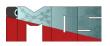


 École polytechnique fédérale

Domain generalization

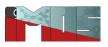
- Domain generalization focuses on training models that generalize to unseen target domains.
- Unlike domain adaptation, it does not require access to target domain data during training.
- It aims to learn robust and invariant features from source domains that perform well under different conditions.
- Useful when target environments are unknown or change dynamically.
- Helps create models that are more adaptable and resilient to distribution shifts or novel scenarios.

Continuous domain adaptation



- Continuous domain adaptation focuses on adapting a model continuously as the target domain evolves over time.
- Unlike traditional domain adaptation, it handles scenarios where data distributions change dynamically and require ongoing adjustments.
- It seeks to maintain model performance by adapting incrementally to new conditions without needing to retrain from scratch.
- Useful for real-world applications where environments and data distributions are constantly shifting.
- Often involves strategies for updating learned representations, retaining past knowledge, and mitigating catastrophic forgetting.

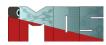
Test-time adaptation



- Test-time adaptation refers to adapting a model to distribution shifts in the target domain during inference, without further training on the source domain.
- It focuses on updating model parameters or representations using only test data, typically through self-supervised or unsupervised strategies.
- Allows models to respond to domain shifts or changes at the point of inference, improving performance in unseen or evolving conditions.
- Reduces the reliance on having a large amount of labeled data in the target domain.
- Useful for scenarios where models encounter dynamic environments or previously unseen data distributions at test time.

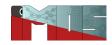
Digital Twins

1. Definition: Digital twins



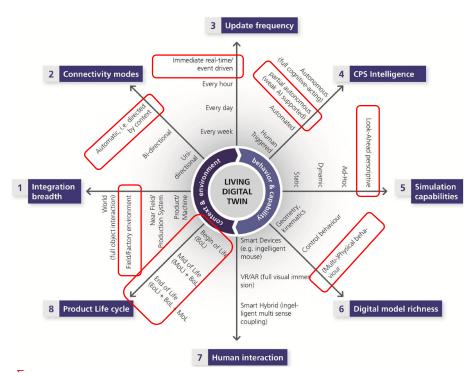
• A digital twin is defined as "a living model of the physical asset or system, which continually adapts to operational changes based on the collected online data and information, and can forecast the future of the corresponding physical counterpart".

2. Definition: Digital twins

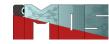


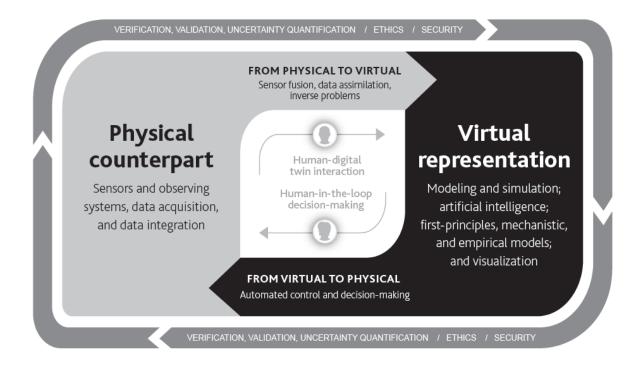
• A digital twin is a set of virtual information constructs that mimics the structure, context, and behavior of a natural, engineered, or social system (or system-of-systems), is dynamically updated with data from its physical twin, has a predictive capability, and informs decisions that realize value. The bidirectional interaction between the virtual and the physical is central to the digital twin.

Digital Twin integration

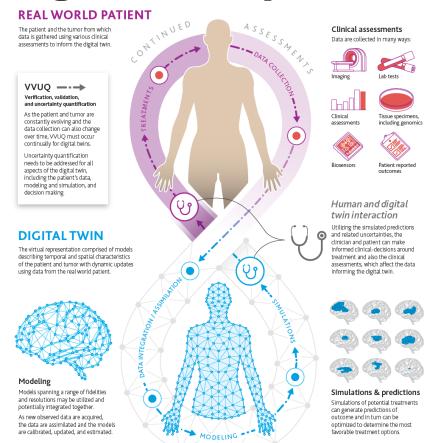


Elements of a digital twin

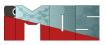




Digital twin of a patient

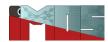


Verification, Validation, Uncertainty Quantification



- Verification. Does a computer program correctly solve the equations of the mathematical model?
- Validation. To what degree is a model an accurate representation of the real world, from the perspective of the intended model uses?
- Uncertainty Quantification. What are uncertainties in model calculations of quantities of interest?

Application fields



Manufacturing

Smart Cities

Health care

Energy Sector

Aerospace and Defense

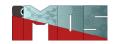
Automotive Industry

Building Energy Systems

Agriculture

Climate

Application cases of DT



Product development

Design + Testing

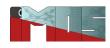
PHM / Maintenance

Optimizing product life-cycle management

Process Optimization

Prescriptive Operation

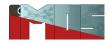
A Digital Twin should be Fit for Purpose

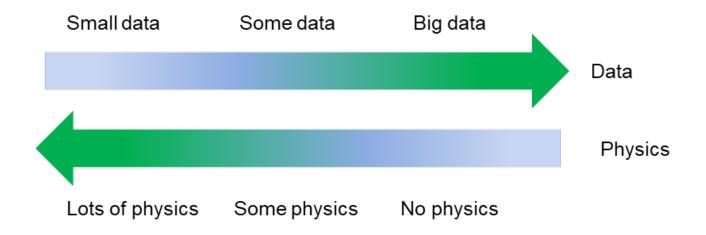


- Balancing required fidelity for prediction, available resources, and acceptable costs
- Different digital twin purposes drive different fitness requirements related to modeling fidelity, data availability, visualization, time-tosolution, etc.
- For many potential use cases, achieving fitness-for-purpose is currently intractable

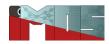
Hybrid Models

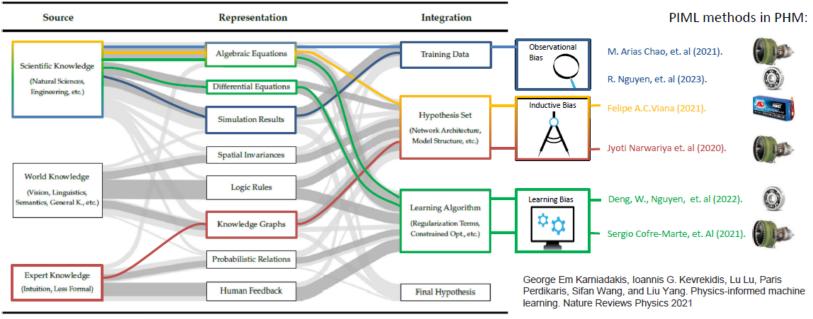
Space of potential solutions





Physics-informed ML for prognostics and health management (PHM)

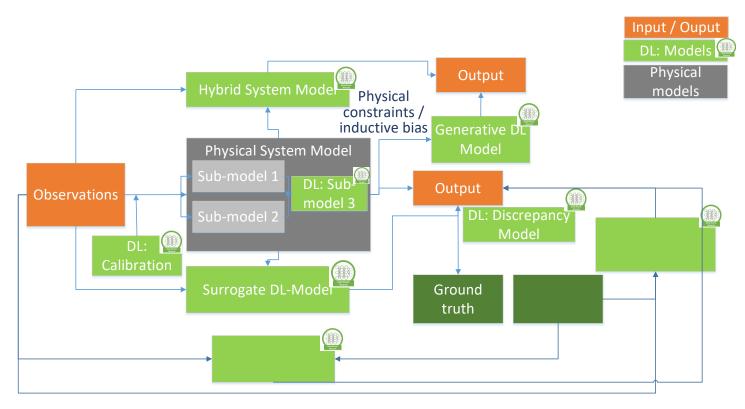




L. von Rueden et al., (2021)

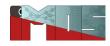
Source: M. Arias

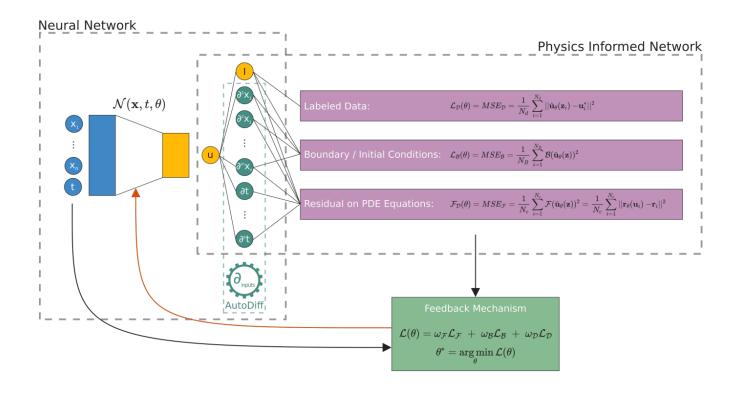
Different ways of fusing DL and physics



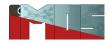
Combining Physics-Based and Deep Learning Models

