognostic

System

Remaining Useful Life (RUL) of a component
− the amount of time a component can be expected to continue operating within its stated

specifications

Engine 
Fleet

Engine 1 Engine 2 Engine N…

…

Plane Data

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” Reliability Engineering & System Safety.



• Simulation of a realistic large commercial turbofan engine
− Simulated run to failure trajectories with the Commercial Modular 

Aero-Propulsion System Simulation (C-MAPSS) dynamical model

• Real flight conditions from a commercial jet
− NASA DASHlink
− ~500 different (1-12h) flights
− Recordings covering climb, cruise and descend
− Operative conditions -𝑤𝑤 ∈ 𝑅𝑅3

• Data from a fleet  of 9 turbofan engines
− Internal sensors - 𝑥𝑥𝑠𝑠∈ 𝑅𝑅10

− Virtual sensors - 𝑥𝑥𝑣𝑣 ∈ 𝑅𝑅15

− Model parameters - 𝜃𝜃 ∈ 𝑅𝑅10

Test Case: Turbofan Engine
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M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” 
Reliability Engineering & System Safety.



Test Case: Turbofan Dataset
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• Failure modes: 1) HPT degradation 2) HPT and 
LPT flow and efficiency degradation

• Flight conditions:  Alt > 10000 [ft]

• Training Data: 
− 6 engines
− 50-90 cycles (flights) 
− 𝒘𝒘, 𝑿𝑿𝒔𝒔 , �𝜽𝜽& 𝑅𝑅𝑅𝑅𝑅𝑅
− 5.5 x 106 samples

• Test Data: 
− 3 engines
− 𝒘𝒘, 𝑿𝑿𝒔𝒔 & �𝜽𝜽
− 1.2 x 106 samples

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” 
Reliability Engineering & System Safety.



Kernel density estimations of the simulated 
flight envelopes given by recordings of altitude
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M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” 
Reliability Engineering & System Safety.



RUL prediction results
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Data-driven - 𝑿𝑿 = [𝒘𝒘,𝑿𝑿𝒔𝒔] Hybrid - 𝑿𝑿 = [𝒘𝒘, �𝑿𝑿𝒔𝒔, �𝑿𝑿𝒗𝒗 , �𝜽𝜽]

FFN

CNN

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” 
Reliability Engineering & System Safety.



Detailed results RUL prediction
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Metric Data-Driven Hybrid Rel. Delta

RMSE [-] 7.89 ± 0.12 4.22 ± 0.10 -47%

𝑠𝑠 × 105[-] 1.39 ± 0.04 0.44 ± 0.01 -68%

Metric Data-Driven Hybrid Rel. Delta

RMSE [-] 4.95 ± 0.15 4.14 ± 0.09 -16%

𝑠𝑠 × 105[-] 0.56 ± 0.03 0.44 ± 0.02 -21%

FFN

CNN

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” 
Reliability Engineering & System Safety.



EOL prediction within the error bound of 5 
cycles
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unit Data-Driven Hybrid Rel. Delta

11 11 31 195%

14 15 43 197%

15 24 37 54%

Fleet Avg. 16 37 127%

CNN
𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑡𝑡𝜖𝜖𝑦𝑦<5 in [cycles]

 Prediction horizon prolonged by 127% on average (for some units ca. 200%)

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” 
Reliability Engineering & System Safety.



Detailed results RUL prediction: smaller
training dataset
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Metric Data-Driven Hybrid Rel. Delta

RMSE [-] 4.95 ± 0.15 4.14 ± 0.09 -16%

𝑠𝑠 × 105[-] 0.56 ± 0.03 0.44 ± 0.02 -21%

Metric Data-Driven Hybrid Rel. Delta

RMSE [-] 5.97 ± 0.37 4.22 ± 0.12 -29%

𝑠𝑠 × 105[-] 0.61 ± 0.03 0.43 ± 0.02 -29%

rel. Delta RMSE [%] 17% 2%

Rel. Delta s  [%] 8% -2%

CNN: trained on units 2,5,10,16,18,20

CNN: trained on units 16,18,20

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” 
Reliability Engineering & System Safety.

 performance level 
maintained

 ca. 50% reduction of 
training data size



Hybrid Fault Detection and Diagnostics
How to improve not only the performance but also the interpretability and generalizability?

