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Which questions to follow to select an ML model §

1. What is the nature of the problem?
= |s it a classification, regression, clustering, or recommendation problem?

= Are you dealing with supervised, unsupervised, or reinforcement learning?
2. What is the size and quality of the dataset?

= How many samples and features are available?
= |s the data clean, or does it contain a lot of noise and missing values?

= |s the data balanced, or are there significant class imbalances?
3. Is the training dataset representative of the expected operating /
application conditions

= |s there a high diversity of operating conditions expected?
4. What are the characteristics of the data?

= |s the data structured or unstructured (e.g., text, images, audio)?
= Are the features numerical, categorical, or a mix of both?
= Do the features have a temporal or spatial component?

Olga Fink 6



=PFL Which questions to follow to select an ML model i

5. What are the performance requirements?

= Do you prioritize accuracy, interpretability, or computational efficiency?

= |s the problem domain one where explainability is crucial (e.g., healthcare,
finance)?

= What are the acceptable trade-offs between bias and variance?

6. What is the computational complexity and resources available?

= How much time and computational power do you have for training?

= Do you have access to specialized hardware (e.g., GPUs)?

7. What are the specific goals and constraints?

= What is the end goal of applying the ML model (e.g., prediction, anomaly
detection, optimization)?

= Are there specific business or application constraints to consider (e.g., real-time
processing, deployment environment)?

8. What is the level of domain knowledge available?

= How well do you understand the domain and the problem?

= |s there domain expertise to help with feature engineering and model
interpretation? Olga Fink
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Which questions to follow to select an ML model §

9. What is the expected model lifecycle?
= How often will the model need to be updated or retrained?

= |s the model expected to handle concept drift (changes in the underlying
data distribution over time)?

10. What is the potential for model interpretability?
» Do stakeholders need to understand how the model makes decisions?

= |s there a regulatory requirement for transparency?
11. What are the available benchmarks or baselines?

= Are there existing solutions or benchmarks that can provide a performance
reference?

= How do different algorithms perform on similar problems in literature or
industry standards?

Olga Fink 8
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=PL  Different stakeholders in PHM

Operators

Platform / Maintainers
Solution | Service
providers providers

N /

Stakeholders

~ N

Regulators

Component
suppliers
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=P7L The importance of data for ML

{(

The biggest obstacle to using advanced
data analysis isn’t skill base or technology;
it’s plain old access to the data. 7

-Edd Wilder-James, Harvard Business Review

Source: Min Du, 2019
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=PFL  New forms of sharing and collaboration required}

A
Complexity of the

organizational Collslivoslise
structure
Cooperation
Communication
Autonomy
- &

Intensity of relationship

Source: Chebel-Morello, Nicod, Varnier,
2017
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=" Anew paradigm - Federated Leaming

a synchronous update scheme that proceeds in rounds of communication

McMahan, H. Brendan, Eider Moore, Daniel Ramage, and Seth Hampson. "Communication-efficient
learning of deep networks from decentralized data." AISTATS, 2017.

Source: Min Du, 2019
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=PFL  Federated leaming

= Federated learning is a machine learning setting where multiple
entities (clients) collaborate in solving a machine learning problem,
under the coordination of a central server or service provider. Each
client's raw data is stored locally and not exchanged or transferred,;
instead, focused updates intended for immediate aggregation are used
to achieve the learning objective.

Source: Advances and Open Problems in Federated Learning
https.//arxiv.org/pdf/1912.04977.pdf

B 04.11.24
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=PFL  Federated leaming characteristics (1/2)

1. Data Privacy and Security

= Data Locality: Raw data remains on local devices (e.g., smartphones, edge devices, or distributed servers) instead of
being sent to’a central server, enhancing privacy and security.

= Secure Aggregation: Only model updates (e.g., gradients) are sent to a central server, and these updates can be
further encrypted or anonymized, reducing the risk of exposing sensitive information.

= Privacy-Preserving Techniques: Techniques like differential privacy or homomorphic encryption are often integrated
to ensure that individual data points cannot be inferred from the shared updates.

2. Decentralized Training

= Local Trai_ning: Each device trains a model locally on its own data, which means training occurs independently
across a distributed network.

= Global Model Aggregation: After local training, model garameters are sent to a central server that aggregates these
updates to form a new global model, which is then sent back to each local device to continue training.

3. Handling Data Heterogeneity

= Non-lID Data: In federated learning, data on different devices is often non-independent and identically distributed
(non-1ID), meaning data distributions may vary significantly between devices.

= Variable Data Qualit¥ and Quantity: Some devices may have abundant data, while others have minimal or noisy
data, requiring federated learning algorithms to account for varying data quality and volume.

4. Communication Efficiency

= Minimizing Data Transfer: To limit network usage, federated learning focuses on minimizing the frequency and size
of data transferred between the server and devices.

Compression Techniques: Methods like quantization, sparsification, and pruning are used to reduce the size of
model updates, which is essential for devices with limited bandwidth.

B 04.11.24
n
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Federated leaming characteristics (2/2)

5. Device Heterogeneity and Scalability

= Diverse Device Capabilities: Federated learning systems are designed to
work across a wide variety of devices, from smartphones to |oT devices,
Ie_fach with different computational capabilities, network stability, and battery
ife.

= Scalability: Federated learning is scalable, as it can handle thousands or
even millions of devices simultaneously, with participants joining or leaving
the training process dynamically.

6. Model Personalization

» Personalized Models: Federated learning allows each device to maintain
its own personalized version of the model, especially if local data
significantly deviates from the global model’s training data. This feature can
improve the model’s performance on individual devices.

