Machine Learning for
Predictive Maintenance

plications:

Feature Leaming / One-Class
Classifiers /Self-Supervised leaming

e,
¥ ey e
g -
B S SN -
-
a3

= 1 » y ﬁl - : ;" 7"-7 oA y L] a
| - i ’ " g . NM rj

. ; - b 7 L N \w \.1_- 3
H Ecole < 1 - _ _“ m_—;\ -
polytechnique - e s
fédérale

de Lausanne 7 : ~V‘;l“ . 2 Dk ot September 2024

=PFL PHM Process

DataAcquisition (DA)

Data Manipulation (DM)

State Detection (SD)
|

Health Assessment (HA)
|

Prognostics Assessment(PA)

Advisory Generation(AG)

Olga Fink 1

Control Charts for fault
detection

=PFL Control charts

= Also known as Shewhart Charts or Statistical Process Control Charts
(SPCC)

= Graphical tools used to determine if a process is in a state of statistical
control, or how much variation exists in a process

Due to normal variation Upper Control Limit
- (Common Cause) {ucL)

%110 ‘-—"* M . /hl\/‘\'/ﬂ f"{ Process

Average

gu T T i T T T T T T T T L] T T L] T T T T T
1 2 4 5 6 7 891011121314151511"18193]\
. Lower Control Limit
Time (ucL)
Out-of-control Point
(Special Cause)

B 30.09.24

Olga Fink 13

Fault detection

<
N
@
<
=)
3]
-

=PFL Fault detection

= Faults in mission-critical systems are rare = not possible to learn the
fault patterns from examples

= Often only healthy data observed at the point in time of the fault
detection model development !l

= \WWe are missing labeled data!!!

B 30.09.24

Olga Fink 16

=PFL Fault detection?

Condition

monitoring data Pre-processing

Condition

monitoring data Pre-processing

B 30.09.24

Classific: ion
algorith carget
requ.red)

Feature Feature
extraction selection

Classification algorithm - £nd-t -end learning (incl. Feature
lea ..nQ)
(target required)

Olga Fink 17

=PrL - Types of fault detection approaches

= (Supervised)
= Unsupervised
= Semi-supervised

B 30.09.24

Olga Fink 18

Clustering algorithms for
fault detection and
diagnostics

=PrL

B 30.09.24

Cluster analysis

= Cluster: A collection of data objects
« similar (or related) to one another within the same group
« dissimilar (or unrelated) to the objects in other groups

= Cluster analysis (or clustering, data segmentation, ...)

* Finding similarities between data according to the characteristics
found in the data and grouping similar data objects into clusters

= The subgroups are chosen such that the intra-cluster differences are
minimized and the inter-cluster differences are maximized.

= Unsupervised learning: no predefined classes

= Applications of cluster analysis:
» As a stand-alone tool to get insight into data distribution
» As a preprocessing step for other algorithms

Olga Fink 20

=PFL Clustering

= Basic idea: group together similar instances

= |n the context of feature selection: group together similar features (and
replace the groups by a «representative» feature)

= How do we define similarity?
» Classical: Euclidean distance, Manhatten distance
» Correlation-based distances
« Cosine similarity

B 30.09.24

Olga Fink 21

=PFL Quality of the cluster analysis

= A good clustering method will produce high quality clusters

* high intra-class similarity: cohesive within clusters

* low inter-class similarity: distinctive between clusters

= The quality of a clustering method depends on
* the similarity measure used by the method
* its implementation, and

* |Its ability to discover some or all of the hidden patterns

©2011 Han, Kamber & Pei.

B 30.09.24

Olga Fink 22

=PFL Clustering as a pre-processing step for other algorithms

B 30.09.24

1. Feature Engineering and Extraction

Creating Cluster-Based Features:

After performing clustering on your dataset, each data point is assigned to a specific cluster. This
cluster assignment can be used as an additional feature for supervised learning algorithms.

Dimensionality Reduction:

Clustering can help in identifying and retaining the most representative features of the data by grouping
similar features together.

2. Data Cleaning and Noise Reduction

Identifying Outliers:

Clustering algorithms can help identify outliers or anomalies by highlighting data points that do not fit
well into any cluster.

Smoothing Data:
Clustering can group similar data points, allowing for the smoothing of noisy data within each cluster.

3. Data Transformation and Encoding

Encoding Categorical Variables:
Clustering can be used to encode categorical variables by grouping similar categories together.
Enhancing Feature Space:

Clustering can transform the original feature space into a new space where cluster memberships or
distances to cluster centroids are used as features.

Olga Fink 23

=PFL Clustering as a pre-processing step for other algorithmsj

4. Initialization for Other Algorithms
* Improving Algorithm Convergence:

 Clustering can provide good initial centers or starting points for iterative
algorithms, enhancing their convergence speed and accuracy.

» Facilitating Ensemble Methods:
 Clustering can be used to create diverse subsets of data or features, which
can then be used in ensemble learning methods to build more robust
models.
5. Handling Imbalanced Data
 Resampling Techniques:
 Clustering can assist in resampling techniques by ensuring that minority
classes are adequately represented.
6. Enhancing Interpretability
« Simplifying Model Interpretation:

» By clustering similar data points, models can be built on aggregated cluster-
level data, making the models easier to interpret.

