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1. What is the nature of the problem?
 Is it a classification, regression, clustering, or recommendation problem?
 Are you dealing with supervised, unsupervised, or reinforcement learning?
2. What is the size and quality of the dataset?
 How many samples and features are available?
 Is the data clean, or does it contain a lot of noise and missing values?
 Is the data balanced, or are there significant class imbalances?
3. Is the training dataset representative of the expected operating / 

application conditions
 Is there a high diversity of operating conditions expected? 
4. What are the characteristics of the data?
 Is the data structured or unstructured (e.g., text, images, audio)?
 Are the features numerical, categorical, or a mix of both?
 Do the features have a temporal or spatial component?

Which questions to follow to select an ML model
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5. What are the performance requirements?
 Do you prioritize accuracy, interpretability, or computational efficiency?
 Is the problem domain one where explainability is crucial (e.g., healthcare, 

finance)?
 What are the acceptable trade-offs between bias and variance?
6. What is the computational complexity and resources available?
 How much time and computational power do you have for training?
 Do you have access to specialized hardware (e.g., GPUs)?
7. What are the specific goals and constraints?
 What is the end goal of applying the ML model (e.g., prediction, anomaly

detection, optimization)?
 Are there specific business or application constraints to consider (e.g., real-time 

processing, deployment environment)?
8. What is the level of domain knowledge available?
 How well do you understand the domain and the problem?
 Is there domain expertise to help with feature engineering and model 

interpretation?

Which questions to follow to select an ML model
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9. What is the expected model lifecycle?
 How often will the model need to be updated or retrained?
 Is the model expected to handle concept drift (changes in the underlying

data distribution over time)?
10. What is the potential for model interpretability?
 Do stakeholders need to understand how the model makes decisions?
 Is there a regulatory requirement for transparency?
11. What are the available benchmarks or baselines?
 Are there existing solutions or benchmarks that can provide a performance 

reference?
 How do different algorithms perform on similar problems in literature or 

industry standards?

Which questions to follow to select an ML model
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Data sharing/ 
Federated learning
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Different stakeholders in PHM 
04

.1
1.

24

Olga Fink 10

Stakeholders

Operators

Maintainers 
/ Service 
providers

OEMs

Component 
suppliers

Regulators

Platform / 
Solution 
providers



The biggest obstacle to using advanced
data analysis isn’t skill base or technology;
it’s plain old access to the data.

-Edd Wilder-James, Harvard Business Review

“
”

The importance of data for ML
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Source: Min Du, 2019



New forms of sharing and collaboration required
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Source: Chebel-Morello, Nicod, Varnier, 
2017



Data sharing

How could data be shared 
across stakeholders?
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Data sharing

Share the model instead of 
data across multiple 
stakeholders (also when the 
conditions are not the 
same)
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A new paradigm – Federated Learning
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a synchronous update scheme that proceeds in rounds of communication

McMahan, H. Brendan, Eider Moore, Daniel Ramage, and Seth Hampson. "Communication-efficient  
learning of deep networks from decentralized data." AISTATS, 2017.

Source: Min Du, 2019



 Federated learning is a machine learning setting where multiple 
entities (clients) collaborate in solving a machine learning problem, 
under the coordination of a central server or service provider. Each 
client's raw data is stored locally and not exchanged or transferred; 
instead, focused updates intended for immediate aggregation are used 
to achieve the learning objective.

Federated learning
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Source: Advances and Open Problems in Federated Learning 
https://arxiv.org/pdf/1912.04977.pdf



1. Data Privacy and Security
 Data Locality: Raw data remains on local devices (e.g., smartphones, edge devices, or distributed servers) instead of 

being sent to a central server, enhancing privacy and security.
 Secure Aggregation: Only model updates (e.g., gradients) are sent to a central server, and these updates can be 

further encrypted or anonymized, reducing the risk of exposing sensitive information.
 Privacy-Preserving Techniques: Techniques like differential privacy or homomorphic encryption are often integrated 

to ensure that individual data points cannot be inferred from the shared updates.
2. Decentralized Training
 Local Training: Each device trains a model locally on its own data, which means training occurs independently 

across a distributed network.
 Global Model Aggregation: After local training, model parameters are sent to a central server that aggregates these 

updates to form a new global model, which is then sent back to each local device to continue training.
3. Handling Data Heterogeneity
 Non-IID Data: In federated learning, data on different devices is often non-independent and identically distributed 

(non-IID), meaning data distributions may vary significantly between devices.
 Variable Data Quality and Quantity: Some devices may have abundant data, while others have minimal or noisy 

data, requiring federated learning algorithms to account for varying data quality and volume.
4. Communication Efficiency
 Minimizing Data Transfer: To limit network usage, federated learning focuses on minimizing the frequency and size 

of data transferred between the server and devices.
 Compression Techniques: Methods like quantization, sparsification, and pruning are used to reduce the size of 

model updates, which is essential for devices with limited bandwidth.