7. Fault Tolerance

= Robust to Device Failures: Federated learning systems can continue
training even if some devices drop out or are temporarily unavailable,
making them resilient to intermittent connectivity and device churn.

Olga Fink 18



=P7L  Federated Leamingvs. Peer-to-peer leaming

Federated learning Fully decentralized
(peer-to-peer) learning

Orchestration A central orchestration server or ser- No centralized orchestration.
vice organizes the training, but never
sees raw data.

Wide-area communication Typically a hub-and-spoke topology, Peer-to-peer topology, with a possi-
with the hub representing a coor- bly dynamic connectivity graph.
dinating service provider (typically
without data) and the spokes con-
necting to clients.

Source: Advances and Open Problems in Federated Learning
https://arxiv.org/pdf/1912.04977.pdf
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=F7L Federated learning - overview
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Source: Min Du, 2019
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=F7L Federated learning - overview

Local Local
Updates of M(i) i
data Updates of M(i) data
- o
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Source: Min Du, 2019
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=F7L Federated learning - overview
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=P7L Federated learning - detail

B 04.11.24

Recall in traditional deep learning model training

o For atraining dataset containing n samples (x;, ¥;), 1 < i < n, the training
objective is:

min f(w) where  f(w) & 31, fi(w)

f(w) = 1l(x;, y;,w) is the loss of the predictionon example (x;, ¥))

o Deep learning optimization relies on SGD and its variants, through mini-batches

Wesr < W — NV (We; Xk, Vi)
Source: Min Du, 2019

Olga Fink 23



=P7L Federated learning - detail

B 04.11.24

In federated learning

> Suppose n training samples are distributed to K clients, where P, is the set of
indices of data points on client k, and n, = |P|

- For training objective: min f(w)

fW) =T JEFw)  where  F(W) ¥ = iep, fi(w)

Source: Min Du, 2019

Olga Fink 24



=" Abaseline - FederatedSGD (FedSGD)

B 04.11.24

A randomly selected client that has nytraining data samples in federated
learning = A randomly selected sample in traditional deep learning

Federated SGD (FedSGD): a single step of gradient descent is done per
round

Recall in federated learning, a C-fraction of clients are selected at each
round.

o  C=1:full-batch (non-stochastic) gradient descent

o £<1:stochastic gradient descent (SGD)

Source: Min Du, 2019

Olga Fink 25



=F7L FederatedSGD (FedSGD) /
FederatedAveraging (FedAvg)

Learning rate: n; total #samples: n; total #clients: K; #samples on a client k: ny;
clients fraction C =1

e Inaroundt:

o The central server broadcasts current model wj to each client; each client k computes
gradient: gy= VFi(wy), on its local data.

s Approach 1: Each client k submits gy; the central server aggregates the gradients to generate a
new model:

n
. Wepr < We —nVf(we) = we — 7 Eﬁ:l%gk' Recall f(w) = lef=1?k Fy(w)

= Approach 2: Each client k computes: w¥,, < w; — ngx ; the central server performs
aggregation:

Wepg & mq Z—kwfﬂ For multiple times = FederatedAveraging (FedAvg)
Source: Min Du, 2019

B 04.11.24
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=PFL FedSGD vs FedAvg

1. FederatedSGD (FedSGD)

= Process: In FedSGD, each device performs a single step of stochastic q_radient descent (SGD) on its local data and
then sends the computed gradients (i.e., updates) to the central server. The server then aggregates these gradients
from all devices and applies them to the global model.

= Communication: FedSGD involves frequent communication between the devices and the server, as each gradient
update requires synchronization with the server.

= Advantages: FedSGD ensures that each update to the global model reflects the most recent local gradient
mformatlot?I from each device. This can sometimes lead {o faster convergence if the communication overhead is
manageable.

= Drawbacks: The high frequency of communication in FedSGD is a major drawback, especially in federated learning
scenarios where devices might have limited bandwidth. Frequent communication also consumes more energy on
devices, which is a concern Tor battery-powered devices like mobile phones.

2. FederatedAveraging (FedAvg)

= Process: In FedAv%, each device performs multiple local updates (i.e., several steps of SGD) on its local data before
sending the updated model parameters to the central server. The server then averages the model parameters from all
participating devices to update the global model.

= Communication: By performing multiple local updates before communicating, FedAvg significantly reduces the
frequency of communication between devices and the server.

. Advanta?es: FedAvg is much more communication-efficient than FedSGD since each device communicates with the
server only after several local updates. This makes it more suitable for federated learning, where communication
costs are high. Additionally, local updates often lead to faster convergence in practical applications, as they allow
each device to adapt the model more effectively to its own data before syncing.

= Drawbacks: FedAvg might converge more slowly or be less stable in scenarios where data on each device is highly
heterogeneous (non-llD_?. In such cases, performing multiple local updates can lead to models that diverge from each
other, making aggregation less effective.

B 04.11.24
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Test Accuracy

B 04.11.24
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McMahan, H. Brendan, Eider Moore, Daniel Ramage, and Seth Hampson. "Communication-efficient learning of deep networks from decentralized data." AISTATS, 2017.
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=Pl Federated leaming: limitations

= Data heterogeneity in industrial settings:
1. Domain shift: Clients do not share a similar data distribution.

2. Label heterogeneity: Clients’ datasets have a different number and
types of faults.

B 04.11.24
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=PrL

B 04.11.24

Federated leaming adapted to the specificities
of the unit

= Distance awareness: the model’s ability to quantify the distance of a
testing example from the training data.

= For personalized federated learning, during model aggregation - a
local client would assign higher weights to the model that was trained
using similar training data.

