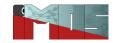
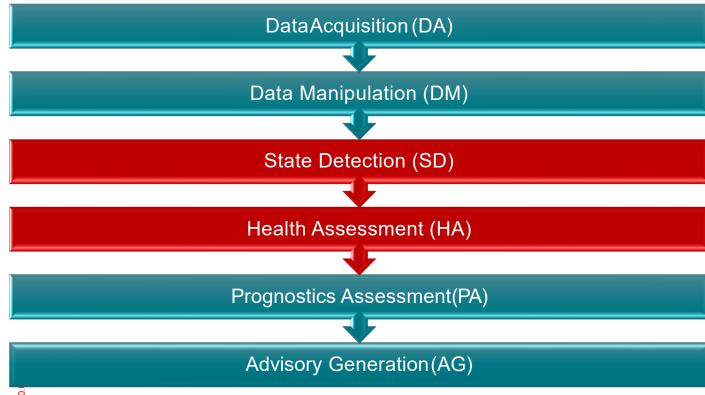


 École polytechnique fédérale
 de l'ausanne

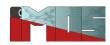
PHM Process



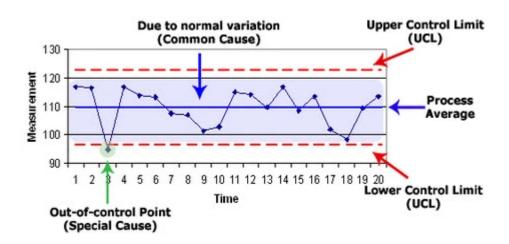


Control Charts for fault detection

Control charts



- Also known as Shewhart Charts or Statistical Process Control Charts (SPCC)
- Graphical tools used to determine if a process is in a state of statistical control, or how much variation exists in a process



https://www.clearpointstrategy.com/

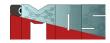
Fault detection

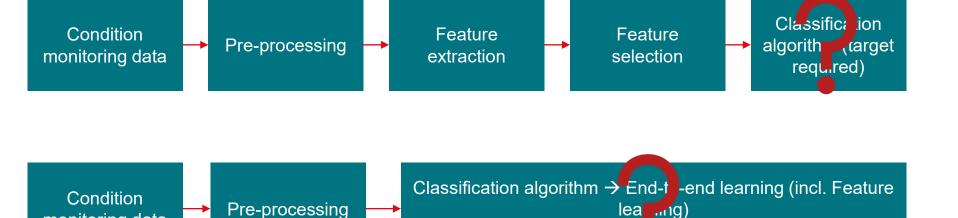
Fault detection



- Faults in mission-critical systems are rare → not possible to learn the fault patterns from examples
- Often only healthy data observed at the point in time of the fault detection model development !!!
- We are missing labeled data!!!

Fault detection?

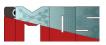




(target required)

monitoring data

Types of fault detection approaches



- (Supervised)
- Unsupervised
- Semi-supervised

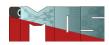
Clustering algorithms for fault detection and diagnostics

Cluster analysis

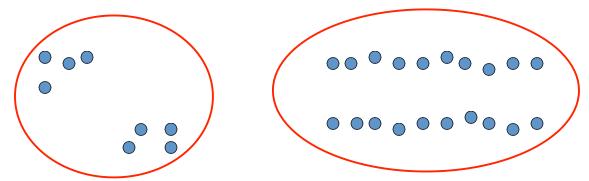


- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- The subgroups are chosen such that the intra-cluster differences are minimized and the inter-cluster differences are maximized.
- Unsupervised learning: no predefined classes
- Applications of cluster analysis:
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering

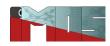


- Basic idea: group together similar instances
- In the context of feature selection: group together similar features (and replace the groups by a «representative» feature)



- How do we define similarity?
 - Classical: Euclidean distance, Manhatten distance
 - Correlation-based distances
 - Cosine similarity

Quality of the cluster analysis



- A good clustering method will produce high quality clusters
 - high <u>intra-class</u> similarity: cohesive within clusters
 - low inter-class similarity: distinctive between clusters
- The <u>quality</u> of a clustering method depends on
 - the similarity measure used by the method
 - · its implementation, and
 - Its ability to discover some or all of the <u>hidden</u> patterns

EPFL Clustering as a pre-processing step for other algorithms



1. Feature Engineering and Extraction

- Creating Cluster-Based Features:
- After performing clustering on your dataset, each data point is assigned to a specific cluster. This cluster assignment can be used as an additional feature for supervised learning algorithms.
- Dimensionality Reduction:
- Clustering can help in identifying and retaining the most representative features of the data by grouping similar features together.

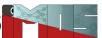
2. Data Cleaning and Noise Reduction

- Identifying Outliers:
- Clustering algorithms can help identify outliers or anomalies by highlighting data points that do not fit well into any cluster.
- Smoothing Data:
- Clustering can group similar data points, allowing for the smoothing of noisy data within each cluster.

3. Data Transformation and Encoding

- **Encoding Categorical Variables:**
- Clustering can be used to encode categorical variables by grouping similar categories together.
- Enhancing Feature Space:
- Clustering can transform the original feature space into a new space where cluster memberships or distances to cluster centroids are used as features.

EPFL Clustering as a pre-processing step for other algorithms



4. Initialization for Other Algorithms

- Improving Algorithm Convergence:
- Clustering can provide good initial centers or starting points for iterative algorithms, enhancing their convergence speed and accuracy.
- Facilitating Ensemble Methods:
- Clustering can be used to create diverse subsets of data or features, which can then be used in ensemble learning methods to build more robust models

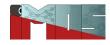
5. Handling Imbalanced Data

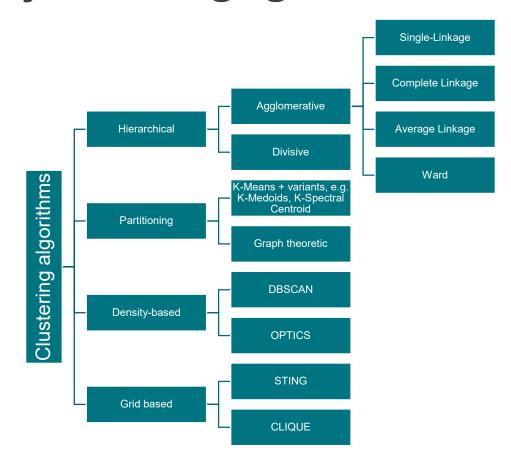
- Resampling Techniques:
- Clustering can assist in resampling techniques by ensuring that minority classes are adequately represented.

6. Enhancing Interpretability

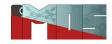
- Simplifying Model Interpretation:
- By clustering similar data points, models can be built on aggregated clusterlevel data, making the models easier to interpret.

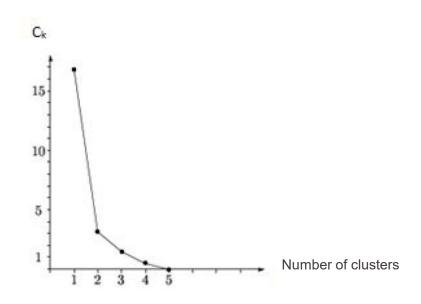
Major Clustering algorithms





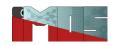
Number of clusters





C_k: Total within-clusters sum of squares

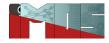
Silhoutte Coefficient

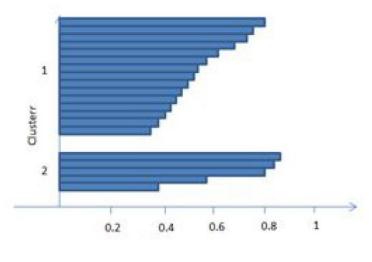


- Can be used to study the separation distance between the resulting clusters
- A measure how close each point in one cluster is to points in the neighboring clusters → can be assessed visually in silhoutte plots
- a(i) average distance between i and all observations within the same cluster
- b(i) be the smallest average distance of i to all points in any other cluster (excluding the cluster that it is member of)