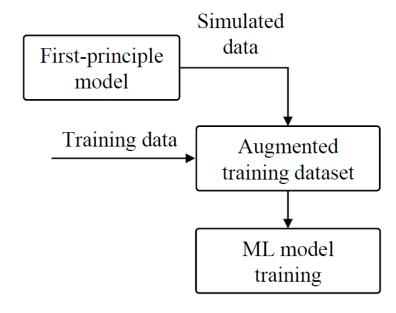
Physics-informed ML





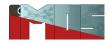
Data Augmentation

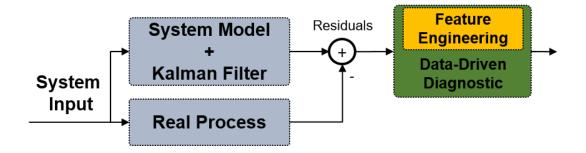




27

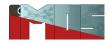
Residual-model

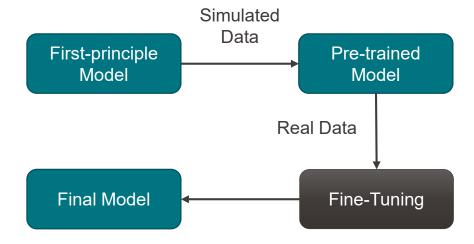




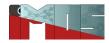
Rausch, Randal T., et al. "Integrated in-flight fault detection and accommodation: A model-based study." (2007): 962-969.

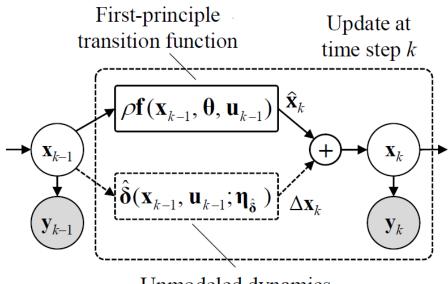
Transfer learning





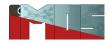
Delta Learning (Missing Physics)

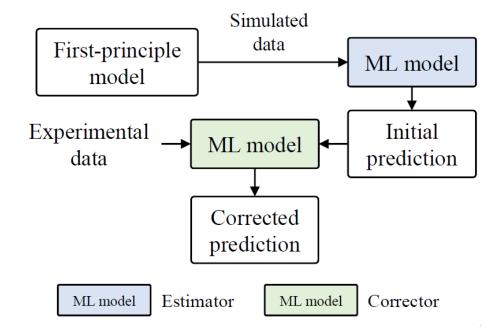




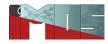
Unmodeled dynamics recovered by ML model

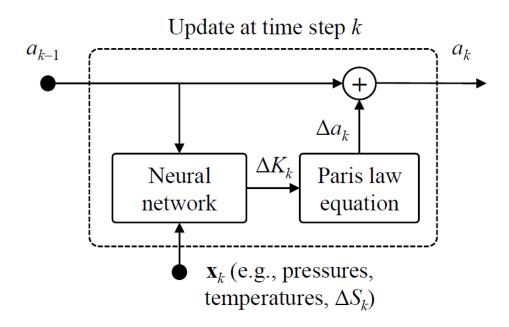
Delta Learning (ML Prediction)



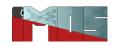


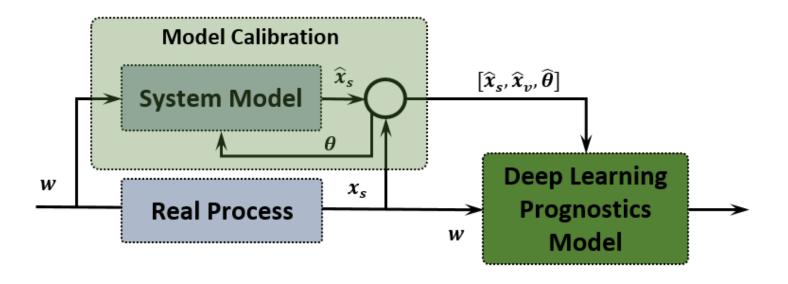
ML-Assisted Prediction





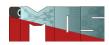
Fusing physical performance models and deep learning





Inductive bias

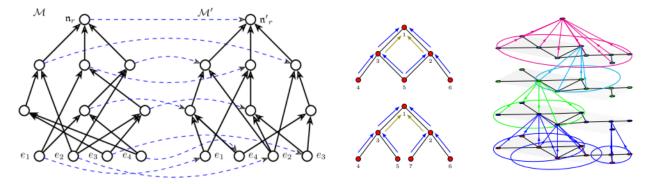
Inductive bias



- Inductive bias refers to the set of assumptions a learning algorithm uses to generalize from training data to unseen data.
- It helps guide the learning process and shapes the predictions that a model makes.
- Strongly impacts how well a model generalizes to new data.
- Examples include:
 - Linear regression assumes a linear relationship between input and output.
 - Convolutional Neural Networks (CNNs) assume spatial hierarchies and local dependencies for image data.
- Enables efficient learning by reducing the hypothesis space.
- Can lead to poor generalization if the assumptions do not match the underlying data distribution.

Inductive bias / Physics Informed Neural Networks (1/2)

I. Physics is implicitly baked in specialized neural architectures with strong inductive biases (e.g. invariance to simple group symmetries).



*figures from Kondor, R., Son, H.T., Pan, H., Anderson, B., & Trivedi, S. (2018). Covariant compositional networks for learning graphs. arXiv preprint arXiv:1801.02144.

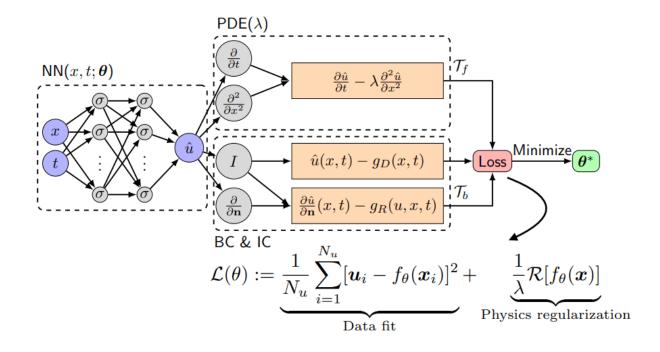
11.11.24

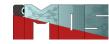
Source: Perdikaris 2020

Inductive bias / Physics Informed Neural Networks

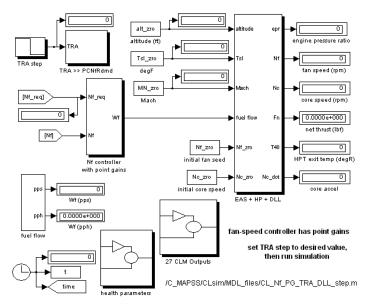
2. Physics is explicitly imposed by constraining the output of conventional neural architectures with weak inductive biases.