= Spectral-normalized Neural Gaussian Process (SNGP) used to quantify
the prediction uncertainty

Olga Fink 31
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Federated Leaming with Uncertainty-Based rw
Client Clustering for Fleet-Wide Fault Diagnosis

(D Model training at Local Clients (2) Estimation of dataset similarity (3) Model clustering and aggregation
Evaluates model using local dataset Fe————————— .
————— . ———— . - | Unsupervised !
= = = | _ clustering |
— 52 1 et— — == g9 gV
| Client 1 | | Client 1§ Dataset 1
m————— B [ S — m————— 1
| . r A — — Model updates
N > o = — L
—> SR e — o= el 0.8
| Client 2 | 5! Server | 1Client 2 | Dataset 2
___________ ] et el
= 1 _————— 1
| . | | [ ] |
| - | (I | - Igl 0z ..oV @
== T P I mm
| Client N | | Client N1 Dataset n = Similarity matrix

(4) Model dissemination to the clients.

Lu, H., Thelen, A., Fink, O., Hu, C., & Laflamme, S. (2024). Federated Learning with Uncertainty-Based Client Clustering for Fleet-Wide
Fault Diagnosis, Mechanical Systems and Signal Processing, 210, p.111068. Olga Fink
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Results on FedSNGP

Scenario 3

Datasets are heterogeneous in
sample size, fault type, and
exhibit domain shift from
different working conditions.
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Lu, H., Thelen, A., Fink, O., Hu, C., & Laflamme, S. (2024). Federated Learning with Uncertainty-Based Client Clustering for Fleet-Wide

Fault Diagnosis, Mechanical Systems and Signal Processing, 210, p.111068.
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Explainability /
Interpretabllity




=PFL  Most of the time, the algorihtms work reallywell =
but sometimes...

A refrigerator filled with lots of
food and drinks

B 04.11.24
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=PFL Tesla Autopilot Misidentified On-Road Horse- e
Drawn Carmriage

B 04.11.24

Source: https://incidentdatabase.ai/cite/398/

Olga Fink 36



=

" BlasIn algorithms

_ Machine Learning can amplify bias.

Wi oy Leamallow Blban N vmgeli (i withonms o | (1 € wapuis: bvad sl i
1 = e

98.7% 68.6% 100% 92.9%

o I I i ﬁ

DARKER DARKER LIGHTER LIGHTER
MALES  FEMALES MALES  FEMALES o\ i o, | s

Amazon Rekognition Performance on Gender Classification

= Algorithm predicts: 84% of people cooking are women

| ROLE [VALUE
iy WAl

oD | FRETA OO0 CRst
€41 BUNE AT

https://medium.com/@Joy.Buolamwini/response- https://www.infog.com/presentations/unconscious-
racial-and-gender-bias-in-amazon-rekognition- bias-machine-learning/
commercial-ai-system-for-analyzing-faces-

a289222eeced

N

- Source: Byron Wallace
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Adversarial Examples

Original image Perturbations Adversarial example

Temple (97%) Ostrich (98%)

Source: Byron Wallace

B 04.11.24
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=PFL  Current limitations of the ML algorithms

= Interpretability (Explainability, Transparency, Understanding, Trust)
= Physical consistency

= Complex and uncertain data

= Limited labels

= Bias

= (Computational demand)

B 04.11.24
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=P7L  What s interpretability?

= ADbility fo explain or to present a modelin understandable
terms fo humans (Doshi-Velez 2017)

B 04.11.24
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=P7L  Why explainable Al?

Black Box Al Confusion with Today’s Al Black

. Box
Decision,
Black-Box | Al Recommendation )
Data N —5 product | x‘ e \Why did you do that?
e Why did you not do that?

e \When do you succeed or fail?
e How do | correct an error?

Clear & Transparent Predictions

Tainabl lainabl Decision e | understand why
Explainable Explainable
Al Al Product xl e | understand why not _
Explanation e | know why you succeed or fail
e | understand, so | trust you

Source: WWW 2020 Tutorial

B 04.11.24
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B 04.11.24

- Simple explainability

e In pre-deep learning models, some models are considered
“interpretable”

Tear production rate

i Random
Population glc:)plglatlon Independent Error
Y intercept il Variable term
Coefficient
Dependent \ l
Variable /

\
Y, =B +B:X +¢

, "
Linear component Random Error
component

Source: Byron Wallace
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=P7L  Accuracyvs. Explainability

Learning Interpretability

Explainability
A B
Neural Net
GAN CNN
+ Challenges: ) K coinic iy Non-Linear
. Super\nse‘d ) RNN Method functions
+ Unsupervised learning
XGB —
Random e
 Approach: > Forest Dt:r_:::;un
+ Representation 8 e —
Learnin o
9 : 3] sodsl Polynomial
+ Stochastic selection < - .
raphical Model functions
= OQOutput:
« Correlation
* No causation
Quasi-Linear
functions

Source: WWW 2020 Tutorial

B 04.11.24
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=PFL  Different ways to achieve interpretability

= Build interpretability into the model (e.g. by fusing physical models and
machine learning or learning the underlying physics explicitly)

= Post-hoc approach to interpretability = trying to explain given models
and their output

B 04.11.24
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" Some properties of Interpretations

= Faithfulness - how to provide explanations that accurately represent the
true reasoning behind the model’s final decision.

= Plausibility — Is the explanation correct or something we can believe is
true, given our current knowledge of the problem ?

= Understandable — Can | put it in terms that end user without in-depth
knowledge of the system can understand ?

= Stability — Do similar instances have similar interpretations ?

Source: Byron Wallace

B 04.11.24
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= Evaluating Interpretability

B 04.11.24

= Application level evaluation — Put the model in practice and have the
end users interact with explanations to see if they are useful .

