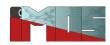


 École polytechnique fédérale

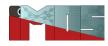
Condition / Health indicators

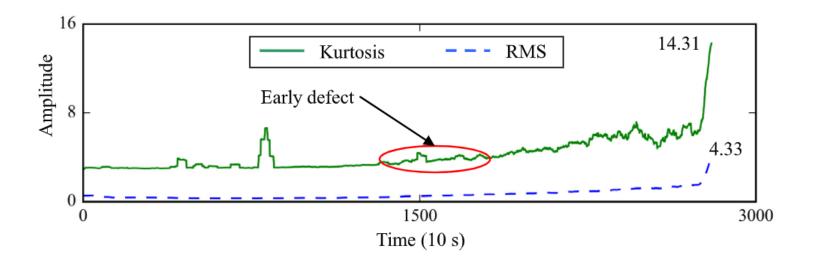
Condition indicators



- A condition indicator is a feature of system data whose behavior changes in a predictable way as the system degrades or operates in different operational modes.
- A condition indicator can be any feature that is useful for distinguishing normal from faulty operation or for predicting remaining useful life.

Condition indicators: example

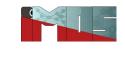


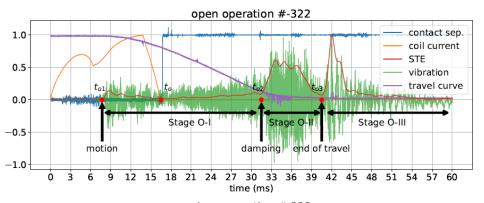


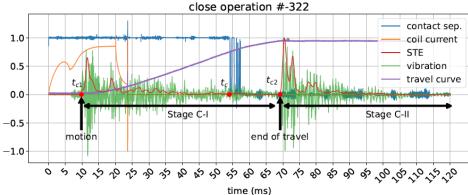
Source: Guo et. al 2017

13

Example signals (normalised) collected during open and close operation of a circuit breaker





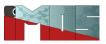


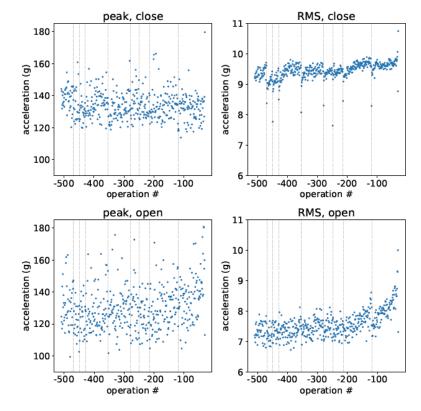
C.-(

C.-C. Hsu , G. Frusque , O. Fink , & C. M. Franck: Condition Monitoring on a High Voltage Gas Circuit Breaker using Vibration Signals in a Runto-Failure Experiment

Olga Fink

Condition indicators of a circuit breaker

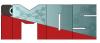


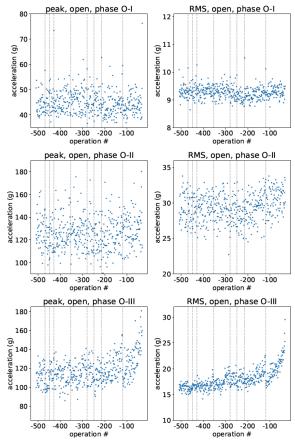


C.-C. Hsu , G. Frusque , O. Fink , & C. M. Franck: Condition Monitoring on a High Voltage Gas Circuit Breaker using Vibration Signals in a Runto-Failure Experiment

Olga Fink

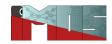
Condition indicators of a circuit breaker





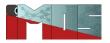
C.-C. Hsu , G. Frusque , O. Fink , & C. M. Franck: Condition Monitoring on a High Voltage Gas Circuit Breaker using Vibration Signals in a Runto-Failure Experiment

Condition vs. Health Indicators



 Health indicators consist of the integration of several condition indicators into one value that provides the health status of the component to the end user.

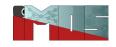
Desired characteristics of health / condition indicators

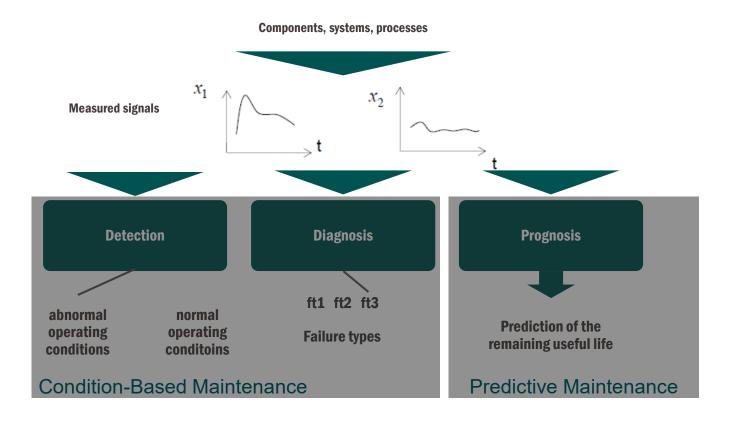


- Monotonicity
- Robusstness
- Adaptability

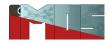
Prognostics

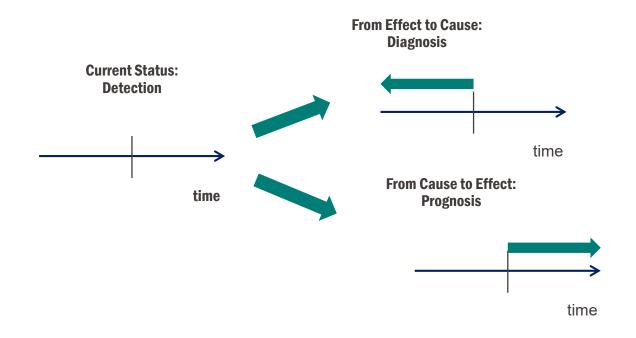
Prognostics and health management (PHM)





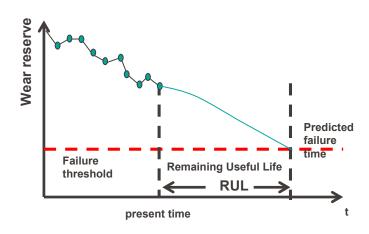
Detection, Diagnosis, Prognosis





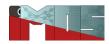
Prognostic Term Definitions

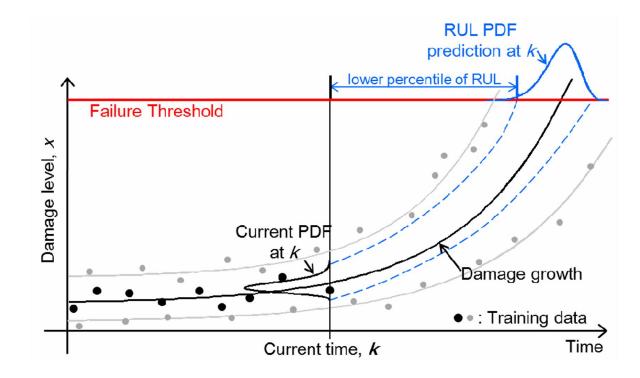
- Remaining Useful Life (RUL): the amount of time, in terms of operating hours, cycles, or other measures the component will continue to meet its design specification
- Time of Failure (ToF): the time a component is expected to fail (no longer meet its design specifications).
- Probability of Failure (PoF): the failure probability distribution of the component.
- End of Life (EoL) refers to a failure of the component as defined by its functional specifications



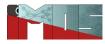
Source: Coble, 2016

RUL prediction





Types of failures (End of Life)



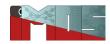
Soft failures:

- Soft failures refer to conditions where a system or component experiences performance degradation or intermittent issues without complete loss of functionality. These failures often manifest as a gradual decline in performance, reliability, or efficiency.
- Intermittent Performance Issues: Systems may function sporadically, with performance fluctuating between optimal and suboptimal states.
- Degradation Over Time: Gradual wear and tear lead to diminishing performance metrics.
- Early Warning Signs: Often preceded by detectable anomalies or deviations in health indicators.
- Non-Catastrophic: Do not cause immediate or severe damage but can lead to significant issues if unaddressed.