Psichogios & Ungar, 1992 Lagaris et. al., 1998 Raissi et. al., 2019 Lu et. al., 2019 Zhu et. al., 2019



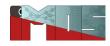


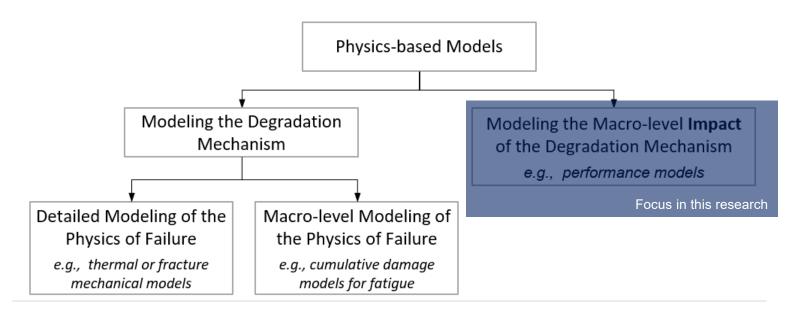




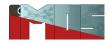
Calibration-based hybrid framework for prognostics

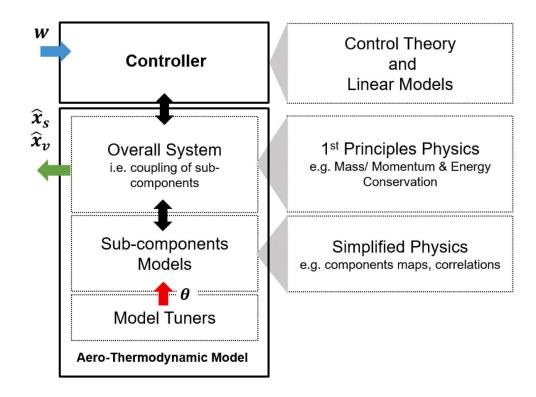
Physics-based models



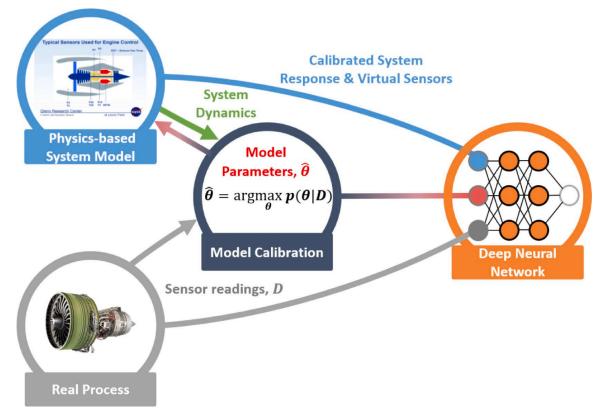


General topology of an aero-thermodynamic performance model

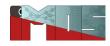


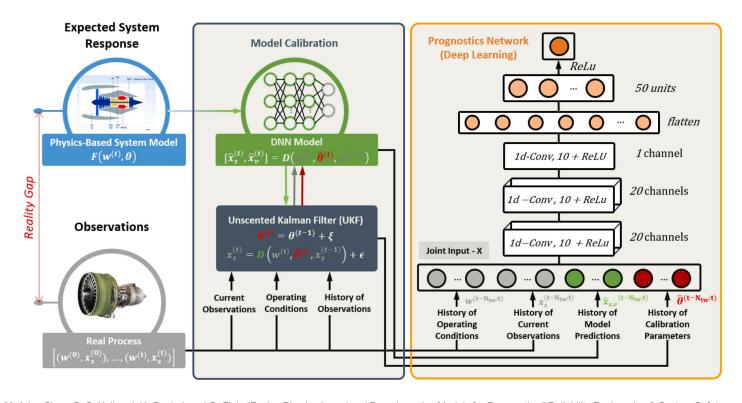


Basic idea of the hybrid approach

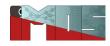


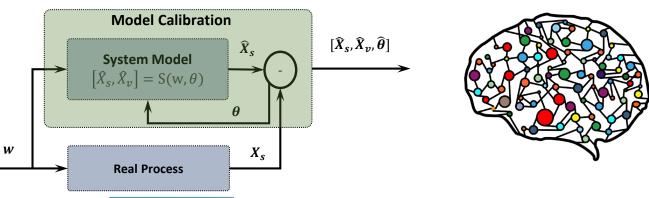
Proposed framework

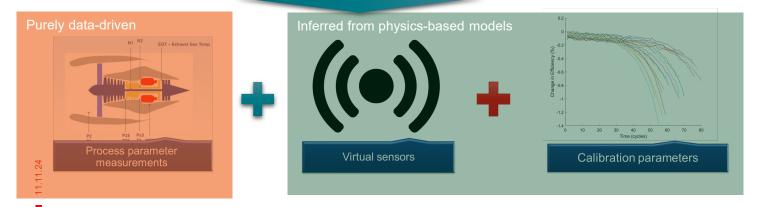




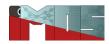
Enhancing the input space with inputs from physics-based models





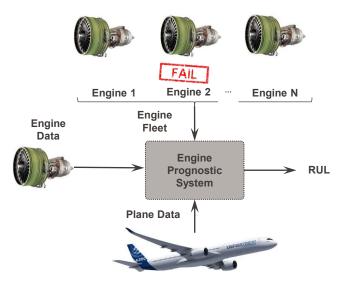


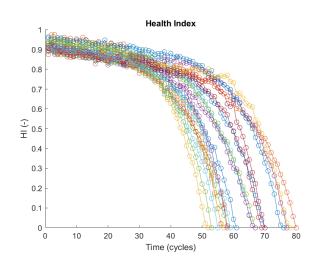
Estimation of the Remaining Useful Life



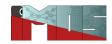
Remaining Useful Life (RUL) of a component

 the amount of time a component can be expected to continue operating within its stated specifications

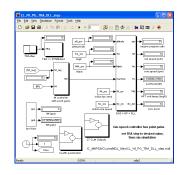


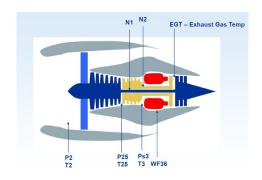


Test Case: Turbofan Engine

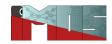


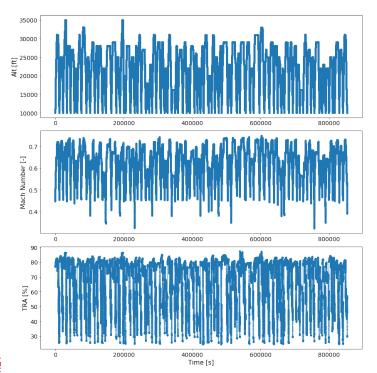
- Simulation of a realistic large commercial turbofan engine
 - Simulated run to fallure trajectories with the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dynamical model
- Real flight conditions from a commercial jet
 - NASA DASHlink
 - ~500 different (1-12h) flights
 - Recordings covering climb, cruise and descend
 - Operative conditions $w \in \mathbb{R}^3$
- Data from a fleet of 9 turbofan engines
 - Internal sensors $x_s \in R^{10}$
 - Virtual sensors $x_v \in R^{15}$
 - Model parameters $\theta \in R^{10}$





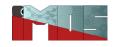
Test Case: Turbofan Dataset

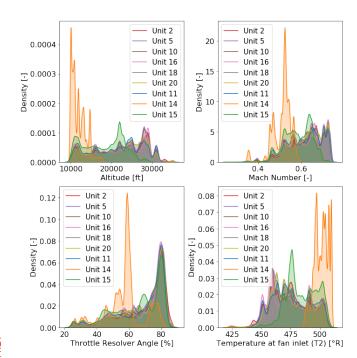




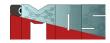
- Failure modes: 1) HPT degradation 2) HPT and LPT flow and efficiency degradation
- Flight conditions: Alt > 10000 [ft]
- Training Data:
 - 6 engines
 - 50-90 cycles (flights)
 - \boldsymbol{w} , $\boldsymbol{X_s}$, $\widehat{\boldsymbol{\theta}}$ & RUL
 - 5.5 x 10⁶ samples
- Test Data:
 - 3 engines
 - $w, X_s \& \widehat{\boldsymbol{\theta}}$
 - 1.2 x 10⁶ samples

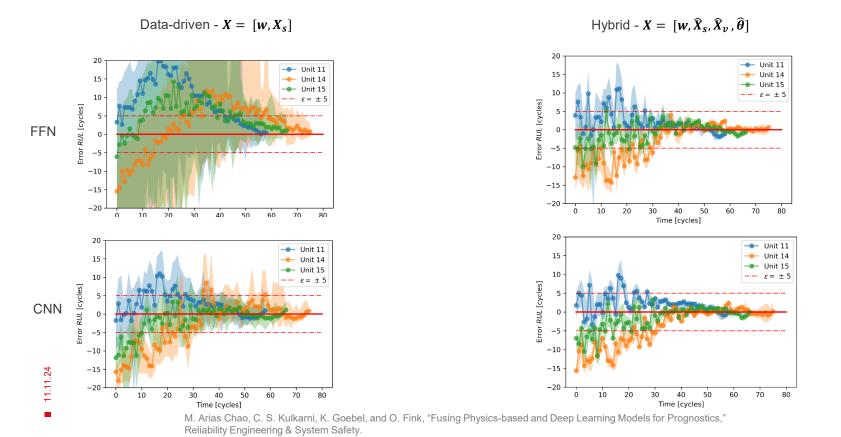
Kernel density estimations of the simulated flight envelopes given by recordings of altitude



