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=P7L  Domain generalization

= Domain generalization focuses on training models that generalize to
unseen target domains.

= Unlike domain adaptation, it does not require access to target domain
data during training.

= |t aims to learn robust and invariant features from source domains that
perform well under different conditions.

= Useful when target environments are unknown or change dynamically.

= Helps create models that are more adaptable and resilient to
distribution shifts or novel scenarios.

B 11.11.24
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=P7L  Continuous domain adaptation

= Continuous domain adaptation focuses on adapting a model
continuously as the target domain evolves over time.

= Unlike traditional domain adaptation, it handles scenarios where data
distributions change dynamically and require ongoing adjustments.

= |t seeks to maintain model performance by adapting incrementally to
new conditions without needing to retrain from scratch.

= Useful for real-world applications where environments and data
distributions are constantly shifting.

= Often involves strategies for updating learned representations, retaining
past knowledge, and mitigating catastrophic forgetting.

B 11.11.24
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=PrL

B 11.11.24

Test-time adaptation

= Test-time adaptation refers to adapting a model to distribution shifts in
the target domain during inference, without further training on the
source domain.

= |t focuses on updating model parameters or representations using only
test data, typically through self-supervised or unsupervised strategies.

= Allows models to respond to domain shifts or changes at the point of
inference, improving performance in unseen or evolving conditions.

= Reduces the reliance on having a large amount of labeled data in the
target domain.

= Useful for scenarios where models encounter dynamic environments or
previously unseen data distributions at test time.

Olga Fink 10
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=PrL 1. Definition: Digital twins

= A digital twin is defined as “a living model of the physical asset or
system, which continually adapts to operational changes based on the
collected online data and information, and can forecast the future of the
corresponding physical counterpart”.

B 11.11.24
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=Prl 2. Definition: Digital twins

= A digital twin is a set of virtual information constructs that mimics the
structure, context, and behavior of a natural, engineered, or social
system (or system-of-systems), is dynamically updated with data from
its physical twin, has a predictive capability, and informs decisions that
realize value. The bidirectional interaction between the virtual and the
physical is central to the digital twin.

B 11.11.24
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=P7L  Digital Twin integration

£l Update frequency

N

Immediate real-time/
.. event driven
pAl Connectivity modes

Every hour
Every day

Every week

Livi

il Integration 94 o)
breadth i

World

(full object interaction)
Near Field/

Production System

Field/Factory environment

i3 Product Life cycle

DIGITAL

NG

anndudsiad peayy-4007

Jnels
20H-pY

Smart Devices
(e.g. ingelligent
mouse)

VR/AR (full visual immer
sion)

smart biybrid (ingel- [ Digital model richness
ligent multi sense

coupling)

N

4

7

11.1

R. Stark, C. Fresemann, and K. Lindow, “Development and operation of Digital Twins for technical systems and services,”

CIRP Ann., vol. 68, no. 1, pp. 129-132, Jan. 2019.
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=PFL  Elements of a digital twin

VERIFICATION, VALIDATION, UNCERTAINTY QUANTIFICATION / ETHICS [ SECURITY

FROM PHYSICALTO VIRTUAL

Sensor fusion, data assimilation,
inverse problems

Physical Virtual
counterpart representation

Sensors and observing Modeling and simulation;
systems, data acquisition, artificial intelligence;
and data integration first-principles, mechanistic,
and empirical models;
and visualization
FROM VIRTUAL TO PHYSICAL
Automated control and d on-making

VERIFICATION, VALIDATION, UNCERTAINTY QUANTIFICATION / ETHICS [/ SECURITY

11.11.24
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Digital twin of a patient

REALWORLD PATIENT

The patient and the tumor from which
data is gathered using various dlinical
assessments to inform the digital twin

el

VWUQ —-=p
Verification, validation,
and uncertalnty quantification

As the patient and tumor are
constantly evolving and the
data collection can also change
over time, VVUQ must occur
continually for digital twins.

Uncertainty quantification
needs to be addressed for all
aspects of the digital twin,
including the patient's data,
modeling and simulation, and
decision making.

DIGITALTWIN

The virtual representation comprised of models
describing ternporal and spatial characteristics
of the patient and tumor with dynamic updates
using data from the real world patient.

Modeling

Models spanning a range of fidelities
and resolutions may be utilized and
potentially integrated together.

As new observed data are acquired,
the data are assimilated and the models

are calibrated, updated, and estimated > MODELING * -~

Clinical assessments
Data are collected in many ways:

=0)

Imaging Lab tests
Clinical Tissue specimens,
assessments including genomics

Biosensors Patient reported
outcomes

Human and digital
twin interaction

Utilizing the simulated predictions
and related uncertainties, the
clinician and patient can make
informed clinical-decisions around
treatment and also the dinical
assessments, which affect the data
informing the digital twin

D ) &

Simulations & predictions

Simulations of potential treatments
can generate predictions of
outcorne and intum can be
optimized to determine the most
favorable treatment options.

National Academies 2023: Foundational Research Gaps and Future Directions for Digital Twins

Olga Fink
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B 11.11.24

Verification, Validation, Uncertainty
Quantification

= Verification.Does a computer program correctly solve the equations of
the mathematical model?

= Validation.To what degree is a model an accurate representation of the
real world, from the perspective of the intended model uses?

= Uncertainty Quantification.\What are uncertainties in model
calculations of quantities of interest?

Olga Fink 17



=PFL  Application fields

Manufacturing

Smart Cities

Health care

Energy Sector
Aerospace and Defense
Automotive Industry
Building Energy Systems
Agriculture

Climate

B 11.11.24
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=PFL  Application cases of DT

Product development
Design + Testing

PHM / Maintenance

Optimizing product life-cycle management

Process Optimization

Prescriptive Operation




=PFL A Digital Twin should be Fit for Purpose

= Balancing required fidelity for prediction, available resources, and
acceptable costs

= Different digital twin purposes drive different fithness requirements
related to modeling fidelity, data availability, visualization, time-to-
solution, etc.