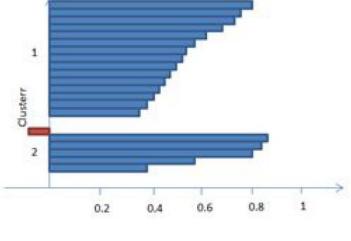
$$s(i) = rac{b(i) - a(i)}{\max\{a(i), b(i)\}} \hspace{1cm} s(i) = egin{cases} 1 - a(i)/b(i), & ext{if } a(i) < b(i) \ 0, & ext{if } a(i) = b(i) \ b(i)/a(i) - 1, & ext{if } a(i) > b(i) \end{cases}$$

Silhoutte Plot: example



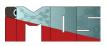


Silhoutte Coefficient



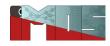
Silhoutte Coefficient

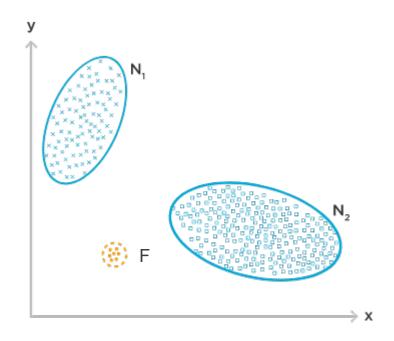
Clustering for anomaly/fault detection



- Assumption that similar data points tend to cluster together in groups, as determined by their proximity to local centroids.
- Data instances that fall outside of these groups are considered as anomalies

Clustering for fault detection

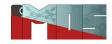


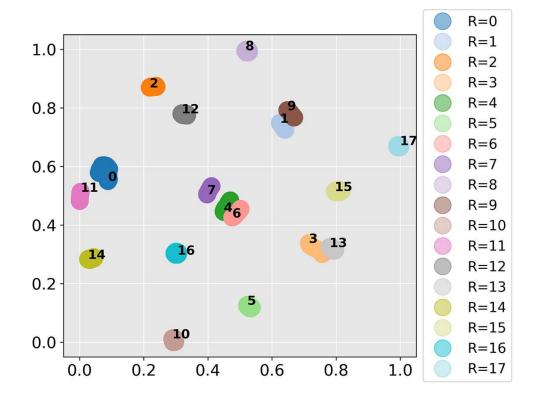


Clustering for fault dignostics

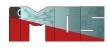
- Segmentation of different fault types in an unsupervised way
- Only mapping between which cluster belongs to which fault type is missing

Clustering for fault diagnostics





Clustering in Fault Detection



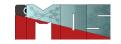
Model Training and Clustering

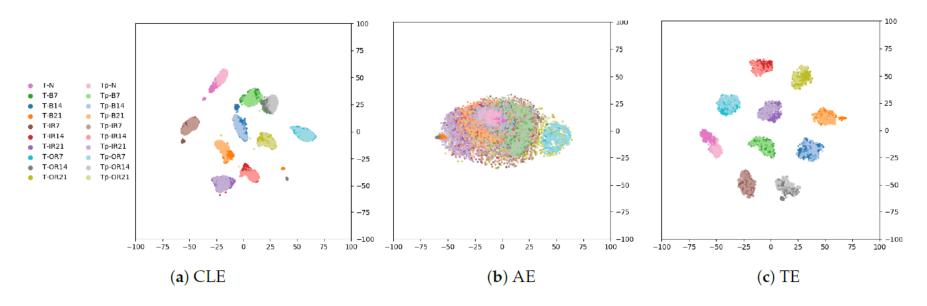
- Train Clustering Model: Apply the chosen clustering algorithm to the preprocessed data to identify distinct groups representing normal and potentially faulty states.
- Determine Cluster Labels: Typically, the largest cluster represents normal operation, while smaller clusters may indicate anomalies or faults.

Fault Detection and Diagnosis

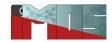
- Monitor Incoming Data: Continuously collect new data points and assign them to existing clusters using the trained model.
- Detect Faults: Data points that do not fit well into any cluster (e.g., assigned to a "noise" cluster in DBSCAN) or deviate significantly from normal clusters are flagged as potential faults.
- Diagnose Fault Types: Analyze the characteristics of the anomalous clusters to identify specific fault types and their underlying causes.

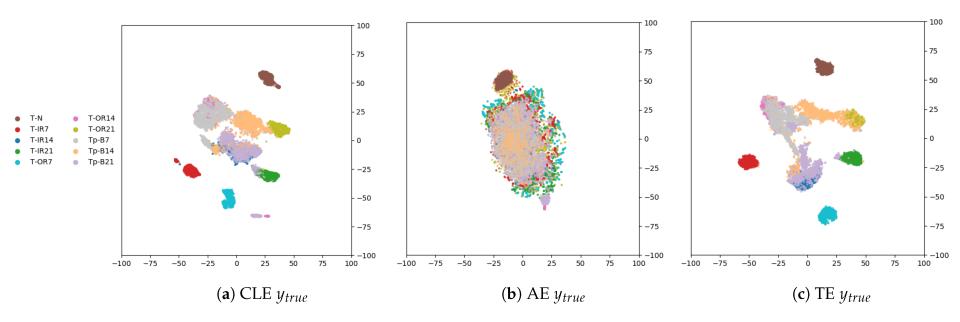
Separability of fault types in the feature space Bearing case study (CWRU) \rightarrow 10 classes (9 faulty + 1 healthy)





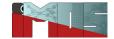
Detectability of new fault types (not used for training)

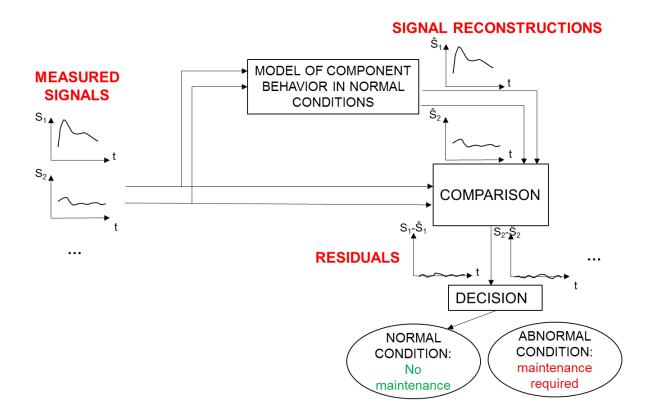




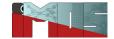
Signal reconstruction / Residual-based approaches

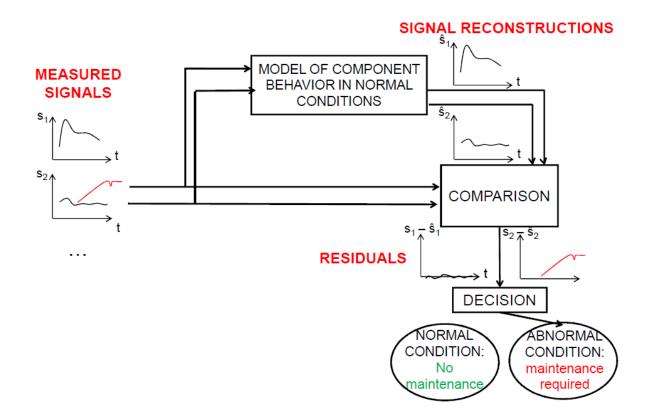
Fault detection with residual based approaches





Fault detection with residual based approaches





Fundamental Concepts of Residual-Based Fault **Detection**

System Modeling

- At the core of residual-based fault detection is an accurate model of the system under normal operating conditions.
- **Analytical Models:** Derived from first principles and mathematical equations representing the system's physical laws.
- Data-Driven Models: Developed using historical data through techniques like machine learning, statistical analysis, or system identification methods.

