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=PFL Baslc principle Batch Normalization

= Makes the training faster and more stable

Source: Huber, 2020

B 28.10.24

Olga Fink 8



=PrL

B 28.10.24

Basic principle Batch Normalization

_l (2)
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Normalizing activation vectors

from hidden layers using the first

and the second statistical moments

gmtear\]n and variance) of the current
atch.

Applied right before (or right after)
Linear transformation with yand £
yand Atrainable parameters

Allows the model to choose the
optimum distribution for each hidden
layer, by adjusting those two
parameters :

y allows to adjust the standard
deviation

£ allows to adjust the bias, shifting the
curve on the right or on the left side.

Source: Huber, 2020
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Why domain adaptation /
transferleaming?




=P7L  Some Challenges in Predictive Maintenance

= VVarying and evolving operating conditions = Even healthy system
conditions are not always representative due to limited observation time
period

= Algorithms also for systems required that are newly taken into operation

B 28.10.24
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=PFL  Example Gas Turbines
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=PFL  Example Gas Turbines

5 O  Train O
> Valid
<> Healthy
O  Rest
4
Extend the g
observation period g
a 0O .. m| g
oOd

2010-06 2010-07 2010-08 2010-09 2010-10 2010-11 2010-12 2011-01 2011-022011-03 2011-04 2011-05

Date

B 28.10.24

Olga Fink 13



|ALS

Success of supervised Iearmng algorlthms

2Lty Typically, supervision

. for the training of the
algorithms required! 2>
LABELS!!!
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Faults are equivalent to labels in intelligent maintenance

s
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Faults in critical systems are

rare - not possible to learn a
== good representation of faulty
”’_/*_- conditions
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Potential solution?
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Not just one system but fleets of systems!
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=PrL

B 28.10.24

What do we start with?

= Limited number of faults (labels)

= Large variety of condition monitoring data under different operating
conditions

= Several units of the same fleet (but units have variability in their
configurations and operating conditions)

= Heterogenous operating conditions and configurations of the fleet units
= Limited observation time periods

= Limited representativeness of the collected data for the expected
operating conditions

Olga Fink 20



=PrL

B 28.10.24

What are we trying to achieve?

= Compile representative training datasets that are valid for the specific
units under the specific operating conditions (homogeneous datasets)

= Using labeled and unlabeled data as efficiently as possible at the level
of an entire fleet

= Develop also algorithms for new units

= Transferring knowledge (on operating conditions and faults) between
the single units of a fleet

= |_earn robust features that are invariant to different operating conditions

Olga Fink 21



Transferleaming /
unsupervised Domain
Adaptation
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=P Different types of domain changes (images)

high quality daylight sunset

surveillance

Source: Saenko, 2012

B 28.10.24

posed “in the wild”

Olga Fink 23



=PFL Transfer leamingin DL

= Myth: you can’t do deep learning unless you have a million
labelled examples for your problem.

= Reality
e You can learn useful representations from unlabelled data

e You can train on a nearby surrogate objective for which itis
easy to generate labels - self-supervised learning
e You can transfer learned representations from a related task

Source: Morros, 2017
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=P*L Transfer Leaming

= The ability to apply knowledge learned in previous
tasks to novel tasks

e Similar on human learning.

e People can often transfer knowledge learnt previously to
novel situations

o Play classic piano —Play jazz piano
o Maths —Machine Learning
o Ride motorbike —Drive a car

Source: Morros, 2017

B 28.10.24
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=PFL  Making use of trained models

TRAINING FROM SCRATCH

CARv
ﬂ lEAED FEATUE = [?%] TRUCK x
el AR [T : -
BICYCLE X
TRANSFER LEARNING
a 4 PRE-TRAINED CNN NEW TASK
& = TRUCK X

NEW DATA

Source: H. Davidson Regua, 2020
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=P*L " Relationship between traditional ML and

various transfer leaming settings

Learning Settings

Source and Target Domains

Source and Target Tasks

Traditional Machine Learning

the same

the same

Transfer Learning

Inductive Transfer Learning /
Unsupervised Transfer Learning

the same

different but related

different but related

different but related

Transductive Transfer Learning

different but related

the same

B 28.10.24

Source: S. J. Pan & Q. Yang, 2009
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=PFL  Different types of transfer leaming