Olga Fink 52
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Analysing the reconstruction residuals for fault 
isolation
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“Health Indicator”



Test Case: Turbofan Engine
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• Simulation of a realistic large commercial turbofan engine
• 24 flight cycles
• Each flight contains ca. 175 snapshots of recordings covering climb, cruise 

and descend conditions

• Real flight conditions from a commercial jet

• Fault: HPC Efficiency with different magnitudes

Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2019). Hybrid deep fault detection and isolation: Combining deep neural networks and system performance modelsInternational Journal of 
Prognostics and Health Management



Calibration-based hybrid framework
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Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2019). Hybrid deep fault detection and isolation: Combining deep neural networks and system performance modelsInternational Journal of 
Prognostics and Health Management



System Model - Degradation Features
11

.1
1.

24

Olga Fink 56

System Model -

Real Process
𝒘𝒘 𝑿𝑿𝒔𝒔

�𝑿𝑿𝒔𝒔 𝜹𝜹𝑿𝑿𝒔𝒔

Degradation features provided by the system model:
 Residual 𝛿𝛿𝑋𝑋𝑠𝑠 = �𝑋𝑋𝑠𝑠 − 𝑋𝑋𝑠𝑠

− Direct computation

Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2019). Hybrid deep fault detection and isolation: Combining deep neural networks and system performance modelsInternational Journal of 
Prognostics and Health Management



Two tested setups
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Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2019). Hybrid deep fault detection and isolation: Combining deep neural networks and system performance modelsInternational Journal of 
Prognostics and Health Management



Applied network architecture
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Detection Accuracy in [%]
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AE VAE OC-SVM

Data-driven [𝑊𝑊,𝑋𝑋𝑆𝑆] 24.5 12.9 10.0

Residual-based [𝑊𝑊,𝑋𝑋𝑆𝑆,𝛿𝛿𝑋𝑋𝑆𝑆] 98.7 99.3 79.5

Hybrid (calibration-based) [𝑊𝑊, �𝑋𝑋𝑆𝑆 �,𝑋𝑋𝑉𝑉 , 𝜃̂𝜃] 100.0 97.5 96.2

Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2019). Hybrid deep fault detection and isolation: Combining deep neural networks and system performance modelsInternational Journal of 
Prognostics and Health Management



Influence of the data complexity (data-driven
model)
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Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2019). Hybrid deep fault detection and isolation: Combining deep neural networks and system performance modelsInternational Journal of 
Prognostics and Health Management



Fault isolation (with a high fault intesity)
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AE

Data-driven [𝑊𝑊,𝑋𝑋𝑆𝑆] Physical core speed
Static pressure at HPC outlet

Residual-based [𝑊𝑊,𝑋𝑋𝑆𝑆,𝛿𝛿𝑋𝑋𝑆𝑆] Delta physical core speed
Delta total temp. at HPC outlet
Delta total temp. at LPC outlet
Delta total temp. at HPT outlet
Delta total temp. at LPT outlet

Hybrid (calibration-based) [𝑊𝑊, �𝑋𝑋𝑆𝑆 �,𝑋𝑋𝑉𝑉 , 𝜃̂𝜃] HPC efficiency modifier

Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2019). Hybrid deep fault detection and isolation: Combining deep neural networks and system performance modelsInternational Journal of 
Prognostics and Health Management



Ageing-aware Battery Discharge 
Prediction
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Degradation of Li-Ion batteries importance
of precise planning
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Effect of varying the degradation parameters on 
the voltage discharge curve of a Li-ion battery
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2022). Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction, under review



Discharge behaviors with respect to the 
different load profiles
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2022). Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction, under review



Transformer-based long-term battery discharge
predictionDynaformer
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2022). Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction, under review



Selected results
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2022). Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction, under review



Performance without fine-tuning
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Interpolation Extrapolation

Dynaformer*  trained with variable current profiles

Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2022). Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction, under review

*RTE = relative temporal error 



Performance dependent on the complexity of
the the load profiles
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2022). Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction, under review



Implicit learning of the degradation parameters
in the latent space
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qmax R0



Transfer learning
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First-principle
Model

Pre-trained
Model

Final Model

Simulated
Data

Real Data

Fine-Tuning



Fine-tuning on real data
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*RTE = relative temporal error 

Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2022). Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction, under review



Integrating Expert Knowledge with Domain 
Adaptation for Unsupervised Fault Diagnosis

Olga Fink 73
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Real Case study: Bearings of Wind Turbines

 Turbine Bearing Data 
 Distinguish between 3 classes: healthy, inner race, outer race
 Without any faulty examples at training time

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE 
Transactions on Instrumentation & Measurement



 Healthy data available
 No faulty data available at model development time
 Not just fault detection but also fault diagnostics required (distinguish

between the different fault types)
 Developed models need to be tested on real faulty data
 Faulty data imbalanced
 Imbalance level unknown