= For many potential use cases, achieving fithess-for-purpose is currently
intractable

B 11.11.24
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Hybrid Models
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=PFL  Space of potential solutions

Smalldata Some data Big data

Lots of physics  Some physics No physics

B 11.11.24
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11.11.24

Physics-informed ML for prognostics and

health management (PHM)

PIML methods in PHM:

M. Arias Chao, et. al (2021).

R. Nguyen, et. al (2023).

= Jyoti Narwariya et. al (2020).

Source Representation Integration
i . Observational
Algebraic Equations Training Data Bias
Scientific Kmowledge O
MNatural Scie
{. _— e Differential Equations \
Enginesring, tc. )
l Inductive Bias
Simulation Results Hypothess et
(Network Archibectune,
Model Structure, etc.)
Spatial Invariances
World Knowledge
(Vision, Linguistics, Logic Rules —
Semantics, General K., étbc.) ) ) Learning Bias
Learning Algorithm
Knowledge Graphs (Regularization Terms,
Constrained Opt, ete )
—

Expert Knowledge
(Intuition, Less Formal)

Probabilistic Relations
Human Feedback

== Deng, W., Nguyen, et.al (2022).

= Sergio Cofre-Marte, et. Al (2021).

Fo PU-F

Final Hypothesis

L. von Rueden et al., (2021)

George Em Karniadakis, loannis G. Kevrekidis, Lu Lu, Paris
Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine
leaming. Nature Reviews Physics 2021

Source: M. Arias

Olga Fink
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=PFL  Different ways of fusing DL and physics

Input / Ouput

DL: Models

Output

Physical System Model

: Sub-model1 . ¢ pI®
Observations
- model 3

Sub-model 2

Calibration

111124
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Combining Physics-Based
and Deep Leaming
Models
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=PFL  Physics-informed ML -

I\Ieural Network

______ L———oo——-——————___ _Physics Informed Network

Labeled Data:

. Boundary / Initial Conditions:

Y Residual on PDE Equations:

= em e e Em am Es am e s e Es Em =

Feedback Mechanism

Thelen, A., X. Zhang, O. Fink, Y. Lu, S. Ghosh, B.D. Youn, M.D. Todd, S. Mahadevan, C. Hu, Z. Hu. "A Comprehensive Review of Digital Twin - Part 1: Modeling and Twinning Enabling
Technologies]{A Comprehensive Review of Digital Twin - Part 1: Modeling and Twinning Enabling Technologies.*", accepted for publication in Structural and Multidisciplinary Optimization
journal Olga Fink 26
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=P7L Data Augmentation

Simulated
First-principle data
model J'
Training data Augmented

)

training dataset

l

ML model
training

B 11.11.24

Olga Fink 27



=PFL  Residual-model

Feature

i Residuals
System Model Engineering
+
System Kalman Filter
Input
»  Real Process
N
éausoh, Randal T, et al. "Integrated in-flight fault detection and accommodation: A model-based study." (2007): 962-969.
|

Olga Fink



=PFL  Transfer leaming

Simulated
Data
First-principle Pre-trained
Model Model
Real Data

A

Final Model Fine-Tuning

11.11.24

Thelen, A., X. Zhang, O. Fink, Y. Lu, S. Ghosh, B.D. Youn, M.D. Todd, S. Mahadevan, C. Hu, Z. Hu. "A Comprehensive Review of Digital Twin - Part 1: Modeling
and Twinning Enabling Technologies]{A Comprehensive Review of Digital Twin - Part 1: Modeling and Twinning Enabling Technologies.*’, accepted for publication in
Structural and Multidisciplinary Optimization journal Olga Fink 29



=PFL  Delta Learning (Missing Physics)

Flrist.-pl‘llf‘lﬂpl? ' Update at
transition f{r:ctlon time step k

Unmodeled dynamics
recovered by ML model

B 11.11.24
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EPFL Delta Leaming (ML Prediction)

Simulated

First-principle data o M model

model
v
Experimental | M mode] ke Initial

data i prediction
Corrected
prediction

ML model | Estimator ML model | Corrector

B 11.11.24
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=PFL  ML-Assisted Prediction

Update at time step &k

*—. + —
i J' Aa, 5
i AK, [ 5 f
i Neural Paris 1;1W i
| network equation | i

I X; (e.g., pressures,
temperatures, AS))

B 11.11.24

Olga Fink 32



=PFL Fusing physical performance models and deep
leaming

Model Calibration
x 73,0
, 1T
w ) A AR AR AR AR AR xs ’

Real Process

rrrrrrrrgrrrreea®

B 11.11.24

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” Reliability Engineering & System Safety.
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=PrL

B 11.11.24

Inductive bias

= Inductive bias refers to the set of assumptions a learning algorithm uses
to generalize from training data to unseen data.

= |t helps guide the learning process and shapes the predictions that a
model makes.

= Strongly impacts how well a model generalizes to new data.

= Examples include:
* Linear regression assumes a linear relationship between input and output.

» Convolutional Neural Networks (CNNs) assume spatial hierarchies and local
dependencies for image data.

= Enables efficient learning by reducing the hypothesis space.

= Can lead to poor generalization if the assumptions do not match the
underlying data distribution.

Olga Fink 35



=PFL  Inductive bias / Physics Informed Neural Netwo
(1/2)

| Physics is implicitly
baked in specialized
neural architectures with
strong inductive biases
(e.g. invariance to simple
group symmetries).

compositional networks for learning graphs. arXiv preprint arXiv:1801.02144.

