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Advisory Generation(AG)

Prognostics Assessment(PA) 

Health Assessment (HA)

State Detection (SD)

Data Manipulation (DM)

DataAcquisition (DA)



Control Charts for fault 
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 Also known as Shewhart Charts or Statistical Process Control Charts 
(SPCC)
 Graphical tools used to determine if a process is in a state of statistical 

control, or how much variation exists in a process

Control charts
30

.0
9.

24

Olga Fink 13

https://www.clearpointstrategy.com/
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 Faults in mission-critical systems are rare  not possible to learn the
fault patterns from examples
 Often only healthy data observed at the point in time of the fault 

detection model development !!!
 We are missing labeled data!!!

Fault detection
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Fault detection?
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Condition
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 (Supervised)
 Unsupervised
 Semi-supervised

Types of fault detection approaches
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Clustering algorithms for 
fault detection and 
diagnostics
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 Cluster: A collection of data objects
• similar (or related) to one another within the same group
• dissimilar (or unrelated) to the objects in other groups

 Cluster analysis (or clustering, data segmentation, …)
• Finding similarities between data according to the characteristics 

found in the data and grouping similar data objects into clusters
 The subgroups are chosen such that the intra-cluster differences are 

minimized and the inter-cluster differences are maximized.
 Unsupervised learning: no predefined classes 
 Applications of cluster analysis:

• As a stand-alone tool to get insight into data distribution 
• As a preprocessing step for other algorithms

Cluster analysis
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 Basic idea: group together similar instances
 In the context of feature selection: group together similar features (and

replace the groups by a «representative» feature)

 How do we define similarity?
• Classical: Euclidean distance, Manhatten distance
• Correlation-based distances
• Cosine similarity

Clustering
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 A good clustering method will produce high quality clusters

• high intra-class similarity: cohesive within clusters

• low inter-class similarity: distinctive between clusters

 The quality of a clustering method depends on

• the similarity measure used by the method 

• its implementation, and

• Its ability to discover some or all of the hidden patterns

Quality of the cluster analysis
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1. Feature Engineering and Extraction
• Creating Cluster-Based Features:
• After performing clustering on your dataset, each data point is assigned to a specific cluster. This 

cluster assignment can be used as an additional feature for supervised learning algorithms.
• Dimensionality Reduction:
• Clustering can help in identifying and retaining the most representative features of the data by grouping 

similar features together.
2. Data Cleaning and Noise Reduction

• Identifying Outliers:
• Clustering algorithms can help identify outliers or anomalies by highlighting data points that do not fit 

well into any cluster.
• Smoothing Data:
• Clustering can group similar data points, allowing for the smoothing of noisy data within each cluster.

3. Data Transformation and Encoding
• Encoding Categorical Variables:
• Clustering can be used to encode categorical variables by grouping similar categories together.
• Enhancing Feature Space:
• Clustering can transform the original feature space into a new space where cluster memberships or 

distances to cluster centroids are used as features.

Clustering as a pre-processing step for other algorithms
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4. Initialization for Other Algorithms
• Improving Algorithm Convergence:
• Clustering can provide good initial centers or starting points for iterative 

algorithms, enhancing their convergence speed and accuracy.
• Facilitating Ensemble Methods:
• Clustering can be used to create diverse subsets of data or features, which 

can then be used in ensemble learning methods to build more robust 
models.

5. Handling Imbalanced Data
• Resampling Techniques:
• Clustering can assist in resampling techniques by ensuring that minority 

classes are adequately represented.
6. Enhancing Interpretability

• Simplifying Model Interpretation:
• By clustering similar data points, models can be built on aggregated cluster-

level data, making the models easier to interpret.