Hard Failures

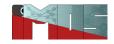
- Hard failures occur when a system or component ceases to function entirely or experiences a catastrophic breakdown.
 These failures result in the immediate and complete loss of functionality, often requiring significant repairs or replacements.
- · Sudden and Complete Failure: Systems stop working abruptly without prior warning.
- Catastrophic Impact: Can cause extensive damage to equipment, infrastructure, or even pose safety hazards.
- High Severity: Often lead to significant operational disruptions and financial losses.
- Immediate Action Required: Necessitate prompt intervention to restore functionality and prevent further damage.
- Other terms used in the context of system failures:
 - Warning
 - Alarm

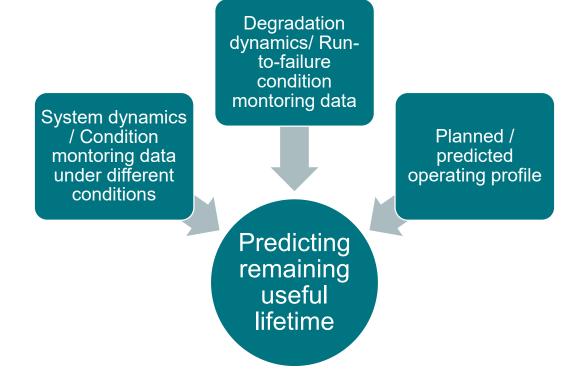
Definition prognostics



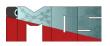
 Predict progression of the system health state based on current and future operational and environmental conditions to estimate the time at which a system no longer fulfils its function within desired specifications ("Remaining Useful Life")

Required ingredients for successful prefiction of remaining useful lifetime (RUL)



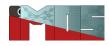


Prognostics vs Trending vs Predictive Diagnostics



- Prognostics: Predict the remaining useful life or time to failure of a failing component/system
- **Trending:** Trend or linearly project/regress a current measurement until it reaches a predefined threshold
- Predictive Diagnostics: Find precursors to failure

Algorithm selection



End-of-Life predictions

Event predictions → RUL prediction

Decay /degradation prediction

→ trajectory prediction

No/little history data → mainly model-based

History data -> data-driven methods can be applied

Nominal data only

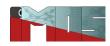
Nominal and failure data

EPFL

Prognostic Algorithm Categories

- Type I: Reliability Data-based
 - Use population based statistical model
 - These methods consider historical time to failure data which are used to model the failure distribution.
 They estimate the life of a typical component under nominal usage conditions.
 - Example: Weibull Analysis
- Type II: Stress-based
 - Use population based fault growth model learned from accumulated knowledge
 - These methods also consider the environmental stresses (temperature, load, vibration, etc.) on the component. They estimate the life of an average component under specific usage conditions.
 - Example: Proportional Hazards Model
- Type III: Condition-based
 - Individual component based data-driven model
 - These methods also consider the measured or inferred component degradation. They estimate the life of a specific component under specific usage and degradation conditions.
 - Example: Cumulative Damage Model, Filtering and State Estimation

Reliability and Prognostics

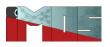


- Reliability analysis gives us information about the failure of a population of similar systems or components
- Prognostics extends this to a specific system or component
- When will it fail?
- What's the probability that it will fail in the next 5 minutes?
- What's the probability that we can complete the mission before something fails?

07 10 24

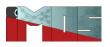
Source: Coble, 2016

Type III – Degradation-based Prediction



- Type III prognostics estimate the lifetime of the specific component in its specific operating environment
- Type III algorithms track the degradation (damage) as a function of time and predict when the total damage will exceed a predefined threshold that defines failure
- Damage is generally assumed to be cumulative (irreversible)

Degradation-Based Prognostics

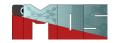


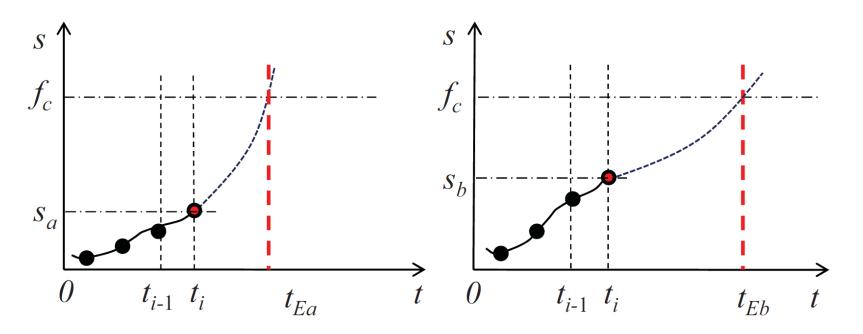
- A degradation measure is a scalar or vector quantity that numerically reflects the current ability of the system to perform its designated functions properly. It is a quantity that is correlated with the probability of failure at a given moment.
- A degradation path is a trajectory along which the degradation measure is evolving in time towards the critical level corresponding to a failure event.

01

Source: Coble, 2016

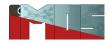
Health indicator vs. RUL

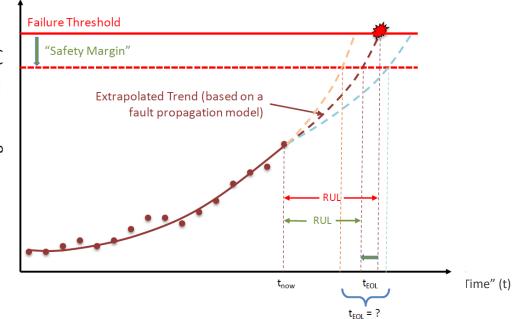




07 10 2/

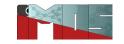
Trending the degradation parameter

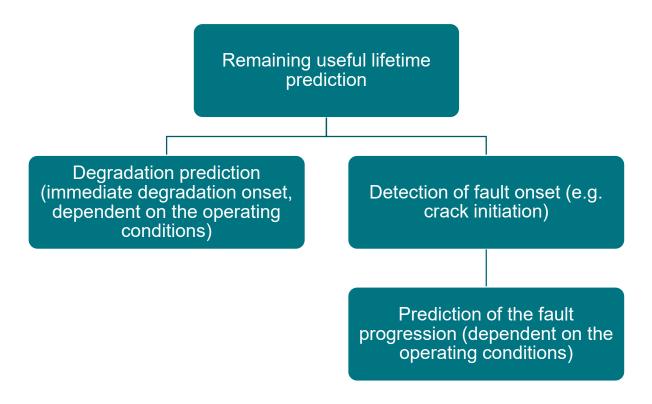




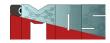
Source: Goebel. 2012

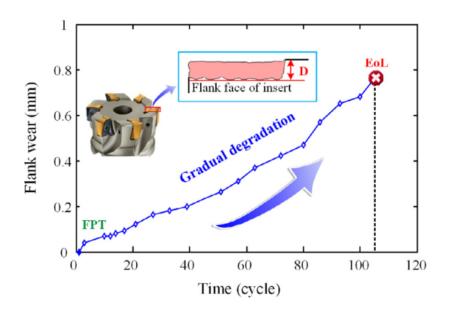
Prognostics: degradation and fault progression