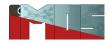
Residual Generation

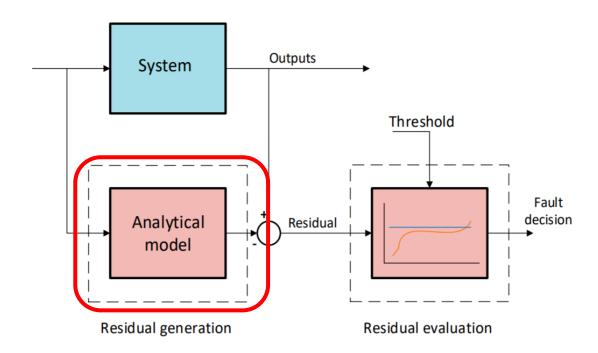
- Residuals are calculated by comparing the actual system outputs with the outputs predicted by the model. Mathematically, it can be expressed as:
- Residual=Observed Output-Predicted Output
- Under normal conditions, residuals should ideally be zero or within a predefined acceptable range. Significant deviations from this range suggest potential faults.

Threshold Setting

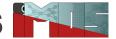
- To determine what constitutes an abnormal residual, thresholds are established.
- Static Thresholds: Fixed values based on historical data or safety margins.
- Adaptive Thresholds: Dynamic values that adjust based on operating conditions, environmental factors, or system variability.

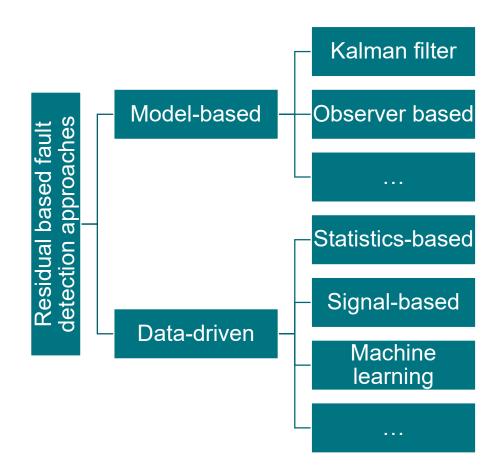
Basic idea of residual based methods



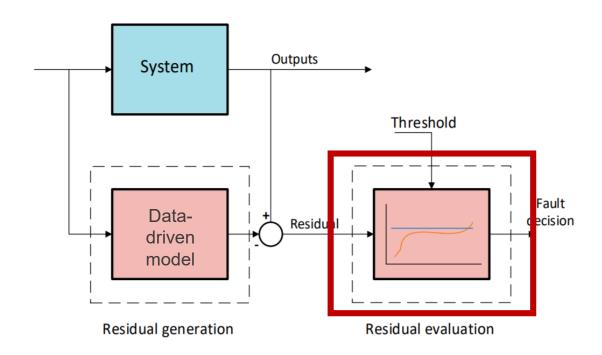


Different approaches to residual-based methods

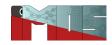




Basic idea of residual based methods

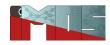


Thresholds



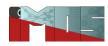
- Determine the thresholds based on the validation dataset (+ add additional margin)
- Two types of thresholds: for all the signals + for single signals → fault isolation
- Perform statistical tests on the distributions of the residuals

Fault Detection Logic



- The detection logic involves monitoring residuals and comparing them against the set thresholds to decide whether a fault has occurred. This can include:
 - **Simple Thresholding:** Triggering an alarm if the residual exceeds the threshold.
 - Statistical Methods: Using statistical tests to assess the significance of residual deviations.
 - Pattern Recognition: Identifying specific patterns or trends in residuals that correlate with certain fault types.

Residual-Based Fault Detection



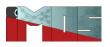
Advantages

- Simplicity: Conceptually straightforward and easy to implement with a well-defined residual.
- Generality: Applicable to a wide range of systems and fault types.
- Real-Time Capability: Enables continuous monitoring and timely fault detection.
- Scalability: Can be extended to complex and large-scale systems by decomposing them into manageable subsystems.

Challenges and Limitations

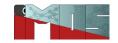
- Model Accuracy: The effectiveness heavily depends on the accuracy of the system model. Inaccurate models can lead to false alarms or missed detections.
- Noise Sensitivity: High levels of measurement noise can obscure residual signals, making fault detection more difficult.
- Threshold Determination: Setting appropriate thresholds is critical and can be challenging, especially in systems with variable operating conditions.
- Complex Faults: Simultaneous or multiple faults may be difficult to detect and isolate using residual-based methods alone.

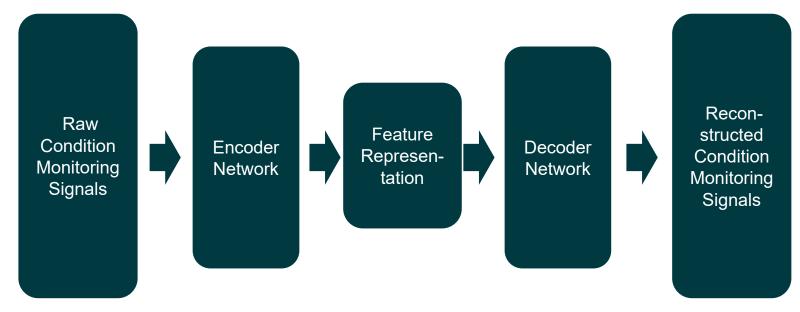
Different types of residual-based approaches



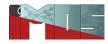
- Signal reconstruction (reconstruct the signal at the current point in time
 (t)) → Autoencoder model
- Forecasting (predict the measurements at t+1)
- Input (operating conditions + control) Output (signal measurements) mappings → operating conditions models

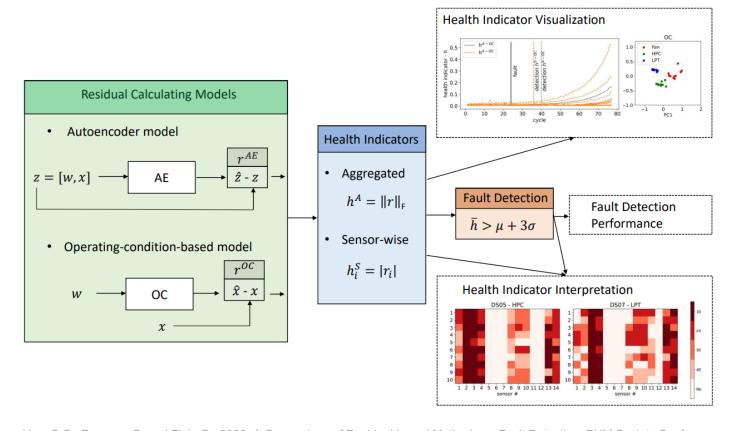
Learning features from raw condition monitoring data



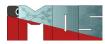


Residual-based fault detection example

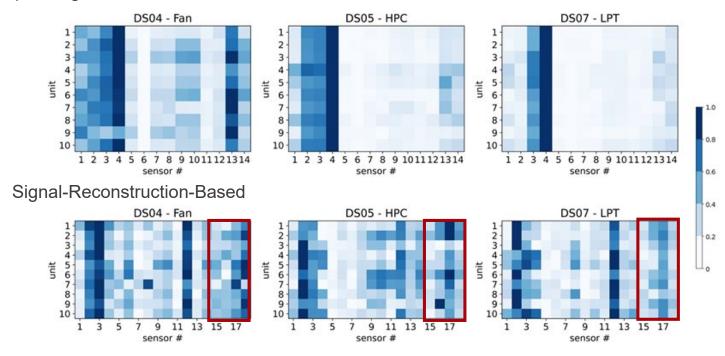




Residual-based fault detection example

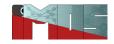


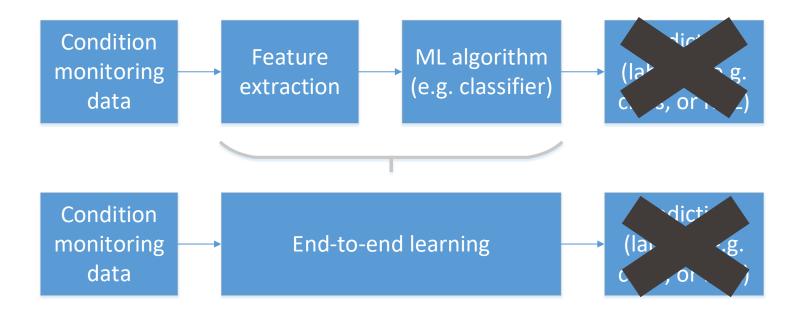
Operating-Conditions-based



Unsupervised / Self-supervised learning

Learning Architectures





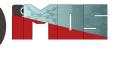
How much information is the machine given during learning?