B 30.09.24

Olga Fink 24

=P7L Major Clustering algorithms

— Single-Linkage

= Complete Linkage

= Average Linkage

Agglomerative —
_

K-Means + variants, e.g.
= K-Medoids, K-Spectral

Centroid
— Partitioning —
— Graph theoretic
— Density-based —
— Grid based

— DBSCAN

OPTICS

0
S
c
:.:
—
o
=
@©
o
=
—
O]
e
7
>
®)

STING

CLIQUE

B 30.09.24

Olga Fink 25

B 30.09.24

=PFL Number of clusters

Ce

151 |

'|
0f |

o

+—r—-n—-—uw Number of clusters
"
]

C,: Total within-clusters sum of squares

Olga Fink

26

=PrL

B 30.09.24

Silhoutte Coefficient

= Can be used to study the separation distance between the resulting
clusters

= A measure how close each point in one cluster is to points in the
neighboring clusters - can be assessed visually in silhoutte plots

= a(i) average distance between i and all observations within the same
cluster

= b(i) be the smallest average distance of i to all points in any other
cluster (excluding the cluster that it is member of)

b(3) — a(s) 1 a(i)/b(i), i a(i) < b(i)
s(i) = . . s(i1) = ¢ 0, if a(7) = b(3)
max{a(i), b(7)} b(i)/a(i) — 1, ifa(i) > b(i)

Olga Fink

=PFL Slihoutte Plot: example

Qusterr
Clusterr

Silhoutte Coefficient Silhoutte Coefficient

B 30.09.24

Olga Fink

PFL Clustering for anomaly/fault detection

= Assumption that similar data points tend to cluster together in groups,
as determined by their proximity to local centroids.

= Data instances that fall outside of these groups are considered as
anomalies

B 30.09.24

Olga Fink 29

PFL Clustering for fault detection

B 30.09.24

Olga Fink 30

=PFL Clustering for fault dignostics

= Segmentation of different fault types in an unsupervised way

= Only mapping between which cluster belongs to which fault type is
missing

B 30.09.24

Olga Fink 32

=PFL Clustering for fault diagnostics

() R=0

1.0 8 Ef;
2 R=3

0.8) R=4
@ ® ol

17 R=6

0.6 1 . R=7
@1 15 R=8

LJ' .'6 O R=9

0.4 - 2 R=10
13 R=11

& Qe) R=12

0.2 R=13
3 R=14

) R=15

0.0 w R=16
0.0 0.2 0.4 0.6 0.8 1.0 R=17

B 30.09.24

Olga Fink 33

=PrL

B 30.09.24

Clustering In Fault Detection

Model Training and Clustering

= Train Clustering Model: Apply the chosen clustering algorithm to the
preprocessed data to identify distinct groups representing normal and
potentially faulty states.

= Determine Cluster Labels: Typically, the largest cluster represents normal
operation, while smaller clusters may indicate anomalies or faults.

Fault Detection and Diagnosis

= Monitor Incoming Data: Continuously collect new data points and assign
them to existing clusters using the trained model.

= Detect Faults: Data points that do not fit well into any cluster (e.g.,
assigned to a "noise" cluster in DBSCAN) or deviate significantly from
normal clusters are flagged as potential faults.

= Diagnose Fault Types: Analyze the characteristics of the anomalous
clusters to identify specific fault types and their underlying causes.

Olga Fink 34

=PFL Separability of fault types in the feature space
I:?‘aﬁilt%;:)ase study (CWRU) = 10 classes (9 faulty +
82

100 1w 100
L7s L7s H75
p I 50 |50 k50
& 1N 1p-N #
e TB7 Tp-B7 . ‘-.-' &
e TBI4 Tp-Bl4 'y ‘ b2s Los L25
s TB21 Tp-B21) &
T-IRT Tp-IR7 -
° p i T i y Lo Lo
e TIR14 Tp-IR14 | ,
e THRZ1 TpR21 -
e T-OR? Tp-OR7 » L 25 L —as | —25
v
e T-OR14 Tp-OR14 F .. -
T-OR21 Tp-OR21 i . y N
% ?) I —50 F-50 & L —50
w ! Rt
-
F-75 F-75 b5
| | | ! ! ! ! -100 | | | ! | ! ! -100 : ! - . ' - ! -100
-100 -75 -50 -25 O 25 50 75 100 100 -75 50 25 0 25 50 75 100 -100 -75 -50 -25 O 25 50 75 100

(a) CLE (b) AE (c) TE

B 30.09.24

Olga Fink

=PrL

T-IR7

T-IR14
T-IR21
T-OR7

B 30.09.24

T-N]

Detectability of new fault types (not used for

training)

100
L75
*® 5o
1
. 4
L2s
T-OR14
T-OR21
Tp-B7 ¥ Lo
Tp-B14 oy
Tp-B21 LY K
. , -25
™
3
-
75
. . , , . : . ~100
-100 -75 -50 -25 0 25 s0 75 100
(a) CLE Ytrue

100

F75

50

F25

=75

—100

T
=75

T
—50

T
=25

75

-100
100

100

F75

50

F25

F—50

=75

T T T
-100 -75 -50 -25 0 25 50 75

Olga Fink

—100

Signal reconstruction /
Residual-based
approaches

<
N
@
<
=)
3]
-

=P*L Fault detection with residual based approaches

SIGNAL RECONSTRUCTIONS

S
MEASURED MODEL OF COMPONENT bt

BEHAVIOR IN NORMAL
SIGNALS CONDITIONS

S S,
b & t
t
~ '| COMPARISON

t s,-8, 5.5,
RESIDUALS
et o

DECISION

t

ABNORMAL
CONDITION:
maintenance
required

NORMAL
CONDITION:
No
maintenance

B 30.09.24

Olga Fink

=PFL Fault detection with residual based approaches

SIGNAL RECONSTRUCTIONS

Sy

MEASURED > MODEL OF COMPONENT [R
SIGNALS | BEHAVIOR IN NORMAL L ot
CONDITIONS _
51 b 32
/R /_.-—-—--N.
4)1 4>1 R]
Sy
’V[”| cOMPARISON
L ;
Si% S Syx 52

t
RESIDUALS -
L«-——)t M}

L

DECISION

CONDITION:
maintenance
required

CONDITION:
No
aintenance

B 30.09.24

Olga Fink

=PrL

B 30.09.24

Fundamental Concepts of Residual-Based Fault
Detection

= System Modeling

« At the core of residual-based fault detection is an accurate model of the system
under normal operating conditions.

 Analytical Models: Derived from first principles and mathematical equations
representing the system's physical laws.