Clustering as a pre-processing step for other algorithms
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Major Clustering algorithms
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Number of clusters
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Number of clusters

Ck: Total within-clusters sum of squares



 Can be used to study the separation distance between the resulting
clusters
 A measure how close each point in one cluster is to points in the

neighboring clusters can be assessed visually in silhoutte plots
 a(i) average distance between i and all observations within the same 

cluster
 b(i) be the smallest average distance of i to all points in any other 

cluster (excluding the cluster that it is member of)

Silhoutte Coefficient
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Silhoutte Plot: example
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 Assumption that similar data points tend to cluster together in groups, 
as determined by their proximity to local centroids.
 Data instances that fall outside of these groups are considered as 

anomalies

Clustering for anomaly/fault detection
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Clustering for fault detection
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 Segmentation of different fault types in an unsupervised way
 Only mapping between which cluster belongs to which fault type is 

missing

Clustering for fault dignostics
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Clustering for fault diagnostics
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Arias Chao, M., Adey, B. T., & Fink, O. (2021). Implicit supervision for fault detection and segmentation of emerging fault types with Deep 
Variational Autoencoders. Neurocomputing, 454, 324-338.



Model Training and Clustering
 Train Clustering Model: Apply the chosen clustering algorithm to the 

preprocessed data to identify distinct groups representing normal and 
potentially faulty states.
 Determine Cluster Labels: Typically, the largest cluster represents normal 

operation, while smaller clusters may indicate anomalies or faults.
Fault Detection and Diagnosis
 Monitor Incoming Data: Continuously collect new data points and assign 

them to existing clusters using the trained model.
 Detect Faults: Data points that do not fit well into any cluster (e.g., 

assigned to a "noise" cluster in DBSCAN) or deviate significantly from 
normal clusters are flagged as potential faults.
 Diagnose Fault Types: Analyze the characteristics of the anomalous 

clusters to identify specific fault types and their underlying causes.

Clustering in Fault Detection
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Separability of fault types in the feature space
Bearing case study (CWRU) 10 classes (9 faulty + 
1 healthy)
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Rombach, K., Michau, G., & Fink, O. (2021). Contrastive learning for fault detection and diagnostics in the context of changing operating conditions and novel 
fault types. Sensors, 21(10), 3550.



Detectability of new fault types (not used for
training)
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Rombach, K., Michau, G., & Fink, O. (2021). Contrastive learning for fault detection and diagnostics in the context of changing operating conditions and novel 
fault types. Sensors, 21(10), 3550.



Signal reconstruction / 
Residual-based 
approaches
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Fault detection with residual based approaches
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Fault detection with residual based approaches
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 System Modeling
• At the core of residual-based fault detection is an accurate model of the system 

under normal operating conditions. 
• Analytical Models: Derived from first principles and mathematical equations 

representing the system's physical laws.
• Data-Driven Models: Developed using historical data through techniques like 

machine learning, statistical analysis, or system identification methods.
 Residual Generation

• Residuals are calculated by comparing the actual system outputs with the outputs 
predicted by the model. Mathematically, it can be expressed as:

• Residual=Observed Output−Predicted Output
• Under normal conditions, residuals should ideally be zero or within a predefined 

acceptable range. Significant deviations from this range suggest potential faults.
 Threshold Setting

• To determine what constitutes an abnormal residual, thresholds are established. 
• Static Thresholds: Fixed values based on historical data or safety margins.
• Adaptive Thresholds: Dynamic values that adjust based on operating conditions, 

environmental factors, or system variability.

Fundamental Concepts of Residual-Based Fault
Detection
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Basic idea of residual based methods
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Different approaches to residual-based methods
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Basic idea of residual based methods
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 Determine the thresholds based on the validation dataset (+ add
additional margin)
 Two types of thresholds: for all the signals + for single signals  fault 

isolation
 Perform statistical tests on the distributions of the residuals

Thresholds
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 The detection logic involves monitoring residuals and comparing them 
against the set thresholds to decide whether a fault has occurred. This 
can include:

• Simple Thresholding: Triggering an alarm if the residual exceeds the 
threshold.

• Statistical Methods: Using statistical tests to assess the significance of 
residual deviations.

• Pattern Recognition: Identifying specific patterns or trends in residuals that 
correlate with certain fault types.

Fault Detection Logic
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Advantages
 Simplicity: Conceptually 

straightforward and easy to 
implement with a well-defined 
residual.
 Generality: Applicable to a 

wide range of systems and fault 
types.
 Real-Time Capability: Enables 

continuous monitoring and 
timely fault detection.
 Scalability: Can be extended 

to complex and large-scale 
systems by decomposing them 
into manageable subsystems.