- "Pure" Reinforcement Learning (cherry)
- ► The machine predicts a scalar reward given once in a while.
- ▶ A few bits for some samples
- Supervised Learning (icing)
- ➤ The machine predicts a category or a few numbers for each input
- ➤ Predicting human-supplied data
- ► 10→10,000 bits per sample
- Self-Supervised Learning (cake génoise)
- ➤ The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

Source: Y. LeCun

Unsupervised (also self-supervised, predictive) Learning



- We have access to {x1, x2, x3, · · ·, xN} but not {y1, y2, y3, · · ·, yN}
- Why would we want to tackle such a task:
 - Extracting interesting information from data
 - Clustering
 - Discovering interesting trend
 - Data compression
 - Learn better representations

Unsupervised Learning

Non-probabilistic Models

- Sparse Coding
- Autoencoders
- > Others (e.g. k-means)

Probabilistic (Generative) Models

Tractable Models

- > Fully observed
- Belief Nets
- > NADE

Non-Tractable Models

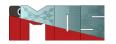
- > Boltzmann Machines
- Variational Autoencoders
- Helmholtz Machines
- Many others...

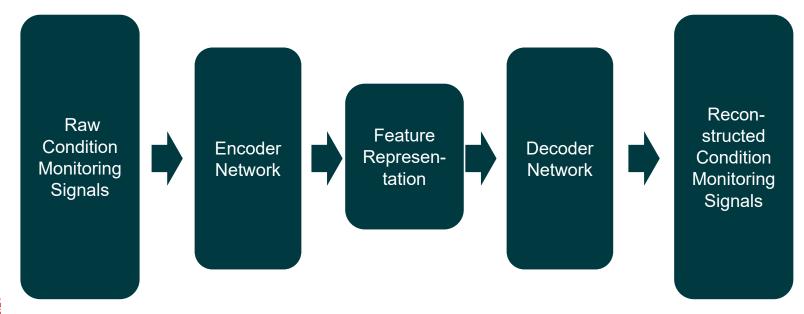
- > Generave Adversarial Networks (GAN)
- > Moment Matching **Networks**

Explicit Density p(x)

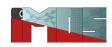
Implicit Density

Learning features from raw condition monitoring data





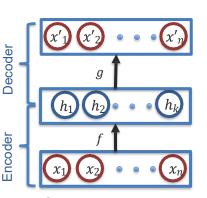
Autoencoders



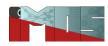
- Network is trained to output the input (learn identify function).
- Two parts encoder/decoder
 - x' = g(f(x))
 - g decoder
 - f encoder

Trivial solution unless:

- Constrain number of units in Layer 2 (learn compressed representation), or
- Constrain Layer 2 to be sparse



Basic principles of an autoencoder



If the input is $x \in \mathbb{R}^n$ an autoencoder will produce a $h \in \mathbb{R}^d$ where d < n, which is designed to contain most of the important features of \mathbf{x} to reconstruct it.

Autoencoder performs the following steps:

- **Encoder**: Perform a dimensionality reduction step on the data, $\mathbf{x} \in \mathbb{R}^n$ to obtain features $\mathbf{h} \in \mathbb{R}^d$.
- **Decoder**: Map the features $\mathbf{h} \in \mathbb{R}^d$ to closely reproduce the input, $\hat{\mathbf{x}} \in \mathbb{R}^n$.

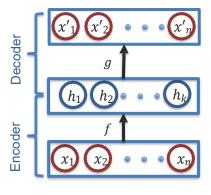
Thus, the autoencoder implements the following problem:

Let
$$\mathbf{x}\in\mathbb{R}^n$$
, $f(\cdot):\mathbb{R}^n\to\mathbb{R}^d$ and $g(\cdot):\mathbb{R}^d\to\mathbb{R}^n$. Let
$$\hat{\mathbf{x}}=g(f(\mathbf{x}))$$

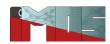
Define a loss function, $\mathcal{L}(\mathbf{x}, \hat{\mathbf{x}})$, and minimize \mathcal{L} with respect to the parameters of $f(\cdot)$ and $g(\cdot)$.

There are different loss functions that you could consider, but a common one is the squared loss:

$$\mathcal{L}(\mathbf{x}, \hat{\mathbf{x}}) = \|\mathbf{x} - \hat{\mathbf{x}}\|^2$$



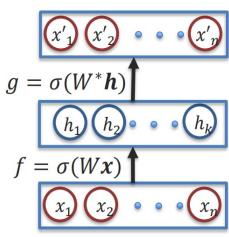
Nonlinear dimensionality reduction



- Mostly follows Neural Network structure
- Activation will depend on type of x
- Often we use tied weights to force the sharing of weights in encoder/decoder (in this case a single-layer network)

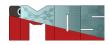
•
$$W^* = W^T$$

 In a more general form, f() and g() could be deep neural networks, learning potentially more nonlinear and expressive features h.



Source: J.C. Kao, UCLA

Sparse autoencoders

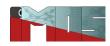


A sparse autoencoder is one that is regularized to not only minimize the loss, but to also incorporate sparse features. If $\mathbf{h} = f(\mathbf{x})$ and $\hat{\mathbf{x}} = \mathbf{g}(\mathbf{h})$, then the sparse encoder has the following loss:

$$\mathcal{L}(\mathbf{x}, \hat{\mathbf{x}}) + \lambda \sum_{i} |h_{i}|$$

where h_i is the *i*th element of \mathbf{h} . This is intuitive, as we know L1-regularization introduces sparsity.

Denoising autoencoders

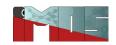


Say you wanted to obtain an autoencoder that was robust to noise. One could generate noise, ε , and add it to the input \mathbf{x} , so that $\tilde{\mathbf{x}} = \mathbf{x} + \varepsilon$. Then, the loss function of the autoencoder would have loss:

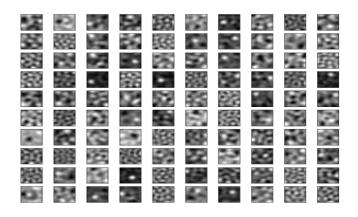
$$\mathcal{L}(\mathbf{x}, g(f(\tilde{\mathbf{x}})))$$

and it would learn to denoise $\tilde{\mathbf{x}}$ to reproduce \mathbf{x} . This can cause your autoencoder to be robust to certain types of noise.

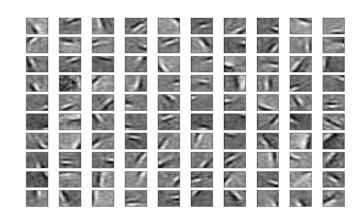
Sparse Vs Denoising (example)



Filter weights, 12x12 patches



Sparse AE
Actually meaningless:)

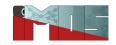


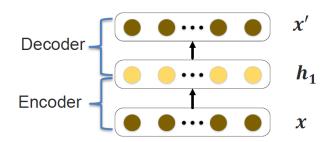
Denoising AE

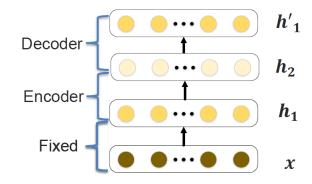
[Vincent et al. 2010]