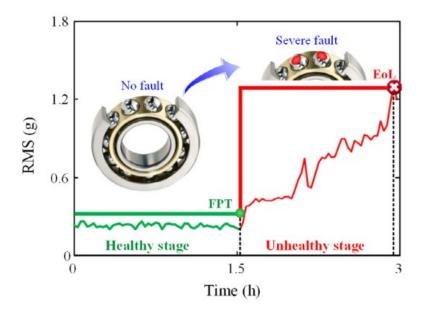




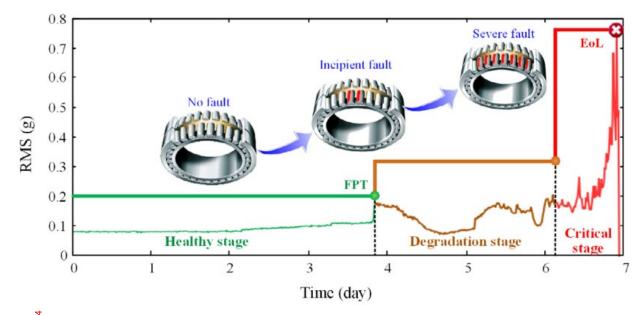
Different degradation trajectories





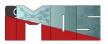


Different degradation trajectories



Source: Lei et al, 2018

Prognostics Methods



Prognostics Methods

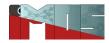
Data-driven

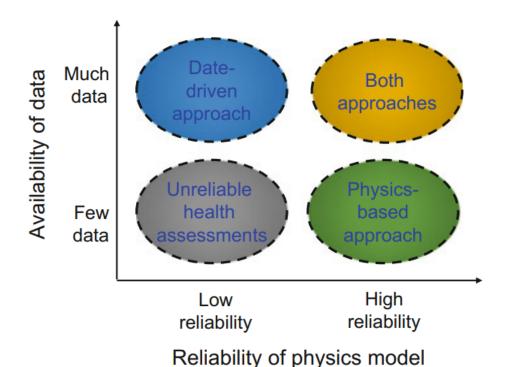
Statistical Approaches Machine Learning Physicsbased (modelbased) Hybrid approaches (physicsbased + data-driven)

Knowledgebased

Olga Fink 30.04.2019

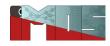
Choice of Methods

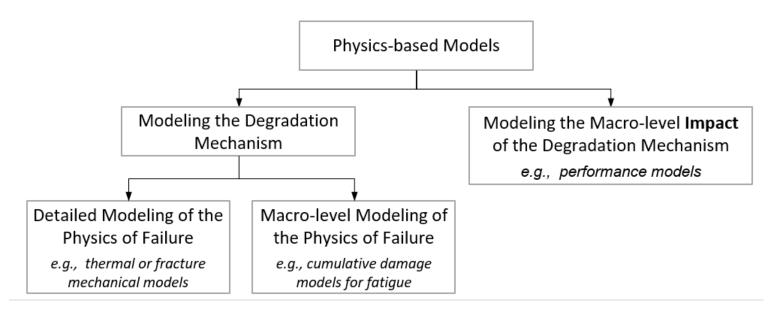




Source: Prognostics and Health Management of Engineering Systems

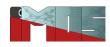
Physics-based models





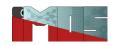
EPFL

Physics-Based Methods



- Description of a system's underlying physics using suitable representation
- Some examples:
 - Model derived from "First Principles"
 - Encapsulate fundamental laws of physics
 - partial differential equations (PDEs)
 - Euler-Lagrange Equations
 - Empirical model chosen based on an understanding of the dynamics of a system
 - Lumped Parameter Model
 - Classical 1st (or higher) order response curves
 - Mappings of stressors onto damage accumulation
 - Finite Element Model
 - High-fidelity Simulation Model
- Something in the model correlates to the failure mode(s) of interest

Steps for physics-based prognostics

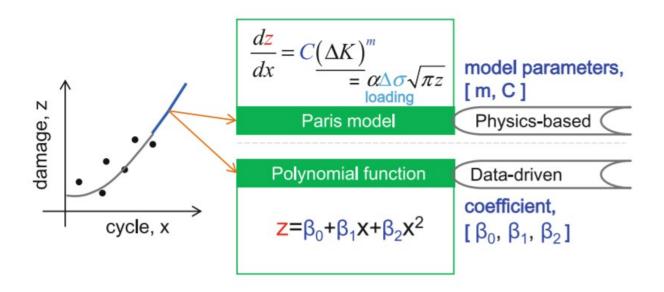


- Model underlying physics of a component/subsystem
- Model physics of damage propagation mechanisms
- Determine criteria for End-of-Life threshold
- Develop algorithms to propagate damage into future
- Deal with uncertainty

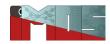
EPFL Data-Driven Methods

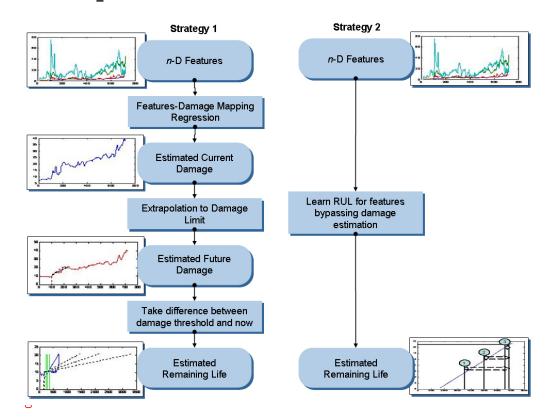
- Model is based solely on data collected from the system
- Some system knowledge may still be handy:
 - What the system 'is'
 - What the failure modes are
 - What sensor information is available
 - Which sensors may contain indicators of fault progression (and how those signals may 'grow')
- General steps:
 - Gather what information you can (if any)
 - Determine which sensors give good trends
 - Process the data to "clean it up" try to get nice, monotonic trends
 - Determine threshold(s) either from experience (data) or requirements
 - Use the model to predict RUL
 - Regression / trending
 - Mapping (e.g., using a neural network)
 - Statistics

Simple example of data-driven vs. physics-based (crack growth model)



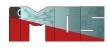
Different approaches to data-driven RUL prediction





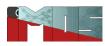
Source: NASA

Similarity-based RUL prediction



- Leverages the concept of comparing the current state of a system with historical data to estimate the remaining useful life.
- Underlying assumption is that systems with similar degradation patterns will exhibit similar RUL trajectories.
- Similarity-based approaches generally involve the following steps:
- Data Collection and Preprocessing:
 - Historical Data: Gather comprehensive historical operational and failure data.
 - Feature Extraction: Identify and extract relevant health indicators or features that represent the system's state.
 - Normalization: Standardize data to ensure consistency across different datasets.
- Similarity Measurement:
 - Distance Metrics: Utilize metrics such as Euclidean distance, Dynamic Time Warping (DTW), or Mahalanobis distance to quantify similarity between current and historical states.
 - Feature Space Comparison: Assess similarity in a multidimensional feature space where each dimension corresponds to a health indicator.
- RUL Estimation:
 - Weighted Averaging: Compute RUL based on the weighted average of RULs from the most similar historical instances.
 - Nearest Neighbors: Identify the 'k' most similar historical cases and use their RULs to predict the current RUL.

