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 A condition indicator is a feature of system data whose behavior 
changes in a predictable way as the system degrades or operates in 
different operational modes.
 A condition indicator can be any feature that is useful for distinguishing 

normal from faulty operation or for predicting remaining useful life.

Condition indicators
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Condition indicators: example
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Source: Guo et. al 2017



Example signals (normalised) collected during 
open and close operation of a circuit breaker
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Condition indicators of a circuit breaker
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Condition indicators of a circuit breaker
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 Health indicators consist of the integration of several condition 
indicators into one value that provides the health status of the 
component to the end user.

Condition vs. Health Indicators
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 Monotonicity
 Robusstness
 Adaptability

Desired characteristics of health / condition
indicators
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Prognostics
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Prognostics and health management (PHM)
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Detection, Diagnosis, Prognosis
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 Remaining Useful Life (RUL): the 
amount of  time, in terms of 
operating hours, cycles, or other 
measures the component will 
continue to meet its design
specification
 Time of Failure (ToF): the time a 

component  is expected to fail 
(no longer meet its design  
specifications).
 Probability of Failure (PoF): 

the failure  probability 
distribution of the 
component.
 End of Life (EoL) refers to a 

failure of the component as 
defined by its functional 
specifications

Prognostic Term Definitions
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RUL prediction
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An, D., Choi, J. H., & Kim, N. H. (2018). Prediction of remaining useful life under different conditions 
using accelerated life testing data. Journal of Mechanical Science and Technology, 32, 2497-2507.



 Soft failures:
• Soft failures refer to conditions where a system or component experiences performance degradation or intermittent issues 

without complete loss of functionality. These failures often manifest as a gradual decline in performance, reliability, or 
efficiency.

• Intermittent Performance Issues: Systems may function sporadically, with performance fluctuating between optimal and 
suboptimal states.

• Degradation Over Time: Gradual wear and tear lead to diminishing performance metrics.
• Early Warning Signs: Often preceded by detectable anomalies or deviations in health indicators.
• Non-Catastrophic: Do not cause immediate or severe damage but can lead to significant issues if unaddressed.

 Hard Failures
• Hard failures occur when a system or component ceases to function entirely or experiences a catastrophic breakdown. 

These failures result in the immediate and complete loss of functionality, often requiring significant repairs or replacements.
• Sudden and Complete Failure: Systems stop working abruptly without prior warning.
• Catastrophic Impact: Can cause extensive damage to equipment, infrastructure, or even pose safety hazards.
• High Severity: Often lead to significant operational disruptions and financial losses.
• Immediate Action Required: Necessitate prompt intervention to restore functionality and prevent further damage.

 Other terms used in the context of system failures:

• Warning

• Alarm

Types of failures (End of Life)
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 Predict progression of the system health state based on current and 
future operational and environmental conditions to estimate the time at 
which a system no longer fulfils its function within desired specifications 
(“Remaining Useful Life”) 

Definition prognostics
07

.1
0.

24

Olga Fink 26



Required ingredients for successful prefiction
of remaining useful lifetime (RUL)
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• Prognostics: Predict the remaining useful life or time to failure
of a failing component/system

• Trending: Trend or linearly project/regress a current 
measurement until it reaches a predefined threshold

• Predictive Diagnostics: Find precursors to failure

Prognostics vs Trending vs Predictive Diagnostics
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Algorithm selection
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End-of-Life predictions
Event predictions  RUL 

prediction
Decay /degradation prediction 
 trajectory prediction

No/little history data 
mainly model-based

History data –> data-driven methods can be 
applied

Nominal and failure 
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 Type I: Reliability Data-based
• Use population based statistical model
• These methods consider historical time to failure data which are used to model  the failure distribution. 

They estimate the life of a typical component under  nominal usage conditions.
• Example: WeibullAnalysis

 Type II: Stress-based
• Use population based fault growth model – learned from accumulated knowledge
• These methods also consider the environmental stresses (temperature, load,  vibration, etc.) on the 

component. They estimate the life of an average  component under specific usage conditions.
• Example: Proportional Hazards Model

 Type III: Condition-based
• Individual component based data-driven model
• These methods also consider the measured or inferred component degradation.  They estimate the life of 

a specific component under specific usage and  degradation conditions.
• Example: Cumulative Damage Model, Filtering and State Estimation

Prognostic Algorithm Categories
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Source: Goebel, 2012



 Reliability analysis gives us information about the failure  of a 
population of similar systems or components
 Prognostics extends this to a specific system or component
 When will it fail?
 What’s the probability that it will fail in the next 5 minutes?
 What’s the probability that we can complete the mission before 

something fails?

Reliability and Prognostics
07

.1
0.