Federated learning characteristics (1/2)
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5. Device Heterogeneity and Scalability
 Diverse Device Capabilities: Federated learning systems are designed to 

work across a wide variety of devices, from smartphones to IoT devices, 
each with different computational capabilities, network stability, and battery 
life.
 Scalability: Federated learning is scalable, as it can handle thousands or 

even millions of devices simultaneously, with participants joining or leaving 
the training process dynamically.

6. Model Personalization
 Personalized Models: Federated learning allows each device to maintain 

its own personalized version of the model, especially if local data 
significantly deviates from the global model’s training data. This feature can 
improve the model’s performance on individual devices.

7. Fault Tolerance
 Robust to Device Failures: Federated learning systems can continue 

training even if some devices drop out or are temporarily unavailable, 
making them resilient to intermittent connectivity and device churn.

Federated learning characteristics (2/2)
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Federated Learning vs. Peer-to-peer learning
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Source: Advances and Open Problems in Federated Learning 
https://arxiv.org/pdf/1912.04977.pdf
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Source: Min Du, 2019
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Source: Min Du, 2019
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Federated learning – detail
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● Recall in traditional deep learning model training

○ For a training dataset containing 𝑛𝑛 samples (𝑥𝑥i, 𝑦𝑦i), 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, the training  
objective is:

𝑓𝑓 𝑤𝑤 = 𝑙𝑙(𝑥𝑥i, 𝑦𝑦i,w) is the loss of the predictionon example 𝑥𝑥i, 𝑦𝑦i

○ Deep learning optimization relies on SGD and its variants, through mini-batches

Source: Min Du, 2019



Federated learning – detail
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● In federated learning

○ Suppose 𝑛𝑛 training samples are distributed to 𝐾𝐾 clients, where 𝑃𝑃k is the set of  
indices of data points on client 𝑘𝑘, and 𝑛𝑛k = 𝑃𝑃k

○ For training objective:

Source: Min Du, 2019



A baseline – FederatedSGD (FedSGD)
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● A randomly selected client that has 𝑛𝑛k training data samples in federated  
learning ≈ A randomly selected sample in traditional deep learning

● Federated SGD (FedSGD): a single step of gradient descent is done per  
round

● Recall in federated learning, a C-fraction of clients are selected at each  
round.

○ C=1: full-batch (non-stochastic) gradient descent

○ C<1: stochastic gradient descent (SGD)

Source: Min Du, 2019



FederatedSGD (FedSGD) / 
FederatedAveraging (FedAvg)
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Learning rate: 𝜂𝜂; total #samples: 𝑛𝑛; total #clients: 𝐾𝐾; #samples on a client k: 𝑛𝑛k;  
clients fraction 𝐶𝐶 = 1

● In a round t:

○ The central server broadcasts current model 𝑤𝑤I to each client; each client k computes  
gradient: 𝑔𝑔k= ∇𝐹𝐹k(𝑤𝑤t), on its local data.

■ Approach 1: Each client k submits 𝑔𝑔k; the central server aggregates the gradients to generate a  
new model:

■ Approach 2: Each client k computes:                              ; the central server performs
aggregation:

● For multiple times ⟹ FederatedAveraging (FedAvg)

●

Source: Min Du, 2019



1. FederatedSGD (FedSGD)
 Process: In FedSGD, each device performs a single step of stochastic gradient descent (SGD) on its local data and 

then sends the computed gradients (i.e., updates) to the central server. The server then aggregates these gradients 
from all devices and applies them to the global model.

 Communication: FedSGD involves frequent communication between the devices and the server, as each gradient 
update requires synchronization with the server.

 Advantages: FedSGD ensures that each update to the global model reflects the most recent local gradient 
information from each device. This can sometimes lead to faster convergence if the communication overhead is 
manageable.