= Human evaluation — Set up a Mechanical Turk task and ask non-
experts to judge the explanations

= Functional evaluation — Design metrics that directly test properties of
your explanation.

[Doshi-Velez 2017]

Olga Fink 46



=PrL

Global vs Local
= Do we explain individual = Do we explain entire model?
prediction ?
= Example :
= Example :
= Linear Regression
" Heatmaps = Decision Trees
= Rationales

B 04.11.24

Source: Byron Wallace
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=PrL

Inherentvs Post-hoc

= |s the explainability built into the = |s the model black-box and we
model ? use external method to try to
understand it ?

= Examples:
= Examples:

= Linear Regression

= Decision Trees = Heatmaps (Some forms)

Source: Byron Wallace

B 04.11.24
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=PrL

Model based vs Model Agnostic

= Can it explain only few classes = Can it explain any model ?
of models?
= Examples:
= Examples:
= LIME - Locally Interpretable
= Decision Trees Model Agnostic Explanations
= Attention = SHAP — Shapley Values
= Gradients (Differentiable
Models only)

Source: Byron Wallace

B 04.11.24
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=PFL  Different approaches to explain the behavior of
ML approaches post-hoc

= Explaining with Surrogates

= Explaining with local perturbations

= Propagation-Based Approaches (Leveraging Structure)
= Meta-explanations

= Attribution-based methods

= Counterfactual explanation

= |nteraction explanations

= Attention Mechanisms

B 04.11.24
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Explainable Al (1/2)

Feature Importance and Attribution Methods

These methods identify the most influential features or components in making a prediction.

SHAP (SHapley Additive exPlanations): Based on cooperative game theory, SHAP assigns each feature a "Shapley value" that
!unclilcatgs. its contribution to a particular prediction. SHAP values provide consistent and fair attribution by treating each feature as a
player" in a game.

LIME (Local Interpretable Model-agnostic Explanations): LIME approximates complex models by Iocallx fitting an interpretable
model (like linear regression) around a specific instance. It perturbs input features to see how predictions change, helping identify
which features influence the prediction.

Integrated Gradients: A technique for neural networks that calculates feature importance by integrating the gradients of a model's
outguf,wnh Bes bect to its inputs, starting from a baseline (e.g., zero). Integrated gradients quantify each input's contribution to a
model’s prediction.

Permutation Feature Importance: Measures feature importance by shuffling each feature in turn and observing the impact on
model accuracy. If a feature’s importance is high, shuffling its values will significantly degrade model performance.

Visualization Techniques

Visualization is key to making model insights understandable for humans, especially in image and text processing.

Saliency Maps: Often used in image processing, saliency maps highlight the parts of an image that have the most influence on a
model’sprediction. This can help in understanding what parts of an'image a convolutional neural network (CNN) is focusing on.

Partial Dependence Plots rgPDP): Show the relationshi{) between one or two features and the predicted outcome, averaging out
the effect of other features. PDPs help understand how the model’s predictions change as the value of a feature changes.

Layer-wise Relevance Propagation (LRP): Assigns relevance scores to each neuron in the network, which can be agck;regated to
show which pixels or words are most influential in a decision. This technique is especially useful for deep neural networks.

t-SNE and UMAP: Dimensionality reduction techniques that helﬁ visualize high-dimensional data in two or three dimensions,
making it easier to observe clusters or patterns in the data that the model may have learned.

Olga Fink 51
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Explainable Al (2/2)

Surrogate Models

= Surrogate Models: These are simpler, interpretable models (like linear or decision tree models) trained to approximate a complex model’s
predictions. Surrogate models can provide a global understanding of a complex model’s behavior by approximating its decision boundaries.

Counterfactual Explanations

= Counterfactual explanations help answer "what if* questions by indicating how a model’s prediction would change if the input features were
altered. For example,_in loan applications, a counterfactual explanation might state, "If the applicant’s income were $5,000 higher, the loan
would be approved." This type of explanation is valuable for understanding decision boundaries and fairness.

Causal Inference and Causal Models

= Causal inference goes beyond correlation by trying to understand causal relationships between variables. Causal models can help identify
which factors genuinely influence predictions rather than merely correlate with the outcome. These methods are particularly important in
applications where knowing causality is crucial, such as medicine or social sciences.

Rule-Based Explanations and Decision Rules

= Some models, such as decision trees and rule-based models, are naturally interpretable. These models use a series of if-then rules that are
easy for humans to follow. For more complex models, rule extraction techniques can derive decision rules that approximate the model’s decision
process, making it more interpretable.

Prototype and Example-Based Explanations

= Prototypes: These are representative examples from the training set that encapsulate common patterns or features. Showing a prototype can
help users understand typical cases within a class.

= Influence Functions: These methods determine which training examples are most responsible for a specific prediction. They help identify
cases in the training data that the model relied on heavily, which can be especially useful for diagnosing model biases.

Bayesian and Probabilistic Approaches
= Probabilistic models, such as Bayesian networks, can inherently quantify uncertaint%/ in their predictions. By providin?1 a probabilistic
eac

interpretation of model decisions;, these methods allow users to’understand the confidence level associated with prediction, helping to
address questions of model reliability.