Self-taught
/"-2 Learning

No labeled data in a source domain E

Inductive Transfer

/ Learning

Tateled dufaare ausiloble Labeled data are available in a source domain

in a target domain _ Source and Multi-task
Case 2 target tasks are i .
[ Case2 | 503" 1> Leaming

simultaneously
Transtfer ;
) La.blc};l d dal]a gre ) Assumption: =
Learning Eralas dGH yra Transductive different  +—>  Domain
source aomain a o .
Transfer Learning < domainsbut 3 Adaptation
single task
No labeled data in - :
both source and Assumption: single
target domain domain and single task
\ Unsupervised Sample Selection Bias
Transter Learning /Covariance Shift

Source: S. J. Pan & Q. Yang, 2009
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=PrL

Traditional ML vs TransferLeaming

e |[solated, single task learning: e Learning of a new task relies
o Knowledge is not retained or ] on the previous learned
accumulated. Learning is .
performed tasks:

o Learning process can be faster,
more accurate and/or need less
training data

w.0. considering past
learned knowledge in
other tasks

Learning Learning
Dataset 1 I:> System Dataset 1 I:> System
Task 1 Task 1

s —
Knowledge

Learning @
Dataset 2 C—>| System

Task 2 Learning
Dataset 2 :> System
Task 2
ource: Morros, 2017

Olga Fink 29
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=P*L Transferleaming: idea

Instead of training a deep network from scratch for your task:

e Take a network trained on a different domain for a different source task
e Adapt it for your domain and your target task

Variations: w
e Same domain, different task

Largeamount
. o ofdata/labels
e Different domain, same task / Source \

arget
labels

Smallamount
ofdata/labels

Target
model
Eg PASCAL
ource: Morros, 2017

Olga Fink

Knowledge
model
F Sourcedata ﬁ
E.g. ImageNet
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cPrL “Off-the-shelf”

Idea: use outputs of one or more layers of a network trained on a different task as
generic feature detectors. Train a new shallow model on these features.

B 28.10.24

=

| loss |4————————

!

| softmax

fc2
fc1

| conv3

| conv2

| conv1

T

| Data and labels (e.g. ImageNet)

|_

TRANSFER

Shallow classifier

G features

fc1 |

conv3

conv2 |
|

conv1i

T

Target data and labels | Source: Morros, 2017
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=PFL  Fine-tuning: transfer leaming

= Train deep net on “nearby” task for which itis easy to
get labels using standard backprop

real loss

e E.g. ImageNet classification my_fc2 + softmax
e Pseudo classes from augmented data

fc1

= Cut off top layer(s) of network and replace with conv3
supervised objective for target domain

conv2

= Fine-tune network using backprop with labels for -
target domain until validation loss starts to increase ]

real data reallabels —

Source: Morros, 2017

B 28.10.24
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=FL Freeze or fine-tune?

Bottom n layers can be frozen or fine tuned.

LR >0 loss
® Frozen: not updated during backprop \—’—\
e Fine-tuned: updated during backprop E v fe2 + softmax
=
[0
Which to do depends on target task: = fe1
e Freeze: target task labels are scarce, and we conv3
want to avoid overfitting o
g conv2
® Fine-tune: target task labels are more plentiful &
conv1
<
In general, we can set learning rates to be different ~ |
for each layer to find a tradeoff between freezing LR =0
and fine tuning SEL R —

Source: Morros, 2017

B 28.10.24
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=P*L  Unsupervised domain adaptation

e Labeled training data from a source domain
Dy = {(x4,¥5): s (X ) Ly €Y.
e Unlabeled data from a target domain
D; = {x%, X
e Test data from the same target domain

ol 0
Dt@Sf - {Xtestﬂ e Xtest}7

B 28.10.24
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=PFL  Domain Shift - Target domain different from
Source domain

Source Target
4044 4 vy
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=P7L  Unsupervised Domain Adaptation
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=PFL Transferability / Generalizability