B 11.11.24
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=PFL  Inductive bias / Physics Informed Neural Netwo

POE(N) ..
T
2. Physics is explicitly TR

imposed by constraining
the output of conventional ! Y P ddfefeeefeoeeofofofofefefegel

neural architectures with : i(z,t) - gp(a,t) F—{Loss) M'“'m'z,e
weak inductive biases. N :73 1
1 6,& 1
Psichogios & Ungar, 1992 | m(fﬁa t) — gr(u,z,t) ;
Lagaris et.al, 1998  Ne—eeo oo -- '

Raissi et. al, 2019

luet.al,2019 _ L o 12 l
Zhu et dl, 2019 = Z[“z foi)]"+  JR[fo(@)]

~~ Physics regularization
Data fit

B 11.11.24

Source: Perdikaris 2020
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=PrL

T@

alt_zra ahituds  epr
altitude (ft) engine pressure ratia
TRA o
ep
TRA => PCHiRdmd degF fan speed (pm)

|

ﬂ

MMH_zro hach M
INf_rea] Wt _req Mach core speed (rpm)
W fuel flow Fn 0.0000+000

net thrust (1bf)

NF contraller initial fan seed HPT exittemp (degR)
with point gains

i)
ﬂ

pps initial core speed core docel
it (pps) EAS+ HP + DLL
peh 0.0000 e+000

it (pph

i

fan-speed controller has point gains

set TRA step to desired value,
then run simulation
27 CLM Outputs

< tme ] IC_MAPSSICLeimMDL_files/CL_Nf_PG_TRA_DLL_step.m

health parameters

fuel flow

Calibration-based hybrid framework for

prognostics

11.11.24
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=PFL  Physics-based models

B 11.11.24

Physics-based Models
I

v
Modeling the Degradation

Mechanism

Y !

Detailed Modeling of the Macro-level Modeling of
Physics of Failure the Physics of Failure
e.g., thermal or fracture e.g., cumulative damage
mechanical models models for fatigue

M. Arias, Algorithm for Fleet Diagnostics and Prognostics Combining Deep Learning and Physics-based Performance Models (2021)

Focus in this research

Olga Fink
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=PFL  General topology of an aero-thermodynamic
performance model

w

4 Control Theory

Controller and
Linear Models

 ;
Yv Overall System 1st Principles Physics

- i.e. coupling of sub- e.g. Mass/ Momentum & Energy

components Conservation
Sub-components Simplified Physics
Models e.g. components maps, correlations
10
Model Tuners

Aero-Thermodynamic Model

B 11.11.24

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” Reliability Engineering & System Safety. Olaa Fink 40
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=PFL  Basic idea of the hybrid approach

Calibrated System

Response & Virtual Sensors
System

Dynamics

Physics-based

System Model Model
Parameters, 0

Model Calibration N Deep Neural

Network
Sensor readings, D

Real Process

B 11.11.24

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” Reliability Engineering & System Safety.
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=PFL  Proposed framework

Expected System

Response Model Calibration Prognostics Network .
(Deep Learning)
A RelLu

O Ol O 50 units
|O O O IO o Olﬂatten

Physics-Based System Model DNN Model
F(w®,0) &9,z91=p( , 1d-Conv, 10 + ReLU 1 channel
% |
o 20channels
=8 1d —Conv, 10 + ReLu
=
S . Unscented Kalman Filter (UKF |
§ Observations e {LAE)
- ¢ Jd—C'onV, 10 + ReLu | | 20ctiannels
Joint Input - X
N Current Operating  History of * w(t-Newit *\,wr Niw:t) f\ (t-—Newit) ’ §(t-Newt)
Observations Conditions Observations History of HIstor.y of History o‘f History of
Operating Current Model Calibration
Real Pri Conditions Observations  Predictions Parameters
0 T
3 [(ww),xg ), ..., (w®, 2 ))]
= \ J \ J

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” Reliability Engineering & System Safety. Olaa Fink 42
ga Fin



=PFL Enhancing the input space with inputs from
physics-based models

Model Calibration

Purely data-driven Inferred from physics-based models

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” Reliability Engineering & System Safety. Olga Fink 43



=Pl Estimation of the Remaining Useful Life

Remaining Useful Life (RUL) of a component

— the amount of time a component can be expected to continue operating within its stated
specifications

% % % Health Index
[Fa] O

Engine 1 Engine2 - Engine N

i Engine .
Engine Fleet
Data Y

HI (-

Engine ]
»—>_  Prognostic ——> RUL
] System

Plane Data T
0 10 20 30 40 50 - 66 70 50
Time (cycles)

11.11.24

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” Reliability Engineering & System Safety. Olaa Fink a4
ga Fin



=PFL  Test Case: Turbofan Engine

- Simulation of a realistic large commercial turbofan engine

— Simulated run to failure trajectories with the Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS) dynamical model

 Real flight conditions from a commerclal jet
— NASA DASHIink
— 7500 different (1-12h) flights
— Recordings covering climb, cruise and descend
— Operative conditions - w € R3

- Datafrom a fleet of 9 turbofan engines
— Internal sensors - x,€ R'°
— Virtual sensors - x,, € R'°
— Model parameters- 6 € R°

B 11.11.24

Reliability Engineering & System Safety.