Olga Fink 52



=P7L  Perturbation-based approaches e

Perturb top-k features by attribution and observe change in prediction
e Higher the change, better the method
e Perturbation may amount to replacing the feature with a random value

e Samek et al. formalize this using a metric: Area over perturbation curve
Plot the prediction for input with top-k features perturbed as a function of k

Take the area over this curve

b

Prediction for
perturbed inputs

Drop in prediction b
when top 40 features
are perturbed

.
>

10 20 30 40 50 60 Number of
perturbed features

Source: KDD 2019 Tutorial

B 04.11.24
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Attribution-based methods

= Attribute a model’s prediction on an input to features of the input

= Attribiution methods

 Ablations (drop each feature and attribute the change in prediction to that
feature)

» Gradient-based methods (attribution to a feautre is feature value times
gradient)

» Score backpropation based methods

e Guided BackProp: Only consider ReLUs that
are on (linear regime), and which contribute
positively

e LRP: Use first-order Taylor decomposition to
linearize activation function

e DeeplLift: Distribute activation difference
relative a reference point in proportion to
edge weights
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=PrL

Saliency Based Methods

= Heatmap based visualization
= Need differentiable model in most cases
= Normally involve gradient

(dog)

Explanation Method

<
N
-
e
<
o
-

Source: Byron Wallace
Olga Fink 55



=P7L  Sallency Based Methods

Integrated Gradient

Original : Guided Guided Integrated Gradients
Image Gradient SmoothGrad BackProp GradCAM Gradients SmoothGrad  Input

1ia —
=, =, o 2
. - ml& g R =
et TN
¢ ? r iy
-
S8 || G || el a5
a7 e - Ve
; A2 43 ii“- e 2
% . .,L“‘i’ pl ;E?i' %%’ 5
Wheqten * o o :
Terrier : E:

[Adebayo et al 2018]
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- Saliency Example - Gradients

f(x):R* >R

df (x)
dx

E(f)(x) =

Source: Byron Wallace

Olga Fink 57



=PrL

Saliency Example - Leave-one-out

f(x):RY* >R
E(f)(x): = f(x) — fx\D)

How to remove ?

1. Zero out pixels in image
2. Remove word from the text
3. Replace the value with population mean in tabular data

Source: Byron Wallace

B 04.11.24

Olga Fink 58



=P7L  Sanity check: When predictions change, do the
explanations change?

Original Image Saliellcy map
o RIS
M K™ class :
2?7217
Randomized weights!
Original Image Network now makes garbage predictions.
: ""Z“a-
K*class m*

<

B 04.11.24

Source: Julius Adebayo
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=PFL  Class Activation Mapping

= GAP: Global average pooling

Australian
terrier

= We can identify the importance
of the image regions by
projecting back the weights of

</ Z0O0
<Z200
<Z00D

<200

o

>

o

Class Activation Mapping the OUtpUt Iayer on the
" convolutional feature maps
+ Wy T b obtained from the last
s Convolution Layer.

Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
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=PFL  Class Activation Mapping: examples

Brushing teeth Cutting trees

Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
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=PFL  Class Activation Mapping s

Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

B 04.11.24
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=PFL  Local Interpretable Model-Agnostic e
Explanations (LIME): basic idea

sneeze |

headache |

no fatigue

/_ sneeze | FlU Explainer
_‘ weight (LIME)
\ i'_'/ headache

A 4 no fatigue

age

Model Data and Prediction Explanation Human makes decision

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.
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=PrL

B 04.11.24

LIME -locallyinterpretable model agnostic

p

xl,xz’..o,xN Q

N

Black
Box

~

/

xl’ x2, '“,XN | ii

Linear
Model

- 'y’
A A

(e.g. Neural Network)

Q”l 72

)

as close as
possible

N

Can’t do it globally of course, but locally ? Main Idea behind LIME

Source: Hung-Yi Lee
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=PFL  LIME: Toy example of the basic concept

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.
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=P7L  LIME: divide Images into Interpretable compo-
nents (contiguous superpixels)

Original Image Interpretable
Components

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.

B 04.11.24

Olga Fink



=PrL

B 04.11.24

LIME — Image

1. Given a data point you want to explain
2. Sample at the nearby - Each image is represented as a set of
superpixels (segments).

= Randomly delete some

= segments.

[ Black | | Black | | Black |

Compute the probability of “frog” by
0.85 0.52 0.01 black box

Source: Hung-Yi Lee
Olga Fink
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=PrL

LIME — Image

e 3. Fit with linear (or interpretable) model

’A.{" : ‘_A.‘T

Extract Extract Extract

X :{0 Segment m is deleted.
™ {1 Segment m exists.

M is the number of segments.
0.85 0.52 0.01

B 04.11.24

Source: Hung-Yi Lee
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=PrL

LIME — Image

e 4. Interpret the model you learned

-

- " Yy =WwiX1 + o+ Wk + 0+ WXy

_ {O Segment m is deleted.
™ {1  Segment m exists.

Extract M is the number of segments.

f wn, ~ 0 Hp Segment m is not related to “frog”

If w,, is positive » segment m indicates the image is “frog”

If w,, is negative. segment m indicates the image is not “frog”
0.85

B 04.11.24

Source: Hung-Yi Lee
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=PFL - LIME: underlying algorithm

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f, Number of samples N
Require: Instance z, and its interpretable version z’
Require: Similarity kernel 7, Length of explanation K
Z+—{}
for 1 € {1,2,3,..., N} do
z; < sample_around(z")
Z <+ ZU (2, f(2i), ma(20))

end for
w + K-Lasso(Z, K) © with z] as features, f(z) as target Control
Match interpretabl !
return u e || oo rne
§(x) = argmin  L(f, g,7) + (g)
geG
2
L(figima) = Y m(2) (f(2) — g(z))
z,2'€Z

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.

