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Condition indicators

= A condition indicator is a feature of system data whose behavior

changes in a predictable way as the system degrades or operates in
different operational modes.

= A condition indicator can be any feature that is useful for distinguishing
normal from faulty operation or for predicting remaining useful life.

Olga Fink 12
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Condition Indicators: example
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Example signals (normalised) collected during
open and close operation of a circuit breaker
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PFL  Condition indicators of a circuit breaker
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Condition indicators o
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=P7L  Condition vs. Health Indicators

= Health indicators consist of the integration of several condition
indicators into one value that provides the health status of the
component to the end user.

B 07.10.24
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=PFL Desired characteristics of health / condition
indicators

= Monotonicity
= Robusstness
= Adaptability

B 07.10.24
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=L Prognostics and health management (PHM)

Components, systems, processes
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Detection, Diagnosis, Prognosis

From Effect to Cause:
Diagnosis

Current Status:
Detection _l

\

time

. From Cause to Effect:
time Prognosis

| Tl

time
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=P*L Prognostic Term Definitions
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= Remaining Useful Life (RUL): the

amount of time, in terms of
operating hours, cycles, or other
measures the component will
continue to meet its design
specification

Time of Failure (ToF): the time a
component is expected to falil
(no longer meet its design
specifications).

Probability of Failure (PoF):
the failure probability
distribution of the
component.

End of Life (EoL) refers to a
failure of the component as
defined by its functional
specifications

Wear reserve

Predicted
failure

v . ime~

Failure I Remaining Useful Life

threshold
&— RUL—,

present time t

Source: Coble, 2016
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Damage level, x

RUL prediction
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=PFL Types of failures (End of Life)

B 07.10.24

= Soft failures:

Soft failures refer to conditions where a system or comfponent experiences performance degradation or intermittent issues

V\qci}hout complete loss of functionality. Thése failures often manifest as a gradual decline in performance, reliability, or
efficiency.

Intermittent Performance Issues: Systems may function sporadically, with performance fluctuating between optimal and
suboptimal states.

Degradation Over Time: Gradual wear and tear lead to diminishing performance metrics.
Early Warning Signs: Often preceded by detectable anomalies or deviations in health indicators.
Non-Catastrophic: Do not cause immediate or severe damage but can lead to significant issues if unaddressed.

= Hard Failures

Hard failures occur when a system or component ceases to function entirely or experiences a_catastrophic breakdown.
These failures result in the immediate and complete loss of functionality, often requiring significant repairs or replacements.

Sudden and Complete Failure: Systems stop working abruptly without prior warning.

Catastrophic Impact: Can cause extensive damage to equipment, infrastructure, or even pose safety hazards.
High Severity: Often lead to significant operational disruptions and financial losses.

Immediate Action Required: Necessitate prompt intervention to restore functionality and prevent further damage.

= Other terms used in the context of system failures:

Warning

Alarm

Olga Fink 25



=PFL  Definition prognostics

= Predict progression of the system health state based on currentland

[ futureloperational and environmental conditions to estimate the time at
which a system no longer fulfils its|function within desired specifications
(‘Remaining Useful Life”)

B 07.10.24
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Required ingredients for successful prefiction
of remaining useful lifetime (RUL)

System dynamics
/ Condition
montoring data
under different
conditions

Degradation
dynamics/ Run-
to-failure
condition
montoring data

Planned /
predicted
operating profile

Predicting
remaining
useful
lifetime

Olga Fink
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=PFL  Prognostics vs Trending vs Predictive Diagnostics

- Prognostics: Predict the remaining useful life or time to failure

of a failing component/system

- Trending: Trend or linearly project/regress a current
measurement until it reaches a predefined threshold

- Predictive Diagnostics: Find precursors to failure

B 07.10.24
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=P7L  Algorithm selection

End-of-Life predictions

Event predictions 2> RUL Decay /degradation prediction
prediction —> trajectory prediction

No/little history data > History data —> data-driven methods can be
mainly model-based applied

Nominal data only Nomlnaclj:gd et

B 07.10.24
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=P*L Prognostic Algorithm Categories

= Type |: Reliability Data-based
» Use population based statistical model
 These methods consider historical time to failure data which are used to model the failure distribution.