 Drawbacks: The high frequency of communication in FedSGD is a major drawback, especially in federated learning 
scenarios where devices might have limited bandwidth. Frequent communication also consumes more energy on 
devices, which is a concern for battery-powered devices like mobile phones.

2. FederatedAveraging (FedAvg)
 Process: In FedAvg, each device performs multiple local updates (i.e., several steps of SGD) on its local data before 

sending the updated model parameters to the central server. The server then averages the model parameters from all 
participating devices to update the global model.

 Communication: By performing multiple local updates before communicating, FedAvg significantly reduces the 
frequency of communication between devices and the server.

 Advantages: FedAvg is much more communication-efficient than FedSGD since each device communicates with the 
server only after several local updates. This makes it more suitable for federated learning, where communication 
costs are high. Additionally, local updates often lead to faster convergence in practical applications, as they allow 
each device to adapt the model more effectively to its own data before syncing.

 Drawbacks: FedAvg might converge more slowly or be less stable in scenarios where data on each device is highly 
heterogeneous (non-IID). In such cases, performing multiple local updates can lead to models that diverge from each 
other, making aggregation less effective.

FedSGD vs FedAvg
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CIFAR-10 Convolutional model
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McMahan, H. Brendan, Eider Moore, Daniel Ramage, and Seth Hampson. "Communication-efficient  learning of deep networks from decentralized data." AISTATS, 2017.



Example
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 Data heterogeneity in industrial settings:
1. Domain shift: Clients do not share a similar data distribution.
2. Label heterogeneity: Clients’ datasets have a different number and 

types of faults.

Federated learning: limitations
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 Distance awareness: the model’s ability to quantify the distance of a 
testing example from the training data.

 For personalized federated learning, during model aggregation  a 
local client would assign higher weights to the model that was trained 
using similar training data.

 Spectral-normalized Neural Gaussian Process (SNGP) used to quantify 
the prediction uncertainty

Federated learning adapted to the specificities
of the unit
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Federated Learning with Uncertainty-Based 
Client Clustering for Fleet-Wide Fault Diagnosis
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Lu, H., Thelen, A., Fink, O., Hu, C., & Laflamme, S. (2024). Federated Learning with Uncertainty-Based Client Clustering for Fleet-Wide 
Fault Diagnosis, Mechanical Systems and Signal Processing, 210, p.111068.



Results on FedSNGP
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Lu, H., Thelen, A., Fink, O., Hu, C., & Laflamme, S. (2024). Federated Learning with Uncertainty-Based Client Clustering for Fleet-Wide 
Fault Diagnosis, Mechanical Systems and Signal Processing, 210, p.111068.



Explainability / 
Interpretability
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Most of the time, the algorihtms work really well
but sometimes…
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A refrigerator filled with lots of
food and drinks



Tesla Autopilot Misidentified On-Road Horse-
Drawn Carriage

Source: https://incidentdatabase.ai/cite/398/04
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Bias in algorithms

https://medium.com/@Joy.Buolamwini/response-
racial-and-gender-bias-in-amazon-rekognition-
commercial-ai-system-for-analyzing-faces-
a289222eeced

https://www.infoq.com/presentations/unconscious-
bias-machine-learning/

Source: Byron Wallace04
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https://medium.com/%40Joy.Buolamwini/response-
http://www.infoq.com/presentations/unconscious-


Adversarial Examples

Source: Byron Wallace04
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 Interpretability (Explainability, Transparency, Understanding, Trust)
 Physical consistency
 Complex and uncertain data
 Limited labels
 Bias
 (Computational demand)

Current limitations of the ML algorithms
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 Ability to explain or to present a model in understandable
terms to humans (Doshi-Velez 2017)

What is interpretability?
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Why explainable AI?
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Source: WWW 2020 Tutorial



Simple explainability

● In pre-deep learning models, some models are considered
“interpretable”

Source: Byron Wallace04
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Accuracy vs. Explainability
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Source: WWW 2020 Tutorial



 Build interpretability into the model (e.g. by fusing physical models and 
machine learning or learning the underlying physics explicitly)
 Post-hoc approach to interpretability  trying to explain given models 

and their output

Different ways to achieve interpretability
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 Faithfulness - how to provide explanations that accurately represent the 
true reasoning behind the model’s final decision.

 Plausibility – Is the explanation correct or something we can believe is 
true, given our current knowledge of the problem ?