« Data-Driven Models: Developed using historical data through techniques like
machine learning, statistical analysis, or system identification methods.
= Residual Generation

* Residuals are calculated by comparinP the actual system outputs with the outputs
predicted by the model. Mathematically, it can be expressed as:

* Residual=Observed Output-Predicted Output

« Under normal conditions, residuals should ideally be zero or within a predefined
acceptable range. Significant deviations from this range suggest potential faults.

= Threshold Setting
* To determine what constitutes an abnormal residual, thresholds are established.
« Static Thresholds: Fixed values based on historical data or safety margins.

« Adaptive Thresholds: Dynamic values that adjust based on operating conditions,
environmental factors, or system variability.

Olga Fink 40

=PrL Baslic idea of residual based methods

System Outputs >
Threshold
fl________ﬁ I
| | : | Fault
, Analytical | Residual | | [| ! decision
T L + /,— — _|_’
| model N | / |
I | | I
\L | ' |
________ S
Residual generation Residual evaluation

B 30.09.24

Olga Fink 41

=PFL Different approaches to residual-based methods

= Kalman filter

Model-based mmObserver based

=

>

©

o 2

G S

O © o

= c = Statistics-based

5.9

'D e

2% m Signal-based
C s Data-driven = T

achine

learning

B 30.09.24

Olga Fink 42

=PrL Baslic idea of residual based methods

System Outputs >
Threshold
)
| |
| Data- |+
| .
i > driven "
| model :
| |
Residual generation Residual evaluation

B 30.09.24

Olga Fink 43

=PrL

B 30.09.24

Thresholds

= Determine the thresholds based on the validation dataset (+ add
additional margin)

= Two types of thresholds: for all the signals + for single signals - fault
isolation

» Perform statistical tests on the distributions of the residuals

Olga Fink 44

=P7L Fault Detection Logic

= The detection logic involves monitoring residuals and comparing them

against the set thresholds to decide whether a fault has occurred. This
can include:

« Simple Thresholding: Triggering an alarm if the residual exceeds the
threshold.

« Statistical Methods: Using statistical tests to assess the significance of
residual deviations.

» Pattern Recognition: Identifying specific patterns or trends in residuals that
correlate with certain fault types.

B 30.09.24

Olga Fink 45

=PrL

B 30.09.24

Residual-Based Fault Detection

Advantages

= Simplicity: Conceptually
straightforward and easy to
implement with a well-defined
residual.

= Generality: Applicable to a
wide range of systems and fault
types.

= Real-Time Capability: Enables
continuous monitoring and
timely fault detection.

= Scalability: Can be extended
to complex and large-scale
systems by decomposing them
into manageable subsystems.

Challenges and Limitations
= Model Accuracy: The effectiveness

heavily depends on the accuracy of
the system model. Inaccurate models
can lead to false alarms or missed
detections.

Noise Sensitivity: High levels of
measurement noise can obscure
residual signals, making fault
detection more difficult.

Threshold Determination: Setting
appropriate thresholds is critical and
can be challenging, especially in
systems with variable operating
conditions.

Complex Faults: Simultaneous or
multiple faults may be difficult to
detect and isolate using residual-
based methods alone.

Olga Fink 46

=L Different types of residual-based approaches

= Signal reconstruction (reconstruct the signal at the current point in time
(t)) 2 Autoencoder model

= Forecasting (predict the measurements at t+1)

= |Input (operating conditions + control) — Output (signal measurements)
mappings > operating conditions models

B 30.09.24

Olga Fink 47

=PFL Leaming features from raw condition S
monitoring data

Recon-
Feature structed

Represen- Decoder Condition

tation NETTS Monitoring

Signals

RE
Condition Encoder

Monitoring Network
Signals

B 30.09.24

Olga Fink 48

=PrL

B 30.09.24

Residual-based fault detection example

Residual Calculating Models

Autoencoder model

AE

Health Indicators

Health Indicator Visualization

-h
o © o
w & in

=
Y
detection h*-5°

health indicator
e o
c =
fault
detection h® - °F

3 40 S0 60 70 80 Pc1
cycle

4 =00 I
L 107 « Fan
Be - . HPC
05 e LT s
-y
1 LY
0.0 s ‘
-,
» =051
R e e ettt [] .

B |
1
N

[w,x] —* AE

Operating-condition-based model

10¢

w — 0oC —s | X - X

* Aggregated
h4 = |Ir|l

* Sensor-wise

s _
hi =il

/

Fault Detection

Fault Detection

g

Performance

Health Indicator Interpretation

DS05 - HPC

D507 - LPT

I |

123455:39101112131: 123456768 91001121314
Sensor sensor #

Bemuowmewne

®

]

Olga Fink

49

=PFL Residual-based fault detection example

Operating-Conditions-based

D504 - Fan DS05 - HPC DSO7 - LPT
1 i 1 1
2 2 2
3 N] 3 3
4 4 4
& 5 =2 5 . 2 3
Se6 == ' 56
7 7 7 Lo
8 B B
9 9 a
10 10 10 e
12345678 91011121314 12345678 91011121314 12345678 91011121314
sensor # sensor # sensor # 06
Signal-Reconstruction-Based
o4
Ds04 - Fan DS05 - HPC DS07Y - LPT
14 i 1 1 =
21 2 2 02
3 3 3
Ly 4 4
a2 54 o5 25
S 61 56 S 6 ’
71 7 7
81 8 B
94 9 a9
10 - | 10 104
1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 15 17 7 9% 11 13 15 17
sensor # Sensor # sensor #

B 30.09.24

Hsu, C.C., Frusque, G. and Fink, O., 2023. A Comparison of Residual-based Methods on Fault Detection, PHM Society Conference

Olga Fink 50

Unsupervised / Self-
supervised leaming

<
N
@
<
=)
3]
-

=PFL Leaming Architectures

Condition
monitoring
data

Feature ML algorithm
extraction (e.g. classifier)

Condition

monitoring End-to-end learning
data

B 30.09.24

Olga Fink 52

=PFL How much information is the machine given
during leaming?