Examples of possible approaches



K-Nearest Neighbors (K-NN):

- Description: Identifies the 'k' most similar historical instances to the current state and averages their RULs.
- Advantages: Simple to implement and interpret.
- Limitations: Sensitive to the choice of 'k' and distance metrics; may not capture complex degradation patterns.

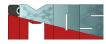
Pattern Matching and Template Matching:

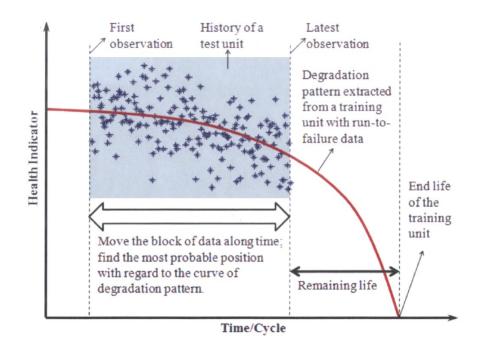
- Description: Compares current degradation patterns with predefined templates representing typical failure modes.
- Advantages: Can effectively recognize known failure patterns.
- Limitations: Limited to detecting only those failure modes represented by templates; lacks flexibility for novel failures.

Cluster-Based Similarity:

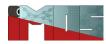
- Description: Groups historical data into clusters and predicts RUL based on the cluster membership of the current state.
- Advantages: Reduces computational complexity by limiting comparisons within relevant clusters.
- Limitations: Requires effective clustering algorithms; may not handle overlapping or dynamic clusters well.

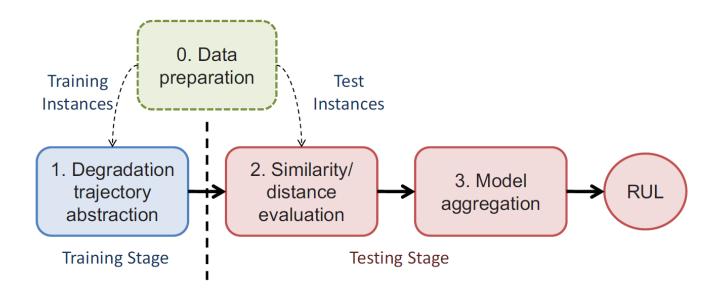
Similarity based RUL prediction



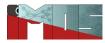


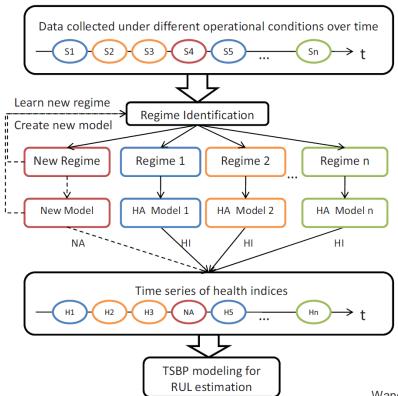
Similarity based RUL predictions





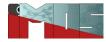
Similarity based RUL predictions

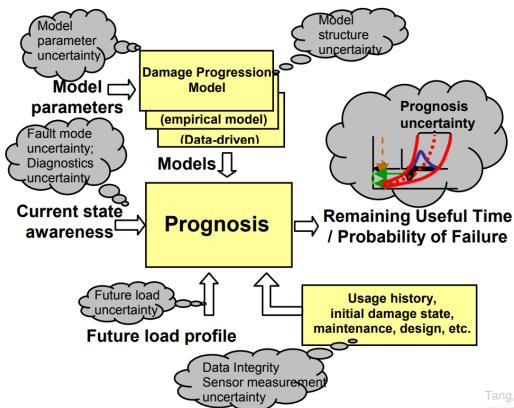




Wang, T., Trajectory Similarity Based Prediction for Remaining Useful Life Estimation, 2010

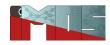
Sources of uncertainty in prognostics

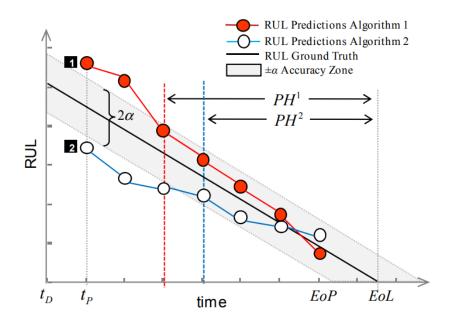




Tang, Liang, et al. "Methodologies for uncertainty management in prognostics." 2009 IEEE Aerospace conference. IEEE, 2009.

Prognostic Horizon





$$PH = EoL - i$$

where:

 $i = \min\{j \mid (j \in \ell) \land (r_* - EoL^*\alpha) \le r^{\ell}(j) \le r_* + EoL^*\alpha)\}$ is the first time index when predictions satisfy α -bounds

 $\ell\, is$ the set of all time indexes when a prediction is made

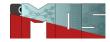
l is the index for lth unit under test (UUT)

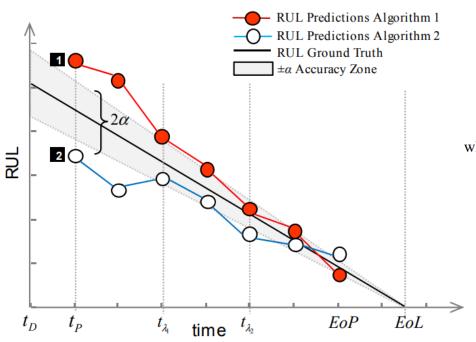
 r_* is the ground truth RUL

r(j) is the predicted RUL at time j

EoL is the ground truth End-of-Life (actual failure)

α - λ Accuracy





$$(1-\alpha)\cdot r_*(t) \le r^l(t_\lambda) \le (1+\alpha)\cdot r_*(t)$$

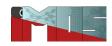
where:

 α is the accuracy modifier

 λ is a time window modifier such that $t_{\lambda} = t_{P} + \lambda (EoL - t_{P})$

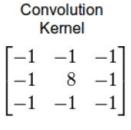
Recap: Convolutional neural networks

General intuition behind unsing convolutional filters

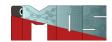


- Image filters can enhance image attributes
- Convolutional neural networks are similar to conventional image filtering
- Filter kernels are learnt

Input image



Filters



0	0	0	0	0	0	0
0	2	4	9	1	4	0
0	2	1	4	4	6	0
0	1	1	2	9	2	0
0	7	3	5	1	3	0
0	2	3	4	8	5	0
0	0	0	0	0	0	0

Filter / Kernel

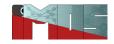
Feature

Image

$$O = \frac{n - f + 2p}{s} + 1$$

Where O is the output height/length, n is input height / length, f is filter size, p is the padding, and s is the stride

Pooling



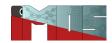
6	8	6	3	1	0
9	13	10	5	2	0
9	14	11	6	3	0
9	13	11	6	2	0
8	13	10	5	3	0
6	7	5	3	1	0

13	10	2
14	11	3
13	10	3

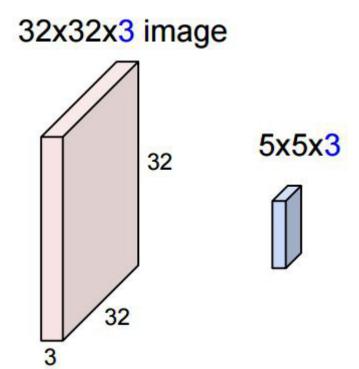
Max pooling

Feature map

Filters and channels (Standard method)

