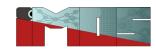


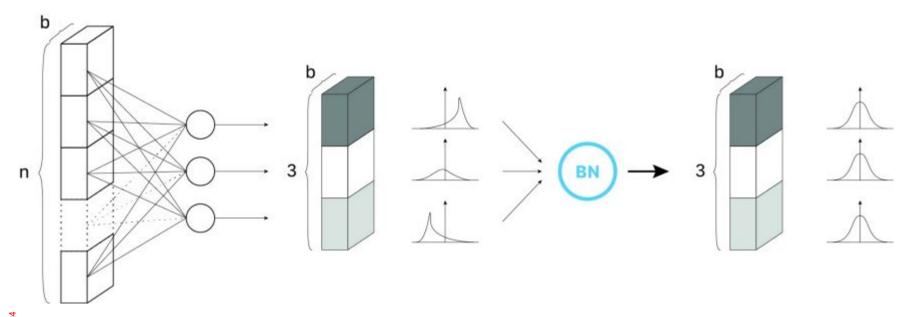
 École polytechnique fédérale

Recap: Batch Normalization

Basic principle Batch Normalization

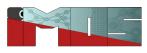


Makes the training faster and more stable



28.10.24

Basic principle Batch Normalization



(1)
$$\mu = \frac{1}{n} \sum_{i} Z^{(i)}$$

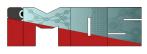
(1)
$$\mu = \frac{1}{n} \sum_{i} Z^{(i)}$$
 (2) $\sigma^2 = \frac{1}{n} \sum_{i} (Z^{(i)} - \mu)^2$

(3)
$$Z_{norm}^{(i)} = \frac{Z^{(i)} - \mu}{\sqrt{\sigma^2 - \epsilon}}$$
 (4) $\breve{Z} = \gamma * Z_{norm}^{(i)} + \beta$

- Normalizing activation vectors from hidden layers using the first and the second statistical moments (mean and variance) of the current batch
- Applied right before (or right after)
- Linear transformation with γ and β
- γ and β trainable parameters
- Allows the model to choose the optimum distribution for each hidden layer, by adjusting those two parameters:
- γ allows to adjust the standard deviation
- B allows to adjust the bias, shifting the curve on the right or on the left side.

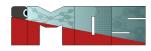
Why domain adaptation / transfer learning?

Some Challenges in Predictive Maintenance

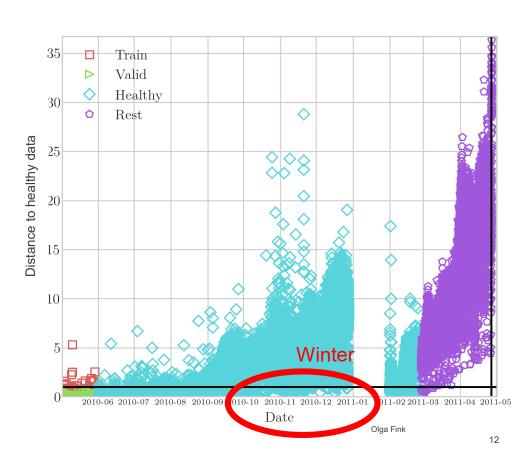


- Varying and evolving operating conditions → Even healthy system conditions are not always representative due to limited observation time period
- Algorithms also for systems required that are newly taken into operation