= Between different operating conditions

. L] - L]
= From simulated data to real conditions
454 —— After Fine-Tuning
’ = =Ground Truth
44 — Before Fine-Tuning
< Sim2Real Gap
g 3.8
E
g 3.6
3.4
3.2
0 560 lDIDO 15‘00 20‘00 25‘00 30‘00 35‘00
< Time (s)
N
=4
& Wang, Qin, Gabriel Michau, and Olga Fink (2021): "Missing-Class-Robust Domain Adaptation by Unilateral Alignment", IEEE Transactions on Industrial Electronics, 68 (1), 663-671.
|

I
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=PrL  Case Study on CWRU c.cwesemesereiey BEQNING
Dataset

« Dataset information
* Ten Classes classification

Fault Class Label

0 1 2 3 4 3 6 7 8 9

Loc NAT IF IF IF BF | BF | BF | OF OF | OF
Size 0 7 14 21 7 14 21 7 14 21

» Four loads for domain adaptation « Data Preprocessing
Labeled source load, Unlabeled target load « 200 sequences of 1024 points for each recording
Motor Load (HP) Approx. Motor Spoed (i + each converted to 512D Fourier coefficients by FFT

0 1797

1 1772

2 1750

3 1730

B 28.10.24
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=PFL  Basic Network  —

_____________________________________

! i - Feature Extractor
:’ | ! « Three convolutional layers
] = : » Flatten and dense layer
: : - Classifier
> | « Fully-connected Layer
: R,
256 fci : 256 fc2 g :
Sigmoigd | ReLu : .
A A s ] e e : « How should we add domain
oy o | | : adaptation ability to this network?
: sfg:;‘;id S‘i:;:a‘:)id s?g);l‘;id — : : :
1 Dropout Dropout Dropout 5120 1 ! I
: Flatten : : :
;\-\Iign distributions in intermediate layers ’: i 4
\\ Feature Extractor //' E Classifier E

_____________________________________

B 28.10.24

[14] X. Li, W. Zhang, and Q. Ding, “Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks,” IEEE Transactions on Industrial Electronics, 2018
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=P*L Background: Adaptive Batch Normalization
(AdaBN)

Layer wise adaptation by updating statistics
/// % \\\ '/ | fé\ — Ij — E[:EJ]
4 77 | J
; A/ Var [:Z? . j]

I 4 7
|
= / . )
L - ldea
h Keep different batch norm
D, N SofMax statistics for source and target.
25(? fp:l-.BN 256 fc2 :
=2 i‘f,{:;“f,';' Dropont :  Pros
N . Simplicity. Very little
P BN comenn Al ! computational resource
Duopeit  Dropomt  Dropout 5120 I | required.
:‘ Flatten ,:E E . Cons
2 Feat tract S Classifi | .
. seie exEer P Performance not optimized
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=P7L  Maximum Mean Discrepancy

Mapping
Class2 ***" '."Hu
Class 1 =" JA"""""""""*=. ‘e

':d Maximum Mean Discrepancy

Feature Space

Reproducing Kernel Hilbert Space

2
¢ mapping function
X*: feature matrix in source domain
2 X°. feature matrix in target domain

%im::ﬂ-%iﬂxﬂ

=] J=1

Lp(X%,XY) = MMD(X5,X') =

B 28.10.24
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=PrL

B 28.10.24

S{ource
]:npul.

B d: Maximum Mean Di s
ackgroun « iviaxXimum iviean viscrepancy
"y | [
Minization
________________________________ Estimate distribution difference between source and
target features by MMD.

- |dea

MMD as an additional loss to
minimize.