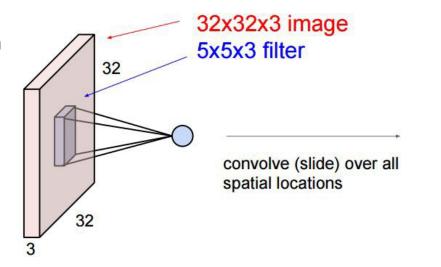


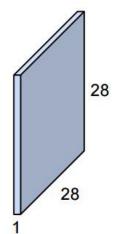
- An input image has a third dimension (say RGB)
- A filter/kernel always has the same third dimension



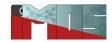
Filters and channels

- Overlapping area is multiplied then summed (dot product)
- With sliding you get 28x28x1 output

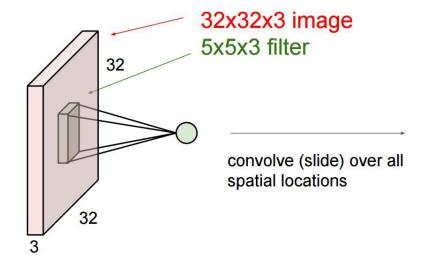


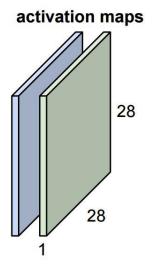


Usually we use multiple filters per layer

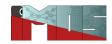


- A new kernel/filter slides over the same image
- Create a new filtered image



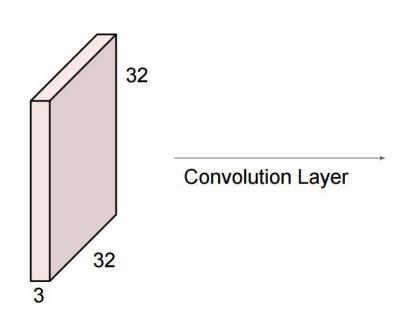


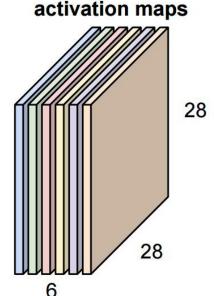
Applying filters



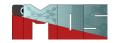
Many activation maps create a new "image"

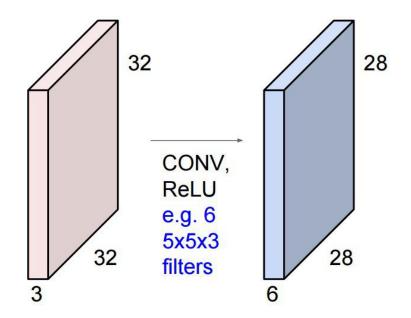
If we filter the image 6 times, we get a new image with 6 channels.



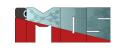


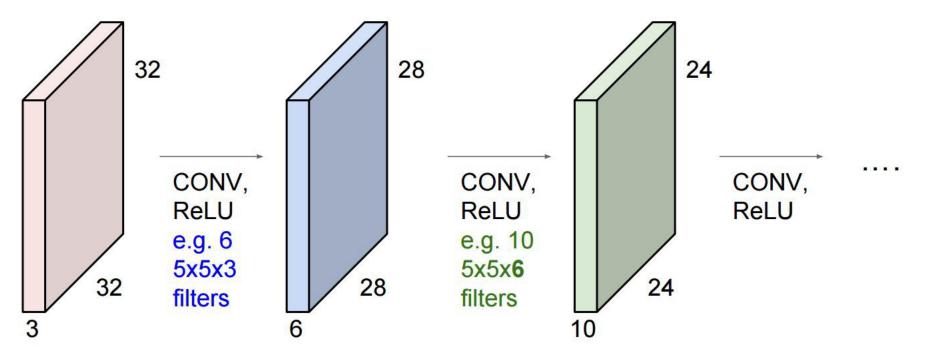
EPFL Convolutional neural network consist of multiple layers



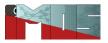


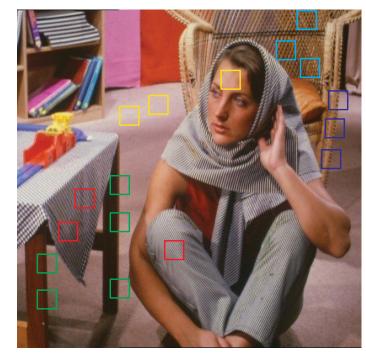
Convolutional neural network consist of multiple layers





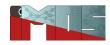
Stationarity and Self-similarity

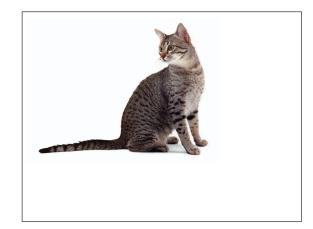




Data is self-similar across the domain

Translation invariance (image classification tasks)



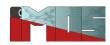


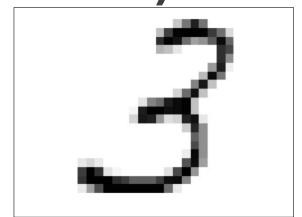
$$f(\mathcal{T}_{\mathbf{v}}x) = f(x) \quad \forall x, \mathbf{v}$$

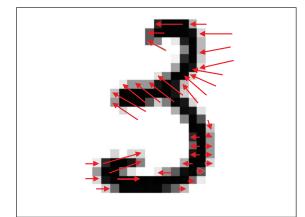
where

- image is modeled as a function $x \in L^2([0,1]^2)$
- $\mathcal{T}_{\mathbf{v}}x(\mathbf{u}) = x(\mathbf{u} \mathbf{v})$ is a translation operator
- $\mathbf{v} \in [0,1]^2$ is a translation vector
- $f: L^2([0,1]^2) \to \{1,\ldots,L\}$ is a classification functional

Deformation invariance (image classification tasks)





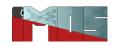


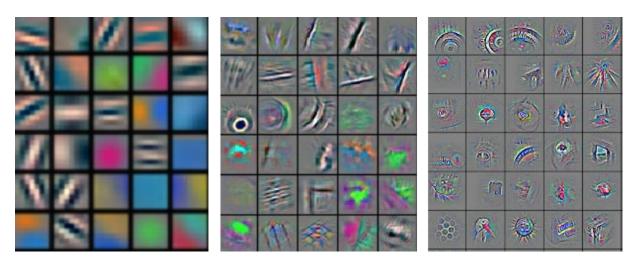
$$|f(\mathcal{L}_{\tau}x) - f(x)| \approx ||\nabla \tau|| \quad \forall f, \tau$$

where

- image is modeled as a function $x \in L^2([0,1]^2)$
- $\mathcal{L}_{\tau}x(\mathbf{u}) = x(\mathbf{u} \tau(\mathbf{u}))$ is a warping operator
- ullet $\tau:[0,1]^2
 ightarrow [0,1]^2$ is a smooth deformation field
- $f: L^2([0,1]^2) \to \{1,\ldots,L\}$ is a classification functional

Hierarchy and Compositionality

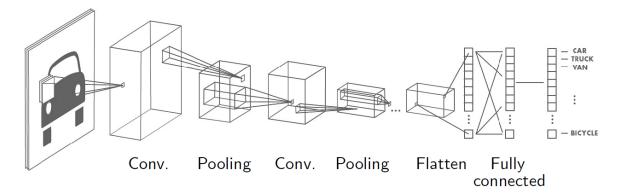




Typical features learned by a CNN becoming increasingly complex at deeper layers

EPFL

Convolutional Neural Networks (CNN)