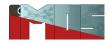


RUL prediction results





Detailed results RUL prediction



FFN

Metric	Data-Driven	Hybrid	Rel. Delta
RMSE [-]	7.89 ± 0.12	4.22 ± 0.10	-47%
$s \times 10^{5}$ [-]	1.39 ± 0.04	0.44 ± 0.01	-68%

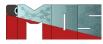
CNN

Metric	Data-Driven	Hybrid	Rel. Delta
RMSE [-]	4.95 ± 0.15	4.14 ± 0.09	-16%
$s \times 10^{5}[-]$	0.56 ± 0.03	0.44 ± 0.02	-21%

$$s = \sum_{j=1}^{m_*} exp(\alpha |\Delta^{(j)}|)$$

$$RMSE = \sqrt{\frac{1}{m_*} \sum_{j=1}^{m_*} \left(\Delta^{(j)}\right)^2}$$

EOL prediction within the error bound of 5 cycles



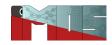
CNN

$$t_{EOL} - t_{\epsilon_{\gamma} < 5}$$
 in [cycles]

unit	Data-Driven	Hybrid	Rel. Delta
11	11	31	195%
14	15	43	197%
15	24	37	54%
Fleet Avg.	16	37	127%

→ Prediction horizon prolonged by 127% on average (for some units ca. 200%)

Detailed results RUL prediction: smaller training dataset



CNN: trained on units 2,5,10,16,18,20

Metric	Data-Driven	Hybrid	Rel. Delta
RMSE [-]	4.95 ± 0.15	4.14 ± 0.09	-16%
$s \times 10^{5}[-]$	0.56 ± 0.03	0.44 ± 0.02	-21%

$$s = \sum_{j=1}^{m_*} exp(\alpha |\Delta^{(j)}|)$$

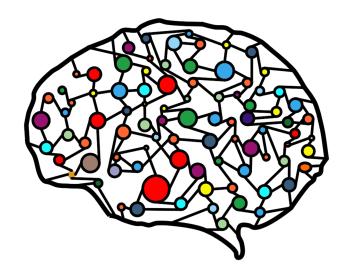
$$RMSE = \sqrt{\frac{1}{m_*} \sum_{j=1}^{m_*} (\Delta^{(j)})^2}$$

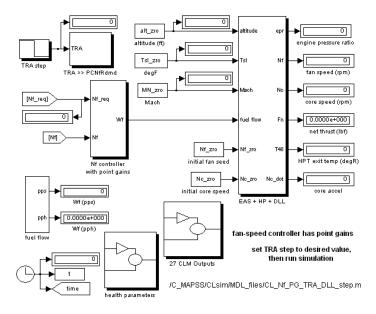
CNN: trained on units 16,18,20

Metric	Data-Driven	Hybrid	Rel. Delta
RMSE [-]	5.97 ± 0.37	4.22 ± 0.12	-29%
$s \times 10^{5}$ [-]	0.61 ± 0.03	0.43 ± 0.02	-29%
rel. Delta RMSE [%]	17%	2%	
Rel. Delta s [%]	8%	-2%	

→ ca. 50% reduction of training data size

→ performance level maintained

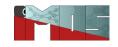


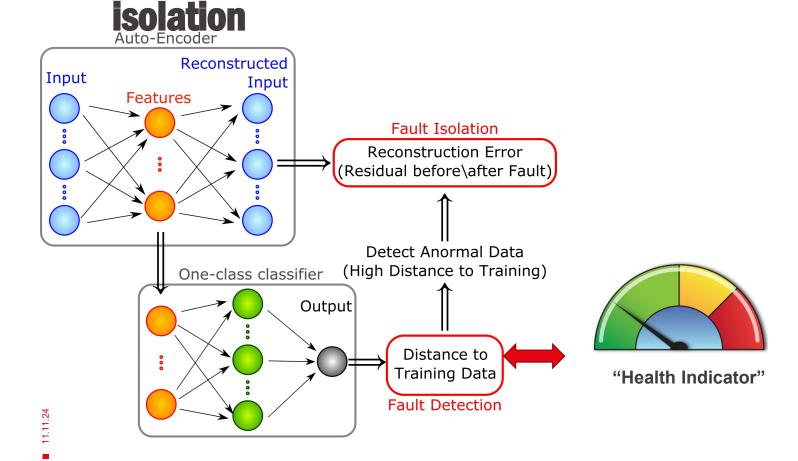


Hybrid Fault Detection and Diagnostics

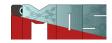
How to improve not only the performance but also the interpretability and generalizability?

Analysing the reconstruction residuals for fault

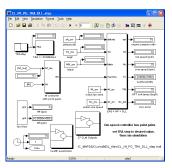


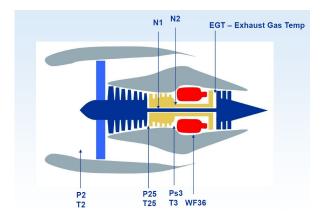


Test Case: Turbofan Engine

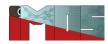


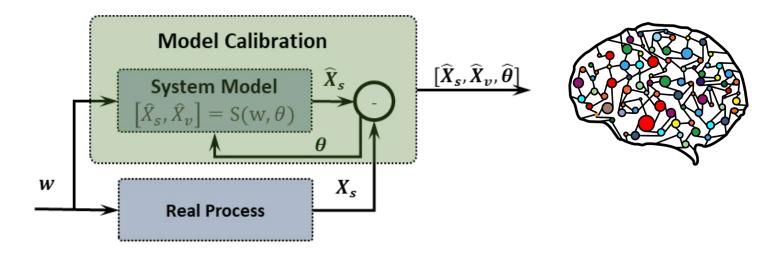
- Simulation of a realistic large commercial turbofan engine
- 24 flight cycles
- Each flight contains ca. 175 snapshots of recordings covering climb, cruise and descend conditions
- Real flight conditions from a commercial jet
- Fault: HPC Efficiency with different magnitudes



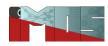


Calibration-based hybrid framework



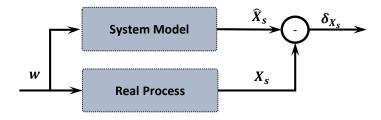


System Model - Degradation Features

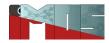


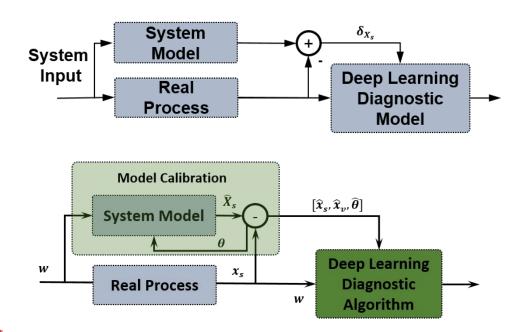
Degradation features provided by the system model:

- ightharpoonup Residual $\delta_{X_S} = \hat{X}_S X_S$
 - Direct computation



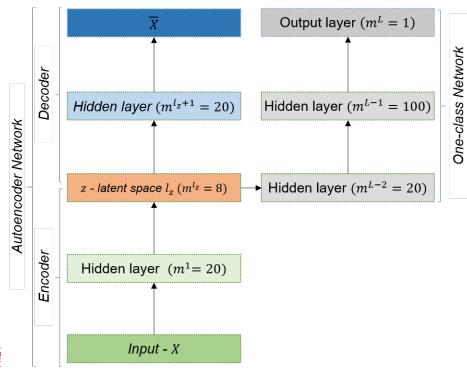
Two tested setups





57

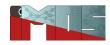
Applied network architecture

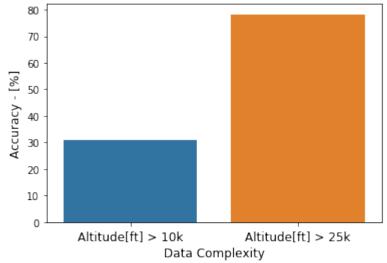


Detection Accuracy in [%]

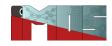
		AE	VAE	OC-SVM
Data-driven	$[W,X_S]$	24.5	12.9	10.0
Residual-based	$[W, X_S, \delta_{X_S}]$	98.7	99.3	79.5
Hybrid (calibration-based)	$[W,\widehat{X_S},\widehat{X_V},\widehat{ heta}]$	100.0	97.5	96.2

Influence of the data complexity (data-driven model)