B 04.11.24
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=PFL LIME: Example

v

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.
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=PFL  LIME: bringing trust («Husky vs Wolf)

(a) Husky classified as wolf (b) Explanation
Before After
Trusted the bad model 10 out of 27 3 out of 27

Snow as a potential feature 12 out of 27 25 out of 27

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.
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=PFL  SHAP (Shapley values Additive exPlanations) - additive
feature attribution method to explain the output of any
ML model

Classic result in game theory on distributing gain in a coalition game

e Coalition Games
o Players collaborating to generate some gain (think: revenue)

o Set function v(S) determining the gain for any subset S of players

e Shapley Values are a fair way to attribute the total gain to the players based on
their contributions

o Concept: Marginal contribution of a player to a subset of other players (v(S U {i}) - v(S))

o Shapley value for a player is a specific weighted aggregation of its marginal over all
possible subsets of other players

B 04.11.24

Lundberg, S., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Olga Fink



=PFL  SHAP (Shapley values Additive exPlanations) - additive |
feature attribution method to explain the output of any
ML model

prediction

explanation

The Shapley value is a mathematical concept in
game theory that was introduced by Lloyd
Shapley in 1951.

Lundberg, S., & Lee, S. I. (2017). A unified approach to interpreting model predictions.

B 04.11.24
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=P7L  Shapleyvalues

S|\(|F| —|S| — 1)!
3 SEAEF =151 - 1)

b; = i fsuriy(@supy) — fs(zs)]

SCF\{i}

where S feature subset, F — set of all features, S g F \ {z} all possible subsets

fSU{i} is trained with that feature present and fS with that feature withheld

predictions from the two models are then compared fSU{@'} (:ESU{z'} ) - fS (335')

B 04.11.24

Lundberg, S., & Lee, S. I. (2017). A unified approach to interpreting model predictions.
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=P7L  Individual SHAP value plot

higher &= lower

base value output value
526 4.826 5.026 5.226 5.426 5.626 5.826 6.026 6.2026 6.426 6.6
pH = 3.26 alcohol = 11.8 . sulphates = 0.64

Lundberg, S., & Lee, S. I. (2017). A unified approach to interpreting model predictions.
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=PrL  SHAP variables Importance plot

[ High
alcohol . . . -*—.—-——- .-
sulphates . --——*—— -
volatile acidity " . +._ .
total sulfur dioxide . w—*—
chlorides R o %
i T
ensity . . .. i
fixed acidity -+- -
citric acid =
residual sugar X +.
free sulfur dioxide -+-
15 -10 05 00 05 10 o

SHAP value (impact on model output)

Lundberg, S., & Lee, S. I. (2017). A unified approach to interpreting model predictions.

B 04.11.24

Olga Fink



=PFL  Drivers of the semiconductor production quality

High
Tanz * somm @mes 0o 00 ° e 00 o .‘
313 o0 oo o o L] D o L] *
Togs7 —*- ‘
T30 ** o
E
L1854 + o * g
5]
Laos ¢ GECIENEITIEDEIDED ® 00 * E
3
a,
Tovg ® 4
Ta05 +.--
Tagg * 9? COCEDEEEET DDEDOD O ﬁ_-‘
T340 00 emEEoCeTESET: © 0 WD ‘
T T T T LO“Y
-3 -2 —1 0 1

Feature attribution

B 04.11.24

Senoner, J., Netland, T., & Feuerriegel, S. (2022). Using explainable artificial intelligence to improve process quality: Evidence from semiconductor
manufacturing. Management Science, 68(8), 5704-5723.
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=PFL  Concept bottleneck models

input x
; concepts ¢
S
() | sclerosis
() | bone spurs task y
N Regressor arthritis
l grade (KLG)
() | narrow joint space
| S
concepts ¢
'

() | wing color
() | undertail color task y

) -[l bird species |

() | beak length

Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., & Liang, P. (2020, November). Concept bottleneck models.
In International conference on machine learning (pp. 5338-5348). PMLR. Olga Fink 79
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Example:
Detecting defective
Insulators
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=PrL

Detecting defective insulators

= XAl on Power Grid Insulators:

* Fault detection =2 binary classifier
* When faulty, apply XAl to show which part of the image led to the decision,

= highlighting the defect region

Fault localization

B 04.11.24
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""" Evaluation of the prediction results

B 04.11.24

Test Accuracy = 96.4%
FPR=3.6 %

FNR=3.8 %

Defective_Insulators; predicted as: 3.0176452e-07
0

Test Samples Examples
(defective =» 0; Normal =»1)

Normal_Insulators; predicted as: 0.999999
0w =

0 50 100 150 200 250 0 50 100 150 200 250
Normal_Insulators; predicted as: 1.0 Normal_Insulators; predicted as: 0.0005989605
0 0

50

100

150

200

250

Olga Fink
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Example:

Integrated concept
embeddings
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=PFL  Concept embeddings Turbofan engines

Feature Latent Concept Embeddings

Extractor Code and Bottleneck Regressor  Output

Input

B 04.11.24

Forest. F., K. Rombach & O. Fink: Interpretable Prognostics with Concept Bottleneck Models, under review
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=PFL  RUL prediction performance
RMSE and NASA

CNN 6.79 0.851
CEM 6.15 0.752

B 04.11.24
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=PrL

B 04.11.24

t-SNE 2

Latent space visualisation

True concepts
Healthy

100 4 100

754 75

50+ 50

254
25

t-SNE 2

-75 -50 -25 0 25 50 75 100

—-75 -50 —-25 0 25 50 75 100

(a) Latent space colored by true concept.
(b) Latent space colored by true RUL value.