P “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

» A few bits for some samples

P> Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

» Predicting human-supplied data

» 10—10,000 bits per sample

P> Self-Supervised Learning (cake génoise)
P The machine predicts any part of its input for any
observed part.
» Predicts future frames in videos

» Millions of bits per sample Source: Y. LeCun

|
Olga Fink 53

=Pl Unsupervised (also self-supervised, predictive)
Leaming

= \We have access to {x1, x2, x3, - - -, XN} but not {y1, y2, y3, - - -, yN}

= Why would we want to tackle such a task:
« Extracting interesting information from data
 Clustering
» Discovering interesting trend
» Data compression
» Learn better representations

B 30.09.24

Olga Fink 54

=PrL

{ Unsupervised Learning }

/\

Non-probabilistic Models Probabilistic (Generative)
> Sparse Coding Models
> Autoencoders
> Others (e.g. kimeans)

Tractable Models /Non-Tractable MOd?IS N > Generave Adversarial
> Fully observed > BoI'Ferlann Machines Networks (GAN)
> Belief Nets » Variational Autoencoders > Moment Matching
> NADE > Helmholtz Machines Networks
> Many others...
. /.
Explicit Density p(x) Implicit Density

B 30.09.24

Source: R. Salakhutdinov

Olga Fink

55

=PFL Leaming features from raw condition S
monitoring data

Recon-
Feature structed

Represen- Decoder Condition

tation NETTS Monitoring

Signals

RE
Condition Encoder

Monitoring Network
Signals

B 30.09.24

Olga Fink 56

=PrL Autoencoders

- Network is trained to output the input (learn identify function).
- Two parts encoder/decoder

X' = g(f(x)) ;. @@gr @

g - decoder 8

f - encoder L |®@f©
Trivial solution unless: : _|@@ -+ ()

- Constrain number of units in Layer 2 (learn compressed

representation), or
- Constrain Layer 2 to be sparse

B 30.09.24

Olga Fink 57

=PFL Basic principles of an autoencoder

If the input is x € R™ an autoencoder will produce a h € R% where d < n, which is designed to contain most of the important features of x
to reconstruct it.

Autoencoder performs the following steps:

¢ Encoder: Perform a dimensionality reduction step on the data, x € R" to

O - - O
obtain features h € R?. g ‘T

¢ Decoder: Map the features h € R? to closely reproduce the input,
x € R". -| @i j;;e ® ei :;:;
Thus, the autoencoder implements the following problem: f
cleRERe)

Decoder

Encoder

Let x € R™, f(-) : R" — R? and g(-) : R = R". Let
x = g(f(x))

Define a loss function, £(x, %), and minimize £ with respect to the parameters

of f(-) and g(-).

There are different loss functions that you could consider, but a common one is

the squared loss:
Source: J.C. Kao, UCLA

Lx,%) = |Jx - x|I”

B 30.09.24

Olga Fink 58

=F*LNonlinear dimensionality reduction

Mostly follows Neural Network structure

Activation will depend on type of x

Often we use tied weights to force the sharing of weights
in encoder/decoder (in this case a single-layer network)

W= wr D6 « G

In a more general form, f() and g() could be deep g= U(W*h)I

neural networks, learning potentially more nonlinear @@e . e@—
and expressive features h.
f=owxl

Source: J.C. Kao, UCLA

B 30.09.24

Olga Fink 59

=PFL Sparse autoencoders gl

A sparse autoencoder is one that is regularized to not only minimize the loss,
but to also incorporate sparse features. If h = f(x) and x = g(h), then the
sparse encoder has the following loss:

L(x, %)+ A |hil

where h; is the ith element of h. This is intuitive, as we know L1-regularization
introduces sparsity.

Source: J.C. Kao, UCLA

B 30.09.24

Olga Fink 60

=PFL Denolsing autoencoders e

Say you wanted to obtain an autoencoder that was robust to noise. One could
generate noise, £, and add it to the input x, so that x = x + <. Then, the loss
function of the autoencoder would have loss:

L(x,9(f(x)))

and it would learn to denoise x to reproduce x. This can cause your
autoencoder to be robust to certain types of noise.

Source: J.C. Kao, UCLA

B 30.09.24

Olga Fink 61

=P Sparse Vs Denoising (example)

* Filter weights, 12x12 patches

INNANZNSER
DENRANCHEE
HREEVNEENE
REfimNEENENA
AL ST
ANENANENEN
SN BEL L
ENECNANEEE
A 5 5 I e
ENEERREERS

0 5 I 5
ERNENEYERE
HAVHNNREER
HREARSERVER
R NER RS
HECDNEEEHEE
NENESEYRER
REFREREENE
VEERRREENE
AREENENRES

Denoising AE

Sparse AE
Actually meaningless :)

[Vincent et al.2010]

¥¢'600c W

62

Olga Fink

=PrL

Decoder —

Encoder —

Stacked autoencoders

B 30.09.24

— N ! Xy
® 00 ./ x Decoder [1
t -
PR @ 000
- t Encoder |
/ @ 00 @) M
o000 = .
Fixed
® 000

—

Decoder = E

Encoder — [

(@ @0 @ «x

Source: L.P. Morency

Olga Fink 63

=PrL

B 30.09.24

= Can extend this to a denoising model

= Add noise when training each of the layers

= Often with increasing amount of noise per layer
= 0.1 for first, 0.2 for second, 0.3 for third

Stacked denoising autoencoders

Decoder -

Encoder —

—

_(® o-!-o ® =

Source: L.P. Morency

Olga Fink 64

=PFL Leaming features with deep leaming algorithms |

object models

REBETV=NN (combination
~=—@m| of edges)

O
oo Ws
O O O output b ‘—-L'.Q._‘Jr, object parts
O O O ~

O

—0OO0

Compressed
Feature Vector

B 30.09.24

Source: A. NG

Olga Fink 65

EPFL *
Examples of learned object parts from object categorles

Trained on 4 classes
Elephants Chairs

: r. V- BL&
JER 1=k |
SR =g

.l -r U—-Ulu.