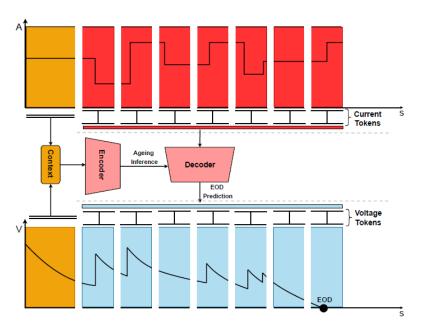




Fault isolation (with a high fault intesity)

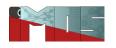


		AE
Data-driven	$[W,X_S]$	Physical core speed Static pressure at HPC outlet
Residual-based	$[W, X_S, \delta_{X_S}]$	Delta physical core speed Delta total temp. at HPC outlet Delta total temp. at LPC outlet Delta total temp. at HPT outlet Delta total temp. at LPT outlet
Hybrid (calibration-based)	$[W,\widehat{X_S},\widehat{X_V},\widehat{ heta}]$	HPC efficiency modifier

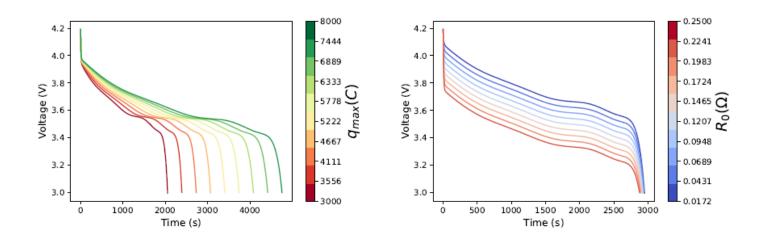


Ageing-aware Battery Discharge Prediction

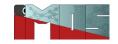
Degradation of Li-Ion batteries → importance of precise planning

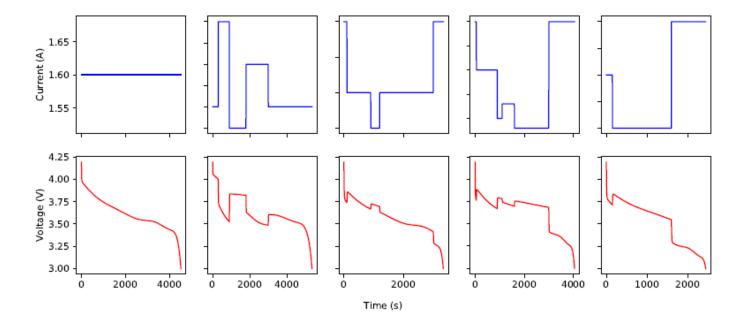


Effect of varying the degradation parameters on the voltage discharge curve of a Li-ion battery

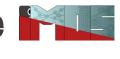


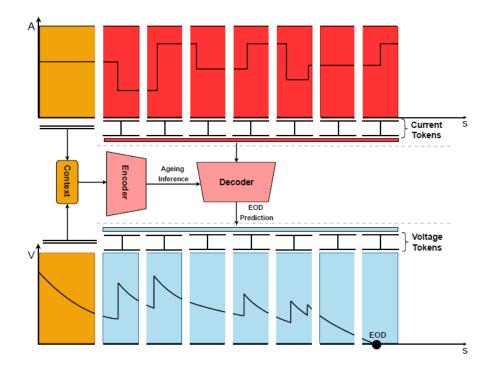
Discharge behaviors with respect to the different load profiles



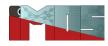


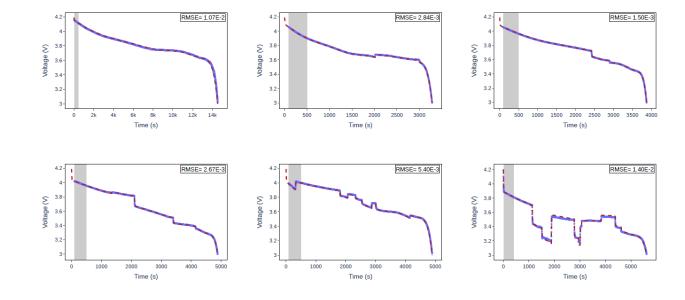
Transformer-based long-term battery discharge **prediction** → **Dynaformer**



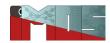


Selected results

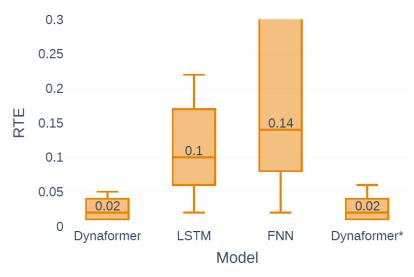


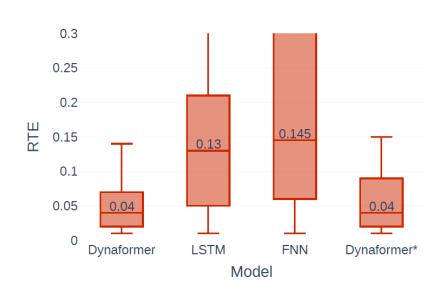


Performance without fine-tuning



Extrapolation

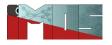


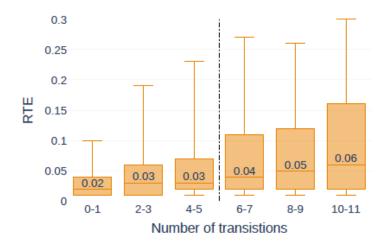


Dynaformer* → trained with variable current profiles

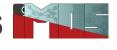
*RTE = relative temporal error

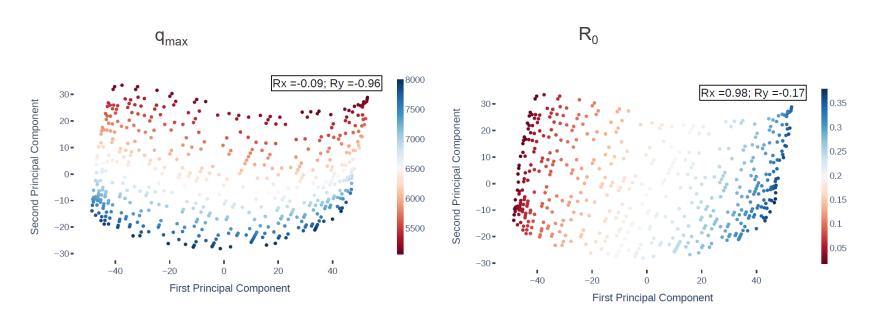
Performance dependent on the complexity of the the load profiles



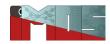


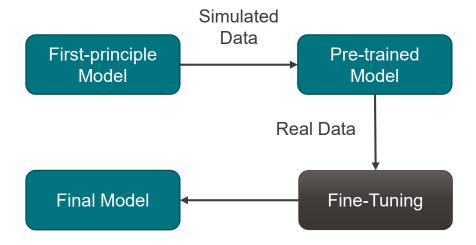
Implicit learning of the degradation parameters in the latent space



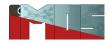


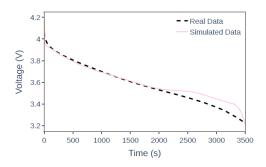
Transfer learning

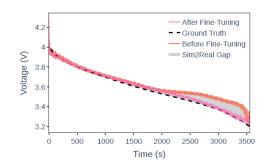


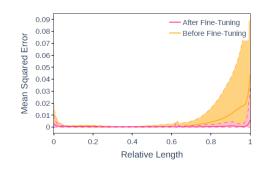


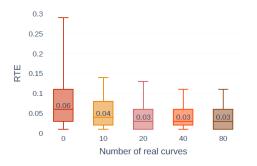
Fine-tuning on real data





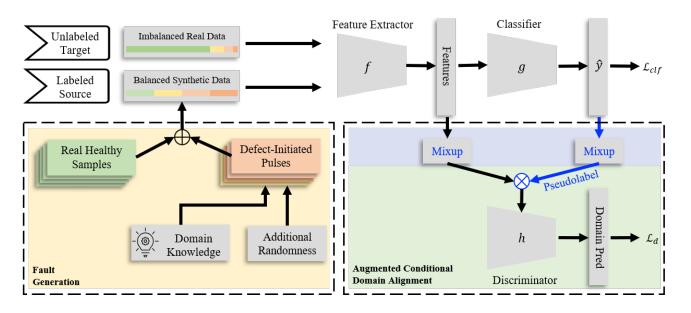






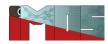
*RTE = relative temporal error

72



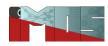
Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis

Real Case study: Bearings of Wind Turbines



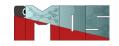
- Turbine Bearing Data
- Distinguish between 3 classes: healthy, inner race, outer race
- Without any faulty examples at training time