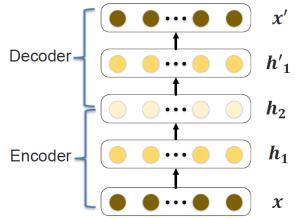
62

Stacked autoencoders





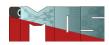




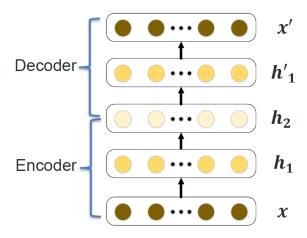
Source: L.P. Morency

63

Stacked denoising autoencoders

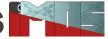


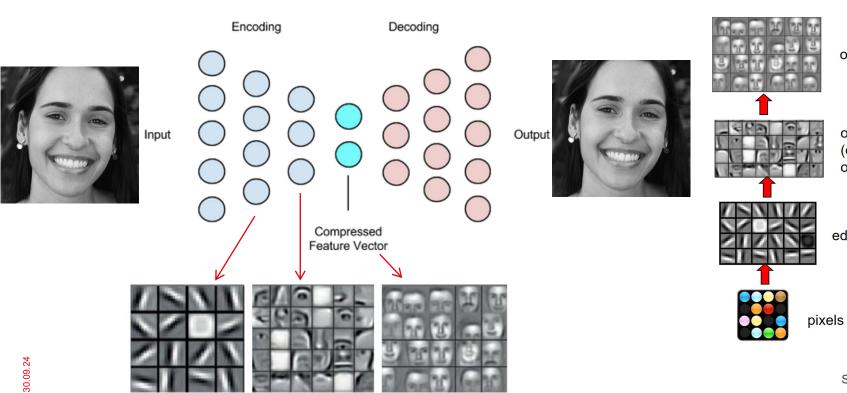
- Can extend this to a denoising model
- Add noise when training each of the layers
- Often with increasing amount of noise per layer
- 0.1 for first, 0.2 for second, 0.3 for third



EPFL

Learning features with deep learning algorithms



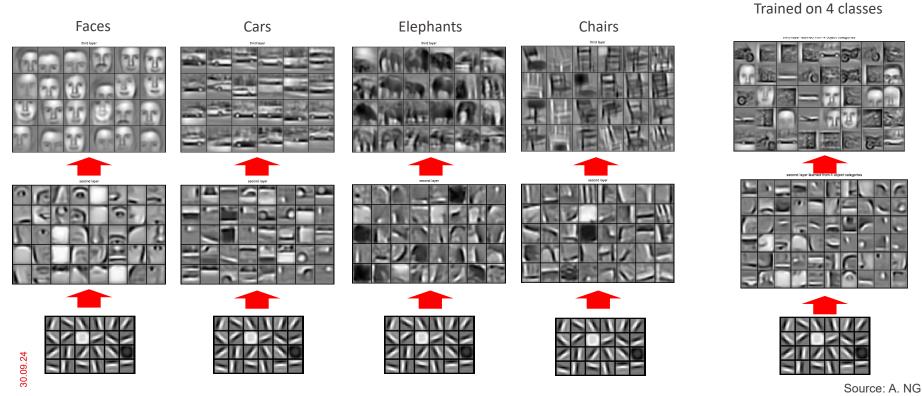


object models object parts

(combination of edges)

Source: A. NG

Examples of learned object parts from object categories

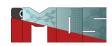


_ . _ . .

One-Class SVM /

Support Vector Data Description (SVDD)

One-class SVM

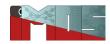


- Suppose that a dataset has a probability distribution P in the feature space.
- Find a "simple" subset S of the feature space such that the probability that a test point from P lies outside S is bounded by some a priori specified value $v \in (0,1)$
- The solution for this problem is obtained by estimating a function f which is positive on S and negative on the complement \bar{S} .

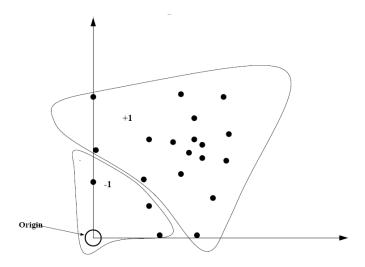
$$f(x) = \begin{cases} +1 & \text{if } x \in S \\ -1 & \text{if } x \in \overline{S} \end{cases}$$

Source: Manevitz, 2001

One-class SVM

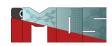


 The algorithm can be summarized as mapping the data into a feature space H using an appropriate kernel function, and then trying to separate the mapped vectors from the origin with maximum margin



Source: Manevitz, 2001

One-class SVM

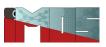


$$\min_{w,\,\xi_i,\,
ho}rac{1}{2}\|w\|^2+rac{1}{
u n}\sum_{i=1}^n \xi_i-
ho$$

subject to:

$$(w \cdot \phi(x_i)) \ge \rho - \xi_i$$
 for all $i = 1, ..., n$
 $\xi_i \ge 0$ for all $i = 1, ..., n$

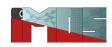
ν -parameter



- In this formula it is the parameter ν that characterizes the solution;
- it sets an upper bound on the fraction of outliers (training examples regarded out-of-class)
- it is a lower bound on the number of training examples used as Support Vector

30.09.24

Decision function

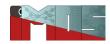


If w and ρ solve this problem, then the decision function

$$f(x) = \operatorname{sgn}((w \cdot \phi(x_i)) -
ho) = \operatorname{sgn}(\sum_{i=1}^n lpha_i K(x, x_i) -
ho)$$

will be positive for most examples xi contained in the training set.

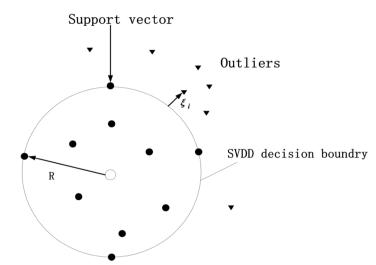
Support Vector Data Description (SVDD)



- Obtains a spherical boundary, in feature space, around the data.
- The volume of this hypersphere is minimized → minimizes the effect of incorporating outliers in the solution

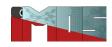
$$\min_{R,\,\mathbf{a}} R^2 + C \sum_{i=1}^n \xi_i$$
 subject to:

$$\|x_i - \mathbf{a}\|^2 \leq R^2 + \xi_i \qquad ext{ for all } i = 1, \dots, n \ \xi_i \geq 0 \qquad ext{ for all } i = 1, \dots, n$$



Source: Tax & Duin

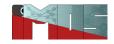
Support Vector Data Description (SVDD)

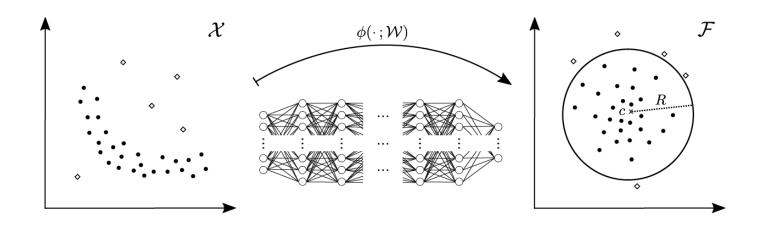


- After solving this by introducing Lagrange multipliers α_i , a new data point z can be tested to be in or out of class.
- It is considered in-class when the distance to the center is smaller than or equal to the radius, by using the Gaussian kernel as a distance function over two data points:

$$\|z-\mathbf{x}\|^2 = \sum_{i=1}^n lpha_i \expigg(rac{-\|z-x_i\|^2}{\sigma^2}igg) \geq -R^2/2 + C_R$$

Deep SVDD





Soft-boundary Deep SVDD objective

$$\min_{R,\mathcal{W}} R^2 + \frac{1}{\nu n} \sum_{i=1} \max\{0, \|\phi(\boldsymbol{x}_i; \mathcal{W}) - \boldsymbol{c}\|^2 - R^2\}$$
$$+ \frac{\lambda}{2} \sum_{i=1}^{L} \|\boldsymbol{W}^{\ell}\|_F^2.$$

One-Class Deep SVDD objective

$$\min_{\mathcal{W}} \quad \frac{1}{n} \sum_{i=1}^{n} \|\phi(x_i; \mathcal{W}) - c\|^2 + \frac{\lambda}{2} \sum_{\ell=1}^{L} \|\mathbf{W}^{\ell}\|_F^2$$

75

Deep SVDD

Foundation: Support Vector Data Description (SVDD)

- Purpose: SVDD is primarily used for one-class classification, aiming to identify whether new data points belong to a predefined class or are anomalies.
- **Mechanism:** It constructs the smallest possible hypersphere in the feature space that encapsulates the majority of the data points from the target class.
- Limitations: Traditional SVDD operates in a fixed, often low-dimensional feature space, which can be insufficient for capturing complex data patterns.