They estimate the life of a typical component under nominal usage conditions.
« Example: Weibull Analysis

= Type Il: Stress-based
» Use population based fault growth model — learned from accumulated knowledge

« These methods also consider the environmental stresses (temperature, load, vibration, etc.) on the
component. They estimate the life of an average component under specific usage conditions.
» Example: Proportional Hazards Model

= Type lll: Condition-based
* Individual component based data-driven model

» These methods also consider the measured or inferred component degradation. They estimate the life of
a specific component under specific usage and degradation conditions.

« Example: Cumulative Damage Model, Filtering and State Estimation

Source: Goebel, 2012

B 07.10.24
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=P7LReliability and Prognostics

= Reliability analysis gives us information about the failure of a
population of similar systems or components

= Prognostics extends this to a specific system or component
= When will it fail?
= What's the probability that it will fail in the next 5 minutes?

= What's the probability that we can complete the mission before
something fails?

Source: Coble, 2016

B 07.10.24
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Type Il - Degradation-based Prediction

= Type lll prognostics estimate the lifetime of the specific component in
its specific operating environment

= Type lll algorithms track the degradation (damage) as a function of
time and predict when the total damage will exceed a predefined
threshold that defines failure

= Damage is generally assumed to be cumulative (irreversible)

B 07.10.24
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*"" Degradation-Based Prognostics

= A degradation measure is a scalar or vector quantity that numerically
reflects the current ability of the system to perform its designated
functions properly. It is a quantity that is correlated with the probability
of failure at a given moment.

= A degradation path is a trajectory along which the degradation measure
is evolving in time towards the critical level corresponding to a failure
event.

Source: Coble, 2016
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Wang, T., Trajectory Similarity Based Prediction for Remaining Useful Life Estimation, 2010
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=P*L Trending the degradation parameter .

Failure Threshold *
l “Safety Margin” /
. 2 - - - - - - .
L7
’

Extrapolated Trend (based on a /
fault propagation model) \“-9 !

Trending Parameter (a)

lime” (t)

Source: Goebel, 2012
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=PFL  Prognostics: degradation and fault progression

Remaining useful lifetime
prediction

Degradation prediction
(immediate degradation onset, Detection of fault onset (e.g.

dependent on the operating crack initiation)
conditions)

Prediction of the fault
progression (dependent on the
operating conditions)

B 07.10.24
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Flank wear (mm)
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Different degradation trajectories
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=PFL  Different degradation trajectories

Severe fault
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=P7L  Prognostics Methods

Prognostics Methods

Data-driven St

approaches
(physics-
based +

data-driven)

Physics-
based
(model-
based)

based

Statistical Machine
Approaches Learning

Knowledge-

Olga Fink 30.04.2019
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=PFL  Cholce of Methods

o Much
g data
©
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Reliability of physics model

Source: Prognostics and Health Management of Engineering Systems

B 071024

Olga Fink 40



=PFL  Physics-based models - ml

Physics-based Models

v v
Modeling the Degradation Modeling the Macro-level Impact
Mechanism of the Degradation Mechanism

J, ‘ ¢ e.g., performance models

Detailed Modeling of the Macro-level Modeling of

Physics of Failure the Physics of Failure
e.g., thermal or fracture e.g., cumulative damage
mechanical models models for fatigue

B 07.10.24

M. Arias, Algorithm for Fleet Diagnostics and Prognostics Combining Deep Learning and Physics-based Performance Models (2021)

Olga Fink 41



=P*L Physics-Based Methods

= Description of a system’s underlying physics using suitable representation

= Some examples:

» Model derived from “First Principles”

= Encapsulate fundamental laws of physics
= partial differential equations (PDEs)

= Euler-Lagrange Equations

= Empirical model chosen based on an understanding of the dynamics of a
system

» Lumped Parameter Model
= Classical 1st(or higher) order response curves

= Mappings of stressors onto damage accumulation
= Finite Element Model

» High-fidelity Simulation Model
=  Something in the model correlates to the failure mode(s) of interest

Source: Goebel, 2012

B 07.10.24
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=PrL Steps for physics-based prognostics

