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Recap: Batch 
Normalization

28
.1

0.
24

Olga Fink 7



Basic principle Batch Normalization
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 Makes the training faster and more stable

Source: Huber, 2020



 Normalizing activation vectors 
from hidden layers using the first 
and the second statistical moments 
(mean and variance) of the current 
batch. 

 Applied right before (or right after)
 Linear transformation with 𝛾𝛾 and 𝛽𝛽
 𝛾𝛾 and 𝛽𝛽 trainable parameters 
 Allows the model to choose the 

optimum distribution for each hidden 
layer, by adjusting those two 
parameters :

 𝛾𝛾 allows to adjust the standard 
deviation 

 𝛽𝛽 allows to adjust the bias, shifting the 
curve on the right or on the left side.

Basic principle Batch Normalization
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Why domain adaptation / 
transfer learning?
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 Varying and evolving operating conditions  Even healthy system
conditions are not always representative due to limited observation time 
period
 Algorithms also for systems required that are newly taken into operation

Some Challenges in Predictive Maintenance
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Example Gas Turbines
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Only a short observation period
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Example Gas Turbines
28

.1
0.

24

Olga Fink 13

Extend the 
observation period
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Typically, supervision 
for the training of the 
algorithms required! 
LABELS!!!

Success of supervised learning algorithms
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Faults are equivalent to labels in intelligent maintenance

Faults in critical systems are
rare  not possible to learn a 
good representation of faulty
conditions
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How about a new system?

How long do we have to wait until we get reliable 
fault detection (diagnostics)?



Potential solution?

Not just one system but fleets of systems!
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Fleets of complex systems?
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Fleets of complex systems?



 Limited number of faults (labels)
 Large variety of condition monitoring data under different operating

conditions
 Several units of the same fleet (but units have variability in their

configurations and operating conditions)
 Heterogenous operating conditions and configurations of the fleet units
 Limited observation time periods
 Limited representativeness of the collected data for the expected

operating conditions

What do we start with?
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 Compile representative training datasets that are valid for the specific
units under the specific operating conditions (homogeneous datasets)
 Using labeled and unlabeled data as efficiently as possible at the level

of an entire fleet
 Develop also algorithms for new units
 Transferring knowledge (on operating conditions and faults) between

the single units of a fleet
 Learn robust features that are invariant to different operating conditions

What are we trying to achieve?
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Transfer learning / 
unsupervised Domain 
Adaptation
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daylight sunset

posed “in the wild”
art surveillance

Different types of domain changes (images)
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high quality low quality

Source: Saenko, 2012



 Myth: you can’t do deep learning unless you have a million 
labelled examples for  your problem.

 Reality

● You can learn useful representations from unlabelled data
● You can train on a nearby surrogate objective for which it is 

easy to generate  labels  self-supervised learning
● You can transfer learned representations from a related task

Transfer learning in DL
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Source: Morros, 2017



 The ability to apply knowledge learned in previous 
tasks to novel tasks
● Similar on human learning. 

● People can often transfer knowledge learnt  previously to 
novel situations

○ Play classic piano →Play jazz piano
○ Maths →Machine Learning
○ Ride motorbike →Drive a car

Transfer Learning
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Source: Morros, 2017



Making use of trained models
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Source: H. Davidson Regua, 2020



Relationship between traditional ML and
various transfer learning settings
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Source: S. J. Pan & Q. Yang, 2009



Different types of transfer learning
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Source: S. J. Pan & Q. Yang, 2009



● Isolated, single task learning:
○ Knowledge is not retained or  

accumulated. Learning is
performed
w.o. considering past
learned  knowledge in 
other tasks
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Traditional ML vs TransferLearning
● Learning of a new task relies

on  the previous learned
tasks:
○ Learning process can be faster, 

more  accurate and/or need less 
training data

Dataset 1
Learning
System
Task 1

Dataset 2
Learning
System
Task 2

Dataset 1

Dataset  2

Learning
System
Task 1

Knowledge

Learning
System
Task 2

Source: Morros, 2017



Transfer learning: idea
28

.1
0.

24

Olga Fink 30

Instead of training a deep network from scratch for your task:

● Take a network trained on a different domain for a different source task
● Adapt it for your domain and your target task

Variations:

● Same domain, different task
● Different domain, same task

Sourcedata
E.g. ImageNet

Source  
model

Source labels

Targetdata
E.g. PASCAL

Target  
model

Target  
labels

TransferLearned  
Knowledge

Largeamount 
ofdata/labels

Smallamount  
ofdata/labels

Source: Morros, 2017



“Off-the-shelf”
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Idea: use outputs of one or more layers of a network trained on a different task as  
generic feature detectors. Train a new shallow model on these features.

conv2

conv3

fc1

conv1

loss

Data and labels (e.g. ImageNet)

fc2

softmax

TRANSFER

Shallow classifier

conv2

conv3

fc1

conv1

Target data and labels

features

Source: Morros, 2017



 Train deep net on “nearby” task for which it is easy  to 
get labels using standard backprop

● E.g. ImageNet classification
● Pseudo classes from augmented data

 Cut off top layer(s) of network and replace with  
supervised objective for target domain

 Fine-tune network using backprop with labels for  
target domain until validation loss starts to increase

Fine-tuning: transfer learning
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Source: Morros, 2017



Freeze or fine-tune?
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Bottom n layers can be frozen or fine tuned.