Source: A. NG

Olga Fink 66

B 30.09.24

One-Class SVM /

SupportVector Data
Description (SVDD)

=PrL

B 30.09.24

One-class SYM

= Suppose that a dataset has a probability distribution P in the feature
space.

= Find a “simple” subset S of the feature space such that the probability
that a test point from P lies outside S is bounded by some a priori
specified value v ¢ (0,1)

= The solution for this problem is obtained by estimating a function f
which is positive on S and negative on the complement S.

|+l fxreS
f(‘”){ —1 ifzes

Source: Manevitz, 2001

Olga Fink 68

=PrL

B 30.09.24

One-class SYM

= The algorithm can be summarized as mapping the data into a feature
space H using an appropriate kernel function, and then trying to
separate the mapped vectors from the origin with maximum margin

Source: Manevitz, 2001

Olga Fink 69

EPFL - One-class SVM

.1 9 1 &
min —||w|/* + — o
w, iapz” H vn ;é} p
subject to:

(w- o(z;)) Zp — & foralli =1,...,n
& >0 foralli=1,...,n

Source: Manevitz, 2001

B 30.09.24

Olga Fink 70

=PrL

B 30.09.24

v-parameter

= |n this formula it is the parameter v that characterizes the solution;

= it sets an upper bound on the fraction of outliers (training examples
regarded out-of-class)

= it is a lower bound on the number of training examples used as Support
Vector

Source: Manevitz, 2001

Olga Fink 71

=PFL Declsion function

If w and p solve this problem, then the decision function

F(@) = sgn((w- §(z:)) — p) = sen(> " K (2, ;) — p)
1=1

will be positive for most examples xi contained in the training set.

Source: Manevitz, 2001

B 30.09.24

Olga Fink 72

=PFL Support Vector Data Description (SVDD)

= Obtains a spherical boundary, in feature space, around the data.

= The volume of this hypersphere is minimized-> minimizes the effect of
incorporating outliers in the solution

Support vector

v v

mlIl R2 -+ CZ 63 " v Outliers

subject to. / . |

|z —a” <R*+¢& foralli=1,...,n e’ & S decision boniry
R) ‘

& >0 foralli =1,...,n |

Source: Tax & Duin

B 30.09.24

Olga Fink 73

=PrL

B 30.09.24

Support Vector Data Description (SVDD)

= After solving this by introducing Lagrange multipliers a;, a new data
point z can be tested to be in or out of class.

= |t is considered in-class when the distance to the center is smaller than

or equal to the radius, by using the Gaussian kernel as a distance
function over two data points:

g

n —||z — =; 2
|z —x||* = Zai exp(| > |) > —R?*/2+ Cp
i—1

Source: Tax & Duin

Olga Fink 74

=PrL

B 30.09.24

Deep SVDD

Soft-boundary Deep SVDD objective

- 2, 1 i (o 2 _ p2
win R+ — Zl max{0, ||¢(x;; W) — ¢||* — R}
i—=

\ L
+5 2 IWHIlE
=1

One-Class Deep SVDD objective

1 T

L
A
] —) i:W_ 2 - WEQ
o 2 Mo W)= el + 53 W

Olga Fink 75

=PFL - Deep SVDD

= Foundation: Support Vector Data Description (SVDD)
* Purpose: SVDD is primarily used for one-class classification, aiming to identify whether new data points belong to a predefined class or are anomalies.
* Mechanism: It constructs the smallest possible hypersphere in the feature space that encapsulates the majority of the data points from the target class.
» Limitations: Traditional SVDD operates in a fixed, often low-dimensional feature space, which can be insufficient for capturing complex data patterns.

= Integration with Deep Learning

. _Dee?dF%ature Learning: Deep SVDD leverages deep neural networks to automatically learn rich, high-dimensional feature representations from raw
input data.

* End-to-End Training: Unlike tradjtional SVDD, Deep SVDD trains the feature extractor (neural network) and the data description simultaneously,
enabling the model to capture intricate data structures.
= Objective Function
* Sphere Minimization: Similar to SVDD, the primary objective is to minimize the volume of the hypersphere that contains the data.

* Regularization Term: Deep SVDD incorporates regularization to prevent the network from mapping all inputs to a trivial point (collapse), ensuring
meaningful feature learning.

» Loss Function: The loss typically combines the distance of data points from the center of the hypersphere with the regularization term, optimizing both
the network weights and the sphére parameters.
= Representation Learning

» Layer-wise Feature Extraction: Deep SVDD uses multiple layers in the neural network to extract hierarchical features, allowing the model to understand
dafa at various levels of abstraction.

» Non-Linear Mappings: The deep architecture facilitates non-linear transformations of the input data, making it possible to capture complex patterns that
linear methods like traditional SVDD cannot.
= Advantages Over Traditional SVDD

+ Enhanced Feature Representation: By learning deep features, Deep SVDD can model more complex data distributions, improving anomaly detection
accuracy.

» Scalability: Deep SVDD can handle large and high-dimensional datasets more effectively due to the scalability of neural networks.

» Flexibility: The deep architecture allows for integration with various types of data (e.g., images, text, time-series) by customizing the neural network
structure accordingly.