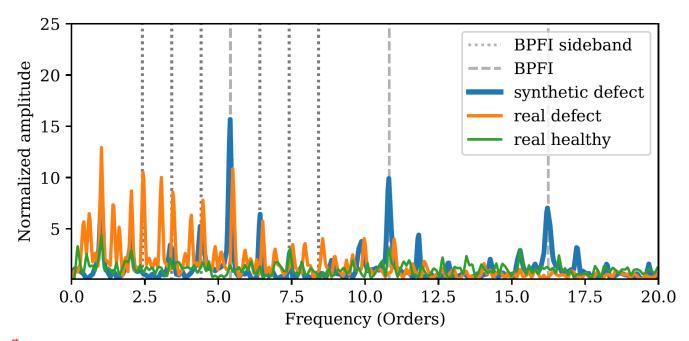
Problem setup



- Healthy data available
- No faulty data available at model development time
- Not just fault detection but also fault diagnostics required (distinguish) between the different fault types)
- Developed models need to be tested on real faulty data
- Faulty data imbalanced
- Imbalance level unknown

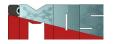
Normalized full-wave rectified envelope spectrum of an inner ring defect example with corresponding defect ball pass frequency

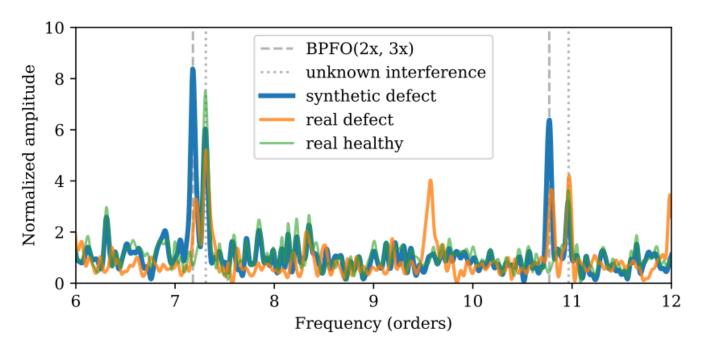




11.11.24

Normalized full-wave rectified envelope spectrum of an outer ring defect example with corresponding defect ball pass frequency

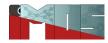




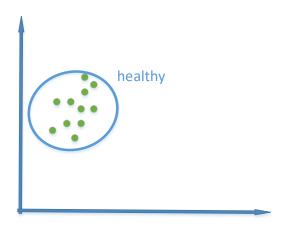
Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE Transactions on Instrumentation & Measurement

77

Synthetic2Real



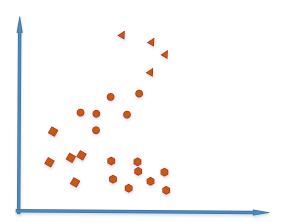
Source



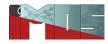
Source + synthetic faults



Target

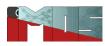


Challenges of DA for imbalanced datasets



Real Target Domain

Generating Synthetic Data from Healthy Samples



One life-time recording of a bearing

Early part can be safely regarded as healthy

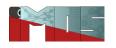
Take out this healthy part

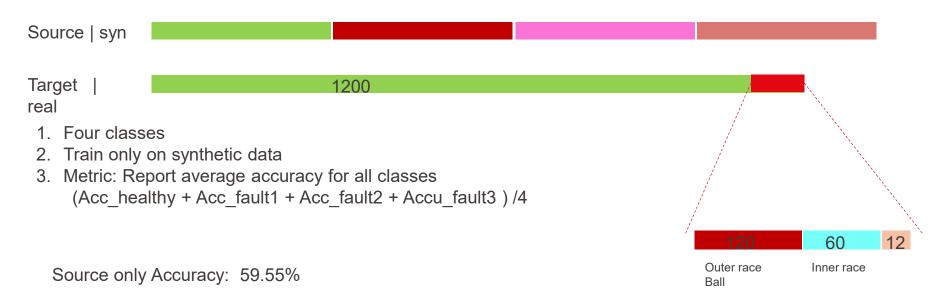
Superposition of healthy signals + defectinitiated pulse-train signal + randomness

Inject synthetic faults to the healthy samples. Based on domain expertise.

Combine them we get our synthetic data

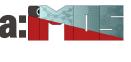
Naïve Synthetic2Real on imbalanced data: Toy example on CWRU





The synthetic data indeed contains information that helps the classification.

Adversarial Synthetic2Real on imbalanced data: **Toy example on CWRU**

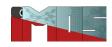




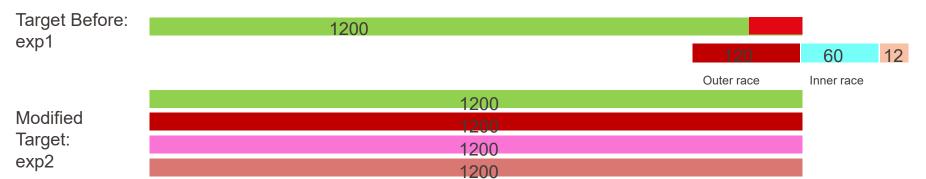
How about adversarial domain adaptation?

Method	Source-only	Adversarial
Accuracy	59.55%	72.57%

What is the issue? Imbalanced data in target.



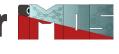
Quick verification: What if we make the number of samples equal for target?

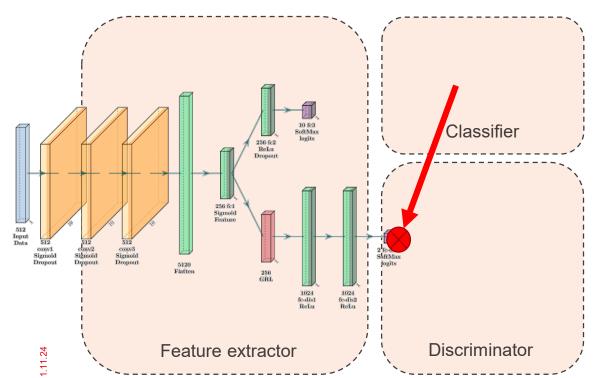


Method		Exp1 Adversarial- imbalanced	Exp2 Adversarial- Balanced
Accuracy	59.55%	72.63%	82.59%

A big improvement on performance! Simply by making it balanced! But in reality we don't know the ground truth.

Step 1: How to let the discriminator learn better for the rare faults.

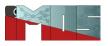




- Inspired by Conditional **GAN** and CDAN (conditional domain adaptation)
- Use pseudo label from the classifier and provide the class information to discriminator.

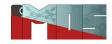
Wang, Q., C. Taal, O. Fink, Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis, IEEE Transactions on Instrumentation & Measurement

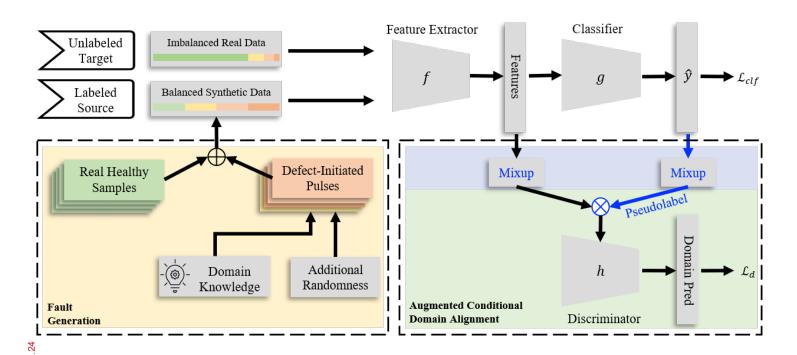
Step 2: Provide more support for the target conditioned distribution



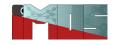
- Inspired by Mixup
- For features and pseudo-labels (in latent space not in input space)
- Performed separately for source and target
- This injects rare faults information to more samples in one batch

Proposed framework



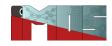


Ablation Study



Method	Accuracy
Source only	59.55%
DANN	72.57%
Conditioned	75.38%
Conditioned + Mixup	82.29%

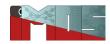
Different Imbalance Levels on CWRU



	20%	15%	10%	5%	1%
Baseline	59.55	59.55	59.55	59.55	59.55
DANN	82.04	79.77	78.30	74.96	71.05
Proposed	83.49	83.04	83.32	83.30	82.34

x%: For every 100 healthy samples, x samples for the rare fault class

Real Case study

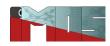


- Turbine Bearing Data from SKF
- 3 classes: Healthy, inner race, outer race
- Generated synthetic fault data from healthy
- There are much more outer race faults than inner race faults