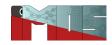
Conv. layer
$$x_{\ell'}^{(l+1)}(\mathbf{u}) = \xi \left(\sum_{\ell=1}^{d^{(l)}} (w_{\ell'\ell}^{(l+1)} \star x_{\ell}^{(l)})(\mathbf{u}) \right)$$

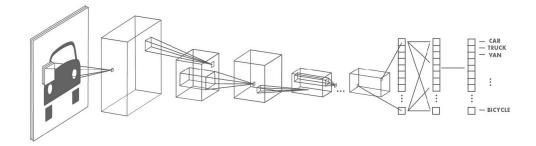
Activation, e.g. $\xi(x) = \max\{x, 0\}$ rectified linear unit (ReLU)

Parameters filters $W^{(1)}, \dots, W^{(L)}$

Pooling
$$x_{\ell}^{(l+1)}(\mathbf{u}) = \|x_{\ell}^{(l)}(\mathbf{u}') : \mathbf{u}' \in \mathcal{N}(\mathbf{u})\|_p \quad p = 1, 2, \text{ or } \infty$$

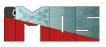
Key properties of CNNs



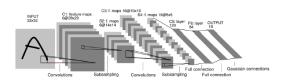


- Convolutional filters (Translation invariance+Self-similarity)
- Multiple layers (Compositionality)
- Filters localized in space (Locality)
- $\mathcal{O}(1)$ parameters per filter (independent of input image size n)
- $\mathcal{O}(n)$ complexity per layer (filtering done in the spatial domain)
- \bigcirc $\mathcal{O}(\log n)$ layers in classification tasks

Convolutional Neural Networks (historical perspective)

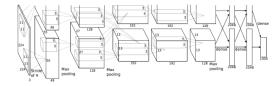


1989



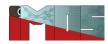
- 3 convolutional + 1 fully connected layer
- 1M parameters
- Trained on MNIST 70K
- CPU-based
- tanh non-linearity

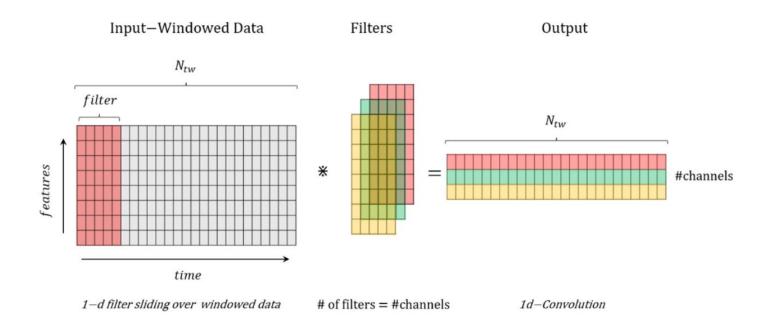
2012



- 5 convolutional + 3 fully connected layers
- 60M parameters
- Trained on ImageNet 1.5M
- GPU-based
- ReLU, Dropout

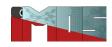
1D CNN





Hyperparameter search

Hyperparameter Tuning in Machine Learning

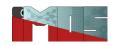


• **Definition**: Hyperparameter tuning involves adjusting the parameters of a machine learning model that are set prior to the start of the learning process. These parameters influence model training and can significantly affect performance.

Why It's Important

- Hyperparameters control the learning process and directly impact the effectiveness and efficiency of the model.
- Proper tuning can prevent overfitting, underfitting, and can improve model accuracy.

Formalizing hyperparameter tuning



- In a general sense, tuning involves these components:
 - a learning algorithm A, parameterized by hyperparameters λ
 - training and validation data X^(tr), X^(vl)
 - a model $\mathcal{M} = \mathcal{A}(\mathbf{X}^{(tr)} \mid \lambda)$
 - loss function \mathcal{L} to assess quality of \mathcal{M} , typically using $\mathbf{X}^{(v)}$:

$$\mathcal{L}(\mathcal{M} \mid \mathbf{X}^{(te)})$$

• In optimization terms, we aim to find λ^* (assuming minimization):

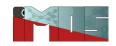
$$\lambda^* = \underset{\lambda}{\operatorname{arg\,min}} \, \mathcal{L}\big(\mathcal{A}(\mathbf{X}^{(tr)} \mid \lambda) \mid \mathbf{X}^{(\vee)}\big) = \underset{\lambda}{\operatorname{arg\,min}} \underbrace{\mathcal{F}(\lambda \mid \mathcal{A}, \mathbf{X}^{(tr)}, \mathbf{X}^{(\vee)}, \mathcal{L})}_{objective\ function}$$

Tuning in practice



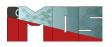
- Most often done using a combination of grid and manual search:
 - grid search suffers from the curse of dimensionality
 - manual tuning leads to poor reproducibility

Abstraction of hyperparameter tuning



- We need to define the hyperparameters we want to optimize:
 - Architecture (#layers, #kernels, stride, kernel size)
 - Learning rate, optimizer (momentum)
 - Regularizations (weight decay rate, dropout probability)
 - Batchnorm / no batchnorm
 - Number of epochs: The number of times the learning algorithm will work through the entire training dataset.
 - Batch size: The number of training examples utilized in one iteration.
- Our diagnostic statistics:
 - Loss curves
 - Gradient norms
 - Accuracy / Visual output (generative models)
 - Performance on training vs validation set
 - Other abnormal behaviors

Example Hyperparameters SVM

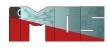


$$\min_{\alpha,\xi,b} \frac{1}{2} \sum_{i \in SV} \sum_{j \in SV} \alpha_i \alpha_j y_i y_j \kappa(\mathbf{x}_i, \mathbf{x}_j) + C \sum_{i=1}^n \xi_i,$$

subject to
$$y_i \left(\sum_{i \in SV} \alpha_i \alpha_j y_i y_j \kappa(\mathbf{x}_i, \mathbf{x}_j) + b \right) \ge 1 - \xi_i, \quad \xi_i \ge 0, \quad \forall i.$$

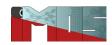
10 04 70

Tuning Techniques



- Grid Search: Exhaustive search over a specified parameter range.
- Random Search: Randomly samples the search space and evaluates sets from a specified probability distribution.
- Bayesian Optimization: Uses a probabilistic model to predict which hyperparameters might lead to better performances.
- Gradient-based Optimization: Adjusts hyperparameters using gradient descent to minimize a predefined loss function.
- Evolutionary Algorithms: Uses mechanisms inspired by biological evolution: reproduction, mutation, recombination, and selection.

EPFL Fast iteration

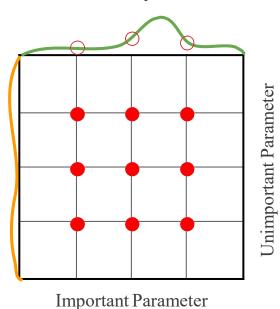


- When tuning parameters, only use a small portion of the dataset for fast iteration.
- Start from a larger learning rate for fast prototyping.
- Cross-validation strategy:
 - coarse → fine: cross-validation in stages
 - First stage: only a few epochs to get rough idea of what parameters work
 - Second stage: longer running time, finer search
 - ... (repeat as necessary)

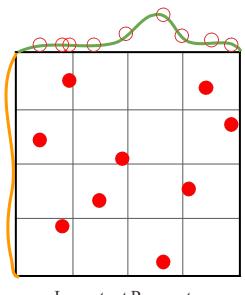
EPFL

Random Search vs. Grid Search

Random Search for: Grid Lavout



Random Layout

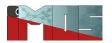


Important Parameter

Hyper-Parameter Optimization Bergstra and Bengio, 2012

Unimportant Parameter

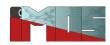
Can we use Machine Learning instead?