● Frozen: not updated during backprop
● Fine-tuned: updated during backprop

Which to do depends on target task:

● Freeze: target task labels are scarce, and we  
want to avoid overfitting

● Fine-tune: target task labels are more plentiful

In general, we can set learning rates to be different  
for each layer to find a tradeoff between freezing  
and fine tuning

Source: Morros, 2017



Unsupervised domain adaptation
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Domain Shift - Target domain different from 
Source domain 
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Source                                                                        Target



Unsupervised Domain Adaptation
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Labeled Source Domain       Unlabeled Target Domain                                Adapted Domain



Transferability / Generalizability
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 Between different operating conditions

 From simulated data to real conditions Between different units of a fleet

|
Wang, Qin, Gabriel Michau, and Olga Fink (2021): "Missing-Class-Robust Domain Adaptation by Unilateral Alignment", IEEE Transactions on Industrial Electronics, 68 (1), 663-671.



Case Study on CWRU(Case Western Reserve University) Bearing 
Dataset
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• Dataset information
• Ten Classes classification

• Four loads for domain adaptation
Labeled source load, Unlabeled target load

• Data Preprocessing
• 200 sequences of 1024 points for each recording
• each converted to 512D Fourier coefficients by FFT



ClassifierFeature Extractor

Basic Network
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• Feature Extractor
• Three convolutional layers
• Flatten and dense layer

• Classifier 
• Fully-connected Layer

• How should we add domain 
adaptation ability to this network?

Align distributions in intermediate layers

[14] X. Li, W. Zhang, and Q. Ding, “Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks,” IEEE Transactions on Industrial Electronics, 2018.



ClassifierFeature extractor

Background: Adaptive Batch Normalization 
(AdaBN)
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• Idea
Keep different batch norm 
statistics for source and target.

• Pros
Simplicity. Very little 
computational resource 
required. 

• Cons
Performance not optimized

Layer wise adaptation by updating statistics



Maximum Mean Discrepancy
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MMD 
Minimization

Classifier

Target Feature Stream

Source Feature Stream

Background: Maximum Mean Discrepancy 
Minization
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• Idea
MMD as an additional loss to 
minimize.

• Pros
MMD directly estimates the 
distance between source and target 
distributions.

• Cons
Multiple kernels are needed in 
reality, leads to dramatically 
increased model complexity

Estimate distribution difference between source and 
target features by MMD. 

X. Li, W. Zhang, Q. Ding, and J.-Q. Sun, “Multi-layer domain adaptation method for rolling bearing fault diagnosis,” Signal Processing, vol. 157, pp. 180–197, 2019.

Shared



Adversarial Training
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Figure 1 https://github.com/devnag/pytorch-generative-adversarial-networks

Generative Adversarial Networks (GAN)



Adversarial Networks in DA
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Domain adaptation for deep learning , Kate Saenko



Domain-Adversarial Training (DANN) in detail
28

.1
0.

24

Olga Fink 45

Y. Ganin and V. Lempitsky, “Unsupervised domain adaptationby backpropagation,” International Conference on Machine Learning. 2015.

f: feature extractor
y: classifier
d: discriminator



Classifier

Feature extractor

Domain-Adversarial Training (DANN)
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• Strategy: Discriminator
• Train a discriminator to 

distinguish between 
target and source

• Force the feature 
extractor to generate 
unbiased features

Discriminator

Minimize Classification Loss

Minimize Discriminator loss w.r.t 
discriminator weights Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” arXiv preprint arXiv:1409.7495, 2014

Maximize Discriminator loss w.r.t feature 
extractor weights



Feature alignment: all faults known
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Source

healthy

Fault III

Fault I

Fault II

Target

|



Model Performance on CWRU Dataset 
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Baseline AdaBN MMD DANN

3-1 89.42% 94.42% 98.53% 98.41%

0-2 93.65% 99.30% 99.98% 99.96%

... ... ... ... ...
Mean Accuracy 94.99% 97.82% 99.42% 99.07%

• Same basic architecture
• Same budget for hyper-parameter tuning
• Same optimizer and learning rate

Average over 5 runs, trained on a NVIDIA GTX 1080 



Model Efficiency
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Baseline AdaBN MMD DANN

Mean Accuracy 94.99% 97.82% 99.42% 99.07%

Training Time 84 s 133 s 266 s 177 s

Linear              Linear                 Quadratic               Linear  

w.r.t. # training samples 



Partial / Openset Domain 
adaptation
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Four DA configurations according to label 
space discrepancies
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Rombach, K., G. Michau & O. Fink: Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation, Reliability Engineering and
System Safety