Integration with Deep Learning

- Deep Feature Learning: Deep SVDD leverages deep neural networks to automatically learn rich, high-dimensional feature representations from raw input data.
- **End-to-End Training:** Unlike traditional SVDD, Deep SVDD trains the feature extractor (neural network) and the data description simultaneously, enabling the model to capture intricate data structures.

Objective Function

- Sphere Minimization: Similar to SVDD, the primary objective is to minimize the volume of the hypersphere that contains the data.
- Regularization Term: Deep SVDD incorporates regularization to prevent the network from mapping all inputs to a trivial point (collapse), ensuring meaningful feature learning.
- Loss Function: The loss typically combines the distance of data points from the center of the hypersphere with the regularization term, optimizing both the network weights and the sphere parameters.

Representation Learning

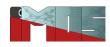
- Layer-wise Feature Extraction: Deep SVDD uses multiple layers in the neural network to extract hierarchical features, allowing the model to understand data at various levels of abstraction.
- **Non-Linear Mappings:** The deep architecture facilitates non-linear transformations of the input data, making it possible to capture complex patterns that linear methods like traditional SVDD cannot.

Advantages Over Traditional SVDD

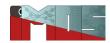
- Enhanced Feature Representation: By learning deep features, Deep SVDD can model more complex data distributions, improving anomaly detection accuracy.
- Scalability: Deep SVDD can handle large and high-dimensional datasets more effectively due to the scalability of neural networks.
- Flexibility: The deep architecture allows for integration with various types of data (e.g., images, text, time-series) by customizing the neural network structure accordingly.

Isolation Forest

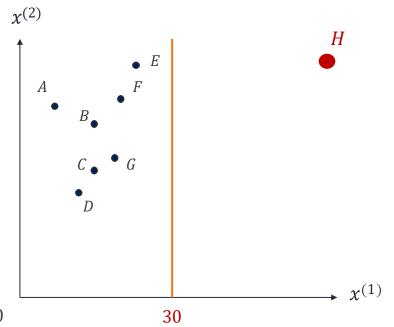
Isolation Forest – overview

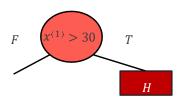


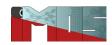
- **Aim:** provide a ranking that reflects the degree of "anomaly" for each data point
 - Sort data points according to their path lengths or anomaly scores
 - Outliers are the points with the biggest anomaly scores
- **Isolation Tree (iTree)**: binary tree where each node in the tree has exactly zero or two daughter nodes
- **Isolation Forest (iForest) algorithm**: Unsupervised Machine Learning algorithm inspired by random forests
 - Unsupervised: observations in the dataset are unlabeled
 - No need to profile normal instances and to calculate point-based distances
 - Builds an ensemble of random trees based on a mechanism called "isolation", an iterative (random) partitioning process to separate outliers from normal points
 - Uses the observation that outliers are more likely to be isolated with fewer **steps**, compared to normal points



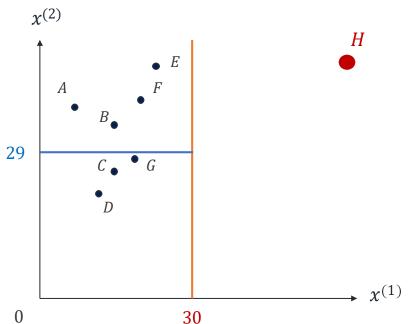
- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step
- More steps are needed to isolate the other points

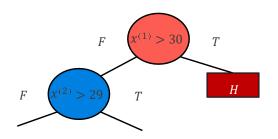


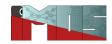




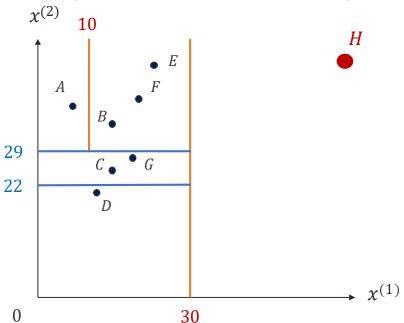
- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step
- More steps are needed to isolate the other points



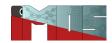




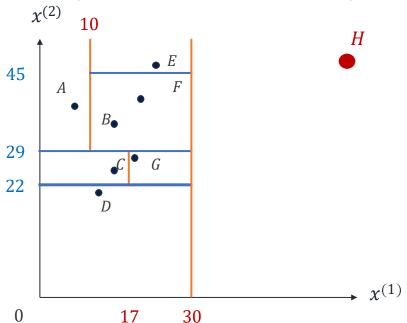
- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step
- More steps are needed to isolate the other points

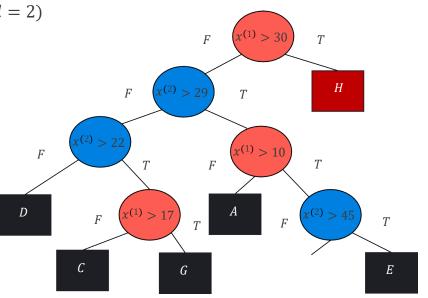


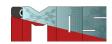




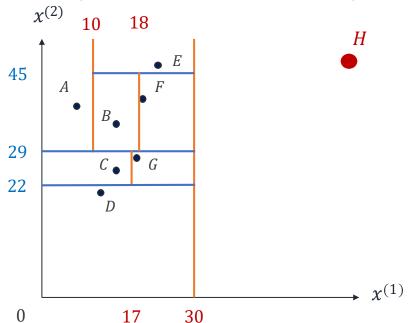
- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step
- More steps are needed to isolate the other points





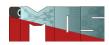


- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step
- More steps are needed to isolate the other points

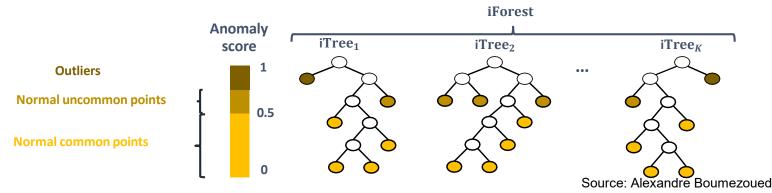




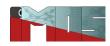
Isolation Forest – from Tree to iForest



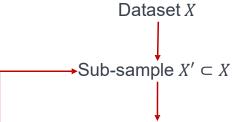
- **Ensemble method:** generates multiple iTrees → iForest
 - Path length of an observation obtained as the sum of:
 - total number of splits needed to isolate it
 - adjustment term to add if observation terminates at an external node. (Accounts for an unbuilt subtree beyond some tree height limit $\ell \rightarrow$ saves computational time)
 - Compute the average path lengths $\overline{h(X_i)}$ for each observation X_i
- Calculation of the anomaly scores
 - Normalization by the average (universal) path length *L* in a binary tree
 - Anomaly score: $s(X_i) = 2^{-\frac{h(X_i)}{L}} \in [0, 1] \Rightarrow \text{small average path length} = \text{high anomaly score}$



Isolation Forest – details



- **Dataset**: $X = (X_1, ..., X_n)$, with $X_i = (x_i^{(1)}, ..., x_i^{(d)}) \in \mathbb{R}^d$ where:
 - *n* is the number of instances
 - *d* is the number of covariates
- **Sub-sampling**: An iTree j is obtained by selecting a random subset $X' \subset X$, where $|X'| = \psi < n$, $X' = (X_{\sigma_j(1)}, \dots, X_{\sigma_j(\psi)})$, and $\sigma_j : [1, \psi] \to [1, n]$ is a (random) injective function.
- X' is then divided recursively by **randomly selecting a covariate** $q \in \{1, \dots, d\}$ and a **split value** $x_*^{(q)} \in [\min_{1 \leq i \leq \psi} x_{\sigma_j(i)}^{(q)}, \max_{1 \leq i \leq \psi} x_{\sigma_j(i)}^{(q)}]$ until:
 - Either the tree reaches the height limit ℓ , which is approximately the average tree height
 - Or |X'| = 1, i.e. there is only one unique point remaining