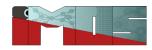
Example Gas Turbines



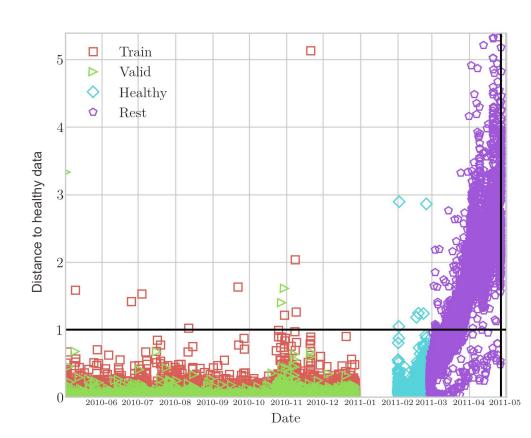
Only a short observation period



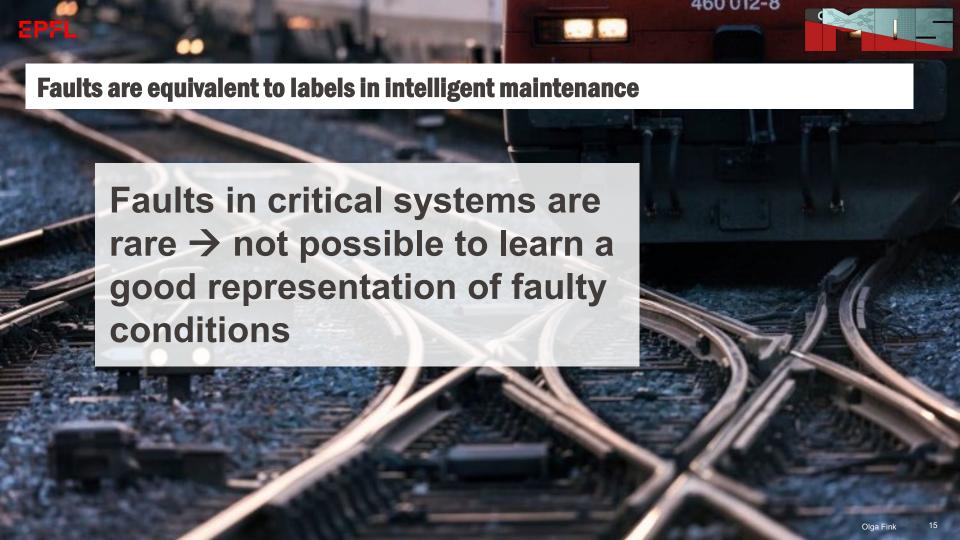
Example Gas Turbines

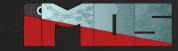


Extend the observation period



Success of supervised learning algorithms

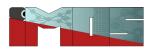




Potential solution?

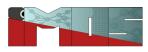
Not just one system but fleets of systems!

What do we start with?



- Limited number of faults (labels)
- Large variety of condition monitoring data under different operating conditions
- Several units of the same fleet (but units have variability in their configurations and operating conditions)
- Heterogenous operating conditions and configurations of the fleet units
- Limited observation time periods
- Limited representativeness of the collected data for the expected operating conditions

What are we trying to achieve?

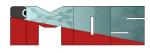


- Compile representative training datasets that are valid for the specific units under the specific operating conditions (homogeneous datasets)
- Using labeled and unlabeled data as efficiently as possible at the level of an entire fleet
- Develop also algorithms for new units
- Transferring knowledge (on operating conditions and faults) between the single units of a fleet
- Learn robust features that are invariant to different operating conditions

Transfer learning / unsupervised Domain Adaptation

28.10.24

Different types of domain changes (images)



low quality

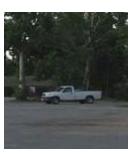
daylight

sunset

posed

"in the wild"

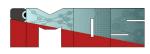
art



surveillance

Source: Saenko, 2012

Transfer learning in DL

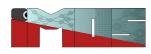


• Myth: you can't do deep learning unless you have a million labelled examples for your problem.

Reality

- You can learn useful representations from unlabelled data
- You can train on a nearby surrogate objective for which it is easy to generate labels → self-supervised learning
- You can transfer learned representations from a related task

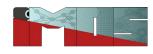
EPFL Transfer Learning



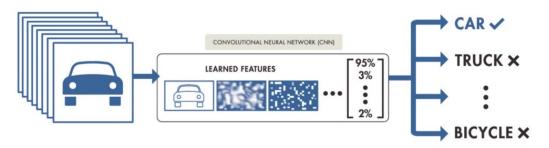
The ability to apply knowledge learned in previous tasks to novel tasks

- Similar on human learning.
- People can often transfer knowledge learnt previously to novel situations
 - Play classic piano →Play jazz piano
 - Maths → Machine Learning
 - Ride motorbike →Drive a car

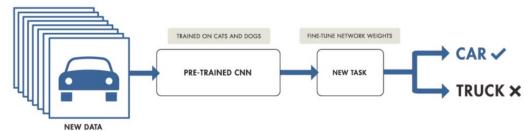
Making use of trained models



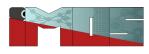
TRAINING FROM SCRATCH



TRANSFER LEARNING

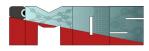


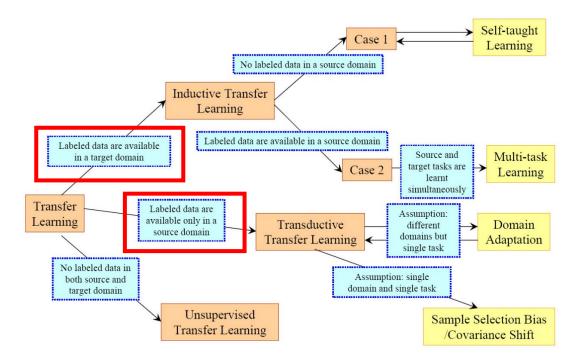
Relationship between traditional ML and various transfer learning settings