256 fcl
Sigmoid
Feature

* Pros

512 512 512

L& o o ) MMD directly estimates the
------------------------- distance between source and target

, distributions.

| . Cons

Multiple kernels are needed in

1
1
1
1
1
1
1
256 fel 1
1
1
1
1
1
1
1
1

Sigmoid . .
) Feature reality, leads to dramatically
T ) o, VD increased model complexity
propont propost propont Minimization
Target Feature Stream AN |

___________________________________________

X. Li, W.Zhang, Q. Ding, and J.-Q. Sun, “Multi-layer domain adaptation method for rolling bearing fault diagnosis,” Signal Processing, vol. 157, pp. 180197, 2019,
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=L Adversarial Training

D: Detective

R: Real Data G: Generator (Forger)

Generative Adversarial Networks (GAN)

B 28.10.24

Figure 1 https://github.com/devnag/pytorch-generative-adversarial-networks

Olga Fink
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=PrL - Adversarial Networks in DA

Adversarial networks

B 28.10.24

Domain adaptation for deep learning, Kate Saenko
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=P*L  Domain-Adversarial Training (DANN) in deta

E(Gf,é?y,ed) = Ly (Gy(Gf(Xi;ef);ey),yi) —

oL
1L, —y
/—-;0; @ A Z Lq (Ga(Gy(x4;05);0a), yi) =

- i=1..N
AW Y B N
2\ p i=1..N i=1..N
g ~— di=0
_/\de label )1((11f‘t.nr (r,),(—.: lji”]
dﬂf } & g domain i].il-‘:&i-ilh(,‘r Gal(-:64) o
I \
feature t'\(tmc‘rnr G0 (67,0y) = arg Iil,len Ebs, 0y, ed)
2 "?x- |:> |:> B domain label d A

D -
0 4

forwardprop  backprop (and produced derivatives)

04 = argn%axE(@f, Hy,ﬁd) :

f: feature extractor

y: classifier
d: discriminator

Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” International Conference on Machine Learning. 2015.

B 28.10.24
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=PL  Domain-Adversarial Training (DANN)

Minimize Classification Loss - Strategy: Discriminator

_____________________________________________

, S \ * Train a discriminator to

/ 1
4 = \ T .
{ ! | distinguish between
1
- : target and source
oy 10 fe3 i
i SoftMax
H 4 N 1
: A 21 256 fe2 | oS 1
: 1 Relfu | Classifi :
| a ] e | assitier 1 * Force the feature
: ! ' 1N e
s E e '\ S-sooTIooIIIIIIIIIIIC extractor to generate
' ] ] ! N
: ' 1 .
s i H . A unbiased features
i ' 256 fcl : ‘|
i ! Sigmoid 1
LV ® o o i Feature |
512 | | 1
Input L 7! il |1 : f |
Data 512 | 512 512 i 1 N 1
convl | conv?2 conv3 e / I 2 fe-dis3 !
Sigmoid | Sigmoid Sigmoid — 1 SoftMax !
Dropout | Dropout Dropout 5120 1 logits I
Flatten 256 : :
| .. L GRL |
, Maximize Discriminator loss w.r.t feature | , S |
= 1024 1024 1
: extractor weights Pl fedin fe-dlis? I
\ 1 ReLu ReLu 1
\ Feature extractor y 9 Discriminator y
N \\ // s 4
N ~So - s ~ - ‘
0 £
?é Minimize Discriminator loss w.r.t
[ | d iscriminator weig hts Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” arXiv preprint arXiv:1409.7495, 2014
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=PFL  Feature alignment: all faults known

Source Target
Fault |
a % AA‘
A A,
healthy
Fault Il
0% ®
. .0.0.0.0
- ] .I ....

" o m  Faultll

B 28.10.24
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=PrL

B 28.10.24

Model Performance on CWRU Dataset

«  Same basic architecture
«  Same budget for hyper-parameter tuning
«  Same optimizer and learning rate

89.42% 94.42% 98.53% 98.41%
0-2 93.65% 99.30% 99.98% 99.96%
Mean Accuracy 94.99% 97.82% 99.42% 99.07%

Average over 5 runs, trained on a NVIDIA GTX 1080

Olga Fink
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=PFL  Model Efficiency

- i m“

Mean Accuracy 94.99% 97.82% 99.42% 99.07%
Training Time 84 s 133 s 266 s 177 s
Linear Linear Quadratic Linear

w.r.t. # training samples

B 28.10.24
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Partial / Openset Domain
adaptation
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=PFL  Four DA configurations according to label
space discrepancies