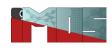
- Covariate q is selected
- Split value $x_*^{(q)}$ is selected

$$X'_{left} = \{X_{\sigma_j(i)} \mid x_{\sigma_j(i)}^{(q)} < x_*^{(q)}\}$$

•
$$X'_{right} = \{X_{\sigma_j(i)} \mid x_{\sigma_j(i)}^{(q)} \ge x_*^{(q)}\}$$

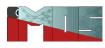
The process is repeated until every point is isolated or the height limit ℓ is reached

Isolation Forest – about swamping and masking



- Swamping & masking are standard issues in outlier detection problems
 - **Swamping**: wrong identification of normal instances as outliers in the case where many variables are non informative on the "outlier" nature (the split based on these variables is not appropriate)
 - Masking: when too many outliers coexist in the dataset, the splitting rules are not efficient to isolate data points since many iterations are needed
- Both problems are consequences of too many data for the purpose of outlier detection
- Solution of iForest algorithm: Sub-sampling
 - Controls data size, which helps to better isolate examples of outliers
 - Each iTree can be specialized, each sub-sample including a different set of outliers
- It has been shown that iForest's outlier detection ability is superior when sub-sampling is used

Isolation Forest – pros and challenges



Pros

- Unsupervised method: does not require labels of outliers provided by expert judgements
- No model needed (the aim is not to model normal instances)
- Provides a hierarchy by assigning an anomaly score to each observation
- Does not require examples of outliers in the training set
- Requires relatively small samples from large datasets to derive an outlier detection function
- The algorithm can be trained once and reused without computational cost
- Achieves a linear time complexity with low memory requirement
 - by using sub-sampling
 - by avoiding building trees after reaching a height limit ℓ
- Overcomes the problem of swamping/masking by using sub-sampling

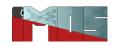
Challenges

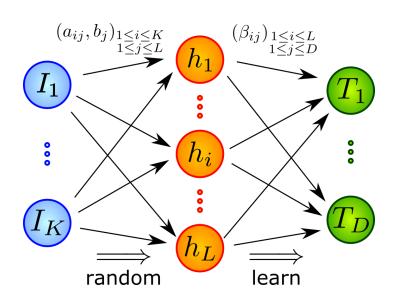
- Requires working on the data to provide appropriate format of the covariates
- Tuning parameters need to be set
- To avoid the black-box syndrome, it benefits from a pre-selection of covariates in line with the problem to be tackled

Example

30.09.24

Single Layer Feedforward Neural Networks





$$Y = g(\boldsymbol{A}, X, B) \cdot \boldsymbol{\beta}$$

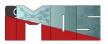
$$\|g(\boldsymbol{A}\cdot\boldsymbol{X}^{\operatorname{Train}}+B)\cdot\boldsymbol{\hat{\beta}}-T\|_{u}^{\sigma_{1}}<\epsilon$$

$$\|\boldsymbol{H}\cdot\hat{\boldsymbol{\beta}}-T\|_{u}^{\sigma_{1}}<\epsilon$$

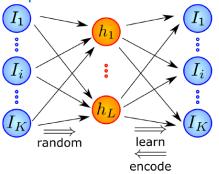
$$\mathbf{H} = \begin{bmatrix} g(\mathbf{a}_1, b_1, \mathbf{x}_1) & \cdots & g(\mathbf{a}_L, b_L, \mathbf{x}_1) \\ \vdots & \ddots & \vdots \\ g(\mathbf{a}_1, b_1, \mathbf{x}_{N_T}) & \cdots & g(\mathbf{a}_L, b_L, \mathbf{x}_{N_T}) \end{bmatrix}$$

$$\hat{\boldsymbol{\beta}} = \operatorname{Argmin}_{\boldsymbol{\beta}} \|\boldsymbol{H}\boldsymbol{\beta} - T\|_{u}^{\sigma_{1}} + C\|\boldsymbol{\beta}\|_{v}^{\sigma_{2}}$$

Single Layer Feedforward Neural Networks: Sparse Autoencoder



Sparse Auto-Encoder:



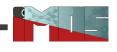
$$\operatorname{Argmin}_{\beta} \lambda \|\beta\|_1 + \|\boldsymbol{H}\beta - X\|_2^2$$

Residual

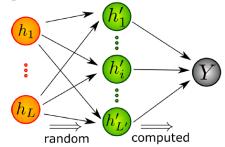
$$\mathsf{Res} = \|X - X\beta_1^{\top}\beta_1\|_2^2$$

β is solved by FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

Single Layer Feedforward Neural Networks: oneclass classifier



Regularised One-class classifier



$$\operatorname{Argmin}_{\beta} \lambda \|\beta\|_2 + \|\boldsymbol{H}\beta - 1\|_2^2$$

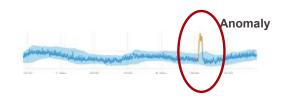
$$\boldsymbol{\beta} = \left(C \cdot \mathbb{I} + \boldsymbol{H}^{\mathsf{T}} \boldsymbol{H} \right)^{-1} \boldsymbol{H}^{\mathsf{T}} T$$

Residual

Distance to 1 (training)

$$d(Y_i,1) = |Y_i - 1|$$

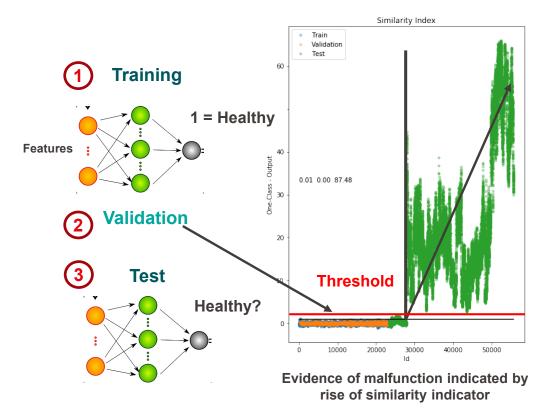
EPFL Machine Learning – One Class for Failure Detection



- Neural network learns healthy data
 - i.e training with healthy data
- Detection threshold defined with validation set

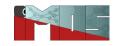
Thrd=
$$\gamma \cdot percentile_p(|1 - Y^{Val}|)$$

- Neural network computes similarity index
 - i.e during testing



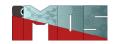
EPFL

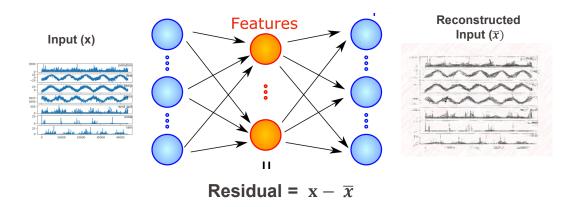
Analysing the reconstruction residuals for fault isolation

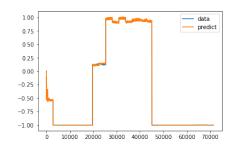


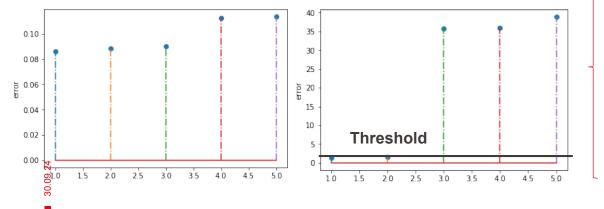


Decoder for Failure Isolation









Residual =
$$abs(x_i - \bar{x_i}) \sim 0$$

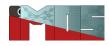
(2) Validation

Residual threshold defined with healthy data

Test

If $abs(x_i - \bar{x_i}) \gg 0$ then signal *i* faulty

Generator Health Monitoring



320 monitoring sensors:

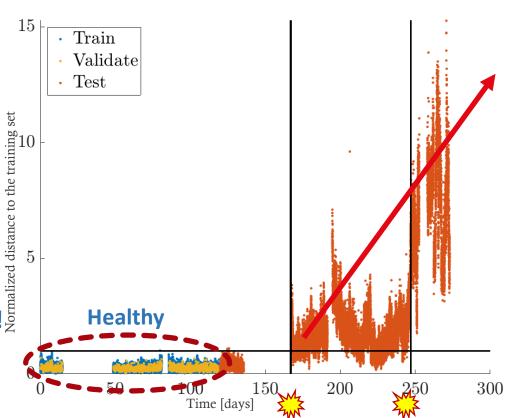
- Partial discharge
- Rotor shaft voltage
- Rotor flux
- Stator end winding vibration
- Stator Water Temperature

275 days of recorded operation,60 000 observations1 fault

Can only use Healthy data for training!