= Model underlying physics of a component/subsystem
= Model physics of damage propagation mechanisms
= Determine criteria for End-of-Life threshold

= Develop algorithms to propagate damage into future
= Deal with uncertainty

B 07.10.24

Olga Fink 43



=Pl Data-Driven Methods

= Model is based solely on data collected from the system

=  Some system knowledge may still be handy:

»  What the system ‘is’

=  What the failure modes are

=  What sensor information is available

=  Which sensors may contain indicators of fault progression (and how those signals may ‘grow’)
= General steps:

= Gather what information you can (if any)

= Determine which sensors give good trends

» Process the data to “clean it up” — try to get nice, monotonic trends

= Determine threshold(s) either from experience (data) or requirements

= Use the model to predict RUL
= Regression/ trending
= Mapping (e.g., using a neural network)
= Statistics

Source: Goebel, 2012

B 07.10.24
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=PFL Simple example of data-driven vs. physics-based)
(crack growth model)

model parameters,
[m,C]

Physics-based C

loading
Paris model

damage, z

Data-driven C
coefficient,

[ Bo» B4y B2]

Polynomial function

Z=BO+B1X+BZX2

Source: Integrated Vehicle Health Management
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=PFL  Different approaches to data-driven RUL e
prediction

) Strategy 1 Strategy 2
- j
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Source: NASA
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=PrL Similanty-based RUL prediction

. Le\(eratges the concept of comlparing the current state of a system with historical data to
estimate the remaining useful life

» Underlying assumption is that systems with similar degradation patterns will exhibit similar
RUL trajectories.

= Similarity-based approaches generally involve the following steps:

= Data Collection and Preprocessing:
+ Historical Data: Gather comprehensive historical operational and failure data.

+ Feature Extraction: Identify and extract relevant health indicators or features that represent the
system's state.

» Normalization: Standardize data to ensure consistency across different datasets.

= Similarity Measurement:

+ Distance Metrics: Utilize metrics such as Euclidean distance, Dynamic Time Warping (DTW), or
Mahalanobis distance to quantify similarity between current and historical states.

+ Feature Space Comparison: Assess similarity in a multidimensional feature space where each
dimension corresponds to a health indicator.
= RUL Estimation:

+ Weighted Averaging: Compute RUL based on the weighted average of RULs from the most similar
historical instances.

* Nearest Neighbors: Identify the 'k' most similar historical cases and use their RULs to predict the
current RUL.

B 07.10.24
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B 07.10.24

Examples of possible approaches

= K-Nearest Neighbors (K-NN):

« Description: Identifies the 'k' most similar historical instances to the current state and
averages their RULs.

« Advantages: Simple to implement and interpret.
+ Limitations: Sensitive to the choice of 'k' and distance metrics; may not capture complex
degradation patterns.
= Pattern Matching and Template Matching:

+ Description: Compares current degradation patterns with predefined templates
representing typical failure modes.

« Advantages: Can effectively recognize known failure patterns.
* Limitations: Limited to detecting only those failure modes represented by templates;
lacks flexibility for novel failures.
= Cluster-Based Similarity:

 Description: Groups historical data into clusters and predicts RUL based on the cluster
membership of the current state.

. Aldv?ntages: Reduces computational complexity by limiting comparisons within relevant
clusters.

« Limitations: Requires effective clustering algorithms; may not handle overlapping or
dynamic clusters well.

Olga Fink 48



=PrL  Similarity based RUL prediction

First History of a Latest
./ observation test unit /" observation
E s T+ : :
O, o, ;  Degradation
&#}  rte * ; pattern extracted !

froma training
unit with run-to-
failure data

' End life
i ofthe

Health Indicator

training
unit

Move the block of data along time: |
ind the most probable position
with regard to the curve of
degradation pattern.

o)

Remaining life

Time/Cyvcle

Source: T. Wang, et al. 2008
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=P7L  Similarity based RUL predictions

4 )
1
j 0. Data i_
Training i preparation i Test
Instances; M. 2\ Instances
i [ \
v I v
. I .
1. Degradatlon I 2. $|m|Iar|ty/ 3 Model
trajectory distance aaareqation
abstraction evaluation 99reg