Problem setup
11
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Normalized full-wave rectified envelope spectrum of an 
inner ring defect example with corresponding defect ball 
pass frequency

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE 
Transactions on Instrumentation & Measurement
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Normalized full-wave rectified envelope spectrum of an 
outer ring defect example with corresponding defect ball 
pass frequency

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE 
Transactions on Instrumentation & Measurement
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Synthetic2Real

|

healthy healthy

Fault III

Fault I

Fault II

Source TargetSource + synthetic faults
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Challenges of DA for imbalanced datasets
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Generating Synthetic Data from Healthy Samples

One life-time recording of a bearing

Early part can be safely regarded as healthy

Take out this healthy part

Inject synthetic faults to the healthy samples. Based on domain expertise.  

Outer race             Inner race        Ball

Combine them we get our synthetic data

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE 
Transactions on Instrumentation & Measurement

Superposition of healthy signals + defect-
initiated pulse-train signal + randomness
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Naïve Synthetic2Real on imbalanced data: Toy 
example on CWRU 

Target   | 
real

Source | syn

1200

1. Four classes
2. Train only on synthetic data
3. Metric: Report average accuracy for all classes

(Acc_healthy + Acc_fault1 + Acc_fault2 + Accu_fault3 ) /4  

Outer race               Inner race      
Ball

120              60        12

Source only Accuracy:  59.55% 

The synthetic data indeed contains information that helps the 
classification. 

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE 
Transactions on Instrumentation & Measurement
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Adversarial Synthetic2Real on imbalanced data: 
Toy example on CWRU 

Target   | 
real

Source | syn

1200

Outer race               Inner race      
Ball

120              60        12

Method Source-only Adversarial

Accuracy 59.55% 72.57%

How about adversarial domain adaptation ? 

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE 
Transactions on Instrumentation & Measurement
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What is the issue ? Imbalanced data in target.

Target Before: 
exp1

1200

Outer race               Inner race      
Ball

120              60        12

Method Source-only Exp1 Adversarial-
imbalanced

Exp2 Adversarial-
Balanced

Accuracy 59.55% 72.63% 82.59%

Quick verification:         What if we make the number of samples equal for target ? 

1200
Modified 
Target:
exp2

1200
1200
1200

A big improvement on performance! 
Simply by making it balanced!
But in reality we don’t know the ground truth.

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE 
Transactions on Instrumentation & Measurement



Classifier

Feature extractor

11
.1

1.
24

Olga Fink 84

Step 1: How to let the discriminator learn better 
for the rare faults. 

• Inspired by Conditional 
GAN and CDAN 
(conditional domain 
adaptation)

• Use pseudo label from the 
classifier and provide the 
class information to 
discriminator.

Discriminator

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE 
Transactions on Instrumentation & Measurement
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Step 2: Provide more support for the target 
conditioned distribution

• Inspired by Mixup
• For features and pseudo-labels (in latent space not in input space)
• Performed separately for source and target
• This injects rare faults information to more samples in one batch
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Proposed framework

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE 
Transactions on Instrumentation & Measurement
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Ablation Study

Method Accuracy
Source only 59.55%
DANN 72.57%
Conditioned 75.38%
Conditioned + Mixup 82.29%

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE 
Transactions on Instrumentation & Measurement
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Different Imbalance Levels on CWRU

20% 15% 10% 5% 1%
Baseline 59.55 59.55 59.55 59.55 59.55
DANN 82.04 79.77 78.30 74.96 71.05
Proposed 83.49 83.04 83.32 83.30 82.34

x%: For every 100 healthy samples, x samples for the rare fault class  

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE 
Transactions on Instrumentation & Measurement
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Real Case study

 Turbine Bearing Data from SKF
 3 classes: Healthy, inner race, outer race
 Generated synthetic fault data from healthy
 There are much more outer race faults                                                                         

than inner race faults

Method Accuracy
Source only 60.85
DANN 64.47
Conditional (proposed) 68.28
Conditional+mixup(proposed) 70.76

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, under review
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Graphs are everywhere
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Graphs provide mathematical representation of networks Source: P. Frossard



Infrastructure networks can be represented as
graphs
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Examples of graph structured data
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Source: P. Frossard



Examples of graph structured data
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Source: P. Frossard



Examples of graph structured data
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Source: P. Frossard



Examples of graph structured data
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Source: P. Frossard



Examples of graph structured data
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Source: P. Frossard



Examples of graph structured data
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• Nodes: Sensors of a 
(bridge) sensor network)