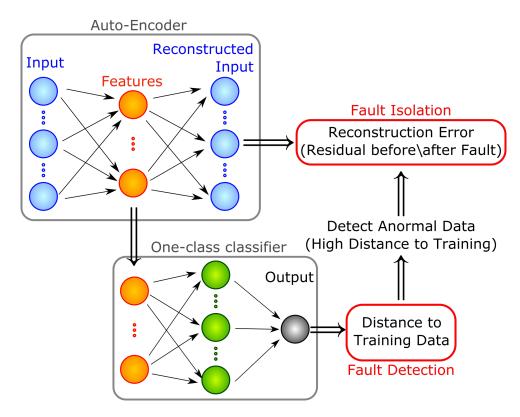
Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017

Generator Health Monitoring

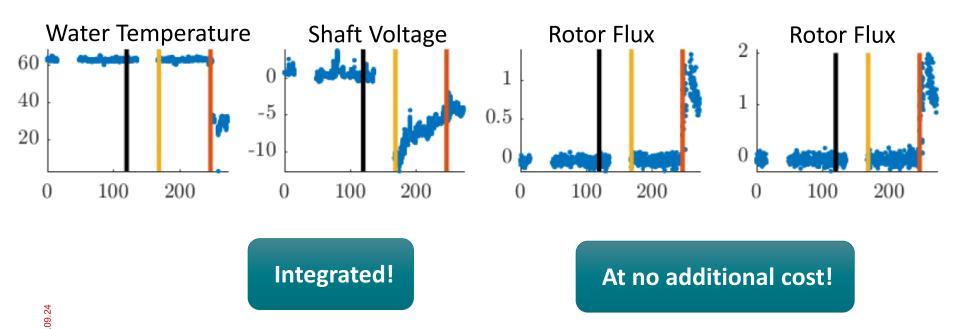


Combined Architecture





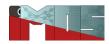
Integrated fault diagnostics: Generator case study



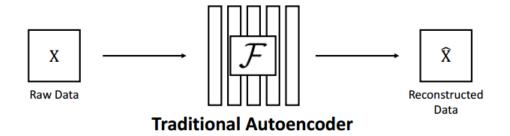
Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017

Self-Supervision

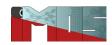
Why not use construction?



- Why may autoencoders not be sufficient?
 - Use pixel-wise loss, no structural loss incorporated
 - Reconstruction can hardly represent semantic information



EPFL What is Self-Supervision?

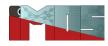


- A form of unsupervised learning where the data provides the supervision
- Use naturally existing supervision signals for training.
- (Almost) no human intervention
- In general, define an auxiliary (supervised) learning task with the labels derived from the data
- The task defines a proxy loss, and the network is forced to learn what we really care about, e.g. a semantic representation, in order to solve it
- Many self-supervised tasks for images
- Often complementary, and combining improves performance

30.09.24

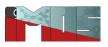
Source: Naiyan Wang 2018

Self-supervised learning



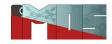
- Pretext task → important strategy for learning data representations under self-supervised mode
- Self-defined pseudo-labels
- Pseudo-labels automatically generated based on the attributes found in the unlabeled data

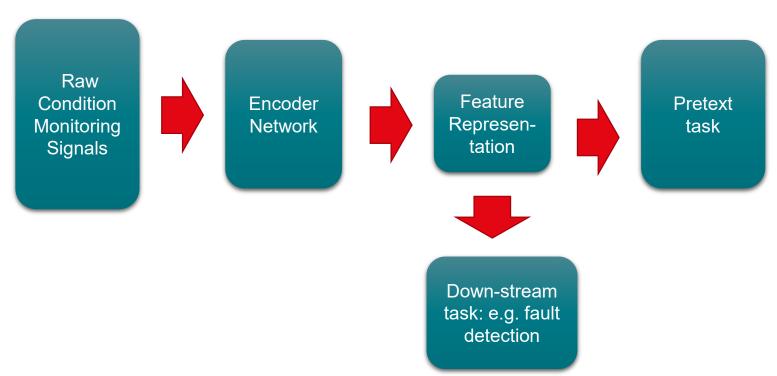
Important pretext tasks (for computer vision)



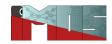
- color transformations
- geometric transformations
- context-based tasks
- cross-modal-based tasks

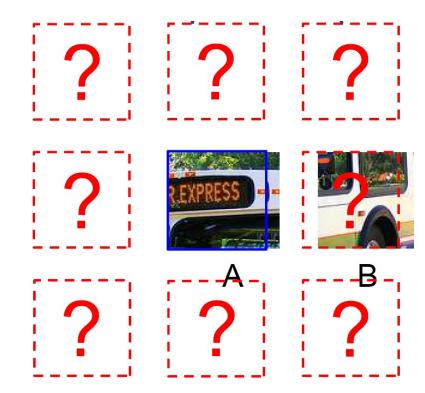
Basic idea of self-supervised learning





Relative position?

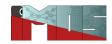


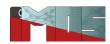


Source: Zisserman 2018

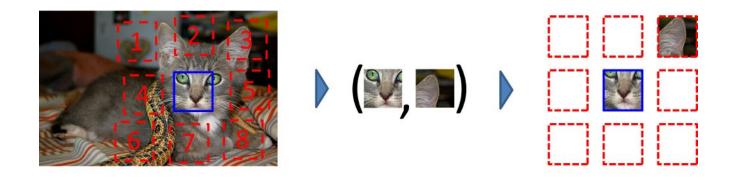
105

Semantics from a non-semantic task

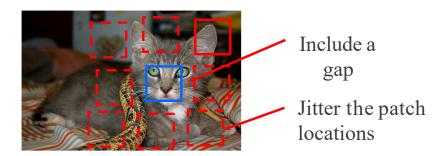




- Solving the Jigsaw
 - Predict relative positions of patches
 - You have to understand the object to solve this problem!
 - Be aware of trivial solution! CNN is especially good at it

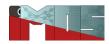


Avoiding Trivial Shortcuts

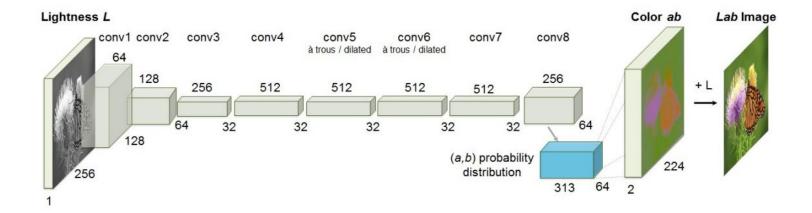


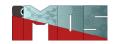
Source: Zisserman 2018

108



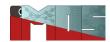
- Colorization
 - You have to know what the object is before you predict its color
 - E.g. Apple is red/green, sky is blue, etc.



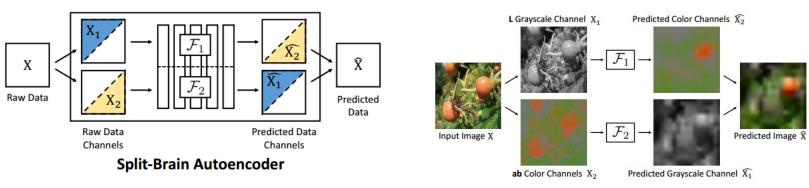


- Colorization
 - It is important how to interpret your work!
 - Example colorization of <u>Ansel Adams</u>'s B&W photos

110

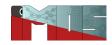


- Colorization
 - Stronger supervision, cross-supervision of different parts of data



(a) Lab Images

Image Transformations



Which image has the correct rotation?