24

Olga Fink 31

Source: Coble, 2016



 Type III prognostics estimate the lifetime of the  specific component in 
its specific operating  environment
 Type III algorithms track the degradation (damage)  as a function of 

time and predict when the total  damage will exceed a predefined 
threshold that  defines failure
 Damage is generally assumed to be cumulative  (irreversible)

Type III – Degradation-based  Prediction
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 A degradation measure is a scalar or vector  quantity that numerically 
reflects the current  ability of the system to perform its designated  
functions properly. It is a quantity that is  correlated with the probability 
of failure at a  given moment.
 A degradation path is a trajectory along  which the degradation measure 

is evolving in  time towards the critical level corresponding  to a failure 
event.

Degradation-Based  Prognostics
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Source: Coble, 2016



Health indicator vs. RUL
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Wang, T., Trajectory Similarity Based Prediction for Remaining Useful Life Estimation, 2010



Trending the degradation parameter
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“Time” (t)

Source: Goebel, 2012



Prognostics: degradation and fault progression
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crack initiation)
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Different degradation trajectories
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Source: Lei et al, 2018



Different degradation trajectories
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Source: Lei et al, 2018



Prognostics Methods
07

.1
0.

24

Olga Fink 39

3
9

Prognostics Methods

Data-driven

Statistical 
Approaches

Machine
Learning

Physics-
based

(model-
based)

Hybrid 
approaches

(physics-
based + 

data-driven)

Knowledge-
based

30.04.2019Olga Fink



Choice of Methods
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Source: Prognostics and Health Management of Engineering Systems



Physics-based models
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M. Arias, Algorithm for Fleet Diagnostics and Prognostics Combining Deep Learning and Physics-based Performance Models (2021)



 Description of a system’s underlying physics using suitable representation
 Some examples:

 Model derived from “First Principles”
 Encapsulate fundamental laws of physics

 partial differential equations (PDEs)
 Euler-Lagrange Equations

 Empirical model chosen based on an understanding of the  dynamics of a
system
 Lumped Parameter Model
 Classical 1st (or higher) order response curves

 Mappings of stressors onto damage accumulation
 Finite Element Model
 High-fidelity Simulation Model

 Something in the model correlates to the failure mode(s) of interest

Physics-Based Methods
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Source: Goebel, 2012



 Model underlying physics of a component/subsystem
 Model physics of damage propagation mechanisms
 Determine criteria for End-of-Life threshold
 Develop algorithms to  propagate damage into future
 Deal with uncertainty

Steps for physics-based prognostics
07

.1
0.

24

Olga Fink 43



 Model is based solely on data collected from the system
 Some system knowledge may still be handy:

 What the system ‘is’
 What the failure modes are
 What sensor information is available
 Which sensors may contain indicators of fault progression (and how those signals may ‘grow’)

 General steps:
 Gather what information you can (if any)
 Determine which sensors give good trends
 Process the data to “clean it up” – try to get nice, monotonic trends
 Determine threshold(s) either from experience (data) or requirements
 Use the model to predict RUL

 Regression / trending
 Mapping (e.g., using a neural network)
 Statistics

Data-Driven Methods
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Source: Goebel, 2012



Simple example of data-driven vs. physics-based
(crack growth model)
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Source: Integrated Vehicle Health Management



Different approaches to data-driven RUL 
prediction
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Source: NASA



 Leverages the concept of comparing the current state of a system with historical data to 
estimate the remaining useful life. 

 Underlying assumption is that systems with similar degradation patterns will exhibit similar 
RUL trajectories.

 Similarity-based approaches generally involve the following steps:
 Data Collection and Preprocessing:

• Historical Data: Gather comprehensive historical operational and failure data.
• Feature Extraction: Identify and extract relevant health indicators or features that represent the 

system's state.
• Normalization: Standardize data to ensure consistency across different datasets.

 Similarity Measurement:
• Distance Metrics: Utilize metrics such as Euclidean distance, Dynamic Time Warping (DTW), or 

Mahalanobis distance to quantify similarity between current and historical states.
• Feature Space Comparison: Assess similarity in a multidimensional feature space where each 

dimension corresponds to a health indicator.
 RUL Estimation:

• Weighted Averaging: Compute RUL based on the weighted average of RULs from the most similar 
historical instances.

• Nearest Neighbors: Identify the 'k' most similar historical cases and use their RULs to predict the 
current RUL.

Similarity-based RUL prediction
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 K-Nearest Neighbors (K-NN):
• Description: Identifies the 'k' most similar historical instances to the current state and 

averages their RULs.
• Advantages: Simple to implement and interpret.
• Limitations: Sensitive to the choice of 'k' and distance metrics; may not capture complex 

degradation patterns.
 Pattern Matching and Template Matching:

• Description: Compares current degradation patterns with predefined templates 
representing typical failure modes.