Training Stage Testing Stage

Wang, T., Trajectory Similarity Based Prediction for Remaining Useful Life Estimation, 2010
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=PFL  Similarity based RUL predictions I

Data collected under different operational conditions over time

1z

Learn new regime
i | >l Regime Identification ]

' Create new mode
t /M

:'——{ New Regime ] [ Regime 1 ] Regime 2 Regime n
o l l
:-_{ New Model ] [ HA Model 1 ] HA Model 2 HA Model n

HI HI

Time series of health indices

~=

TSBP modeling for
RUL estimation

Wang, T., Trajectory Similarity Based Prediction for Remaining Useful Life Estimation, 2010

]
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=PFL  Sources of uncertainty in prognostics

Model ode
parameter structurfa
uncertainty S ungertaint
Damage Progression
odel Model
parameters Prognosis

I (empirical model)

uncertainty

Fadult mode
uncertainty;
Diagnostics

| (Data-driven)

Modelsﬂ

Current state
awaren ess'::>

. Remaining Useful Time
Prognosis 1= 5, Jhability of Failure

B 07.10.24

Usage history,
initial damage state,
maintenance, design, etc.

Data Integrity
Sensor measure
uncertainty

Olga Fink
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Prognostic Horizon

—@— RUL Predictions Algorithm |

/_ —(— RUL Predictions Algorithm 2 PH = Eol —i
1] RUL Ground Truth
[ ]+ Accuracy Zone where-
< H 1 ~
= PH 4 1'=min{]'|(je ﬁ)A(F,—EOL*(Z)SFI(j)SI’; +EOL*(I))}
- < PH’ —> is the first time index when predictions satisfy a-
5, bounds
o - (is the set of all time indexes when a prediction is
made
- 1 is the index for /™ unit under test (UUT)
r,1s the ground truth RUL

r(j) is the predicted RUL at time j
1 EoL is the ground truth End-of-Life (actual failure)

time

Saxena, A., Celaya, J., Saha, B., Saha, S. and Goebel, K., 2009. On applying the prognostic performance metrics. In Annual Conference
of the PHM Society (Vol. 1, No. 1).
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RUL

o- A Accuracy

\ —@— RUL Predictions Algorithm 1

N —()— RUL Predictions Algorithm 2
RUL Ground Truth

[ +a Accuracy Zone

(l—a)-n)<r'(r,)<(+a) n()
where:
« is the accuracy modifier

A 1s a time window modifier such that
t,=t,+A(EoL—t,)

h i 1 L 1 i

L, ip L time ' EoP EoL

Saxena, A., Celaya, J., Saha, B., Saha, S. and Goebel, K., 2009. On applying the prognostic performance metrics. In Annual Conference
of the PHM Society (Vol. 1, No. 1).
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=PFL  General intuition behind unsing convolutional
filters

= Image filters can enhance image attributes

= Convolutional neural networks are similar to conventional image
filtering

» Filter kernels are learnt

Inputimage Convolution Feature map
Kemel _

-1 -1 -1
-1 38 -1

-1 -1 -1

Source: UIO, 2017
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=PFL  Filters

0 0 0 0 0 0 O
0 2 4 9 1 4 0 21 59 37 -19 2
0 2 1 4 4 6 0 1 2 3 30 51 66 20 43
0 1 1 2 9 2 0 x 4 7 4 = -4 31 49 101 -19
0 7 3 5 1 3 0 2 5 1 59 15 53 2 21
0 2 3 4 8 5 0 Filter / 49 57 64 76 10
0 0 0 0 0 0 O Kernel Feature
Image
0 =n_]; g

Where O is the output height/length, n is input height / length, f is filter size, p is the padding, and s is the stride

B 07.10.24
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=P7L  Pooling

6 8 6 3 1 0 13 10 2
9 13 10 5 2 0 14 11 3
9 14 11 6 3 0 13 10 3
9 13 11 6 2 0 Max pooling
8 13 10 5 3 0

67| 5|3 (1|0

Feature map

B 07.10.24
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""" Fllters and channels (Standard method)

B 07.10.24

An input image has a third dimension
(say RGB)