 Understandable – Can I put it in terms that end user without in-depth 
knowledge of the system can understand ?

 Stability – Do similar instances have similar interpretations ?

Some properties of Interpretations

Source: Byron Wallace04
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 Application level evaluation – Put the model in practice and have the 
end users interact with explanations to see if they are useful .

 Human evaluation – Set up a Mechanical Turk task and ask non-
experts to judge the explanations

 Functional evaluation – Design metrics that directly test properties of 
your explanation.

Evaluating Interpretability
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[Doshi-Velez 2017]



 Do we explain individual 
prediction ?

 Example :

 Heatmaps
 Rationales

 Do we explain entire model?

 Example :

 Linear Regression
 Decision Trees

Global vs Local

Source: Byron Wallace04
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 Is the explainability built into the 
model ?

 Examples:

 Linear Regression
 Decision Trees

 Is the model black-box and we 
use external method to try to 
understand it ?

 Examples:

 Heatmaps (Some forms) 

Inherent vs Post-hoc
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Source: Byron Wallace



 Can it explain only few classes 
of models?

 Examples:

 Decision Trees
 Attention
 Gradients (Differentiable

Models only)

 Can it explain any model ?

 Examples:

 LIME – Locally Interpretable
Model Agnostic Explanations
 SHAP – Shapley Values

Model based vs Model Agnostic

Source: Byron Wallace04
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 Explaining with Surrogates 
 Explaining with local perturbations 
 Propagation-Based Approaches (Leveraging Structure) 
 Meta-explanations
 Attribution-based methods
 Counterfactual explanation
 Interaction explanations
 Attention Mechanisms
 …

Different approaches to explain the behavior of 
ML approaches post-hoc
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Feature Importance and Attribution Methods
 These methods identify the most influential features or components in making a prediction.
 SHAP (SHapley Additive exPlanations): Based on cooperative game theory, SHAP assigns each feature a "Shapley value" that 

indicates its contribution to a particular prediction. SHAP values provide consistent and fair attribution by treating each feature as a 
"player" in a game.

 LIME (Local Interpretable Model-agnostic Explanations): LIME approximates complex models by locally fitting an interpretable 
model (like linear regression) around a specific instance. It perturbs input features to see how predictions change, helping identify 
which features influence the prediction.

 Integrated Gradients: A technique for neural networks that calculates feature importance by integrating the gradients of a model's 
output with respect to its inputs, starting from a baseline (e.g., zero). Integrated gradients quantify each input's contribution to a 
model’s prediction.

 Permutation Feature Importance: Measures feature importance by shuffling each feature in turn and observing the impact on 
model accuracy. If a feature’s importance is high, shuffling its values will significantly degrade model performance.

Visualization Techniques
 Visualization is key to making model insights understandable for humans, especially in image and text processing.
 Saliency Maps: Often used in image processing, saliency maps highlight the parts of an image that have the most influence on a 

model’s prediction. This can help in understanding what parts of an image a convolutional neural network (CNN) is focusing on.
 Partial Dependence Plots (PDP): Show the relationship between one or two features and the predicted outcome, averaging out 

the effect of other features. PDPs help understand how the model’s predictions change as the value of a feature changes.
 Layer-wise Relevance Propagation (LRP): Assigns relevance scores to each neuron in the network, which can be aggregated to 

show which pixels or words are most influential in a decision. This technique is especially useful for deep neural networks.
 t-SNE and UMAP: Dimensionality reduction techniques that help visualize high-dimensional data in two or three dimensions, 

making it easier to observe clusters or patterns in the data that the model may have learned.

Explainable AI (1/2)
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Surrogate Models
 Surrogate Models: These are simpler, interpretable models (like linear or decision tree models) trained to approximate a complex model’s 

predictions. Surrogate models can provide a global understanding of a complex model’s behavior by approximating its decision boundaries.

Counterfactual Explanations
 Counterfactual explanations help answer "what if" questions by indicating how a model’s prediction would change if the input features were 

altered. For example, in loan applications, a counterfactual explanation might state, "If the applicant’s income were $5,000 higher, the loan 
would be approved." This type of explanation is valuable for understanding decision boundaries and fairness.

Causal Inference and Causal Models
 Causal inference goes beyond correlation by trying to understand causal relationships between variables. Causal models can help identify 

which factors genuinely influence predictions rather than merely correlate with the outcome. These methods are particularly important in 
applications where knowing causality is crucial, such as medicine or social sciences.