Forest. F., K. Rombach & O. Fink: Interpretable Prognostics with Concept Bottleneck Models, under review

Olga Fink 86



=P7L Concept intervention strategy

Digital space Physical space

Y=

[ Inspect component ]

Monitor concept
activations {c; }

yes

no

Abnormal
degradation ?

yes

e

ﬁntewene on concept ¢ [«

v

[ Re-estimate RUL ]
|

Forest. F., K. Rombach & O. Fink: Interpretable Prognostics with Concept Bottleneck Models, under review

B 04.11.24
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=P7L  Concept Interventions

LPT
1.01 — Pred concept | 60 - LPT intervention
' —-— Fault detection i
|
50 -
- 0.8 :
o
B ' 40
2 0.61
(9] —
© 0.5 )
2 | e 30
o 0.4 |
g I
S 0.2 1 | ]
- : —— True RUL
, 101 —— Predicted RUL
0.0 I —— Predicted RUL (intervened)
| I
T . T T T 00— T . T T
0 20 40 60 80 0 20 40 60 80
Cycle Cycle

B 04.11.24
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=PFL  RUL prediction performance
RMSE and NASA

CNN 6.79 0.851
CEM 6.15 0.752
CEM after intervention 5.96 0.692

B 04.11.24
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Example:

Using explanations for
labeling
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=""-Machine leaming for Image-based crack detections

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task:

s damage-free

Neural Network q
crack

<
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o
-
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=P"-Machine leaming for Image-based crack detectio

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task:

,~ damage-free Severity quantification and monitoring is crucial for
Neural Network q timely decision-making.
crack
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=""-Machine leaming for Image-based crack detection

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task:

,~ damage-free Severity quantification and monitoring is crucial for
Neural Network q timely decision-making.
crack

What we need:

<
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=""-Machine leaming for Image-based crack detection

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task:

.~ damage-free Severity quantification and monitoring is crucial for
Neural Network q timely decision-making.
crack

What we need: — Severity metrics

<
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=""-Machine leaming for Image-based crack detection

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task:

,~ damage-free Severity quantification and monitoring is crucial for
Neural Network q timely decision-making.
crack

What we need: — Severity metrics

» Does not allow severity quantification

» Fast and easy image-level annotation (1 bit)

B 04.11.24
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=PFL Machine leaming for image-based crack detectionk-=i=

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task: Semantic segmentation task:

3 '.r,_ Neural Network '

» Allows severity quantification and monitoring

s damage-free

Neural Network E
crack

» Does not allow severity quantification

» Fast and easy image-level annotation (1 bit) » Tedious and costly pixel-level annotation

(256%256 — 2% = 64 Kb)

B 04.11.24
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=PrL

Methodology

Proposed methodology:

1. Data collection and labeling (image-level)

damage-free

crack

B 04.11.24

Olga Fink
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=PrL

Methodology

Proposed methodology:

3. Extraction of attribution maps with an XAl method
1. Data collection and labeling (image-level)

damage-free

crack

B 04.11.24
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EPFL =

Methodology

Proposed methodology:

3. Extraction of attribution maps with an XAl method

i g

1. Data collection and labeling (image-level)

'

v

damage-free

0
1

crack

(a) Binarization (b) Morphological
operations

B 04.11.24
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=PrL

Methodology

Proposed methodology:

3. Extraction of attribution maps with an XAl method

1. Data collection and labeling (image-level) %] T : 3
'. . . ‘ ‘ ’l v . aﬁa‘ |

|

5. Crack severity quantification from binary masks

\

Severity metrics
(width, area, etc.)

damage-free

0
1

crack

(a) Binarization (b) Morphological
operations

B 04.11.24
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Visualization after binarization it

XAl-based (weakly-supervised) Unsupervised Supervised
True InputxGrad IntGrad Deeplift DeepLiftShap GradientShap . . ) U-Net

/
7
[

B 04.11.24
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Automated explanation
assessments
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=PFL  Processing explanations gl

Fault Diagnostics
Healthy Class

E> Maintenance

Fault Class B

DL Model Fault Class ..
@ Layer-wise Relevance Propagation (LRP)
Model to generate SHAP
explanations Explainer
& Rate Distortion Explanations
CartoonX

Explanation

Original image

Most relevant part of the input
for the DL model decision on the
classification outcome

B 04.11.24
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=PrL

B 04.11.24

How can explanations be used?

A\

Image

Fault Diagnostics

DL Model

Model to generate
explanations

¥

Model to process
explanations

O\

Coherent Non-coherent
explanation explanation

Healthy Class

Fault Class A l:> Maintenance
Fault Class B

Fault Class ..

Olga Fink
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=P7L  Model Improvement

Fault Diagnostics Healthy Class

Fault Class A E> Maintenance
Fault Class B

DL Model
Imy, Fault Class ..
& Model to generate
Improve model performance by., explanations
« Data augmentation /
+ Loss modification ! explanation

olloi=

T
Model Model to process
Developer explanations
Coherent Non-coherent

explanation explanation

Validation data

B 04.11.24
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=PrL

B 04.11.24

Informed decision making

A\l

Image

Fault Diagnostics

DL Model

Model to generate
explanations

explanation

oo

<
[ Model to process ]

explanations

N

Coherent Non-coherent
explanation explanation

Healthy Class

Fault Class A E> Maintenance
Fault Class B

Fault Class ..

Informed
decision making

Maintenance
Operator

In-field data

Olga Fink 106



=F7L " Proposed method for automating the evaluation

Fault Diagnostics Healthy Class
°
A\ [ Fault Class B
DL Model

| Fault Class ..
mage
Model to generate
explanations
explanation
Training Set model to process explanatio%
xq:explanation 1 Deep SAD
A .
Correctly Classified .. Non-coherent
y =1 = OO. / explanation
:,' OQQ O o \ Cohererlt
Classification Error v © ; explanation
-1 e |
Y2 = . Q 4
; ® ~-..®
explanation N Label N K Embeading Space/

B 04.11.24
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DL Model ¢

Model to generate
explanations

T

explanation x;
Embedding space definition: loss function

© Correct classifications:

minimize the distance from the centre

Healthy Class
Fault Class A
Fault Class B
Fault Class ..