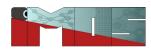
I	Learning Settings	Source and Target Domains	Source and Target Tasks		
Traditio	onal Machine Learning	the same	the same		
	Inductive Transfer Learning /	the same	different but related		
Transfer Learning	Unsupervised Transfer Learning	different but related	different but related		
	Transductive Transfer Learning	different but related	the same		

Different types of transfer learning



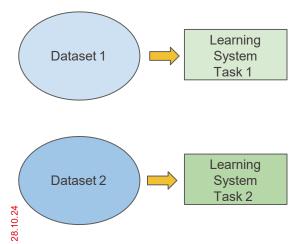


Source: S. J. Pan & Q. Yang, 2009



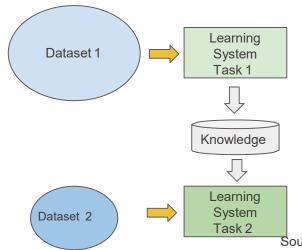
Traditional ML

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

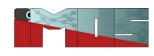


vs Transfer Learning

- Learning of a new task relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data



EPFL Transfer learning: idea

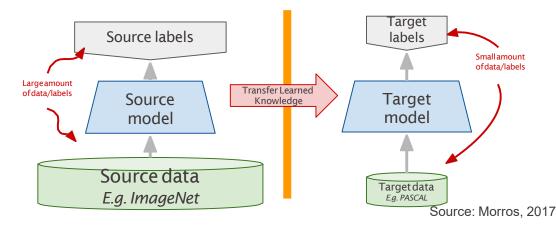


Instead of training a deep network from scratch for your task:

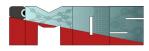
- Take a network trained on a different domain for a different source task
- Adapt it for your domain and your target task

Variations:

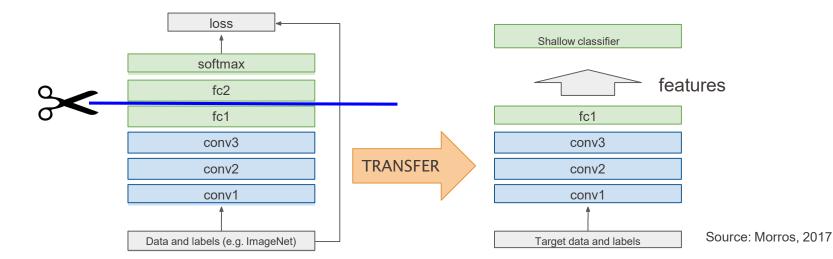
- Same domain, different task
- Different domain, same task



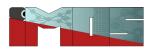
EPFL "Off-the-shelf"



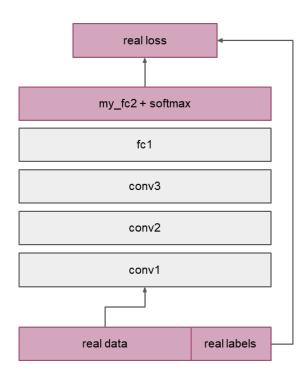
Idea: use outputs of one or more layers of a network trained on a different task as generic feature detectors. Train a new shallow model on these features.



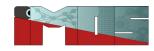
Fine-tuning: transfer learning



- Train deep net on "nearby" task for which it is easy to get labels using standard backprop
 - E.g. ImageNet classification
 - Pseudo classes from augmented data
- Cut off top layer(s) of network and replace with supervised objective for target domain
- **Fine-tune** network using backprop with labels for target domain until validation loss starts to increase



Freeze or fine-tune?



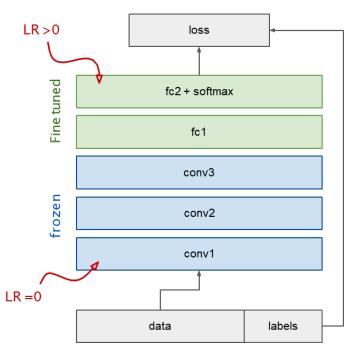
Bottom n layers can be frozen or fine tuned.

- Frozen: not updated during backprop
- Fine-tuned: updated during backprop

Which to do depends on target task:

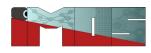
- **Freeze**: target task labels are scarce, and we want to avoid overfitting
- Fine-tune: target task labels are more plentiful

In general, we can set learning rates to be different for each layer to find a tradeoff between freezing and fine tuning



Source: Morros, 2017

Unsupervised domain adaptation



• Labeled training data from a source domain

$$\mathcal{D}_s = \{(\mathbf{x}_s^1, \mathbf{y}_s^1), ..., (\mathbf{x}_s^m, \mathbf{y}_s^m)\}, \mathbf{y}_s^i \in Y.$$