Rule-Based Explanations and Decision Rules
 Some models, such as decision trees and rule-based models, are naturally interpretable. These models use a series of if-then rules that are 

easy for humans to follow. For more complex models, rule extraction techniques can derive decision rules that approximate the model’s decision 
process, making it more interpretable.

Prototype and Example-Based Explanations
 Prototypes: These are representative examples from the training set that encapsulate common patterns or features. Showing a prototype can 

help users understand typical cases within a class.

 Influence Functions: These methods determine which training examples are most responsible for a specific prediction. They help identify 
cases in the training data that the model relied on heavily, which can be especially useful for diagnosing model biases.

Bayesian and Probabilistic Approaches
 Probabilistic models, such as Bayesian networks, can inherently quantify uncertainty in their predictions. By providing a probabilistic 

interpretation of model decisions, these methods allow users to understand the confidence level associated with each prediction, helping to 
address questions of model reliability.

Explainable AI (2/2)
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Perturbation-based approaches
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Source: KDD 2019 Tutorial 



 Attribute a model’s prediction on an input to features of the input
 Attribiution methods

• Ablations (drop each feature and attribute the change in prediction to that
feature)

• Gradient-based methods (attribution to a feautre is feature value times
gradient)

• Score backpropation based methods

Attribution-based methods
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Saliency Based Methods

 Heatmap based visualization
 Need differentiable model in most cases
 Normally involve gradient

Model (dog)

Explanation Method

Model

Source: Byron Wallace04
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[Adebayo et al 2018]

Saliency Based Methods
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Saliency Example - Gradients

𝐸𝐸 𝑓𝑓 𝑥𝑥 =
𝑑𝑑𝑓𝑓(𝑥𝑥)

𝑑𝑑𝑥𝑥

𝑓𝑓(𝑥𝑥): 𝑅𝑅𝑑𝑑 → 𝑅𝑅

Source: Byron Wallace04
.1

1.
24

Olga Fink 57



Saliency Example – Leave-one-out

𝑓𝑓 𝑥𝑥 : 𝑅𝑅𝑑𝑑 → 𝑅𝑅

𝐸𝐸(𝑓𝑓)(𝑥𝑥)𝑖𝑖 = 𝑓𝑓 𝑥𝑥 − 𝑓𝑓(𝑥𝑥\i)

How to remove ?

1. Zero out pixels in image
2. Remove word from the text
3. Replace the value with population mean in tabular data

Source: Byron Wallace04
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Sanity check: When predictions change, do the
explanations change?

Source: Julius Adebayo04
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Class Activation Mapping
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 GAP: Global average pooling
 We can identify the importance 

of the image regions by 
projecting back the weights of 
the output layer on the 
convolutional feature maps 
obtained from the last 
Convolution Layer. 

Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



Class Activation Mapping: examples
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Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



Class Activation Mapping
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Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



Local Interpretable Model-Agnostic
Explanations (LIME): basic idea
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



LIME – locally interpretable model agnostic

Black
Box

(e.g. Neural Network)

𝑥𝑥1, 𝑥𝑥2, ⋯ , 𝑥𝑥𝑁𝑁 𝑦𝑦1, 𝑦𝑦2, ⋯ , 𝑦𝑦𝑁𝑁

𝑥𝑥1, 𝑥𝑥2, ⋯ , 𝑥𝑥𝑁𝑁

as close as
possible⋯ ⋯

Linear
Model

Can’t do it globally of course, but locally ? Main Idea behind LIME
Source: Hung-Yi Lee
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LIME: Toy example of the basic concept
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



LIME: divide images into interpretable compo-
nents (contiguous superpixels)
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



LIME － Image

1. Given a data point you want to explain
2. Sample at the nearby - Each image is represented as a set of

superpixels (segments).

 Randomly delete some
 segments.

0.85 0.52 0.01
Compute the probability of “frog” by 
black box

Black Black Black

Source: Hung-Yi Lee
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LIME － Image

● 3. Fit with linear (or interpretable) model

0.85 0.010.52

Linear Linear Linear

Extract Extract Extract

𝑀𝑀 is the number of segments.

Segment m is deleted.
Segment m exists.