Partial DA under
«extreme» setup

Source
- Train
Healthy

Fault 1

Fault 2

Fault 3

Fault x

Target
- Train
Healthy

Fault 1

Fault 2

Fault 3

Fault x

Target
- Test
Healthy

Fault 1

Fault 2

Fault 3

Fault x

Standard DA

Source
- Train
Healthy

Fault 1

Fault 2

Fault 3

Fault x

Target
- Train
Healthy

Fault 1

Target
- Test
Healthy

Fault 1

Partial DA (Cao et al. 2018)

Source
- Train
Healthy

Fault 1

Fault 2

Fault 3

Fault x

Target
- Train
Unknown

Unknown

Unknown

Target
- Test
Healthy

Fault 1

Fault 2

Fault 3

Fault x
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Target
- Train
Healthy



Visualization on Feature Space
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Source -
Train

Healthy

Fault 1

Fault 2

Fault 3

Fault x

Target -
Train

Unknown

Unknown

Unknown

Target -
Test

Healthy

Fault 1

Fault 2

Fault 3

Fault x

DA in Real Life

Aligning Complete Source with 
Partial Target is Wrong

Feature Visualization on DANN Method
Part of target features (Red) are aligned with 

complete source data (Blue)



Our Proposed Method: Bilateral vs Unilateral
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Wang, Qin, Gabriel Michau, and Olga Fink (2021): "Missing-Class-Robust Domain Adaptation by Unilateral Alignment", IEEE Transactions on Industrial Electronics, 68 (1), 663-671.



Our proposed approach
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• Intuition
• Preserve discriminability 

learned from source.

• Stage 1
• Train a source feature 

extractor 

• Stage 2
• Train the main net
• Make use of this additional 

info to construct a 
consistency loss

• Final loss contains three 
parts.

Wang, Qin, Gabriel Michau, and Olga Fink (2021): "Missing-Class-Robust Domain Adaptation by Unilateral Alignment", IEEE Transactions on Industrial Electronics, 68 (1), 663-671.



Results
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Wang, Qin, Gabriel Michau, and Olga Fink (2021): "Missing-Class-Robust Domain Adaptation by Unilateral Alignment", IEEE Transactions on Industrial Electronics, 68 (1), 663-671.



Feature alignment: only healthy condition in target
known
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Source

healthy

Fault III

Fault I

Fault II

 

 

 

Target at training time Target at testing time



Transfer between operating conditions just 
knowing the health!
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Baseline Unilateral 
alignment

Mean 
Accuracy

94.99% 98.07%

Bearing Case Study (CWRU) 

• Ten Classes
One healthy class, Nine fault classes

• Four Loads (Domains)
• Transfer between different load conditions
• Vibration Signals

 Same basic architecture
 Same budget for hyper-parameter tuning
 Same optimizer and learning rate

Wang, Qin, Gabriel Michau, and Olga Fink (2021): "Missing-Class-Robust Domain Adaptation by Unilateral Alignment", IEEE Transactions on Industrial Electronics, 68 (1), 663-671.



Reminder: Key concepts 
of self supervision
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 Pretext task  important strategy for learning data representations 
under self-supervised mode
 Self-defined pseudo-labels
 Pseudo-labels automatically generated based on the attributes found in 

the unlabeled data

Self-supervised learning
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 color transformations
 geometric transformations
 context-based tasks
 cross-modal-based tasks

Reminder: important pretext tasks
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Basic idea of self-supervised learning

Encoder 
Network

Pretext
task

Feature 
Represen-

tation

Raw
Condition
Monitoring 

Signals

Down-stream 
task: e.g. fault 

detection
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Self supervision for time 
series data
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Learning Problem-agnostic Speech Representations 
from Multiple Self-supervised Tasks
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 Waveform: predict the input waveform 
in an auto-encoder fashion.
 Log power spectrum (LPS)
 Mel-frequency cepstral coefficients

(MFCC)
 Prosody (four basic features per 

frame, namely the interpolated 
logarithm of the fundamental 
frequency, voiced/unvoiced probability, 
zero-crossing rate, and energy)
 Local info max (LIM)
 Global info max (GIM)
 Sequence predicting coding (SPC)

Pascual, Santiago, Mirco Ravanelli, Joan Serrà, Antonio Bonafonte, and Yoshua Bengio. "Learning Problem-Agnostic Speech Representations from Multiple 
Self-Supervised Tasks}}." Proc. Interspeech 2019 (2019): 161-165.



Learning Problem-agnostic Speech Representations 
from Multiple Self-supervised Tasks
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Pascual, Santiago, Mirco Ravanelli, Joan Serrà, Antonio Bonafonte, and Yoshua Bengio. "Learning Problem-Agnostic Speech Representations from Multiple Self-
Supervised Tasks}}." Proc. Interspeech 2019 (2019): 161-165.



Multi-task self-supervised learning for Robust 
Speech Recognition
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Ravanelli, M., Zhong, J., Pascual, S., Swietojanski, P., Monteiro, J., Trmal, J., & Bengio, Y. (2020). Multi-task self-supervised learning for Robust Speech 
Recognition. arXiv preprint arXiv:2001.09239.



Masked Reconstruction Based Self-Supervision
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Haresamudram, Harish, et al. "Masked reconstruction based self-supervision for human activity recognition." Proceedings of the 2020 
international symposium on wearable computers. 2020.
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