• Unlabeled data from a target domain

$$\mathcal{D}_t = \{\mathbf{x}_t^1, ..., \mathbf{x}_t^n\}.$$

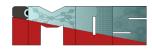
• Test data from the same target domain

$$\mathcal{D}_{test} = \{\mathbf{x}_{test}^1, ..., \mathbf{x}_{test}^o\},$$

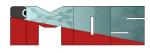
Source

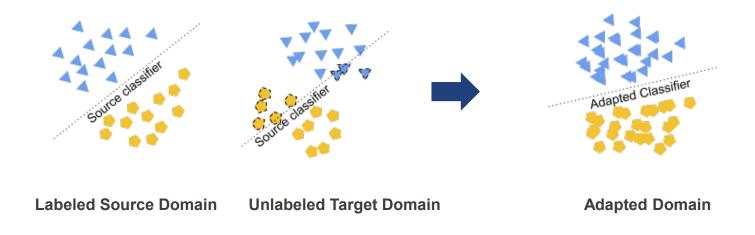
Domain Shift - Target domain different from Source domain

Target

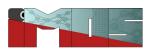


Unsupervised Domain Adaptation



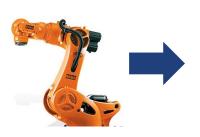


Transferability / Generalizability

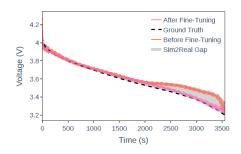


Between different operating conditions

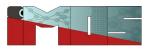
Between different units of a fleet



From simulated data to real conditions



Case Study on CWRU (Case Western Reserve University) Bearing Dataset



- Dataset information
 - Ten Classes classification

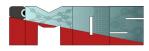
Fault	Class Label									
	0	1	2	3	4	5	6	7	8	9
Loc	NA ¹	IF	IF	IF	BF	BF	BF	OF	OF	OF
Size	0	7	14	21	7	14	21	7	14	21

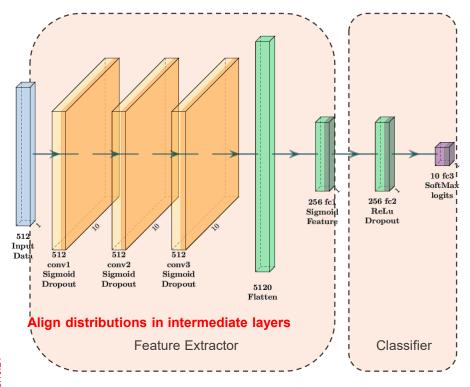
Four loads for domain adaptation
 Labeled source load, Unlabeled target load

Motor Load (HP)	Approx. Motor Speed (rpm)
0	1797
1	1772
2	1750
3	1730

- Data Preprocessing
 - 200 sequences of 1024 points for each recording
 - each converted to 512D Fourier coefficients by FFT

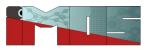
Basic Network

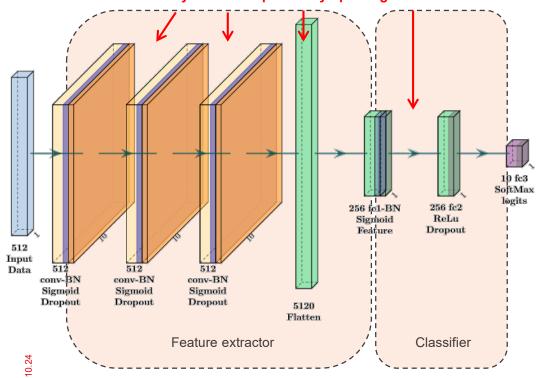




- Feature Extractor
 - Three convolutional layers
 - Flatten and dense layer
- Classifier
 - Fully-connected Layer
- How should we add domain adaptation ability to this network?

Background: Adaptive Batch Normalization (AdaBN)

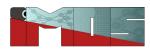


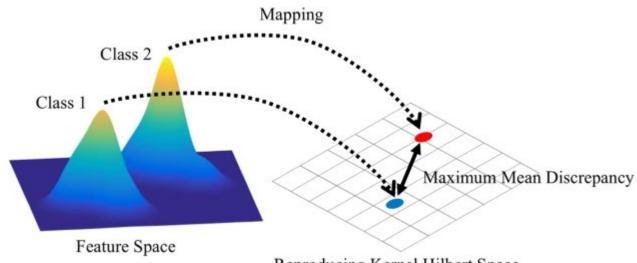


$$\hat{x}_j = \frac{x_j - \mathbb{E}[x_{\cdot j}]}{\sqrt{Var[x_{\cdot j}]}}$$
$$y_j = \gamma_j \hat{x}_j + \beta_j,$$

- Idea
 Keep different batch norm statistics for source and target.
- Pros
 Simplicity. Very little computational resource required.
- Cons
 Performance not optimized