• Edges: proximity of the
sensors /similarity of the
signals

• Signal: strain and / or
accelerometer
measurements



Bearing dynamics can be represented as graphs
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Sharma, V., Ravesloot, J., Taal, C. and Fink, O., 2023. Graph Neural Networks for Dynamic Modeling of Roller Bearing, PHM Society conference 2023



 (supervised) graph level classification
 Node classification
 Link prediction

Task that can be solved with GNNs
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Graph Neural Networks
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Source: T. Kipf
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Example : Spring Mass Systems

Introduction to message passing GNNs

Encoder

GNN : Message Passing on Graphs

• Each node represents the mass
• Each edge represents the spring

Processor

System Geometry &
Features Repeated M times : M message passing steps

Decoder

e.g., forces, 
accelerations

* Sanchez-Gonzalez et al. Learning to simulate complex physics with graph networks, ICML, 2020
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Example : Spring Mass Systems learned dynamics by GNN

Introduction to GNNs

GNN

Simulation
Train : 4, 5, 6, 7, 9, 10 masses
Test : 8 masses (out of training)

Source: V. Sharma
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Recap: Convolutional Neural Networks (CNNs) 
on Grids
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Source: T. Kipf



Graph Convolutional Networks (GCNs)
11

.1
1.

24

Olga Fink 105

Source: T. Kipf



Classification and Link Prediction with GNNs / 
GCNs
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Source: T. Kipf



Example: 
Industrial IoT systems
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 Usually, graph topology between time series either given or
derived once static graph
 Changing environmental or operating conditions
 Impact of degradation
 Process optimization
 Maintenance
 …

Changing / evolving relationships between time 
series

Olga Fink 108
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Anomaly detection in multi-flow facility

109Olga Fink

Source: Gedda, R., Beilina, L. and Tan, R., 2023. Change Point Detection for Process Data 
Analytics Applied to a Multiphase Flow Facility. CMES-Computer Modeling in Engineering & 
Sciences, 134(3).
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DyEdgeGAT: Dynamic Edge via Graph Attention 
for Early Fault Detection in IIoT Systems
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Zhao, M., & Fink, O. (2023). DyEdgeGAT: Dynamic Edge via Graph Attention for Early Fault Detection in IIoT Systems, IEEE Internet of Things 
Journal



Dynamic Edge via Graph Attention (DyEdgeGAT)
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Zhao, M., & Fink, O. (2023). DyEdgeGAT: Dynamic Edge via Graph Attention for Early Fault Detection in IIoT Systems, IEEE Internet of Things 
Journal



Novel operating conditions
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Ambiguity quantifies the model’s inability to differentiate between normal operations and novel conditions

Zhao, M., & Fink, O. (2023). DyEdgeGAT: Dynamic Edge via Graph Attention for Early Fault Detection in IIoT Systems, IEEE Internet of Things 
Journal



Example: 
Modelling bearing as a 
graph
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 2D dynamic lumped bearing model, 
(based on P. K. Gupta, 1979)
 Differential equations of motion
 Lundberg & Palmgren model for 

Hertzian contact
 N209 CRB bearing (line contacts)
 Assumptions: rigid rings, zero-mass 

rolling elements

Bearing Dynamic Model 114

based on simple model but theory 
also applies to complex models!

Sharma, V., Ravesloot, J., Taal, C. and Fink, O., 2023. Graph Neural Networks for Dynamic Modeling of Roller Bearing, PHM Society conference 2023
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Bearing Dynamic Model: Training set

 Load changes to generate dynamic step responses
 [1-20] kN OR loads, [13, 14, 15, 16] rollers
 (Rotation is not included yet)
Sharma, V., Ravesloot, J., Taal, C. and Fink, O., 2023. Graph Neural Networks for Dynamic Modeling of Roller Bearing, PHM Society conference 2023
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Circumference
Outer ring 

Circum. 
Inner ring 

GNN Inputs and Outputs

Sharma, V., Ravesloot, J., Taal, C. and Fink, O., 2023. Graph Neural Networks for Dynamic Modeling of Roller Bearing, PHM Society conference 202311
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Training : SKF N209 CRB (13, 14, 16 rollers)
Testing: 15 Rollers, 13kN

Results: Generalizability

Sharma, V., Ravesloot, J., Taal, C. and Fink, O., 2023. Graph Neural Networks for Dynamic Modeling of Roller Bearing, PHM Society conference 202311
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Unloading

• GNN can infer the unloading behavior without direct training.
(Conventional Networks cannot infer this behavior)

Results: Interpretability

Sharma, V., Ravesloot, J., Taal, C. and Fink, O., 2023. Graph Neural Networks for Dynamic Modeling of Roller Bearing, PHM Society conference 2023
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