B 30.09.24

Olga Fink 76

Isolation Forest

<
N
@
<
=)
3]
-

Olga Fink 7

=PrL

B 30.09.24

Isolation Forest - overview

Aim: provide a ranking that reflects the degree of “anomaly” for each data point
= Sort data points according to their path lengths or anomaly scores
= Qultliers are the points with the biggest anomaly scores

Isolation Tree (iTree): binary tree where each node in the tree has exactly zero or
two daughter nodes

Isolation Forest (iForest) algorithm: Unsupervised Machine Learning algorithm
inspired by random forests

» Unsupervised: observations in the dataset are unlabeled
= No need to profile normal instances and to calculate point-based distances

» Builds an ensemble of random trees based on a mechanism called “isolation”,
an iterative (random) partitioning process to separate outliers from normal points

= Uses the observation that outliers are more likely to be isolated with fewer
steps, compared to normal points

» Liu, F. T, Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining, pages 413-422.

IEEE. Source: Alexandre Boumezoued

Olga Fink 78

=PrL

B 30.09.24

Isolation Forest - example of iTree

- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step
+ More steps are needed to isolate the other points

x(2)
H
o E e
A F
® L]
BQ
Cq *G
[]
D
b X(l)
0 30

Source: Alexandre Boumezoued

Olga Fink

79

=PrL

Isolation Forest - example of iTree

- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step
+ More steps are needed to isolate the other points

x(2)
H
o E o
A F
® @
BQ
29 e
®
D
ey
° 0 30

Source: Alexandre Boumezoued Olga Fink 80

=PrL

Isolation Forest - example of iTree

- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step

« More steps are needed to isolate the other points
x(2)

10
N H
o @
A F
® L]
B'
29 T
22 .
D
% > X(l)
50 30

Source: Alexandre Boumezoued Olga Fink 81

=PrL

Isolation Forest - example of iTree

- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step

« More steps are needed to isolate the other points
x(2)

10
R H
E
. . P
A F
® []
Be
29 e
22 -
D
. @
° 0 17 30

Source: Alexandre Boumezoued Olga Fink 82

=PrL

Isolation Forest - example of iTree

- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step

« More steps are needed to isolate the other points
x(2)

10 18
R H
E
. . P
A F
[]
BQ
29 R
22 5
D
. @
° 0 17 30

Source: Alexandre Boumezoued Olga Fink 83

"= Isolation Forest - from Tree to iForest

» Ensemble method: generates multiple iTrees — iForest
= Path length of an observation obtained as the sum of:
= total number of splits needed to isolate it

= adjustment term to add if observation terminates at an external node. (Accounts for an unbuilt
subtree beyond some tree height limit £ — saves computational time)

= Compute the average path lengths h(X;) for each observation X;

= Calculation of the anomaly scores
= Normalization by the average (universal) path length L in a binary tree

_ED
= Anomaly score:s(X;) =2 ~© €[0,1] = small average path length = high anomaly score
iForest
Anomaly
score iTreeq |Tree2 iTreeg

Outliers
Normal uncommon points

Source: Alexandre Boumezoued

B 30.09.24

Olga Fink 84

=PrL

Isolation Forest - detalls

Dataset X
- Dataset: X = (X, ...,X,,), withX; = (xl.(l), ...,xl.(d)) € R< where:
* n is the number of instances v
« d is the number of covariates >Sub-sample X" c X
- Sub-sampling: An iTree jis obtained by selecting a random = Covariate g is selected
subset X' cX, where [X|=y<n X = (Xaja), ---rXaj(lp)): = Split value x7’ is selected

andog;: [1,9] — [1,n] is a (random) injective function.

X=X iy | 2D < XD
- X' is then divided recursively by randomly selecting a et = Ko, | Xoj0 J

covariate g€ ({1,..,d} and a split value x9 ¢ - X;ight={Xoj(i)|x((,‘jzi)2qu)}
i (@) (q) i
Lmin Xt » [0 X5,y | until
» Either the tree reaches the height Ilimit ¢, which is _ _
approximately the average tree height The process is repeated until

« Or |X'| =1, i.e. there is only one unique point remaining evﬁgg%?il?rtnii? i,sgiea%r?ééhe

B 30.09.24

Source: Alexandre Boumezoued Olga Fink 85

=PrL

B 30.09.24

Isolation Forest - about swamping and masking

Swamping & masking are standard issues in outlier detection problems

= Swamping: wrong identification of normal instances as outliers in the case where many
variables are non informative on the “outlier” nature (the split based on these variables is not
appropriate)

= Masking: when too many outliers coexist in the dataset, the splitting rules are not efficient to
isolate data points since many iterations are needed

Both problems are consequences of too many data for the purpose of outlier detection

Solution of iForest algorithm: Sub-sampling
= Controls data size, which helps to better isolate examples of outliers
» EachiTree can be specialized, each sub-sample including a different set of outliers

It has been shown that iForest's outlier detection ability is superior when sub-sampling is used

Source: Alexandre Boumezoued

Olga Fink 86

=PrL

B 30.09.24

Isolation Forest - pros and challenges

= Pros

Unsupervised method: does not require labels of outliers provided by expert judgements
No model needed (the aim is not to model normal instances)
Provides a hierarchy by assigning an anomaly score to each observation
Does not require examples of outliers in the training set
Requires relatively small samples from large datasets to derive an outlier detection function
The algorithm can be trained once and reused without computational cost
Achieves a linear time complexity with low memory requirement
* by using sub-sampling
= by avoiding building trees after reaching a height limit £
Overcomes the problem of swamping/masking by using sub-sampling

= Challenges

Requires working on the data to provide appropriate format of the covariates
Tuning parameters need to be set

To avoid the black-box syndrome, it benefits from a pre-selection of covariates in line with

the problem to be tackled

Source: Alexandre Boumezoued

Olga Fink 87

<
N
@
<
=)
3]
-

Olga Fink

=PrL

B 30.09.24

(@aij,bj)i<i<k (Bij)1<i<L
1<5<L 1<j<D

DA
@ :
B g/ SO

random learn

(XN

Single Layer Feedforward Neural Networks

Y :g(A,X,B) B
oA X+ B). -T2 < e

|H-B—T|7 <

g(alablaxl) g(aLabL’Xl)

H=

g(apbnxzvr) g(aL’bL’XNT)