 To predict regions of the hyperparameter space that might give better results.

 To predict how well a new combination of hyperparameters will do and also model the uncertainty of that prediction

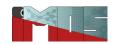
Can We Do Better? Bayesian Optimization

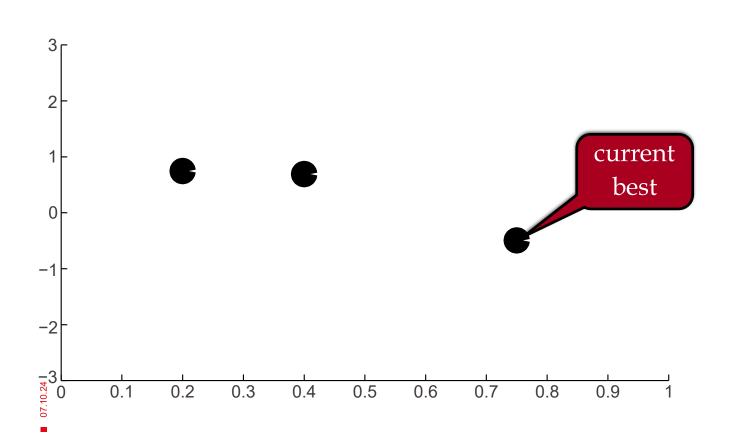


- Build a probabilistic model for the objective.
- Include hierarchical structure about units, etc.
- Compute the posterior predictive distribution.
- Integrate out all the possible true functions.
- Gaussian process regression is often used.
- Optimize a cheap proxy function instead.
- The model is much cheaper than the true objective.
- The main insight:
 - Make the proxy function exploit uncertainty to balance exploration against exploitation.

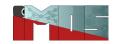
Bayesian Optimization

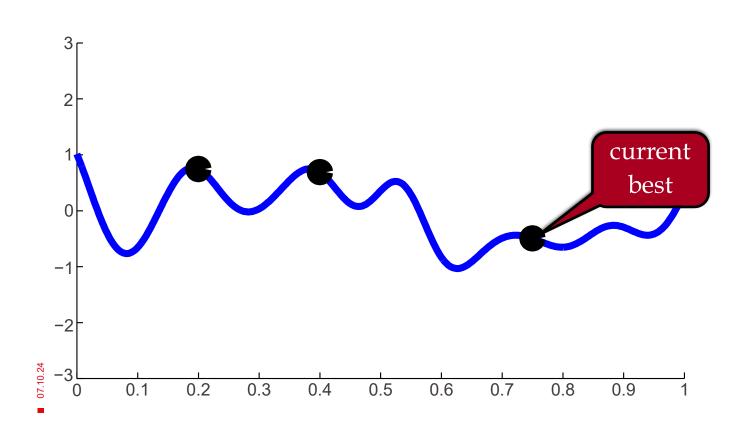
- Frame Hyperparameter Search as an Optimization Problem
- Model the estimation of the function from hyperparameters to the error metric as a regression problem
- Use Gaussian Process Prior: "Similar inputs have similar outputs" to build a statistical model of the function. Prior is weak but general and effective.
- Use statistics to tell us:
 - Location of expected minimum of the function
 - Expected Improvement of trying other parameters



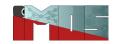


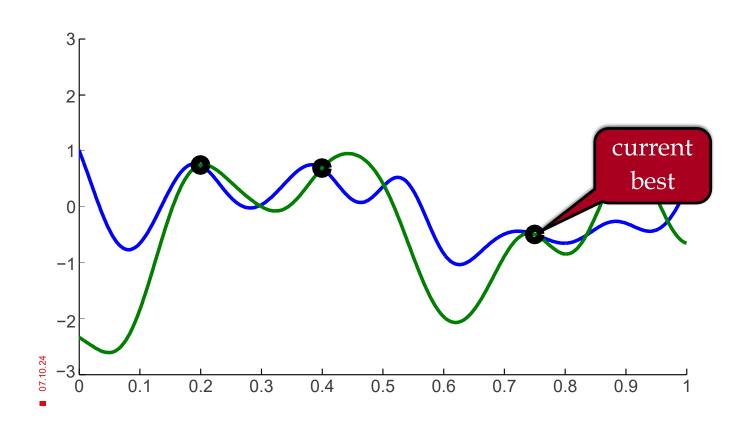
Source: R. Adams, 2017



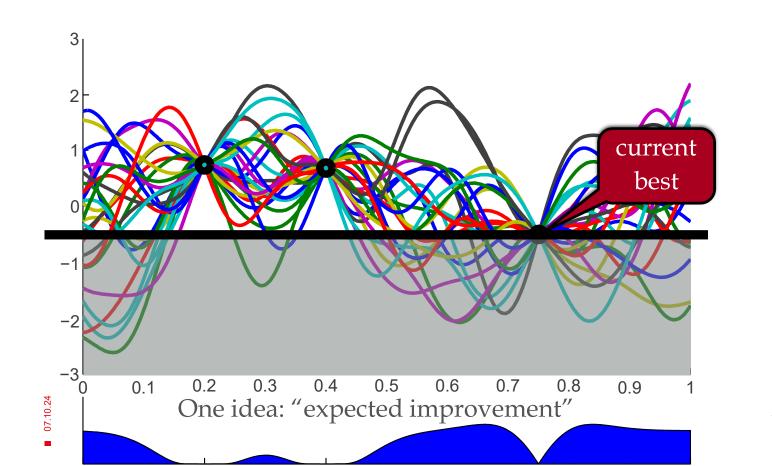


Source: R. Adams, 2017





Source: R. Adams, 2017

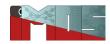


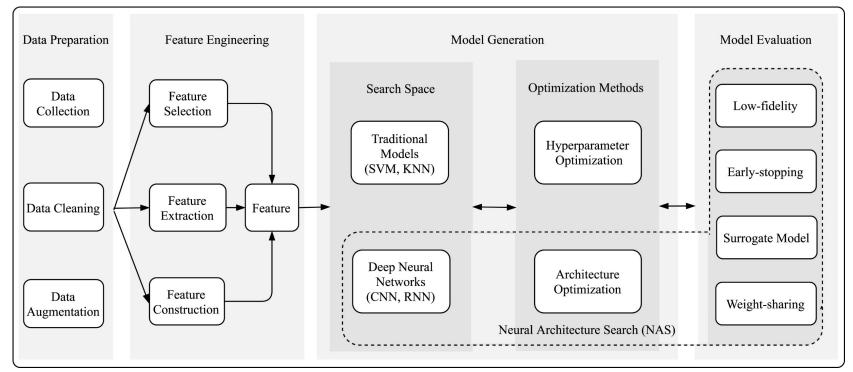
Where should we evaluate next in order to improve the most?