N1 N2

EGT - Exhaust Gas Temp

P2 P25 Ps3
T2 T26 T3 WF36

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,”

Olga Fink
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=PFL  Test Case: Turbofan Dataset

- Failure modes: 1) HPT degradation 2) HPT and
- LPT flow and efficiency degradation
« Flight conditions: Alt > 10000 [ft]
« Training Data:
: — 6engines
_  50-90 cycles (flights)
~ w,X,,0&RUL
” 0 | — 5.5x10% samples
Bl e ]m ‘ { ] S . Test Data:
£ ] 1l l il (Lt ~ 3engines
. | - w X, & 0
° T e T ~ 1.2 x108 samples

B 11.11.24

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,”
Reliability Engineering & System Safety. Olga Fink 46



=PFL  Kemel density estimations of the simulated
flight envelopes given by recordings of altitude

l —— Unit 2 — Unit 2 |
0.0004 —— Unit5 201 — Unit5 ||
‘ —— Unit 10 —— Unit 10
\1 Unit 16 Unit 16
—0.0003{ | —— Unit18 | —15{ — Unit18
> Unit 20 = Unit 20 |
g — Unit 11 g — Unit 11 L
& 0.0002 ‘ Unit 14 g 10 Unit1d
|||\'H — Unit15 —— Unit1s | ‘M
i
0.0001 L \ 5 \“H

R

0.0000 —— |
10000 20000 30000 0.4 0.6

Altitude [ft] Mach Number [-]
0.12{ — Unit2 I 0.081 — Unit2 “
— Unit5 — Unit5
— Unit10 | 0077 — unit10 \
0.10 ni ‘| ni ‘ M
unit16 | 0.06 Unit 16 | |
—oo08] Unit 18 | ‘ - —— Unit 18
i~ unie20 || : < 0.05 Unit 20 \
Z ) / =
g 0.06] 3n|t 11 ‘ | g 0.04 Unit 11 f |
3 nit 14 | 2 Unit 14
0.04] — Unit1s | | 0.03 Unit 15
. | 0.02
0.02 0.01
0.00 0.00 -
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M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,”
Reliability Engineering & System Safety. Olga Fink 47



=PrL

FFN

CNN

11.11.24

Error RUL [cycles]

Error RUL [cycles]

RUL prediction resuits

Data-driven - X = [w, X]

—&— Unit11
~&— Unit 14
—&— Unit 15

20
—e— Unit11
15 —o— Unit14
—e— Unit15

0 10 20 30 40 50 60 70 80
Time [cycles]

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,”

Reliability Engineering & System Safety.

Error RUL [cycles]

Error RUL [cycles]

P

Hybrid - X = [w, X, X,, 0]

—— Unit11
—&— Unit 14
—&— Unit 15

—— g= %5

0 10 20 30 40 50 60 70 80
Time [cycles]

—15

-20

—@— Unit11
~&— Unit 14
—8— Unit 15

0 10 20 30 40 50 60 70 80
Time [cycles]
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=PFL  Detailled results RUL prediction

FFN
o oaorvon | | R oo

RMSE [-] 7.89+0.12 422+ 0.10 -47%

T %
s X 105]-] 1.39 + 0.04 0.44 £ 0.01 -68% g — § exp(a |/_\(j) )
j=1
ms
CNN | ! 2
RMSE = | — Y (A0))
RMSE [-] 4.95 + 0.15 4.14 + 0.09 -16%
s X 10°[-] 0.56 + 0.03 0.44 + 0.02 -21%
N
- M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,” Olga Fink 49

Reliability Engineering & System Safety.



=PFL EOQL prediction within the error bound of 5
cycles

CNN

tgoL — tey<s in [cycles]
T T G
11 11 31 195%
14 15 43 197%
15 24 37 54%
Fleet Avg. 16 37 127%

—> Prediction horizon prolonged by 127% on average (for some units ca. 200%)

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,”
Reliability Engineering & System Safety.
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=PFL Detalled results RUL prediction: smaller
training dataset

CNN: trained on units 2,5,10,16,18,20 M o)
e — - , J
awie _[oaDriven [ rid [ Data__ #= 2 cap(alA®)
RMSE[]  4.9540.15 414 +0.09 16% i=1
s % 105[-] 0.56 + 0.03 0.44 + 0.02 21% 1 2 _
RMSE = |— 3" (AG)’
\| M,

CNN: trained on units 16,18,20
_ Data-Driven Hybrid Rel. Delta
et s LR -> ca. 50% reduction of

RMSE [ 5.97 + 0.37 4224012 -29%
s X 105 0.61 + 0.03 0.43 + 0.02 -29% training data size
rel. Delta RMSE [%] 17% 2%

-> performance level
Rel. Delta s [%] 8% -2%

maintained

B 11.11.24

M. Arias Chao, C. S. Kulkarni, K. Goebel, and O. Fink, “Fusing Physics-based and Deep Learning Models for Prognostics,”
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=PrL

No_zro Me_zro  No_dat
initial core speed core accel
Pps=) EAS+HP + DLL
peh 0.
i (pph . .
(peh) fan-speed controller has point gains
el flow
set TRA step to desiredvalue,
then run simulation
27 CLM Outputs

« JC_MAPSSICLsimMDL_filesiCL_MNI_PG_TRA_DLL_step.m
h =3

Hybrid Fault Detection and Diagnostics

How to improve not only the performance but also the interpretability and generalizability?

B 11.11.24
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=PFL  Analysing the reconstruction residuals for fault
isolation

Auto-Encoder

4 Reconstructed\
Input Input
Features
O—>—0
s O s Fault Isolation
o | Reconstruction Error
O : Q_ : (Residual before\after Fault)
2 O g A
O—v—0
. J
Detect Anormal Data
One- class classifier (ngh Distance to Training)
f‘- 1
utput
Distance to
Training Data “Health Indicator”
- Fault Detection
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=PFL  Test Case: Turbofan Engine

 Simulation of a realistic large commerclal turbofan engine
« 24 flight cycles

« Each flight contains ca. 175 snapshots of recordings covering climb, cruise
and descend conditions

 Real flight conditions from a commercial jet

EGT - Exhaust Gas Temp

* Fault: HPC Efficlency with different magnitudes

P25 Ps3
T2 T25 T3 WF36

0 11.11.24

Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2019). Hybrid deep fault detection and isolation: Combining deep neural networks and system performance modelsinternational Journal of
Prognostics and Health Management Olga Fink 54



=PFL  Calibration-based hybrid framework

Model Calibration

.
.......................................................................................