(a) ClosedSet (b) Partial (b) OpenSet (c) OpenSet&Partial

Training Training Training Training

Test Test Test

Rombach, K., G. Michau & O. Fink: Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation, Reliability Engineering and
System Safety

B 28.10.24

Olga Fink 51



=PrL

Standard DA Partial DA (Cao et al. 2018) Partial DA under

«extreme» setup
Source @ Target Target Source | Target Target
- Train - Train | - Test - Train - Train |l - Test

Source
- Train

Healthy  Healthy Healthy Healthy  Healthy  Healthy Healthy Healthy

Fault 1 Fault 1 Fault 1 Fault 1 Fault 1 Fault 1 Fault 1 Fault 1
Fault 2 Fault 2 Fault 2 Fault 2 Fault 2 Fault 2
Fault 3 Fault 3 Fault 3 Fault 3 Fault 3 Fault 3

Fault x Fault x Fault x Fault x Fault x Fault x

B 28.10.24
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=P7L  Visualization on Feature Space

DA in Real Life

Source - Target - ,l

Train Test ’

Healthy Unknown Healthy

Fault 1 Unknown Fault 1 .

Fault 2 Unknown Fault 2

Fault 3 Fault 3

Fault x Fault x . T

\/ Feature Visualization on DANN Method
Aligning Complete Source with Part of target features (Red) are aligned with
Partial Target is Wrong complete source data (Blue)

B 28.10.24
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Source Domain Target Domain

@ ® Healthy Samples in Source and Target Domain

0.24

A A
AsA A
A
A
é AA

“

(a) Partial Adapted Domain

A. Labeled Source Fault Samples

(b) Unilateral Adaptated Domain

Target Fault Samples Only Available for Testing

Wang, Qin, Gabriel Michau, and Olga Fink (2021): "Missing-Class-Robust Domain Adaptation by Unilateral Alignment", IEEE Transactions on Industrial Electronics, 68 (1), 663-671.
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=PFL Qur proposed approach

_________________ N . Intuition
[ Stagel | . Preserve discriminability
I ™ | learned from source.
a
S i i il
[13]
. Stage 1
l Source Data Feature Extractor’ Classifier’ I J .
SN———————— — e —————— — 7 *  Train a source feature
/ - Z\ ~ extractor
Stage 2 X \
%\
Lrons ° Stage 2

e Train the main net
. Make use of this additional

infA tA AAnAtriiAt A

R ,
‘Cco’ns = E Z Hf(:r?).} - f (I<9)j||1:
=1

Source Data )c — Classifier
e

fd La

— — — — — — — —

° L= ﬁcff + Ed + '\r.onsﬁcmz.r

/ parts.

Wang, Qin, Gabriel Michau, and Olga Fink (2021): "Missing-Class-Robust Domain Adaptation by Unilateral Alignment", IEEE Transactions on Industrial Electronics, 68 (1), 663-671.
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=PFL Results i

70 -
MNIST

_ 60 -
SOURCE X
&

TARGET g 501
1 g

MNIST-M 10

= Source-only Baseline
g DANN

307 o= DANN + Unilateral (Ours)

0 2 4 6 8
Number of Missing Classes in Target Training Data

B 28.10.24

Wang, Qin, Gabriel Michau, and Olga Fink (2021): "Missing-Class-Robust Domain Adaptation by Unilateral Alignment", IEEE Transactions on Industrial Electronics, 68 (1), 663-671.
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=PrL

ﬁ

Source

A A AFauItI

A,
A A,

healthy
Fault Il
0% ®
0% % e 0

B g mFaultll

Target at training time

Target at testing time
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=PFL  Transfer between operating conditions just
knowing the health!