B = Argmén |HB — T2t + C|8]22

Olga Fink

89

=PFL Single Layer Feedforward Neural Networks:
Sparse Autoencoder

Sparse Auto-Encoder:

O —@—0
@% @
: @ : B is solved by FISTA (Fast lterative
'______‘—"

@ = “l‘e%? @ Shrinkage-Thresholding Algorithm)
<

encode

ArgmﬁianﬁHl +||HB - X|5
Residual

Res = [|X —XpB1 ' Bull3

B 30.09.24

Olga Fink 90

=PrL Single Layer Feedforward Neural Networks: one- =i
class classifier

Regularised One-class classifier

@—.. 4

random computed

—1
Aramin Bl + | HB -1 p=(c-1+HTH) HTT
Residual Distance to 1 (training)

B 30.09.24

https://github.com/MichauGabriel/HELM

Olga Fink 91

=PFL Machine Leaming - One Class for Failure Detection

Anomaly

* Neural network learns healthy
data

» i.e training with healthy data

» Detection threshold defined
with validation set

Thrd=y - percentile,(|1 — YV|)

* Neural network computes
similarity index
» i.e during testing

B 30.09.24

@ Training

Features

Similarity Index

- Train
Validation
s Test

0.01 0.00 87.48

Threshold j"’ i o

>~

Ell lOC;DD 20600 30600 40600 50600
Id

Evidence of malfunction indicated by
rise of similarity indicator

92

Olga Fink

=PFL Analysing the reconstruction residuals for fault

isolation

Auto-Encoder

-
Input

O

Features
o9

Reconstructed\
Input

Fault Isolation

Reconstruction Error
esidual before\after Fault)

506

B 30.09.24

utput

| One- class classifier (ngh D|stance to Training)

/.\

Detect Anormal Data

Distance to
Training Data “Health Indicator”

Fault Detection

Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017

Olga Fink 93

=PFL Decoder for Failure Isolation

Featu res Reconstructed 120 —
Input (x) Input (¥) o preict
— — - g 050
S Favara A NH NN N N 050
1"—mm ; - = -050
e = 0 10000 20000 30000 40000 50000 60000 70000
Residual = x — ¥ (1) Training
" e @ s Residual = abs(x; — x;)~ 0
0101 ' ' 35 ’ ' I
. . ! ! ! ! ! @
oos | * I ! ' 1 I I I
) I | ! ! 1 I ! ! n . . .
voel | | I . = i i i Residual threshold defined with
: : : BT ! ! ! healthy data
0047 | i i i 15 4 i i i
! ! i I w0 i i i
ooz | | | | .] Threshold ! i i @ Test
! ! ! ! 1 I I I
L 1 1 | v T T | . .
e~ — of © : : ' If abs(x; — ;) » 0 then signal i faulty
gLo 15 20 25 30 35 40 45 50 10 15 2o 25 30 35 40 45 50 L
3
|

Olga Fink 94

=PFL Generator Health Monitoring

320 monitoring sensors:

@ Partial discharge

. Rotor shaft voltage

= Rotor flux

= Stator end winding vibration
. Stator Water Temperature

275 days of recorded operation,

60 000 observations
Can only use Healthy data for training! 1 fault

Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017

B 30.09.24

Olga Fink 95

=PFL Generator Health Monitoring

Abnormal behavior 100 days before!

B 30.09.24

15}

Normalized distance to the training set

—
o
T

ot
T

- Train
Validate
- Test

Healthy

(i sonBengl

0‘ - -l = (T
Time [days]

(l: : 200

300

Olga Fink

96

=PFL Combined Architecture

Auto-Encoder

(Reconstructed\
Input Input
Features
e

: O ° Fault Isolation

- 0 - | Reconstruction Error
O : O_ ?|(Residual before\after Fault)

A
O—Y—0
N\ J

Detect Anormal Data
One- class classifier (ngh Distance to Training)
f" 1l
utput

Distance to

Training Data

Fault Detection

B 30.09.24

Olga Fink 97

=PFL Integrated fault diagnostics: Generator case stu

Water Temperature Shaft Voltage Rotor Flux) Rotor Flux
GO - - h .
0Ff 1
40t 1
9| i 0.5
20 |
101 ‘ O oty !
0 100 200 0 100 200 0 100 200 0 100 200

At no additional cost!

=
Mrchau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017

.
Olga Fink

Integrated!

9.24

Self-Supervision

<
N
@
<
=)
3]
-

=P7L Why not use construction?

= Why may autoencoders not be sufficient?
» Use pixel-wise loss, no structural loss incorporated
» Reconstruction can hardly represent semantic information

—_— — — — —

Raw Data J |_ I_ Reconstructed

Data
Traditional Autoencoder

B 30.09.24

Olga Fink 100

=PFL. What is Self-Supervision?

= A form of unsupervised learning where the data provides the
supervision

= Use naturally existing supervision signals for training.
= (Almost) no human intervention

= In general, define an auxiliary (supervised) learning task with the labels
derived from the data

= The task defines a proxy loss, and the network is forced to learn what
we really care about, e.g. a semantic representation, in order to solve it

= Many self-supervised tasks for images
= Often complementary, and combining improves performance

B 30.09.24

Source: Naiyan Wang 2018

Olga Fink

101

=PrL Self-supervised leaming

= Pretext task - important strategy for learning data representations
under self-supervised mode

= Self-defined pseudo-labels

= Pseudo-labels automatically generated based on the attributes found in
the unlabeled data

B 30.09.24

Olga Fink 102

=PFL Important pretext tasks (for computer vision)

= color transformations

= geometric transformations
= context-based tasks

= cross-modal-based tasks

B 30.09.24

Olga Fink 103

=P7L Basic Idea of self-supervised leaming

Raw
Condition Encoder Feature Pretext
Monitoring Network Represen- task
Signals tation

Down-stream
task: e.g. fault
detection

B 30.09.24

Olga Fink 104

-

tion

Relat

=PrL

— e o - —

Source: Zisserman 2018

2’600 W

105

Olga Fink

=PFL Semantics from a non-semantic task

Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV2015

B 30.09.24

Olga Fink 106

=PrL Context

= Solving the Jigsaw
 Predict relative positions of patches
* You have to understand the object to solve this problem!
» Be aware of trivial solution! CNN is especially good at it

Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised Visual
Representation Learning by Context Prediction. In ICCV 2015

B 30.09.24

Olga Fink 107

=L Avoiding Trivial Shortcuts

Include a
gap

Jitter the patch
locations

Source: Zisserman 2018

B 30.09.24

Olga Fink 108

=PrL

B 30.09.24

Context

= Colorization
* You have to know what the object is before you predict its color
* E.g. Apple is red/green, sky is blue, etc.