————)- Real Process
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Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2019). Hybrid deep fault detection and isolation: Combining deep neural networks and system performance modelsinternational Journal of

Prognostics and Health Management
Olga Fink 55



=P7L  System Model - Degradation Features

Degradation features provided by the system model:
» Residual 6y = X; — X

—  Direct computation

h><)

Ox,

> System Model

= Real Process

B 11.11.24
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=PFL Two tested setups

System 8x.
Model 4 |
Real D%e_p Lear:_mg —-

Process iagnostic

Model

Model Calibration

I =
3

_‘ Real Process

B 11.11.24
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=PrL  Applied network architecture

5
5 =
3 5
S <
g Hidden layer (m'=*' = 20)  Hidden layer (m*~* = 100) ~ g
= A ‘ A 5
I~ ?
2 2
> (@]
b 1
S- - z-latent space I, (m'z =8) —» Hidden layer (m"~2 = 20)
8 A ’ )
<
)
8
S
T s
Y  Hidden layer (m'= 20)
g A
]
Input - X
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=PFL  Detection Accuracy in [%]

Data-driven W, Xs] 24.5 12.9 10.0
Residual-based (W, Xs, 6] 98.7 99.3 79.5
Hybrid (calibration-based) W, X5, Xy, 6] 100.0 97.5 96.2

B 11.11.24
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=PFL  Influence of the data complexity (data-driven
model)

m -
70
m -
=
< 509
S x
e
o
o 30
<
m -
lU -
D -
Altitude[ft] = 10k Altitude([ft] = 25k
Data Complexity
<
N
= Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2019). Hybrid deep fault detection and isolation: Combining deep neural networks and system performance modelsinternational Journal of
- Prognostics and Health Management
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=PrL

B 11.11.24

Fault isolation (with a high fault intesity)

Data-driven

Residual-based

Hybrid (calibration-based)

(W, Xs]

[W' XS" 6X5]

W, X5, Xy, 0]

Physical core speed
Static pressure at HPC outlet

Delta physical core speed
Delta total temp. at HPC outlet
Delta total temp. at LPC outlet
Delta total temp. at HPT outlet
Delta total temp. at LPT outlet

HPC efficiency modifier
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Ageing-aware Battery Discharge
Prediction
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=PFL  Degradation of Li-lon batteries = importance

of precise planning
o
&L
IE
Lithium-ion
o“ o "'”

‘m
o

B 11.11.24
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=PrL

11.11.24

Effect of varying the degradation parameters on

the voltage discharge curve of a Li-ion battery

Voltage (V)

o

1000

2000 3000
Time (s)

4000

BOOD
7444
BEES
6333
5778
5222
4667
4111
3556

3000

(anax((:}

Voltage (V)

0.2500
4.2
0.2241
407 L 0.1083
3.8 L 0.1724
—
- 0. 1485
L 0.1207
o
3.4 1 L 0.0848
32 L 00689
0.0431
3.0 1
0.0172

500 1000 1500 2000 2500 3000
Time (s}
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=PrL
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Discharge behaviors with respect to the
differentload profiles

Current (A)

WVoltage (V)

1.65 1
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T T T
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T
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=PFL  Transformer-based long-term battery discharge
prediction -> Dynaformer

A.IIIIII
= _| I

Current =
Tokens

1]
| Voltage
Tokens

\ EOD

B 11.11.24

Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2022). Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction, under review Olga Fink 66



=PrL  Selected results

424 RMSE= 1 07E-2| 424y [RMSE= Z,ME-E 421y RMSE= 1 50E-3]
4 4 4
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b3 b2 k-2
o o o
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2022). Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction, under review Olga Fink 67



=PFL Performance without fine-tuning

Interpolation

0.3
0.25
e 7
Ll
= 0.15 0.14
o
0.1 0.1
0.05
0.02 |
I
0
Dynaformer LSTM Dynaformer*

Model
Dynaformer* - trained with variable current profiles

*RTE = relative temporal error

B 11.11.24

Prediction, under review

Extrapolation

0.3
0.25
0.2
Ll
= 0.15
o
0.1
0.05
0

Dynaformer LSTM Dynaformer*
Model

Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2022). Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
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=PFL  Performance dependent on the complexity of
the the load profiles

0.3
0.25

0.2

01

0.06

0.05

0.05 0.04

003 | | 003
| 0.02

- - - -
0-1 2-3 4-5 6-7 3-9 10-11

Number of transistions
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=PFL Implicit leaming of the degradation parameters
In the latent space

Rx =0.09; Ry =-0.96] g** Rx=0.98; Ry =-0.17]

30= L]
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=PFL  Transfer leaming

Simulated

Data
Pre-trained

Model

First-principle

Model

Real Data

Final Model < Fine-Tuning

B 11.11.24

Olga Fink 71



=PrL

11.11.24

Fine-tuning on real data

421 - -Real Data
I simulated Data
A
— ~ -~
2 38 el
= Ses
£ 3.6 T
S 9 R
s .
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~
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~
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*RTE = relative temporal error

Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2022). Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge

Prediction, under review

Olga Fink 72



=PrL

Feature Extractor Classifier
Unlabeled Imbalanced Real Data
—
Target
f
Labeled Balanced Synthetic Data
—
Source

Real Healthy
|| Samples

-

Defect-Initiated
Pulses

1
_‘@’_ Domain Additional
“=" Knowledge Randomness o
@
| Fault Augmented Conditional o = I
Generation Domain Alignment Discriminator |

Integrating Expert Knowledge with Domain

Adaptation for Unsupervised Fault Diagnosis

B 11.11.24
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=PFL  Real Case study: Bearings of Wind Turbines

= Turbine Bearing Data
= Distinguish between 3 classes: healthy, inner race, outer race
= Without any faulty examples at training time

| KEE ’