I
> oz W) —el?
i=1

min
w n+m

B 04.11.24

v

)
A
)
“
.
-

Intelligent
Maintenance

@
°Qe o
@ coherent

Embe?lding Space
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Healthy Class
Fault Class A
Fault Class B

Intelligent
Maintenance

DL Model

Fault Class ..

Model to generate

explanation
e
explanations
Embedding space definition: loss function + @ Non coherent
. ..
@ Classifications errors: O.
maximize the distance from the centre
(hyperparameter n)
@
- 1 mn ' . 5 n m o N i
- —r L ol ;: — C .
n}]:‘lv‘n n-+m g ”@('r'”w) CH - T—+17 Z (H (IJ'WJ CH } O .
Embezding Space

B 04.11.24
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=PrL

Proposed method: detecting unusual explanationst

Fault Diagnostics Healthy Class
° )
Fault Class A In.telllgent
\ Maintenance
Fault Class B
DL Model

| Fault Class ..
mage
Model to generate
explanation
<
explanations
Embedding space definition: loss function ' ) °
O.
Regularization term to avoid overfitting ° @
(hyperparameter 1) °® . Non coherent
- P60 0o
. @ :
. m \ OO coherent
N y} b ] . ’/
min HmZHm zi; W) 2 (lé(@;; W) —el?) ZH“ 1% P
Embezlding Space

B 04.11.24
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=PFL Case study: infrastructure monitoring

Critical Components:

Power Grid Insulators Drones Shells’ images

e.g. swiss power grid:
6700 km long = 12 000 pylons

B 04.11.24
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=PrL  Application of the methodology

B 04.11.24

Ay ]

Image

Fault Diagnostics

Mobilenet V3

Flashover

Broken

B Healthy

Model to generate
explanations

CartoonX

explanation

Training Set

xq:explanation 1

X

x,:explanation 2

explanation N

Correctly Classified

y1=1 :>

Classification Error
Yo =-1

A

A

VGG16 as Deep SAD
@

D
I T
@) i
i OQ.Q ce
i @) ,’,’
° S O @

Label N \

Em beading Space

model to process explanatior%

Non-coherent

/ explanation
\ Coherent

explanation

/

Olga Fink
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=PrL  Application of the methodology

Fault Diagnostics

B 04.11.24

Model developer is
guided for model
improvement

DL Model

Model to generate
explanations

- e.g. data

m augmentation

short-cut!

explanation

g

Non coherent [

Deep SAD to process
explanations

|

Embeading Space

"= Healthy

Distance from the centre

Validation set

107

10*

10°

107?

1072

Emm Correctly Classified
m Wrongly Classified

Sample

Olga Fink
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=PFL - Examples e

Example of one broken shell and its explanation

B 04.11.24
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=PFL  Coherentvs. Non-coherent explanations gl

@ b) small distance (examples)
-~ | O

a) t-SNE representation of Deep SAD embedding space

15 1 @ small distance
*+ medium distance
. A large distance
10 —_— Correct classification
= Wrong classification

DS 1 a & Centre
t 3 *y
0.0 4 t

-0.5 1

A

=10 7 A
-9.00 -8.75 -850 -8.25 -8.00 -7.75 -7.50 -7.25 -7.00
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=PrL  Examples

B 04.11.24
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=PFL - Summary

Training data Validation data

. explanation 1
classifier & £ Label 1
~— i‘ Correctly
- e Class 1 > Classified
» Class 2 explanation 2 Label 2
~J Classification
— Class .. , Errar
y e
Imag;'-_' n explanaiion n Label n

Step 2. Compute explanations and assign
binary label for corrcet/incorrect classifications

Step 1. Train the supervised classifier ¢

explanation 1

Deep SAD W ‘@

explanation 2 _\

L)

-

explanation n

Step 3. Use labelled explanationsto  Step 4. Apply ¥; to test data
train Deep SAD model ¥; for the /- explanations and map them
in the embedding space

th class

7/
*For cach i-thclass

B 04.11.24

- .
i @0@ .
a i a*c @
Y L.
- @

< |

.. ’—v Distance>Th  Distance<Th
by

Distance
—+ from the MNon-coherent

] explanation
: centre P

Coherent
explanation

Embefiding Space Expert revise
classification
output

Step 5. Apply threshold to spot
non-coherent explanations and
ask expert to revise them

Olga Fink
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Example:
Detection of Partial
Discharge in Power Lines




£PFL  Interpretable Detection of Partial Discharge in Power
Lines with Deep Leaming = Framework

1 - Raw Data 2 - Per Phase: High pass filter 3 - Per Phase: Extract Pulses

T T e M\ N )
= 07 .
0.25- 0| | | , , _V\‘\/\ ‘

\ 4 =»

o) " W
T T T T T 0 Np ol | |
0 5 10 15 20 025 50 2 %

~

Volt (V)

V]

Time (msec) >

\ 0 ° Timel;lr?sec] 15 20/ w /

6 - Pulse Activation Map

4 - Per Phase: Temporal CNN

\ 5 - 3-Phase Threshold

»@00

I

A 4
Input
Np x w
1D Conv
1D Conv
Maxpool
1D Conv
1D Conv
Maxpool
GAP
FC
Q

,J\J\Mww
(Ao~
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