A filter/kernel always has the same third
dimension

32x32x3 image

32 5x5x3

32

Source: UIO, 2017

Olga Fink 61



=F'L " Fllters and channels

B 07.10.24

Overlapping area is multiplied then
summed (dot product)

With sliding you get 28x28x1
output

~

A=
=0

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

Source: UIO, 2017
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=PLUsually we use multiple filters per layer

- Anew kernelffilter slides __— 32x32x3 image activation maps

over the same image V 5x5x3 filter %

convolve (slide) over all

spatial locations
/ 28

- Create a new filtered image

28

=0\

N

o |
—

Source: UIO, 2017
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=PFL Applying filters

Many activation maps create a new “image”

If we filter the image 6 activation maps

times, we get a new image
with 6 channels. 32

Convolution Layer
A A

Source: UIO, 2017

W |
o
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=PrL Convolutional neural network consist of gl
multiple layers

A A

CONV,
RelLU

e.g.6
5x5x3 //////
32 filters 28

Source: UIO, 2017
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=Pt Convolutional neural network consist of multiple

layers
32 28 24
CONV. CONV, CONYV,
e.g. 6 e:q. 10
SXboX3 5x5x6

10

w
(@)

Source: UIO, 2017
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=PFL  Stationarity and Self-similarity

Data is self-similar across the domain

B 07.10.24
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=P7L Translation Invariance (image classification

tasks)

B 07.10.24

— f(z) Vv
where

@ image is modeled as a function x € L?([0, 1]?)
e Tyx(u) = z(u— v) is a translation operator
e v € [0,1]? is a translation vector

e f:L%([0,1]?) — {1,..., L} is a classification functional

Bruna, Mallat 2012

Olga Fink
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=L Deformation invariance (Image classification

tasks)

B 07.10.24

[f(Lrx) = f(x)| = V7] Vf,7
where
@ image is modeled as a function x € L*([0,1]?)
o L. x(u) =x(u—7(u)) is a warping operator
e 7:[0,1]%2 = [0,1]? is a smooth deformation field

o f:L%([0,1]%) — {1,..., L} is a classification functional

Bruna, Mallat 2012

Olga Fink
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=Pl Hierarchy and Compositionality

Typical features learned by a CNN becoming increasingly complex
at deeper layers

Zeiler, Fergus 2013

B 07.10.24
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=PFL Convolutional Neural Networks (CNN)

ﬁ ﬁ — BICYCLE

Conv. Pooling Conv. Pooling Flatten Fully
connected

at
Conv. layer xfﬁ”(u) =& Z(wéfﬁl) *5’51(2[))(11)
=1

Activation, e.g.  &(x) = max{x,0} rectified linear unit (ReLU)

Parameters filters WL, .. W)

Pooling mglﬂ)(u) = ||:z:g)(u’) cu' e N, p=1.2 or

B 07.10.24

LeCun et al. 1989 (Image: Debarko De)
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=PFL Key properties of CNNs o

— car

— TRUCK

— VAN
O

D — BICYCLE

@ Convolutional filters (Translation invariance+Self-similarity)
© Multiple layers (Compositionality)

© Filters localized in space (Locality)

@ O(1) parameters per filter (independent of input image size n)
© O(n) complexity per layer (filtering done in the spatial domain)
© O(logn) layers in classification tasks

LeCun et al. 1989

B 07.10.24
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=PrL  Convolutional Neural Networks (historical
perspective)

@ 3 convolutional + 1 fully @ 5 convolutional + 3 fully
connected layer connected layers

o 1M parameters @ 60M parameters

o Trained on MNIST 70K @ Trained on ImageNet 1.5M

@ CPU-based o GPU-based

e tanh non-linearity @ RelLU, Dropout

LeCun et al. 1998; Krizhevsky, Sutskever, Hinton 2012
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=PFL - 1DCNN

Input—Windowed Data Filters Output
Now
filter
' : New
§ * B il i #channels
~
§
“—
time
1-d filter sliding over windowed data # of filters = #channels 1d—Convolution
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Hyperparameter search
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=PrL
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Hyperparameter Tuning in Machine Leaming

= Definition: Hyperparameter tuning involves adjusting the parameters of
a machine learning model that are set prior to the start of the learning
process. These parameters influence model training and can
significantly affect performance.