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE
Transactions on Instrumentation & Measurement Olga Fink 74
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=P*L " Problem setup

= Healthy data available
= No faulty data available at model development time

= Not just fault detection but also fault diagnostics required (distinguish
between the different fault types)

= Developed models need to be tested on real faulty data
= Faulty data imbalanced
= [mbalance level unknown

B 11.11.24
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=PFL  Nommalized full-wave rectified envelope spectrum of an
inner ring defect example with corresponding defect ball
pass frequency

25
BPFI sideband

2 90 - BPFI

I === synthetic defect

Q

g 15 real defect

@ —— real healthy

i®)

Q

= 10 1

@

£

= ‘

z 5 | l

0 R ) ‘
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frequency (Orders)

f Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE

Transactions on Instrumentation & Measurement Olga Fink 76



=PFL  Nommalized full-wave rectified envelope spectrum of an
outer ring defect example with corresponding defect ball
pass frequency

10

BPFO(2x, 3x)
g - unknown interference
= synthetic defect

real defect

real healthy

Normalized amplitude

Frequency (orders)
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Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE

Transactions on Instrumentation & Measurement Olga Fink 77



=PrL  Synthetic2Real

Source Source + synthetic faults Target

healthy

B 11.11.24

Fault |
AAAAAA
A A A
healthy
Fault Il
0% ®
........
. % ®
" mm Faultll

I
Olga Fink
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=PrL

B 11.11.24

Challenges of DA for imbalanced datasets

4 4
4 4 i 4 4

4 4
B ‘4 o... ‘: 4‘
®
- & ‘"o o0
@ ® ®
» ®

Synthetic Source Domain Real Target Domain

Olga Fink
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=PFL  Generating Synthetic Data from Healthy Samples

One life-time recording of a bearing

Early part can be safely regarded as healthy

Superposition of healthy signals + defect-
initiated pulse-train signal + randomness

Take out this healthy part
]

Inject synthetic faults to the healthy samples. Based on domain expertise.

Outer race Inner race Ball

Combine them we get our synthetic data

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE
Transactions on Instrumentation & Measurement
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=P7L  Naive Synthetic2Real on imbalanced data: Toy
example on CWRU

Source | syn | |
Target | 1200 -
real ’ \

1. Four classes

2. Train only on synthetic data

3. Metric: Report average accuracy for all classes
(Acc_healthy + Acc_fault1 + Acc_fault2 + Accu_fault3 ) /4

/ N
/ \
b N
/ \
’ N
’ \
/
, _ \

Out |
Source only Accuracy: 59.55% Bl e nnerrace

The synthetic data indeed contains information that helps the
classification.

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE
Transactions on Instrumentation & Measurement
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=P7L  Adversarial Synthetic2Real on imbalanced data:i
Toy example on CWRU

Source | syn ] ]
Target | 1200 I
real I o0
Outer race Inner race
Ball

How about adversarial domain adaptation ?

m Source-only Adversarial

Accuracy 59.55% 72.57%

B 11.11.24

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE

Transactions on Instrumentation & Measurement Olga Fink 82



=PFL  What s the issue ? Imbalanced data in target.

Quick verification: What if we make the number of samples equal for target ?

TargetBefore: g0 mmm
EETTE.

exp1
g 60 12

Outer race Inner race

Modified
Target:
exp2

Source-only Exp1 Adversarial- | Exp2 Adversarial-
imbalanced Balanced
Accuracy 59.55% 72.63% 82.59%

A big improvement on performance!
Simply by making it balanced!
But in reality we don’t know the ground truth.

B 11.11.24

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE
Transactions on Instrumentation & Measurement Olga Fink 83



=PFL  Step 1: Howto let the discriminator leam better
for the rare faulits.

____________________

* Inspired by Conditional
GAN and CDAN
(conditional domain
adaptation)

o ————
7

Classifier

_________________

| « Use pseudo label from the
| classifier and provide the
= : class information to

.........

discriminator.

\5—————————— ———————————————————

____________________________________________

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE
Transactions on Instrumentation & Measurement Olga Fink 84

B 11.11.24
/
\
N
’
N



=PFL  Step 2: Provide more support for the target
conditioned distribution

« Inspired by Mixup

- For features and pseudo-labels (in latent space not in input space)
- Performed separately for source and target

« This injects rare faults information to more samples in one batch

B 11.11.24
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=PFL  Proposed framework

Feature Extractor Classifier
Unlabeled Imbalanced Real Data
—
Target e
Labeled Balanced Synthetic Data 3
—
Source
r— A, -i R e
| Real Healthy Defect-Initiated | ‘ Mixup ‘ Mixup |
| || Samples Pulses | | |
| | | 9Seudo\abe\ |
| y . |
| . | | | S |
| __ Domain Additional | | h — E — L |
| “=* Knowledge Randomness | | E |
Fault | | Augmented Conditional = |
Generation | LDomain Alignment Discriminator
__________________________________ d

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE
Transactions on Instrumentation & Measurement Olga Fink 86
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=P7L  Ablation Study

Method | Accuracy

Source only 59.55%
DANN 72.57%
Conditioned 75.38%

Conditioned + Mixup 82.29%

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE
Transactions on Instrumentation & Measurement Olga Fink 87
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=PFL  Different Imbalance Levels on CWRU

B 11.11.24

[20% 15% 10% 5% 1% |

Baseline LSS LSS 59.55 59.55 SRS
DANN 82.04 79.77 78.30 74.96 71.05
Proposed 83.49 83.04 83.32 83.30 82.34

x%: For every 100 healthy samples, x samples for the rare fault class

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE

Transactions on Instrumentation & Measurement Olga Fink
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=P7L  Real Case study

= Turbine Bearing Data from SKF
= 3 classes: Healthy, inner race, outer race
= Generated synthetic fault data from healthy