= Same basic architecture
= Same budget for hyper-parameter tuning
=  Same optimizer and learning rate

Baseline |Unilateral

Bearing Case Study (CWRU)

alignment
. Ten Classes
One healthy class, Nine fault classes Mean 94 . 99% 98-07%
. Four Loads (Domains) ACCU racy

Transfer between different load conditions

Vibration Signals

B 28.10.24

Wang, Qin, Gabriel Michau, and Olga Fink (2021): "Missing-Class-Robust Domain Adaptation by Unilateral Alignment", IEEE Transactions on Industrial Electronics, 68 (1), 663-671.
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Reminder: Key concepts
of self supervision
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=PrL  Self-supervised leaming

= Pretext task - important strategy for learning data representations
under self-supervised mode

= Self-defined pseudo-labels

= Pseudo-labels automatically generated based on the attributes found in
the unlabeled data

B 28.10.24
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=PFL  Reminder: important pretext tasks

color transformations

geometric transformations
context-based tasks

cross-modal-based tasks

B 28.10.24
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=P7L Basic Idea of self-supervised leaming

Raw
Condition Encoder Feature Pretext
Monitoring Network Represen- task
Signals tation

Down-stream
task: e.g. fault
detection

B 28.10.24
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Self supervision for time
series data
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=PFL  Leaming Problem-agnostic Speech Representations
from Multiple Self-supervised Tasks

wavstorm| | LPS H""F,F°|\P“‘,?S°|| }'“A|| ?""LH ?P‘f| = Waveform: predict the input waveform

F U U f‘ in an auto-encoder fashion.
= Log power spectrum (LPS)
= Mel-frequency cepstral coefficients

T - (MFCC)
NETie0 = Prosody (four basic features per
t frame, namely the interpolated
ECEe L 5. logarithm of the fundamental

frequency, voiced/unvoiced probability,
zero-crossing rate, and energy)

'
= Local info max (LIM)
GMW"’“"‘ = Global info max (GIM)

= Sequence predicting coding (SPC)

Pascual, Santiago, Mirco Ravanelli, Joan Serra, Antonio Bonafonte, and Yoshua Bengio. "Learning Problem-Agnostic Speech Representations from Multiple
Self-Supervised Tasks}}." Proc. Interspeech 2019 (2019): 161-165.

| SincNet (251, 64, 1) ‘

B 28.10.24
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=P

L

from Multiple Self-supervised Tasks

Table 1: Accuracies using PASE and an MLP as classifier. Rows
below the “all workers” model report absolute accuracy loss
when discarding each worker for self-supervised training.

Model Classification accuracy [%]
Speaker-ID Emotion ASR
(VCTK)  (INTERFACE) (TIMIT)

PASE (All workers) 97.5 88.3 81.1
— Waveform —-1.3 -39 —0.3
— LPS —1.5 —-5.3 —0.5
— MFCC —-2.4 —-3.2 —0.7
— Prosody —0.5 -5.3 —0.1
— LIM —0.8 —-1.3 —0.0
— GIM —0.6 —0.5 -0.3
— SPC —0.4 —1.6 —0.0

B 28.10.24

Leaming Problem-agnostic Speech Representations

Table 2: Accuracy comparison on the considered classification

tasks using MLPs and RNNs as classifiers.

Model Classification accuracy [%]
Speaker-1D Emotion ASR
(VCTK) (INTERFACE) (TIMIT)
MLP RNN MLP RNN MLP RNN
MFCC 969 723 908 91.1 81.1 848
FBANK 98.4 75.1 94.1 928 809 &5.1
PASE-Supervised | 97.0 80.5 93.8 928 82.1 84.7
PASE-Frozen 97.3 825 915 928 814 84.7
PASE-FineTuned | 99.3 97.2 97.7 970 829 853

Pascual, Santiago, Mirco Ravanelli, Joan Serra, Antonio Bonafonte, and Yoshua Bengio. "Learning Problem-Agnostic Speech Representations from Multiple Self-

Supervised Tasks}}." Proc. Interspeech 2019 (2019): 161-165.
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=PFL  Multi-task self-supervised leaming for Robust

B 28.10.24

Speech Recoghnition

Workers

........................................................................