• Advantages: Can effectively recognize known failure patterns.
• Limitations: Limited to detecting only those failure modes represented by templates; 

lacks flexibility for novel failures.
 Cluster-Based Similarity:

• Description: Groups historical data into clusters and predicts RUL based on the cluster 
membership of the current state.

• Advantages: Reduces computational complexity by limiting comparisons within relevant 
clusters.

• Limitations: Requires effective clustering algorithms; may not handle overlapping or 
dynamic clusters well.

Examples of possible approaches
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Similarity based RUL prediction
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Source: T. Wang, et al. 2008



Similarity based RUL predictions
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Wang, T., Trajectory Similarity Based Prediction for Remaining Useful Life Estimation, 2010



Similarity based RUL predictions
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Wang, T., Trajectory Similarity Based Prediction for Remaining Useful Life Estimation, 2010



Sources of uncertainty in prognostics
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Tang, Liang, et al. "Methodologies for uncertainty management in 
prognostics." 2009 IEEE Aerospace conference. IEEE, 2009.



Prognostic Horizon 
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Saxena, A., Celaya, J., Saha, B., Saha, S. and Goebel, K., 2009. On applying the prognostic performance metrics. In Annual Conference 
of the PHM Society (Vol. 1, No. 1).



α-λAccuracy
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Saxena, A., Celaya, J., Saha, B., Saha, S. and Goebel, K., 2009. On applying the prognostic performance metrics. In Annual Conference 
of the PHM Society (Vol. 1, No. 1).



Recap: 
Convolutional neural 
networks
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 Image filters can enhance  image attributes
 Convolutional neural networks  are similar to conventional  image 

filtering
 Filter kernels are learnt
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General intuition behind unsing convolutional
filters

Source: UIO, 2017



Filters
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𝑂𝑂 =
𝑛𝑛 − 𝑓𝑓 + 2𝑝𝑝

𝑠𝑠
+ 1

Where O is the output height/length, n is input height / length, f is filter size, p is the padding, and s is the stride



Pooling
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Filters and channels (Standard method)
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- An input image has a third dimension  
(say RGB)

- A filter/kernel always has the same third  
dimension

Source: UIO, 2017



Filters and channels
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- Overlapping area is multiplied  then 
summed (dot product)

- With sliding you get 28x28x1  
output

Source: UIO, 2017
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Usually we use multiple filters per layer
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- A new kernel/filter slides  
over the same image

- Create a new filtered image

Source: UIO, 2017
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Many activation maps create a new “image”

If we filter the image 6  
times, we get a new image  
with 6 channels.

Applying filters
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Source: UIO, 2017



Convolutional neural network consist of 
multiple layers

07
.1

0.
24

Olga Fink 65

Source: UIO, 2017



Convolutional neural network consist of multiple 
layers
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Source: UIO, 2017



Data is self-similar across the domain

Stationarity and Self-similarity
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Translation invariance (image classification
tasks)
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Bruna, Mallat 2012



Deformation invariance (image classification
tasks)
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Bruna, Mallat 2012



Hierarchy and Compositionality
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Typical features learned by a CNN becoming increasingly complex 
at deeper layers

Zeiler, Fergus 2013



Convolutional Neural Networks (CNN)
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LeCun et al. 1989 (Image: Debarko De)



Key properties of CNNs
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Convolutional Neural Networks (historical
perspective)
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1D CNN
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Hyperparameter search
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 Definition: Hyperparameter tuning involves adjusting the parameters of 
a machine learning model that are set prior to the start of the learning 
process. These parameters influence model training and can 
significantly affect performance.

Why It’s Important
 Hyperparameters control the learning process and directly impact the 

effectiveness and efficiency of the model.
 Proper tuning can prevent overfitting, underfitting, and can improve 

model accuracy.

Hyperparameter Tuning in Machine Learning
07

.1
0.

24

Olga Fink 77



 In a general sense, tuning involves these components:
 a learning algorithm A, parameterized by hyperparameters λ
 training and validation data X(tr ), X(vl)

 a model 
 loss function ℒ to assess quality of ℳ ,  typically usingX(vl):

 In optimization terms, we aim to find λ∗ (assuming minimization):

Formalizing hyperparameter tuning
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Source: Claesen, de Moor 2015

vl vl



 Most often done using a combination of grid and manual search:  
• grid search suffers from the curse of dimensionality
• manual tuning leads to poor reproducibility

Tuning in practice
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 We need to define the hyperparameters we want to optimize:
• Architecture (#layers, #kernels, stride, kernel size)
• Learning rate, optimizer (momentum)
• Regularizations (weight decay rate, dropout probability)
• Batchnorm / no batchnorm
• Number of epochs: The number of times the learning algorithm will work 

through the entire training dataset.
• Batch size: The number of training examples utilized in one iteration. 