» There are much more outer race faults
than inner race faults

Method | Accuracy

Source only 60.85
DANN 64.47
Conditional (proposed) 68.28

Conditional+mixup(proposed)  70.76

B 11.11.24

Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, under review
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Graph Neural Networks
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=PFL  Graphs are everywhere

geographical network
~£

| &/
7~ N

social network brain network

Graphs provide mathematical representation of networks Source: P. Frossard

B 11.11.24
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=PFL  |nfrastructure networks can be represented as
graphs

Railway Network

Electric power

Water distribution
system

11.11.24
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=PFL  Examples of graph structured data

e nodes

Mean Yearly Temperature (degC) 1981-2010

- geographical regions
e edges
- geographical proximity between
regions

LbbhLOomeoNmow
(SN

e signal
- temperature records in these

bolbh

regions

Source: P. Frossard

B 11.11.24
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=PFL  Examples of graph structured data

e nodes
- road junctions

e edges
- road connections

e signal

- traffic congestion at junctions

Source: P. Frossard

B 11.11.24
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=PrL  Examples of graph structured data

) y o e nodes
-~ o Hg \ - individuals
-———*ﬁ\\ / ﬁ;@#m e edges
I/\ / \ - friendship between individuals
ﬁﬁ /@'\ e signal
i oo - political view

Source: P. Frossard

B 11.11.24
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=PFL  Examples of graph structured data

e nodes
- brain regions
e edges
- structural connectivity between
brain regions

e signal
- blood-oxygen-level-dependent
(BOLD) time series

Source: P. Frossard

B 11.11.24
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=PFL  Examples of graph structured data

e nodes
- companies

e edges
- co-occurrence of companies in
financial news

e signal
- stock prices of these
companies

Source: P. Frossard

B 11.11.24
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=PrL

B 11.11.24

Examples of graph structured data

wireless sensor node &
magnetic mount DVRT

Nodes: Sensors of a
(bridge) sensor network)

Edges: proximity of the
sensors /similarity of the
signals

Signal: strain and / or

accelerometer
measurements

Olga Fink
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=Pl Bearing dynamics can be represented as graphs

Sharma, V., Ravesloot, J., Taal, C. and Fink, O., 2023. Graph Neural Networks for Dynamic Modeling of Roller Bearing, PHM Society conference 2023

B 11.11.24
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=PFL  Task that can be solved with GNNs

= (supervised) graph level classification
= Node classification
= Link prediction

B 11.11.24
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=P7L  Graph Neural Networks

Hidden layer Hidden layer

Input Output

y RelU | & ReLU

Main Idea: Pass massages between pairs of nodes and agglomerate

Alternative Interpretation: Pass massages between nodes to refine node

(and possibly edge) representations Souros: T Ko
ource: |. KIp

B 11.11.24
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=" Introduction to message passing GNNs

Example : Spring Mass Systems

« Each node represents the mass b o o o ‘
+ Each edge represents the spring

GNN : Message Passing on Graphs

Encoder Processor Decoder
[ 11 ] [ 1111 L L] ....9‘) {Vebuuun
% 2 » J &L o
\/ > - =) oy * > - e.g., forges,
EEEE EEER &,....94) | accelerations

System Geometry &
Features

B 11.11.24

* Sanchez-Gonzalez et al. Learning to simulate complex physics with graph networks, ICML, 2020 Olga Fink 102



P Introduction to GNNs

Example : Spring Mass Systems learned dynamics by GNN

timestep = 25

o-0-0-0-0-60-600

GNN
® Train: 4,5,6,7,9, 10 masses
Simulation @) Test : 8 masses (out of training)

Source: V. Sharma

B 11.11.24
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=PrL

B 11.11.24

Recap: Convolutional Neural Networks (CNNs)
on Grids

Single CNN layer

with 3x3 filter: h
0

h,
O\‘Q/O Update for a single pixel:
O_’CS O - Transform messages individually W h;
+ Add everything up Ez W h;
O $‘\O h;

h, € RE are (hidden layer) activations of a pixel/node

Full update:

b = o (Wi'h{) + W'h{" +- -+ W{'n")

Source: T. Kipf

Olga Fink
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=PFL  Graph Convolutional Networks (GCNs)

_ , Calculate update
Consider this for node in red:

undirected graph: « Weight sharing over all locations
* Invariance to permutations
® O O\xg/o « Linear complexity O(E)
O O » Applicable both in transductive
O (/ \C) and inductive settings

O O

Desirable properties:

Update 1
I+1 D xxr () (D
rule: bV =0 [hPW 4+ Y W
JEN; *J
Scalability: subsample messages [Hamilton et al., NIPS 2017] M : neighbor indices  C;; : norm. constant

(fixed/trainable)

Source: T. Kipf

Olga Fink 105



=PFL  Classification and Link Prediction with GNNs /
GCNs

Input: Feature matrix X € RNXE, preprocessed adjacency matrix A

Hidden layer Hidden layer Node classification:

n . softmax(zy, )

L ] ]
/. T/ . e.g. Kipf & Welling (ICLR 2017)
[ ] [
Input ‘e v Output
4 4 Graph classification:
o LT RelU | o /" RelU
Lt O L Ot e softmax(d ", zn)

A - o) e.g. Duvenaud et al. (NIPS 2015)
X — H(O) . ° H(N)
< /T /7 Link prediction:
o AT X _ o (y7T
* % * b p(A'Lj) - U(Zi Zj)
Kipf & Welling (NIPS BDL 2016)
H(H'l) =0 (AHU)W(Z)) “Graph Auto-Encoders”

B 11.11.24

Source: T. Kipf
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Example:
Industrial loT systems
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=PFL Changing / evolving relationships between time
series

= Usually, graph topology between time series either given or
derived once - static graph