Maximum Mean Discrepancy





Reproducing Kernel Hilbert Space

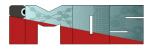
$$\mathcal{L}_{\mathrm{D}}(\mathbf{X}^{\mathrm{s}},\mathbf{X}^{\mathrm{t}}) = \mathrm{MMD}(\mathbf{X}^{\mathrm{s}},\mathbf{X}^{\mathrm{t}}) = \left\| \frac{1}{n^{\mathrm{s}}} \sum_{i=1}^{n^{\mathrm{s}}} \phi(\mathbf{x}_{i}^{\mathrm{s}}) - \frac{1}{n^{\mathrm{t}}} \sum_{j=1}^{n^{\mathrm{t}}} \phi(\mathbf{x}_{j}^{\mathrm{t}}) \right\|_{\mathcal{H}}^{2}$$

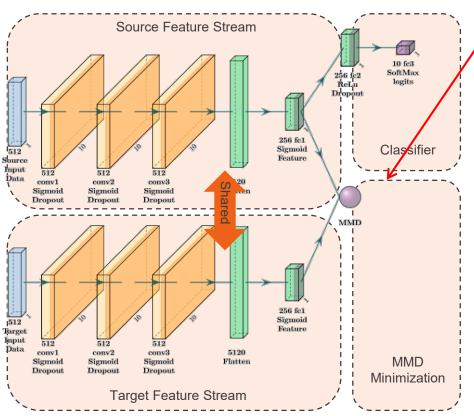
φ: mapping function

X5: feature matrix in source domain

X^t: feature matrix in target domain

Background: Maximum Mean Discrepancy Minization

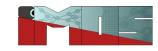


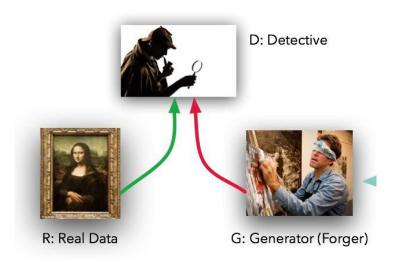


Estimate distribution difference between source and target features by MMD.

- Idea
 - MMD as an additional loss to minimize.
- Pros
 - MMD directly estimates the distance between source and target distributions.
- Cons
 - Multiple kernels are needed in reality, leads to dramatically increased model complexity

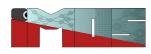
EPFL Adversarial Training





Generative Adversarial Networks (GAN)

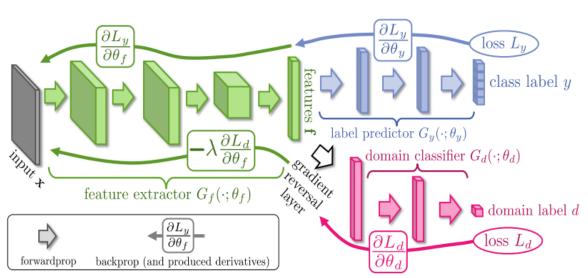
Adversarial Networks in DA



Adversarial networks

EPFL

Domain-Adversarial Training (DANN) in detail



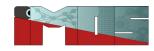
$$E(\theta_f, \theta_y, \theta_d) = \sum_{\substack{i=1..N\\d_i=0}} L_y \left(G_y(G_f(\mathbf{x}_i; \theta_f); \theta_y), y_i \right) - \lambda \sum_{\substack{i=1..N\\d_i=0}} L_d \left(G_d(G_f(\mathbf{x}_i; \theta_f); \theta_d), y_i \right) =$$

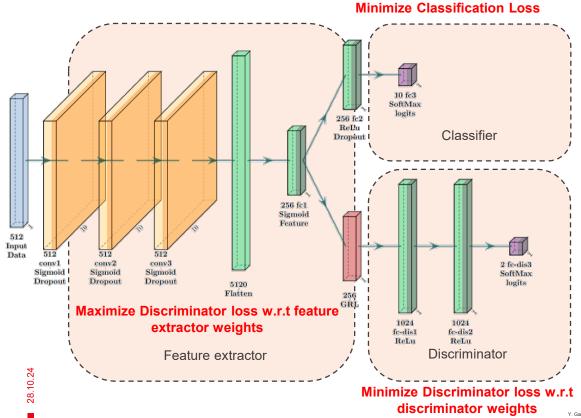
$$= \sum_{\substack{i=1..N\\d..=0}}^{i=1..N} L_y^i(\theta_f, \theta_y) - \lambda \sum_{\substack{i=1..N\\d..=0}} L_d^i(\theta_f, \theta_d)$$

$$(\hat{\theta}_f, \hat{\theta}_y) = \arg\min_{\theta_f, \theta_y} E(\theta_f, \theta_y, \hat{\theta}_d)$$
$$\hat{\theta}_d = \arg\max_{\theta_d} E(\hat{\theta}_f, \hat{\theta}_y, \theta_d).$$