Lightness L Color ab Lab Image

convl conv2 conv3 conv4 convs convg conv7 conv8
aftrous / dilated & trous / dilated

| 128 256
; 2 256 512 512 512 512
ra rd |
I f [I [|!m]
64 32 32 32 32 32 \ 64
128
(a,b) probability
distribution
313 64

Zhang, R., Isola, P., & Efros, A. A. Colorful image colorization. In ECCV 2016
Olga Fink 109

=PFL Context g

= Colorization
* It is important how to interpret your work!
« Example colorization of Ansel Adams’s B&W photos

B 30.09.24

Zhang, R., Isola, P., & Efros, A. A. Colorful image colorization. In ECCV 2016
Olga Fink 110

http://richzhang.github.io/colorization/resources/images/exs_sel_aa.jpg

=PrL

B 30.09.24

Context

= Colorization

 Stronger supervision, cross-supervision of different parts of data

s
, s
-_— , o
’ ‘ XZ \\ -
X |~ X
-~
’ E —
Raw Data i X, Predicted
2 Data
Raw Data Predicted Data
Channels Channels

Split-Brain Autoencoder

L Grayscale Channel X Predicted Color Channels X;

E Predicted Image X

ab Color Channels X, Predicted Grayscale Channel X;

(a) Lab Images

Input Image X

Zhang, R., Isola, P., & Efros, A. A. Split-Brain Autoencoders: Unsupervised Learning
by Cross-Channel Prediction. In CVPR 2017
Olga Fink 111

=PFL Image Transformations

Which image has the correctrotation?

Unsupervised representation learning by predicting image rotations,
Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018

B 30.09.24

Olga Fink 112

	Machine Learning for Predictive Maintenance Applications:�Feature Learning / One-Class Classifiers /Self-Supervised learning
	PHM Process
	Control Charts for fault detection
	Control charts
	Fault detection
	Fault detection
	Fault detection?
	Types of fault detection approaches
	Clustering algorithms for fault detection and diagnostics
	Cluster analysis
	Clustering
	Quality of the cluster analysis
	Clustering as a pre-processing step for other algorithms
	Clustering as a pre-processing step for other algorithms
	Major Clustering algorithms
	Number of clusters
	Silhoutte Coefficient
	Silhoutte Plot: example
	Clustering for anomaly/fault detection
	Clustering for fault detection
	Clustering for fault dignostics
	Clustering for fault diagnostics
	Clustering in Fault Detection
	Separability of fault types in the feature space�Bearing case study (CWRU)  10 classes (9 faulty + 1 healthy)
	Detectability of new fault types (not used for training)
	Signal reconstruction / Residual-based approaches
	Fault detection with residual based approaches
	Fault detection with residual based approaches
	Fundamental Concepts of Residual-Based Fault Detection
	Basic idea of residual based methods
	Different approaches to residual-based methods
	Basic idea of residual based methods
	Thresholds
	Fault Detection Logic
	Residual-Based Fault Detection
	Different types of residual-based approaches
	Learning features from raw condition monitoring data
	Residual-based fault detection example
	Residual-based fault detection example
	Unsupervised / Self-supervised learning
	Learning Architectures
	How much information is the machine given during learning?
	Unsupervised (also self-supervised, predictive) Learning
	Unsupervised Learning
	Learning features from raw condition monitoring data
	Autoencoders
	Basic principles of an autoencoder
	Nonlinear dimensionality reduction
	Sparse autoencoders
	Denoising autoencoders
	Sparse Vs Denoising (example)
	Stacked autoencoders
	Stacked denoising autoencoders
	Learning features with deep learning algorithms
	Examples of learned object parts from object categories
	One-Class SVM /��Support Vector Data Description (SVDD)
	One-class SVM
	One-class SVM
	One-class SVM
	𝜈-parameter
	Decision function
	Support Vector Data Description (SVDD)�
	Support Vector Data Description (SVDD)
	Deep SVDD
	Deep SVDD
	Isolation Forest
	Isolation Forest – overview
	Isolation Forest – example of iTree
	Isolation Forest – example of iTree
	Isolation Forest – example of iTree
	Isolation Forest – example of iTree
	Isolation Forest – example of iTree
	Isolation Forest – from iTree to iForest
	Isolation Forest – details
	Isolation Forest – about swamping and masking
	Isolation Forest – pros and challenges
	Example
	Single Layer Feedforward Neural Networks
	Single Layer Feedforward Neural Networks: Sparse Autoencoder
	Single Layer Feedforward Neural Networks: one-class classifier
	Machine Learning – One Class for Failure Detection �
	Analysing the reconstruction residuals for fault isolation
	Decoder for Failure Isolation�
	Generator Health Monitoring
	Generator Health Monitoring
	Combined Architecture
	Integrated fault diagnostics: Generator case study
	Self-Supervision
	Why not use construction?
	What is Self-Supervision?
	Self-supervised learning
	Important pretext tasks (for computer vision)
	Basic idea of self-supervised learning
	Relative position?
	Semantics from a non-semantic task
	Context
	Avoiding Trivial Shortcuts
	Context
	Context
	Context
	Image Transformations