Why It’s Important

= Hyperparameters control the learning process and directly impact the
effectiveness and efficiency of the model.

= Proper tuning can prevent overfitting, underfitting, and can improve
model accuracy.

Olga Fink 77



=P7L  Formalizing hyperparameter tuning

= In a general sense, tuning involves these components:
= a learning algorithm A, parameterized by hyperparameters A
= training and validation data X(), X))
= amodel M = AX) | \)
= |oss function L to assess quality of M, typically using X(v):

L(M | X))

= In optimization terms, we aim to find A* (assuming minimization):

vy

N = argmin L(AXE) | \) | X)) = arg)\minf(A A X XU )
A

~

objective function

B 07.10.24

Source: Claesen, de Moor 2015
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=P7L " Tuning In practice

=  Most often done using a combination of grid and manual search:
«  grid search suffers from the curse of dimensionality
«  manual tuning leads to poor reproducibility

B 07.10.24
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=PFL Abstraction of hyperparameter tuning

= \We need to define the hyperparameters we want to optimize:
« Architecture (#layers, #kernels, stride, kernel size)
* Learning rate, optimizer (momentum)
« Regularizations (weight decay rate, dropout probability)
« Batchnorm / no batchnorm

*  Number of epochs: The number of times the learning algorithm will work
through the entire training dataset.

« Batch size: The number of training examples utilized in one iteration.
= QOurdiagnostic statistics:

« Loss curves

* Gradient norms

« Accuracy / Visual output (generative models)

« Performance on training vs validation set

«  Other abnormal behaviors

B 07.10.24

Source: Li, Johnson, Yeung, 2018
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=PFL Example Hyperparameters SVM i

Cr;ngrg)— Y Y G YiYik X;,XJ —|-Can

ieSV jeSV

subject to y; Z oo yiyik(Xi, Xj) + b) >1-&, &>0, Vi
jesv
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=PrL

B 07.10.24

Tuning Techniques

= Grid Search: Exhaustive search over a specified parameter range.

= Random Search: Randomly samples the search space and evaluates
sets from a specified probability distribution.

= Bayesian Optimization: Uses a probabilistic model to predict which
hyperparameters might lead to better performances.

= Gradient-based Optimization: Adjusts hyperparameters using gradient
descent to minimize a predefined loss function.

= Evolutionary Algorithms: Uses mechanisms inspired by biological
evolution: reproduction, mutation, recombination, and selection.
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=PrL Fast Iteration

= \When tuning parameters, only use a small portion of the dataset for fast
iteration.

= Start from a larger learning rate for fast prototyping.

= Cross-validation strategy:
» coarse - fine: cross-validation in stages

 First stage: only a few epochs to get rough idea of what parameters work
« Second stage: longer running time, finer search
* ... (repeat as necessary)

Source: Li, Johnson, Yeung, 2018
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=PFL Random Search vs. Grid Search

Random Search for: Grid Layout Random L.ayout

rﬁq@/\&——\ ‘Qﬁl

®
®
@
Unimportant Parameter
@
Unimportant Parameter

Important Parameter Important Parameter

Hyper-Parameter Optimization
Bergstra and Bengio, 2012
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=PFL Can we use Machine Learning instead?

= To predict regions of the hyperparameter space that might give better
results.

= To predict how well a new combination of hyperparameters will do and
also model the uncertainty of that prediction

Source: Snoek et. al., 2012
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=Pl Can We Do Better? Bayesian Optimization

= Build a probabilistic model for the objective.

= |nclude hierarchical structure about units, etc.

= Compute the posterior predictive distribution.

= Integrate out all the possible true functions.

= Gaussian process regression is often used.

= Optimize a cheap proxy function instead.

= The model is much cheaper than the true objective.

= The main insight:

» Make the proxy function exploit uncertainty to balance exploration against
exploitation.

Source: R. Adams, 2017
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=P7L  Bayesian Optimization

= Frame Hyperparameter Search as an Optimization Problem

= Model the estimation of the function from hyperparameters to the error
metric as a regression problem

= Use Gaussian Process Prior: “Similar inputs have similar outputs” to build
a statistical model of the function. Prior is weak but general and effective.