- f: feature extractor
- v: classifier
- d: discriminator

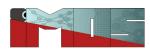
Domain-Adversarial Training (DANN)

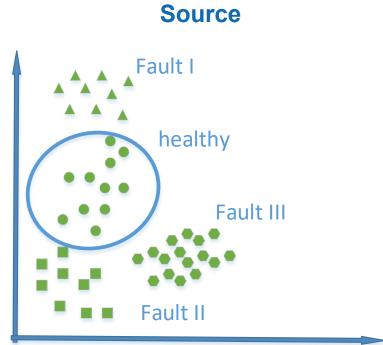


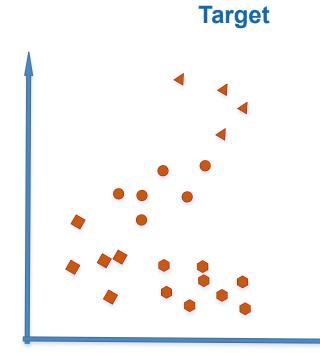


- Strategy: Discriminator
 - Train a discriminator to distinguish between target and source
 - Force the feature extractor to generate unbiased features

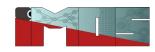
Feature alignment: all faults known







Model Performance on CWRU Dataset

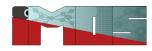


- Same basic architecture
- Same budget for hyper-parameter tuning
- Same optimizer and learning rate

	Baseline	AdaBN	MMD	DANN
3-1	89.42%	94.42%	98.53%	98.41%
0-2	93.65%	99.30%	99.98%	99.96%
Mean Accuracy	94.99%	97.82%	99.42%	99.07%

Average over 5 runs, trained on a NVIDIA GTX 1080

Model Efficiency



	Baseline	AdaBN	MMD	DANN
Mean Accuracy	94.99%	97.82%	99.42%	99.07%
Training Time	84 s	133 s	266 s	177 s

Linear Linear C

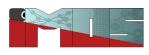
Quadratic

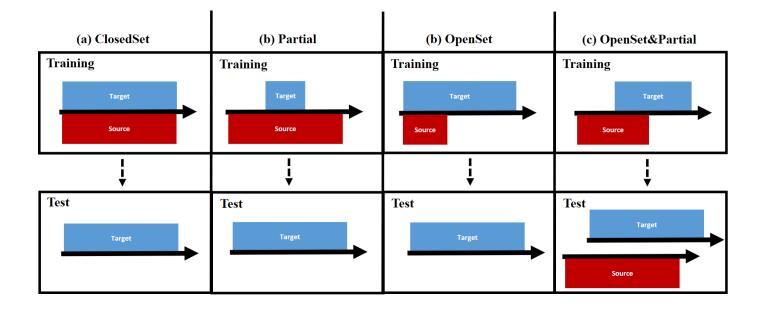
Linear

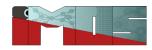
w.r.t. # training samples

Partial / Openset Domain adaptation

Four DA configurations according to label space discrepancies







Standard DA

Partial DA (Cao et al. 2018)

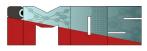
Partial DA under «extreme» setup

Source - Train	Target - Train	Target - Test
Healthy	Healthy	Healthy
Fault 1	Fault 1	Fault 1
Fault 2	Fault 2	Fault 2
Fault 3	Fault 3	Fault 3
Fault x	Fault x	Fault x

Source - Train	Target - Train	Target - Test
Healthy	Healthy	Healthy
Fault 1	Fault 1	Fault 1
Fault 2		
Fault 3		
Fault x		

		•
Source - Train	Target - Train	Target - Test
Healthy	Healthy	Healthy
Fault 1		Fault 1
Fault 2		Fault 2
Fault 3		Fault 3
Fault x		Fault x

Visualization on Feature Space



DA in Real Life

Train	Train	Target - Test		
Healthy	Unknown	Healthy		
Fault 1	Unknown	Fault 1		
Fault 2	Unknown	Fault 2		
Fault 3		Fault 3		
Fault x		Fault x		

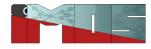
Partial Target is Wrong

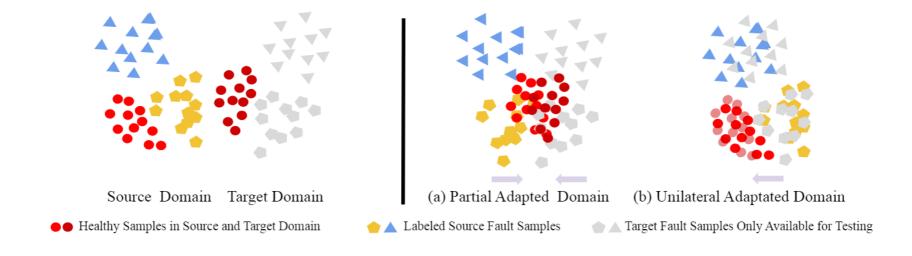
DANN

Feature Visualization on DANN Method Part of target features (Red) are aligned with complete source data (Blue)