:[WaveH LPS | A5 “MFccHTg,?g ‘FBANK FLBSm;K"GAMMA ch')":q‘gAHpRosoH LI H GIM |, Disturbance p  Description
R s A [ . ‘P ----- T - T ------ ? ------ ‘f ----- 1 1----- - Reverberation 0.5 Convolution with a large set of impulse re-
\ sponses derived with the image method.
PASE Features UD [”] Additive Noise 0.4 Non-stationary noises from the FreeSound
PTTTTTTTTTTTTIS BN 1 ' Quasi-Recurrent Neural Network and the DIRHA datasets.
: _~"Linear (256) . ! Frequency Mask 0.4 Convolution with band-stop filters that ran-
i : EEEEEE domly drops one band of the spectrum.
§ Gy QRNN hy.1 > Recurrence Temporal Mask 0.2 Replacing a random number of consecu-
2 L l 72 No tive samples with zeros.
I 7 x Conviet e it ST § Clipping 0.2 Adding a random degree of saturation to
| sk N : simulate clipping conditions.
i onnections 1 Sch_ _e_t ________ Overlap Speech 0.1 Adding another speech signal in back-

| Speech Distortion

ground that overlaps with the main one.

T

Ravanelli, M., Zhong, J., Pascual, S., Swietojanski, P., Monteiro, J., Trmal, J., & Bengio, Y. (2020). Multi-task self-supervised learning for Robust Speech

Recognition. arXiv preprint arXiv:2001.09239.

Olga Fink 66



=PFL  Masked Reconstruction Based Self-Supervision

- Reconstruction at masked
@ Masked input bl ® timesteps ;
Encoder i
Fully
connected . )
layers _/
- \ A / — e

Weight 1ransfer; :
. Fine-tuning —> Standing
—> Running
MLP Classifier (Activity
Recognition)
/ \ /N —> Walking
—>  Sitting

B 28.10.24

Haresamudram, Harish, et al. "Masked reconstruction based self-supervision for human activity recognition." Proceedings of the 2020
international symposium on wearable computers. 2020.

Olga Fink 67



	Machine Learning for Predictive Maintenance Applications:�Domain adaptation approaches for PHM
	Recap: Batch Normalization
	Basic principle Batch Normalization
	Basic principle Batch Normalization
	Why domain adaptation / transfer learning?
	Some Challenges in Predictive Maintenance
	Example Gas Turbines
	Example Gas Turbines
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	What do we start with?
	What are we trying to achieve?
	Transfer learning / unsupervised Domain Adaptation
	Different types of domain changes (images)
	Transfer learning in  DL
	Transfer Learning
	Making use of trained models
	Relationship between traditional ML and various transfer learning settings
	Different types of transfer learning
	Traditional ML			vs	Transfer Learning�
	Transfer learning:  idea
	“Off-the-shelf”
	Fine-tuning: transfer learning
	Freeze or fine-tune?
	Unsupervised domain adaptation
	Domain Shift - Target domain different from Source domain 
	Unsupervised Domain Adaptation
	Transferability / Generalizability
	Case Study on CWRU(Case Western Reserve University) Bearing Dataset
	Basic Network 
	Background: Adaptive Batch Normalization (AdaBN)
	Maximum Mean Discrepancy
	Background: Maximum Mean Discrepancy Minization 
	Adversarial Training
	Adversarial Networks in DA
	Domain-Adversarial Training (DANN) in detail
	Domain-Adversarial Training (DANN)
	Feature alignment: all faults known
	Model Performance on CWRU Dataset 
	Model Efficiency
	Partial / Openset Domain adaptation
	Four DA configurations according to label space discrepancies
	Slide Number 52
	Visualization on Feature Space
	Our Proposed Method: Bilateral vs Unilateral
	Our proposed approach
	Results
	Feature alignment: only healthy condition in target known 
	Transfer between operating conditions just knowing the health!
	Reminder: Key concepts of self supervision
	Self-supervised learning
	Reminder: important pretext tasks
	Basic idea of self-supervised learning
	Self supervision for time series data
	Learning Problem-agnostic Speech Representations from Multiple Self-supervised Tasks
	Learning Problem-agnostic Speech Representations from Multiple Self-supervised Tasks
	Multi-task self-supervised learning for Robust Speech Recognition
	Masked Reconstruction Based Self-Supervision