 Our diagnostic statistics:
• Loss curves
• Gradient norms
• Accuracy / Visual output (generative models)
• Performance on training vs validation set
• Other abnormal behaviors

Abstraction of hyperparameter tuning
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Source: Li, Johnson, Yeung, 2018



Example Hyperparameters SVM
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 Grid Search: Exhaustive search over a specified parameter range.
 Random Search: Randomly samples the search space and evaluates 

sets from a specified probability distribution.
 Bayesian Optimization: Uses a probabilistic model to predict which 

hyperparameters might lead to better performances.
 Gradient-based Optimization: Adjusts hyperparameters using gradient 

descent to minimize a predefined loss function.
 Evolutionary Algorithms: Uses mechanisms inspired by biological 

evolution: reproduction, mutation, recombination, and selection.

Tuning Techniques
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 When tuning parameters, only use a small portion of the dataset for fast  
iteration.
 Start from a larger learning rate for fast prototyping.

 Cross-validation strategy:
• coarse  fine: cross-validation in stages
• First stage: only a few epochs to get rough idea of what parameters work
• Second stage: longer running time, finer search
• … (repeat as necessary)

Fast iteration
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Source: Li, Johnson, Yeung, 2018
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Random Search for:         Grid Layout Random Layout

Hyper-Parameter Optimization
Bergstra and Bengio, 2012



Can we use Machine Learning instead?
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 To predict regions of the hyperparameter space that might give better
results.

 To predict how well a new combination of  hyperparameters will do and  
also model the uncertainty of that prediction

Source: Snoek et. al., 2012



 Build a probabilistic model for the objective.
 Include hierarchical structure about units, etc.
 Compute the posterior predictive distribution.
 Integrate out all the possible true functions. 
 Gaussian process regression is often used.
 Optimize a cheap proxy function instead.
 The model is much cheaper than the true objective.
 The main insight:

• Make the proxy function exploit uncertainty to balance exploration against 
exploitation.

Can We Do Better? Bayesian Optimization
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Source: R. Adams, 2017



 Frame Hyperparameter Search as an Optimization Problem
 Model the estimation of the function from hyperparameters to the error 

metric as a regression problem
 Use Gaussian Process Prior: “Similar inputs have similar outputs” to build 

a statistical model of the function. Prior is weak but general and effective.
 Use statistics to tell us:

• Location of expected minimum of the function  
• Expected Improvement of trying other parameters

Bayesian Optimization
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Source: Snoek et. al., 2012
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One idea: “expected improvement” Source: R. Adams, 2017

Where should we 

evaluate next in order 

to improve the most?



From hyperparameter search to Neural
Architecture Search
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He, Xin, Kaiyong Zhao, and Xiaowen Chu. "AutoML: A Survey of the State-of-the-
Art." Knowledge-Based Systems 212 (2021): 106622.



An overview of neural architecture search pipeline
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He, Xin, Kaiyong Zhao, and Xiaowen Chu. "AutoML: A Survey of the State-of-the-
Art." Knowledge-Based Systems 212 (2021): 106622.



Reinforcement learning for GAN architecture search
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Tian, Y., Wang, Q., Huang, Z., Li, W., Dai, D., Yang, M., ... & Fink, O. (2020, August). Off-policy reinforcement learning for efficient and effective gan
architecture search. In European Conference on Computer Vision (pp. 175-192). Springer, Cham.



 Scikit-learn: Offers grid and random search capabilities.
 Hyperopt: Advanced optimization, including Bayesian and random.
 Optuna: Framework for automatic hyperparameter optimization, 

supporting sophisticated algorithms.

Tools and libraries
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Ageing-aware Battery Discharge 
Prediction
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Degradation of Li-Ion batteries importance
of precise planning
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Effect of varying the degradation parameters on 
the voltage discharge curve of a Li-ion battery
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2023). Ageing-aware battery discharge prediction with deep learning, Applied Energy



Discharge behaviors with respect to the 
different load profiles
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2023). Ageing-aware battery discharge prediction with deep learning, Applied Energy



Data generation + training
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2023). Ageing-aware battery discharge prediction with deep learning, Applied Energy



Transformer-based long-term battery discharge
predictionDynaformer
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2023). Ageing-aware battery discharge prediction with deep learning, Applied Energy



Selected results
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2023). Ageing-aware battery discharge prediction with deep learning, Applied Energy



Performance without fine-tuning
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Interpolation Extrapolation

Dynaformer*  trained with variable current profiles

*RTE = relative temporal error 

Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2023). Ageing-aware battery discharge prediction with deep learning, Applied Energy



Performance dependent on the complexity of
the the load profiles
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Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2023). Ageing-aware battery discharge prediction with deep learning, Applied Energy



Implicit learning of the degradation parameters
in the latent space
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qmax R0

Biggio, L., Bendinelli, T., Kulkarni, C., & Fink, O. (2023). Ageing-aware battery discharge prediction with deep learning, Applied Energy
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