EPFL

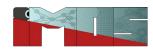
Our Proposed Method: Bilateral vs Unilateral

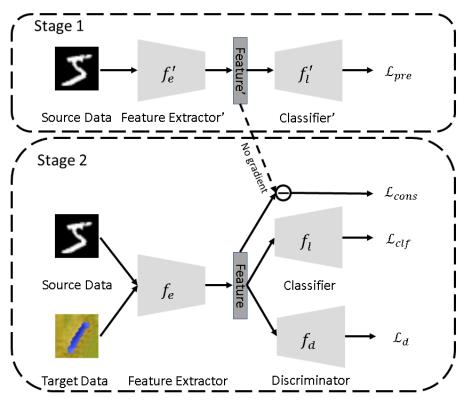




🛱 ang, Qin, Gabriel Michau, and Olga Fink (2021): "Missing-Class-Robust Domain Adaptation by Unilateral Alignment", IEEE Transactions on Industrial Electronics, 68 (1), 663-671.

Our proposed approach



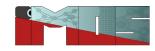


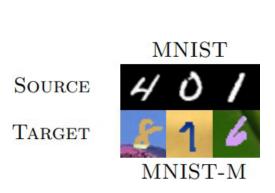
- Intuition
 - Preserve discriminability learned from source.
- Stage 1
 - Train a source feature extractor
- Stage 2
 - Train the main net
 - Make use of this additional info to construct a

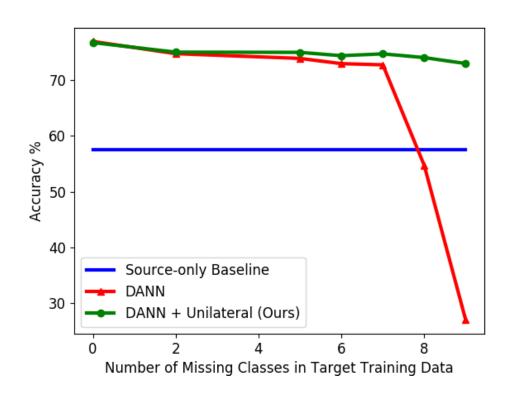
$$\mathcal{L}_{cons} = \frac{1}{K} \sum_{j=1}^{K} ||f(x_s)_j - f'(x_s)_j||_1,$$

• $\mathcal{L} = \mathcal{L}_{clf} + \mathcal{L}_d + \lambda_{cons} \mathcal{L}_{cons}$ paris.

EPFL Results

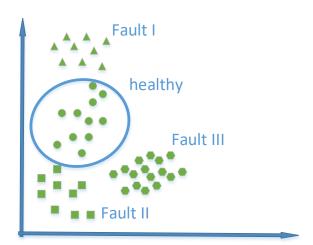




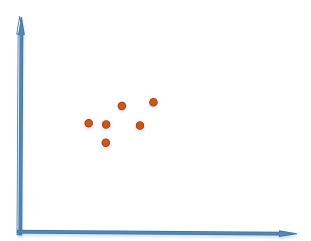


Feature alignment: only healthy condition in talgetknown

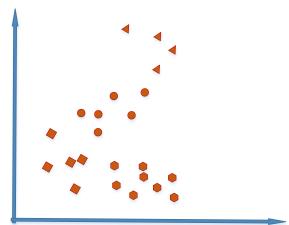
Source



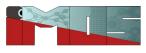
Target at training time



Target at testing time



Transfer between operating conditions just knowing the health!



Bearing Case Study (CWRU)

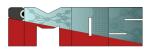
- Ten Classes One healthy class, Nine fault classes
- Four Loads (Domains)
- Transfer between different load conditions
- Vibration Signals

- Same basic architecture
- Same budget for hyper-parameter tuning
- Same optimizer and learning rate

		Unilateral alignment
Mean Accuracy	94.99%	98.07%

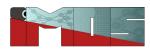
Reminder: Key concepts of self supervision

Self-supervised learning



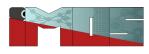
- Pretext task → important strategy for learning data representations under self-supervised mode
- Self-defined pseudo-labels
- Pseudo-labels automatically generated based on the attributes found in the unlabeled data