= Changing environmental or operating conditions
= Impact of degradation

= Process optimization

= Maintenance

B 11.11.24
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11.11.24

FT406

PT417 . o Oil tank
= T T200
i Water coalescer‘l
ks i
Ultrasonic }
LVCS07 Sh
sensor r‘ Water Lis03
i FIC102 FTa02  LI01ED) ey
ol : MG LVC502
Lol L -
oA 1
(=) FIC101 FT104 PO1 i
L= o 1
M a(i'o S-shape :
| riser ]
FT305 FIC302 |
PT312 g e -—'i Air i
[=] —| compressor |
(in X —ok :
1 C
Vil | praoz picaor L) i
Transparent —x Tk H
pipeline I] V10 i
R
)
Water
0il
Air
Mixed Flow

3 phase separator

=== Control signal

Source: Gedda, R., Beilina, L. and Tan, R., 2023. Change Point Detection for Process Data
Analytics Applied to a Multiphase Flow Facility. CMES-Computer Modeling in Engineering &

Sciences, 134(3).
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=PFL DyEdgeGAT: Dynamic Edge via Graph Attention

n 11.11.24

for Early Fault Detection in lloT Systems

m

u, |

System-independent varlables

Utwit

Raw sensor measurements

Xtwit

Reverse operating condition

2. Operating condition-aware
GRU node dynamics extraction

Operating condition ¢
context augmentation

Node dyjnamics

1. Dynamic edge construction

Evolution of relationships

alt *f(h lIRllemb (5,
VEE [t ]

2a SWAVN

Edge dynamics

context augmentation

interactions

3. Learning dynamic

4. Reversed signal
reconstruction

-

GIN layers

Aggregated
temporal graph

]

Final
temporal graph
representation

GRU

-

. xy [ MMM ML, |
Revprse

SN VANEANIANY

5 [ T Mg o N PV |

Reconstruction

5. Temporal topology—hasth
anomaly scoring

weighted by temporal graph h
node degrees

i

=R )

Training

Calculate anomaly score

Construct reconstruction loss

R twit

Z z [|R twit — thcllp

=1 ti=ty

Training loss
N
t

Olga Fink
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=PrL.Dynamic Edge via Graph Attention (DyEdgeGAT) W

mmm FNN mmm | STM USAD s GRELEN mmm DyEdgeGAT
. AE mmm LSTM-AE == GDN m MTADGAT
1.0
0.
I
H I

So6 -
<
3
x 0.4

0.2 iI

0.0 X ; 5

Air leakage  Air blockage Diverted flow Average

104
>
o
[7]
0 1p2
c
e
B
L=}
(7]
o
a

10? I

i ol I 1

Air leakage  Air blockage Diverted flow Average

Zhao, M., & Fink, O. (2023). DyEdgeGAT: Dynamic Edge via Graph Attention for Early Fault Detection in lloT Systems, IEEE Internet of Things
Olga Fink 11
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=PrL
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Novel operating conditions

1.0

o o
[®)] [00]

Ambiguity
e
e

0.2

oo M

Ambiguity = 1 — 2 - |AUC — 0.5

AE

FNN

LSTM
LSTM-AE
USAD

GDN
GRELEN
MTADGAT
DyEdgeGAT

Ambiguity quantifies the model’s inability to differentiate between normal operations and novel conditions

Zhao, M., & Fink, O. (2023). DyEdgeGAT: Dynamic Edge via Graph Attention for Early Fault Detection in [loT Systems, IEEE Internet of Things

Journal

Olga Fink 112



Example:
Modelling bearingas a

graph
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=*L  Bearing Dynamic Model

B 11.11.24

= 2D dynamic lumped bearing model,
(based on P. K. Gupta, 1979)

= Differential equations of motion

= Lundberg & Palmgren model for
Hertzian contact

= N209 CRB bearing (line contacts)

= Assumptions: rigid rings, zero-mass
rolling elements

based on simple model but theory
also applies to complex models!

Sharma, V., Ravesloot, J., Taal, C. and Fink, O., 2023. Graph Neural Networks for Dynamic Modeling of Roller Bearing, PHM Society confere%ﬁ:gea%%3




=7L  Bearing Dynamic Model: Training set L

Applied External Load on Bearing

225000

gzoooo— POSi[iOHS ;ﬁi

2 15000/ Velocities vU;
%10000- Internal loads f;
§ som)

0 1000 2000 3000 4000 5000 6000 7000
Time Step

= L oad changes to generate dynamic step responses
= [1-20] kN OR loads, [13, 14, 15, 16] rollers
= (Rotation is not included yet)

B 11.11.24

Sharma, V., Ravesloot, J., Taal, C. and Fink, O., 2023. Graph Neural Networks for Dynamic Modeling of Roller Bearing, PHM Society conference 2023
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=PrL
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GNN Inputs and Outputs =

Edge features:
dx,||dx|| node features:

X, 0, fext,type

Circumference
Outer ring

Sharma, V., Ravesloot, J., Taal, C. and Fink, O., 2023. Graph Neural Networks for Dynamic Modeling of Roller Bearing, PHM Society conference 2023

Olga Fink 116



=L Results: Generalizability

Training : SKF N209 CRB (13, 14, 16 rollers)
Testing: 15 Rollers, 13kN

Predicted and True Loads on the Top Roller (# 8) at each time-step

7000
6500
z
3z 6000
_> o
- 5500
,_
9
25000
—e— Ground Truth —e— Ground Truth
500 —— Prediction 4500 —— Prediction
0 50 100 150 200 250 2500 2550 2600 2650 2700 2750
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=*L  Results: Interpretability

B 11.11.24

Roller Load (N)

Predicted Load vs Roller Deformation for Bottom Roller (#0)
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* GNN can infer the unloading behavior without direct training.
(Conventional Networks cannot infer this behavior)
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