𝑥𝑥1 𝑥𝑥𝑀𝑀𝑥𝑥𝑚𝑚⋯ ⋯ ⋯ ⋯

Source: Hung-Yi Lee
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LIME － Image

0.85

Linear

Extract

● 4. Interpret the model you learned

𝑦𝑦 = 𝑤𝑤1𝑥𝑥1 + ⋯ + 𝑤𝑤𝑚𝑚𝑥𝑥𝑚𝑚 + ⋯ + 𝑤𝑤𝑀𝑀𝑥𝑥𝑀𝑀

𝑀𝑀 is the number of segments.

Segment m is deleted. 
Segment m exists.

If 𝑤𝑤𝑚𝑚 ≈ 0

If 𝑤𝑤𝑚𝑚 is positive

If 𝑤𝑤𝑚𝑚 is negative

segment m is not related to “frog”

segment m indicates the image is “frog”

segment m indicates the image is not “frog”
Source: Hung-Yi Lee
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LIME: underlying algorithm
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



LIME: Example
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



LIME: bringing trust («Husky vs Wolf)
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



SHAP (Shapley values Additive exPlanations) – additive 
feature attribution method to explain the output of any 
ML model
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Olga FinkLundberg, S., & Lee, S. I. (2017). A unified approach to interpreting model predictions.



SHAP (Shapley values Additive exPlanations) – additive 
feature attribution method to explain the output of any 
ML model
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Lundberg, S., & Lee, S. I. (2017). A unified approach to interpreting model predictions.

The Shapley value is a mathematical concept in 
game theory that was introduced by Lloyd 
Shapley in 1951.



Shapley values
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where S feature subset, F – set of all  features,  all possible subsets

Lundberg, S., & Lee, S. I. (2017). A unified approach to interpreting model predictions.

predictions from the two models are then compared

is trained with that feature present and         with that feature withheld



Individual SHAP value plot
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Lundberg, S., & Lee, S. I. (2017). A unified approach to interpreting model predictions.



SHAP variables importance plot
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Lundberg, S., & Lee, S. I. (2017). A unified approach to interpreting model predictions.



Drivers of the semiconductor production quality
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Senoner, J., Netland, T., & Feuerriegel, S. (2022). Using explainable artificial intelligence to improve process quality: Evidence from semiconductor 
manufacturing. Management Science, 68(8), 5704-5723.



Concept bottleneck models
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Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., & Liang, P. (2020, November). Concept bottleneck models. 
In International conference on machine learning (pp. 5338-5348). PMLR.



Example:
Detecting defective
insulators
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 XAI on Power Grid Insulators:
• Fault detection binary classifier
• When faulty, apply XAI to show which part of the image led to the decision,
 highlighting the defect region

Detecting defective insulators

Olga Fink

Healthy

Faulty

Fault localization

CNN

Interpretability
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Evaluation of the prediction results

Olga Fink

Test Accuracy = 96.4% 
FPR = 3.6 % 
FNR= 3.8 %

Test Samples Examples 
(defective0; Normal1)
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Example:

Integrated concept 
embeddings
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Concept embeddings Turbofan engines

Olga Fink 84
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Forest. F., K. Rombach & O. Fink: Interpretable Prognostics with Concept Bottleneck Models, under review



RUL prediction performance
RMSE and NASA
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Method RMSE NASA score

CNN 6.79 0.851

CEM 6.15 0.752

Forest. F., K. Rombach & O. Fink: Interpretable Prognostics with Concept Bottleneck Models, under review



Latent space visualisation
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Concept intervention strategy
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Concept interventions
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RUL prediction performance
RMSE and NASA
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Method RMSE NASA score

CNN 6.79 0.851

CEM 6.15 0.752

Forest. F., K. Rombach & O. Fink: Interpretable Prognostics with Concept Bottleneck Models, under review

Method RMSE NASA score

CNN 6.79 0.851

CEM 6.15 0.752

CEM after intervention 5.96 0.692



Example:

Using explanations for 
labeling

04
.1

1.
24

Olga Fink 90



Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task:

Neural Network 0
1

damage-free

crack
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Machine learning for image-based crack detection

Forest, F., Porta, H., Tuia, D., & Fink, O. (2023). From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring. Preprint



Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task:

Neural Network 0
1

damage-free

crack

Severity quantification and monitoring is crucial for
timely decision-making.
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Machine learning for image-based crack detection

Forest, F., Porta, H., Tuia, D., & Fink, O. (2023). From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring. Preprint



Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task:

Neural Network 0
1

damage-free

crack

Severity quantification and monitoring is crucial for
timely decision-making.