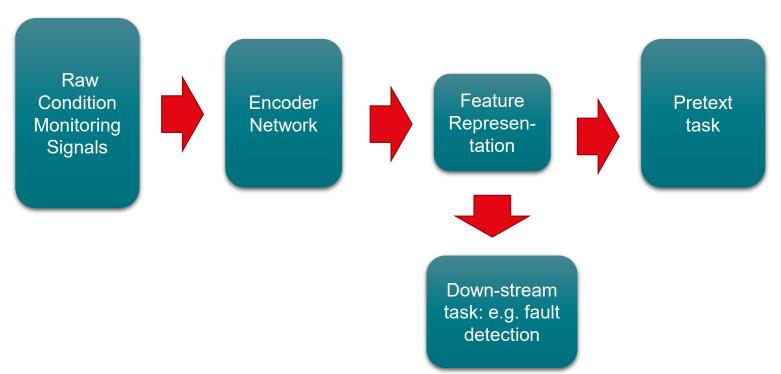
Reminder: important pretext tasks



- color transformations
- geometric transformations
- context-based tasks
- cross-modal-based tasks

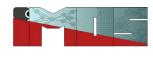
Basic idea of self-supervised learning

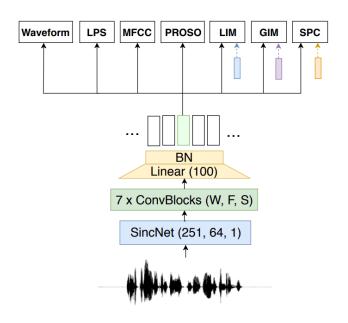




Self supervision for time series data

Learning Problem-agnostic Speech Representations from Multiple Self-supervised Tasks





- Waveform: predict the input waveform in an auto-encoder fashion.
- Log power spectrum (LPS)
- Mel-frequency cepstral coefficients (MFCC)
- Prosody (four basic features per frame, namely the interpolated logarithm of the fundamental frequency, voiced/unvoiced probability, zero-crossing rate, and energy)
- Local info max (LIM)
- Global info max (GIM)
- Sequence predicting coding (SPC)

Pascual, Santiago, Mirco Ravanelli, Joan Serrà, Antonio Bonafonte, and Yoshua Bengio. "Learning Problem-Agnostic Speech Representations from Multiple Self-Supervised Tasks}}." Proc. Interspeech 2019 (2019): 161-165.

Learning Problem-agnostic Speech Representations from Multiple Self-supervised Tasks

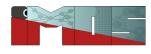


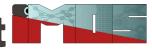
Table 1: Accuracies using PASE and an MLP as classifier. Rows below the "all workers" model report absolute accuracy loss when discarding each worker for self-supervised training.

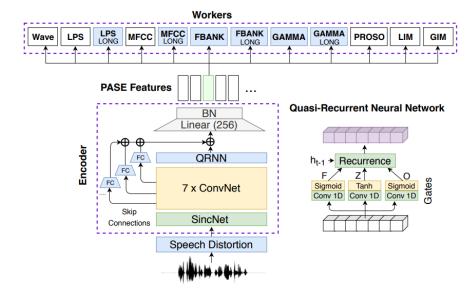
Model Classification accuracy [%] Speaker-ID Emotion ASR (VCTK) (INTERFACE) (TIMIT) PASE (All workers) 97.5 88.3 81.1 Waveform -1.3-3.9-0.3-LPS-1.5-5.3-0.5- MFCC -2.4-3.2-0.7-0.5-5.3- Prosody -0.1- LIM -0.8-1.3-0.0- GIM -0.6-0.5-0.3- SPC -0.4-1.6-0.0

Table 2: Accuracy comparison on the considered classification tasks using MLPs and RNNs as classifiers.

Model	Classification accuracy [%]					
	Speaker-ID		Emotion		ASR	
	(VCTK)		(INTERFACE)		(TIMIT)	
	MLP	RNN	MLP	RNN	MLP	RNN
MFCC	96.9	72.3	90.8	91.1	81.1	84.8
FBANK	98.4	75.1	94.1	92.8	80.9	85.1
PASE-Supervised	97.0	80.5	93.8	92.8	82.1	84.7
PASE-Frozen	97.3	82.5	91.5	92.8	81.4	84.7
PASE-FineTuned	99.3	97.2	97.7	97.0	82.9	85.3

Multi-task self-supervised learning for Robust Speech Recognition





Disturbance	p	Description
Reverberation	0.5	Convolution with a large set of impulse responses derived with the image method.
Additive Noise	0.4	Non-stationary noises from the FreeSound and the DIRHA datasets.
Frequency Mask	0.4	Convolution with band-stop filters that randomly drops one band of the spectrum.
Temporal Mask	0.2	Replacing a random number of consecutive samples with zeros.
Clipping	0.2	
Overlap Speech	0.1	Adding another speech signal in background that overlaps with the main one.

Masked Reconstruction Based Self-Supervision