= Use statistics to tell us:
 Location of expected minimum of the function
» Expected Improvement of trying other parameters

Source: Snoek et. al., 2012
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=P*L The Bayesian Optimization Idea

|
N
T

w

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o

Source: R. Adams, 2017
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=P*L The Bayesian Optimization Idea

_3 1 1 1 1 1 L | | | | .
o1 02 03 04 05 06 07 08 09 1 Source: R Adams, 2017
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=PFL The Bayesian Optimization Idea e

current

Source: R. Adams, 2017

B 07.10.24

Olga Fink



=P*L. The Bayesian Optimization Idea

B 07.10.24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

One idea: “expected improvement”

Where should we
evaluate next in order

to improve the most?

Source: R. Adams, 2017
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=PrL

Architecture Search

From hyperparameter search to Neural

Data Preparation Feature Engineering

Search Space

Data
Collection

Feature
Selection

Traditional

Models
(SVM, KNN)

Feature

Extraction Beaiure

Data Cleaning

Deep Neural

Networks
Feature (CNN, RNN)

Construction

Data

Augmentation

_______________

Model Generation Model Evaluation

Optimization Methods :' —
i|  Low-fidelity
P J
Hyperparameter i
Optimization !
' | Early-stopping
e
- - !
)
_________________________________________ " | Surrogate Model
-
Architecture
Optimization ( )
Weight-sharing

Neural Architecture Search (NAS)
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He, Xin, Kaiyong Zhao, and Xiaowen Chu. "AutoML: A Survey of the State-of-the-

Art." Knowledge-Based Systems 212 (2021): 106622.
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=PL An overview of neural architecture search pipeline
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Off-policy reinforcment learning module for GANs architecture search E_.. Off-policy data
R — 1
.i New
Action l Cell . Memory Buffer

: (NGB ((Norm ] ((Upsample ] (“Shortout J (" skip ;TR 3
............................... f

Policy Network o e

[state,action,reward,next state]

[state,action,reward,next state]
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* : Cells :
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: i ' : ; : .
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R G U representation. . Cells :

State +
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Tian, Y., Wang, Q., Huang, Z., Li, W., Dai, D., Yang, M., ... & Fink, O. (2020, August). Off-policy reinforcement learning for efficient and effective gan
architecture search. In European Conference on Computer Vision (pp. 175-192). Springer, Cham.
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=PrL

B 07.10.24

Tools and libraries

= Scikit-learn: Offers grid and random search capabilities.
= Hyperopt: Advanced optimization, including Bayesian and random.

= Optuna: Framework for automatic hyperparameter optimization,
supporting sophisticated algorithms.
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Ageing-aware Battery Discharge
Prediction
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=PFL  Degradation of Li-lon batteries = importance

of precise planning
o
&L
IE
Lithium-ion
o“ o "'”

‘m
o
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=PrL  Effect of varying the degradation parameters on
the voltage discharge curve of a Li-ion battery
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=PrL
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Discharge behaviors with respect to the
differentload profiles
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EPFL  Data generation + training

Data Generation Training

-
6egradation Parameters: \ A —T - \
Q ~ [Qmin; Qmaz], : J_i'_)l MSE Loss I

R~ [-Rmin’Ena.'c] ry

Current Load Profile ( )
; Transformer
| Simulator o>
Q ) " < Decoder
\_ )
1
{ N\
~ ! Transformer
\\ ;VJ b Encoder
\ - / % e j

Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2023). Ageing-aware battery discharge prediction with deep learning, Applied Energy
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=PFL  Transformer-based long-term battery discharge
prediction -> Dynaformer

A.IIIIII
= _| I

Current =
Tokens

1]
| Voltage
Tokens

\ EOD
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2023). Ageing-aware battery discharge prediction with deep learning, Applied Energy
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=PrL

Voltage (V)

Voltage (V)
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=PFL Performance without fine-tuning

Interpolation
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*RTE = relative temporal error
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Extrapolation
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2023). Ageing-aware battery discharge prediction with deep learning, Applied Energy
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=PL  Performance dependent on the complexity of
the the load profiles
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=PFL Implicit leaming of the degradation parameters
In the latent space
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