What we need:
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Machine learning for image-based crack detection

Forest, F., Porta, H., Tuia, D., & Fink, O. (2023). From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring. Preprint



Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task:

Neural Network 0
1

damage-free

crack

Severity quantification and monitoring is crucial for
timely decision-making.

What we need: → Severity metrics
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Machine learning for image-based crack detection

Forest, F., Porta, H., Tuia, D., & Fink, O. (2023). From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring. Preprint



Machine learning for image-based crack detection
Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task:

Neural Network 0
1

damage-free

crack

▶ Does not allow severity quantification

▶ Fast and easy image-level annotation (1 bit)

Severity quantification and monitoring is crucial for
timely decision-making.

What we need: → Severity metrics
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Forest, F., Porta, H., Tuia, D., & Fink, O. (2023). From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring. Preprint



Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task: Semantic segmentation task:

Neural Network 0
1

damage-free

crack

▶ Does not allow severity quantification

▶ Fast and easy image-level annotation (1 bit)

Neural Network

▶ Allows severity quantification and monitoring
▶ Tedious and costly pixel-level annotation

(256×256 → 216 = 64 Kb)
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Machine learning for image-based crack detection

Forest, F., Porta, H., Tuia, D., & Fink, O. (2023). From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring. Preprint



Methodology

Proposed methodology:

1. Data collection and labeling (image-level)

Classifier

1 0

2. Classification algorithm training

damage-free

0
1

crack
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Forest, F., Porta, H., Tuia, D., & Fink, O. (2023). From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring. Preprint



Methodology

3. Extraction of attribution maps with an XAI method

Classifier XAI

Proposed methodology:

1. Data collection and labeling (image-level)

Classifier

1 0

2. Classification algorithm training

damage-free

0
1

crack
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Forest, F., Porta, H., Tuia, D., & Fink, O. (2023). From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring. Preprint



Methodology

3. Extraction of attribution maps with an XAI method

Classifier XAI

4. Post-processing of attribution maps

(a) Binarization (b) Morphological
operations

Proposed methodology:

1. Data collection and labeling (image-level)

Classifier 0
1

1 0

2. Classification algorithm training

damage-free

crack
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Forest, F., Porta, H., Tuia, D., & Fink, O. (2023). From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring. Preprint



Methodology

3. Extraction of attribution maps with an XAI method

Classifier XAI

4. Post-processing of attribution maps

(a) Binarization (b) Morphological
operations

Proposed methodology:

1. Data collection and labeling (image-level)

Classifier 0
1

1 0

2. Classification algorithm training

damage-free

crack

5. Crack severity quantification from binary masks

Severity metrics
(width, area, etc.)
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Forest, F., Porta, H., Tuia, D., & Fink, O. (2023). From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring. Preprint



Visualization after binarization
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Automated explanation 
assessments
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Processing explanations
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation



How can explanations be used?
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation



Model improvement
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation



Informed decision making
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation



Proposed method for automating the evaluation
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation



Proposed method: detecting unusual explanations
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation

Proposed method: detecting unusual explanations
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation

Proposed method: detecting unusual explanations



Case study: infrastructure monitoring
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation



Application of the methodology
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation



Application of the methodology
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation



Examples
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation



Coherent vs. Non-coherent explanations
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation



Examples
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation



Summary
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics of Power Grid Components, in preparation



Example:
Detection of Partial 
Discharge in Power Lines 
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Interpretable Detection of Partial Discharge in Power 
Lines with Deep Learning  Framework
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Michau, Gabriel, Chi-Ching Hsu, and Olga Fink. "Interpretable Detection of Partial Discharge in Power Lines with Deep Learning." Sensors 21.6 (2021): 2154.



Pulse activations
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Michau, Gabriel, Chi-Ching Hsu, and Olga Fink. "Interpretable Detection of Partial Discharge in Power Lines with Deep Learning." Sensors 21.6 (2021): 2154.



Pulse Activation Maps (PAM)
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Michau, Gabriel, Chi-Ching Hsu, and Olga Fink. "Interpretable Detection of Partial Discharge in Power Lines with Deep Learning." Sensors 21.6 (2021): 2154.
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