Source: R. Adams, 2017

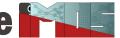
Olga Fink

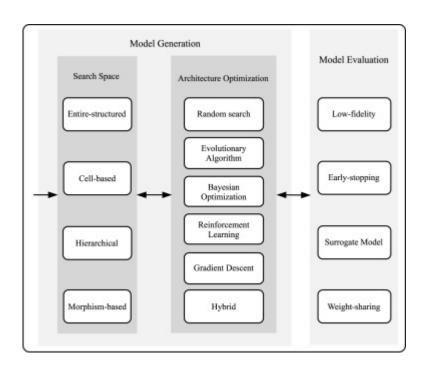
From hyperparameter search to Neural Architecture Search





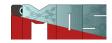
EPFL An overview of neural architecture search pipeline Films

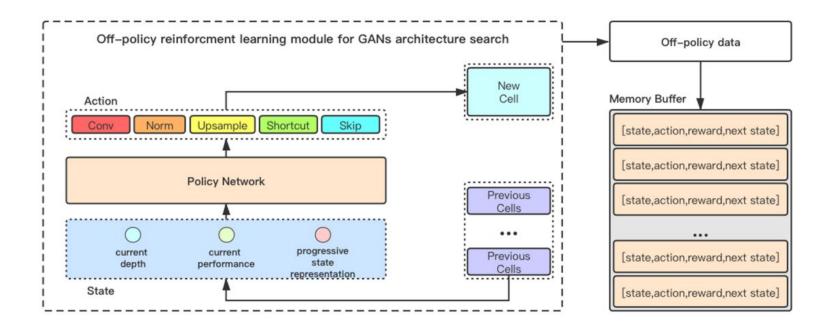




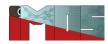
He, Xin, Kaiyong Zhao, and Xiaowen Chu. "AutoML: A Survey of the State-of-the-Art." Knowledge-Based Systems 212 (2021): 106622.

Reinforcement learning for GAN architecture search

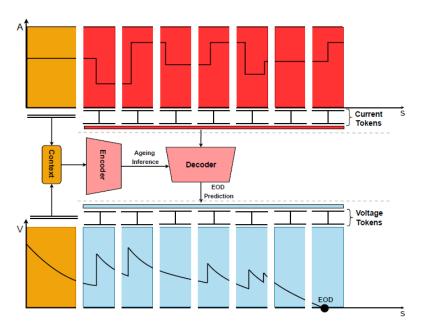




Tools and libraries

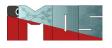


- Scikit-learn: Offers grid and random search capabilities.
- Hyperopt: Advanced optimization, including Bayesian and random.
- Optuna: Framework for automatic hyperparameter optimization, supporting sophisticated algorithms.

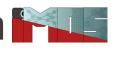


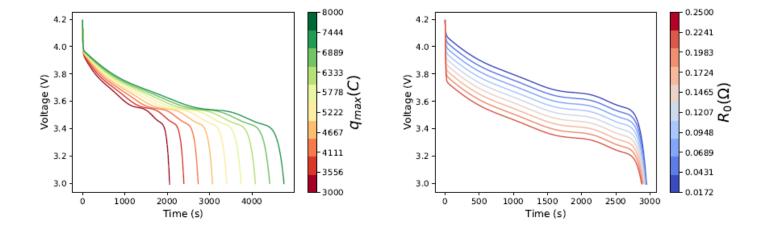
Ageing-aware Battery Discharge Prediction

Degradation of Li-Ion batteries → importance of precise planning

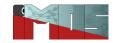


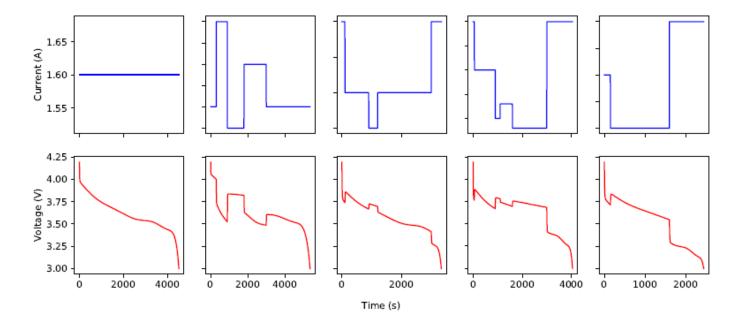
Effect of varying the degradation parameters on the voltage discharge curve of a Li-ion battery



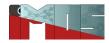


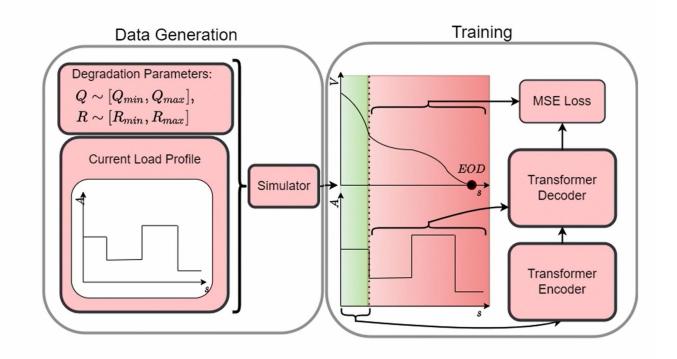
Discharge behaviors with respect to the different load profiles



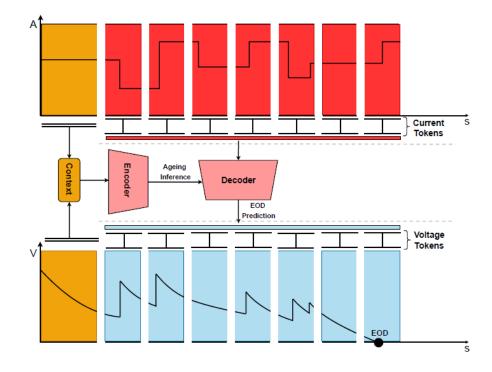


Data generation + training

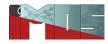


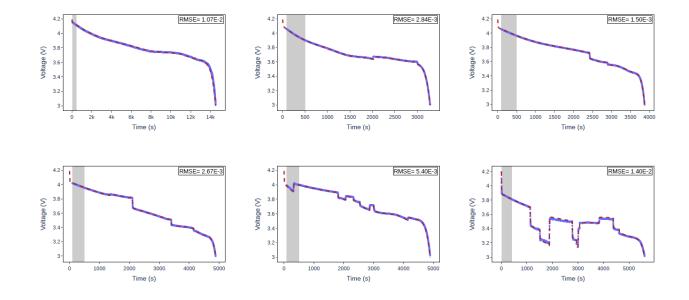


Transformer-based long-term battery discharge **prediction** → **Dynaformer**



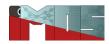
Selected results



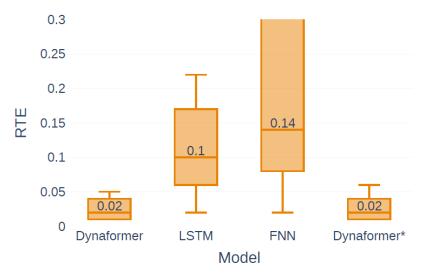


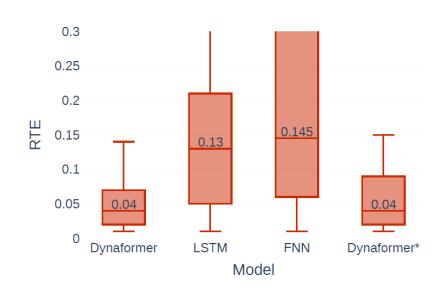
07.10.24

Performance without fine-tuning



Extrapolation



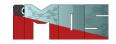


Dynaformer* → trained with variable current profiles

*RTE = relative temporal error

Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2023). Ageing-aware battery discharge prediction with deep learning, Applied Energy

Performance dependent on the complexity of the the load profiles





Implicit learning of the degradation parameters in the latent space