Method	Accuracy
Source only	60.85
DANN	64.47
Conditional (proposed)	68.28
Conditional+mixup(proposed)	70.76

Graph Neural Networks

Graphs are everywhere

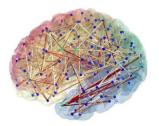


geographical network



social network

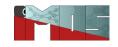
traffic network

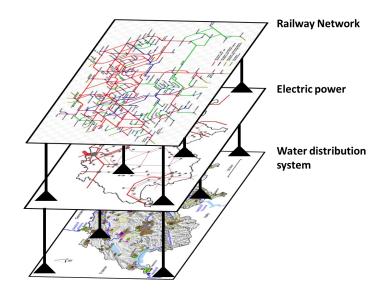


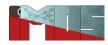
brain network

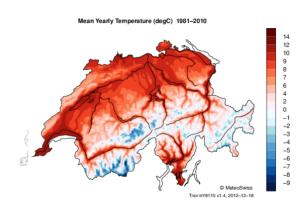
Graphs provide mathematical representation of networks

Infrastructure networks can be represented as graphs

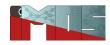




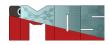


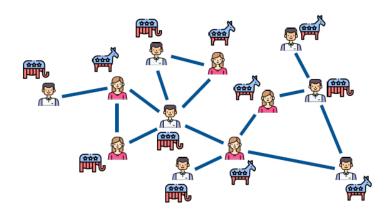


- nodes
 - geographical regions
- edges
 - geographical proximity between regions
- signal
 - temperature records in these regions

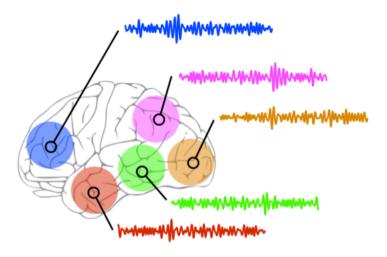


- nodes
 - road junctions
- edges
 - road connections
- signal
 - traffic congestion at junctions

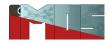


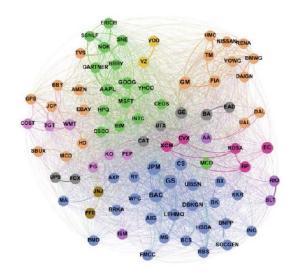


- nodes
 - individuals
- edges
 - friendship between individuals
- signal
 - political view

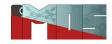


- nodes
 - brain regions
- edges
 - structural connectivity between brain regions
- signal
 - blood-oxygen-level-dependent (BOLD) time series



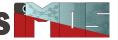


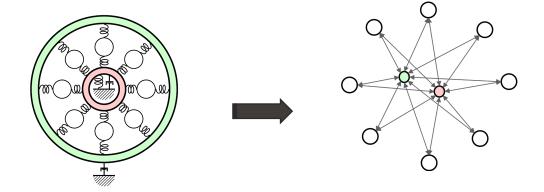
- nodes
 - companies
- edges
 - co-occurrence of companies in financial news
- signal
 - stock prices of these companies



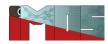
- Nodes: Sensors of a (bridge) sensor network)
- Edges: proximity of the sensors /similarity of the signals
- Signal: strain and / or accelerometer measurements

Bearing dynamics can be represented as graphs



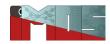


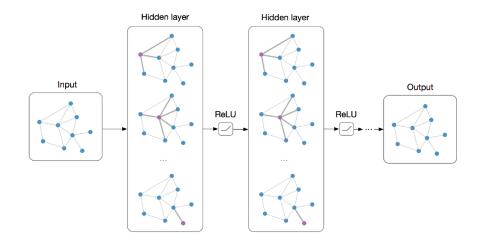
Task that can be solved with GNNs



- (supervised) graph level classification
- Node classification
- Link prediction

Graph Neural Networks

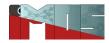




Main Idea: Pass massages between pairs of nodes and agglomerate

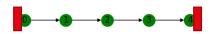
Alternative Interpretation: Pass massages between nodes to refine node (and possibly edge) representations

Introduction to message passing GNNs

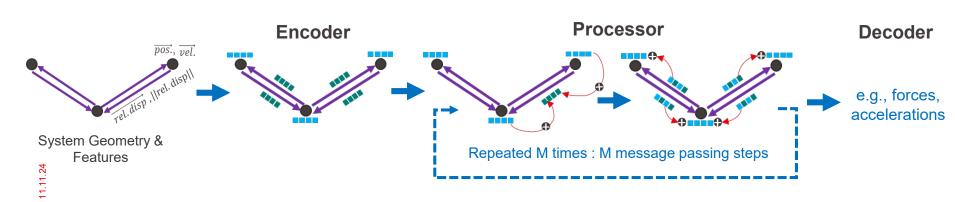


Example: Spring Mass Systems

- Each node represents the mass
- Each edge represents the spring

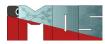


GNN: Message Passing on Graphs



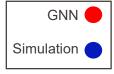
* Sanchez-Gonzalez et al. Learning to simulate complex physics with graph networks, ICML, 2020

Introduction to GNNs



Example: Spring Mass Systems learned dynamics by GNN

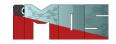
timestep = 25



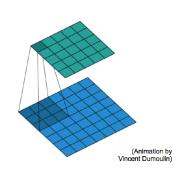
Train: 4, 5, 6, 7, 9, 10 masses

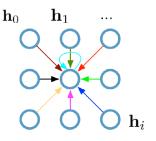
Test: 8 masses (out of training)

Recap: Convolutional Neural Networks (CNNs) on Grids



Single CNN layer with 3x3 filter:





Update for a single pixel:

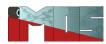
- Transform messages individually $\mathbf{W}_i\mathbf{h}_i$
- Add everything up $\sum_i \mathbf{W}_i \mathbf{h}_i$

 $\mathbf{h}_i \in \mathbb{R}^{F}$ are (hidden layer) activations of a pixel/node

Full update:

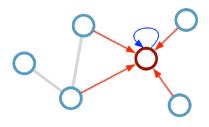
$$\mathbf{h}_{4}^{(l+1)} = \sigma \left(\mathbf{W}_{0}^{(l)} \mathbf{h}_{0}^{(l)} + \mathbf{W}_{1}^{(l)} \mathbf{h}_{1}^{(l)} + \dots + \mathbf{W}_{8}^{(l)} \mathbf{h}_{8}^{(l)} \right)$$

Graph Convolutional Networks (GCNs)



Consider this undirected graph:

Calculate update for node in red:



Update rule:

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$$

Scalability: subsample messages [Hamilton et al., NIPS 2017]

Desirable properties:

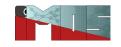
- Weight sharing over all locations
- Invariance to permutations
- Linear complexity O(E)
- Applicable both in transductive and inductive settings

 \mathcal{N}_i : neighbor indices

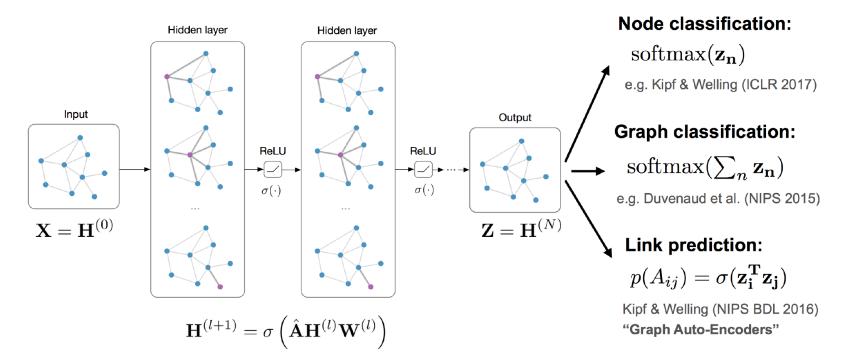
 c_{ij} : norm. constant (fixed/trainable)

Source: T. Kipf

Classification and **Link Prediction** with GNNs / GCNs

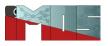


Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$



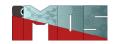
Example: Industrial IoT systems

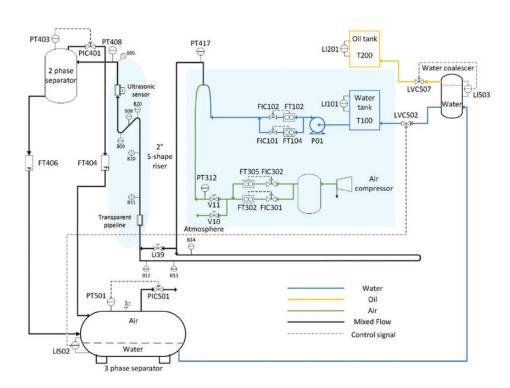
Changing / evolving relationships between time series



- Usually, graph topology between time series either given or derived once → static graph
- Changing environmental or operating conditions
- Impact of degradation
- Process optimization
- Maintenance
- ...

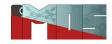
Anomaly detection in multi-flow facility

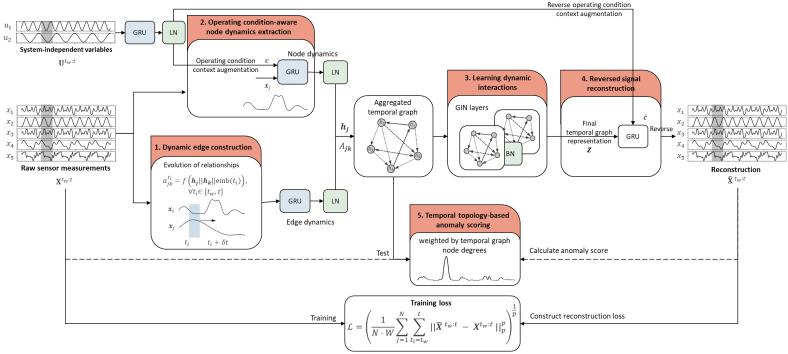




Source: Gedda, R., Beilina, L. and Tan, R., 2023. Change Point Detection for Process Data Analytics Applied to a Multiphase Flow Facility. *CMES-Computer Modeling in Engineering & Sciences*, 134(3).

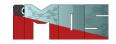
EPFL DyEdgeGAT: Dynamic Edge via Graph Attention for Early Fault Detection in IIoT Systems

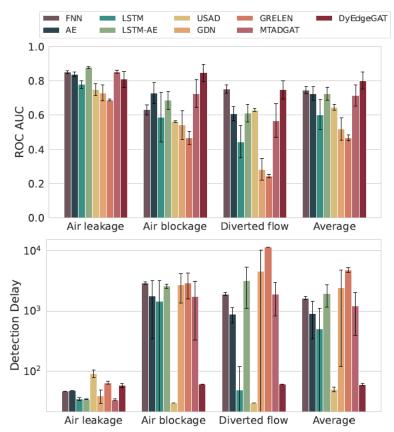




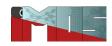
Zhao, M., & Fink, O. (2023), DvEdgeGAT: Dvnamic Edge via Graph Attention for Early Fault Detection in IIoT Systems, IEEE Internet of Things Journal

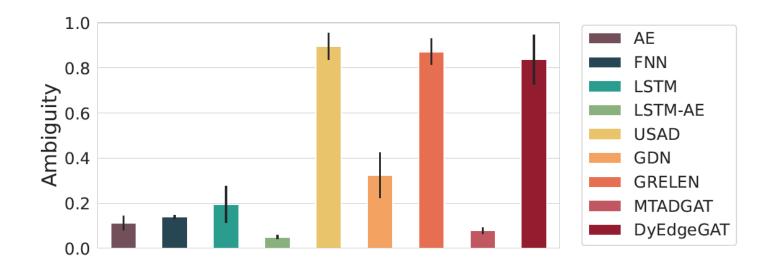
EPFL Dynamic Edge via Graph Attention (DyEdgeGAT)





Novel operating conditions



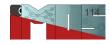


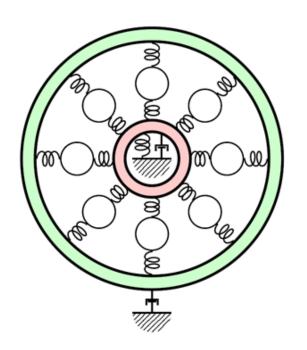
Ambiguity =
$$1 - 2 \cdot |AUC - 0.5|$$

Ambiguity quantifies the model's inability to differentiate between normal operations and novel conditions

Example: Modelling bearing as a graph

Bearing Dynamic Model

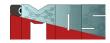


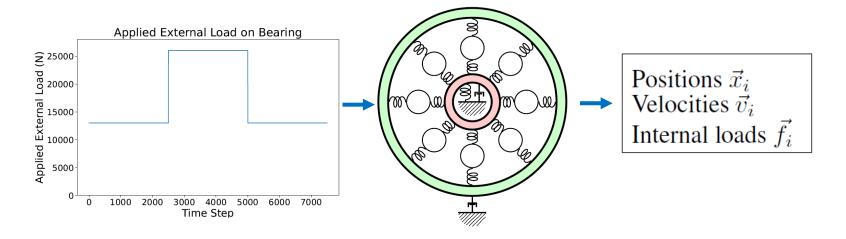


- 2D dynamic lumped bearing model, (based on P. K. Gupta, 1979)
- Differential equations of motion
- Lundberg & Palmgren model for Hertzian contact
- N209 CRB bearing (line contacts)
- Assumptions: rigid rings, zero-mass rolling elements

based on simple model but theory also applies to complex models!

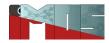
Bearing Dynamic Model: Training set

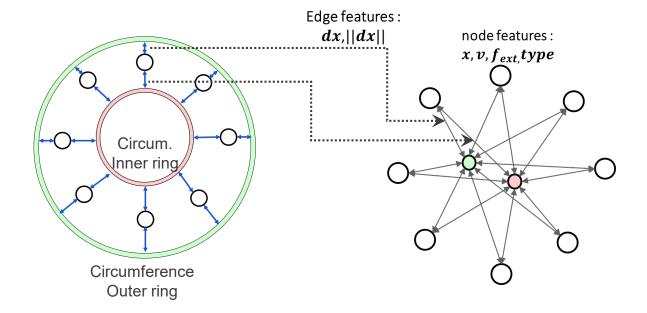




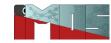
- Load changes to generate dynamic step responses
- [1-20] kN OR loads, [13, 14, 15, 16] rollers
- (Rotation is not included yet)

GNN Inputs and Outputs



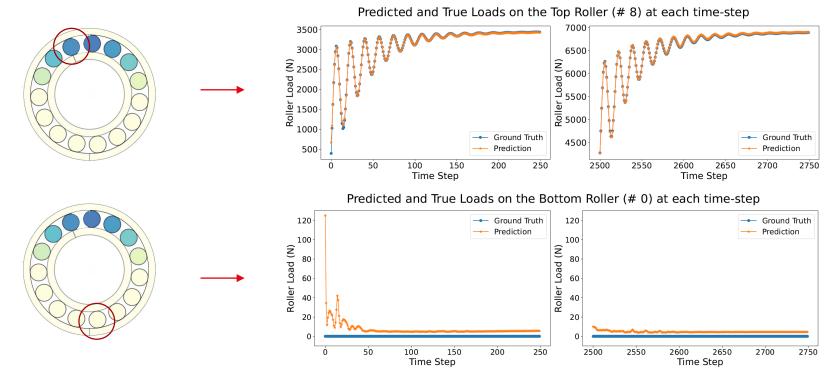


Results: Generalizability

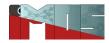


Training: SKF N209 CRB (13, 14, 16 rollers)

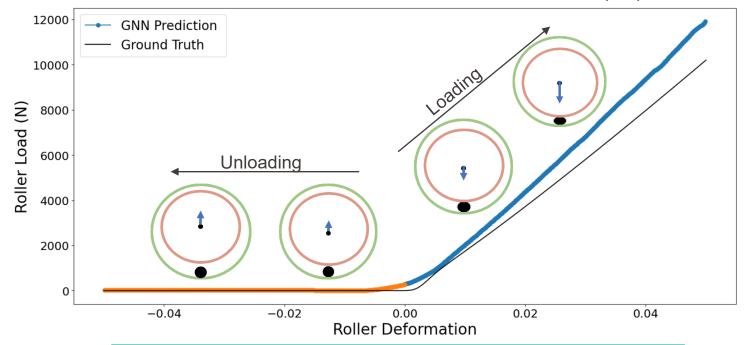
Testing: 15 Rollers, 13kN



Results: Interpretability



Predicted Load vs Roller Deformation for Bottom Roller (#0)



GNN can infer the unloading behavior without direct training. (Conventional Networks cannot infer this behavior)