Challenges and Limitations
 Model Accuracy: The effectiveness 

heavily depends on the accuracy of 
the system model. Inaccurate models 
can lead to false alarms or missed 
detections.

 Noise Sensitivity: High levels of 
measurement noise can obscure 
residual signals, making fault 
detection more difficult.

 Threshold Determination: Setting 
appropriate thresholds is critical and 
can be challenging, especially in 
systems with variable operating 
conditions.

 Complex Faults: Simultaneous or 
multiple faults may be difficult to 
detect and isolate using residual-
based methods alone.

Residual-Based Fault Detection
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 Signal reconstruction (reconstruct the signal at the current point in time 
(t))  Autoencoder model
 Forecasting (predict the measurements at t+1)
 Input (operating conditions + control ) – Output (signal measurements) 

mappings  operating conditions models

Different types of residual-based approaches
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Residual-based fault detection example
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Residual-based fault detection example
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Operating-Conditions-based

Signal-Reconstruction-Based



Unsupervised / Self-
supervised learning
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Learning Architectures
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How much information is the machine given
during learning?
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Source: Y. LeCun



 We have access to {x1, x2, x3, · · ·, xN} but not {y1, y2, y3, · · ·, yN}

 Why would we want to tackle such a task:
• Extracting interesting information from data
• Clustering
• Discovering interesting trend
• Data compression
• Learn better representations

Unsupervised (also self-supervised, predictive) 
Learning
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Unsupervised Learning
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Non-probabilistic Models
 Sparse Coding
 Autoencoders
 Others (e.g. k-means)

Explicit Density p(x)

Probabilistic (Generative)  
Models

Tractable Models 
 Fully observed
 Belief Nets
 NADE

Non-Tractable Models  
 Boltzmann  Machines
 Variational Autoencoders
 Helmholtz Machines
 Many others…

➢ Generave Adversarial  
Networks (GAN)

➢ Moment Matching  
Networks

Implicit Density
Source: R. Salakhutdinov
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Autoencoders
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▪ Network is trained to output the input (learn identify function). 
▪ Two parts encoder/decoder

▪ x′ = g(f(x))
▪ g - decoder
▪ 𝑓𝑓 - encoder

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

ℎ1 ℎ2 ℎ𝑘𝑘

𝑥𝑥′2𝑥𝑥′1 𝑥𝑥′𝑛𝑛

𝑓𝑓

𝑔𝑔
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Trivial solution unless:
- Constrain number of units in Layer 2 (learn compressed 
representation), or
- Constrain Layer 2 to be sparse



Basic principles of an autoencoder
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If the input is 𝑥𝑥 ∈ ℝ𝑛𝑛 an autoencoder will produce a ℎ ∈ ℝ𝑑𝑑 where d < n, which is designed to contain most of the important features of x
to reconstruct it.

Autoencoder performs the following steps:

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

ℎ1 ℎ2 ℎ𝑘𝑘

𝑥𝑥′2𝑥𝑥′1 𝑥𝑥′𝑛𝑛

𝑓𝑓

𝑔𝑔
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Source: J.C. Kao, UCLA



▪ Mostly follows Neural Network structure
▪ Activation will depend on type of 𝒙𝒙
▪ Often we use tied weights to force the sharing of weights

in encoder/decoder (in this case a single-layer network)

▪ 𝑊𝑊∗ = 𝑊𝑊𝑇𝑇

Nonlinear dimensionality reduction
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▪ In a more general form, f() and g() could be deep 
neural networks, learning potentially more nonlinear 
and expressive features h.

Source: J.C. Kao, UCLA



Sparse autoencoders
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Source: J.C. Kao, UCLA



Denoising autoencoders
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Source: J.C. Kao, UCLA



Sparse Vs Denoising (example)
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● Filter weights, 12x12 patches

[Vincent e t  al. 2010 ]

Sparse AE  
Actually meaningless :)

Denoising AE



Stacked autoencoders
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Source: L.P. Morency



Stacked denoising autoencoders
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 Can extend this to a denoising model
 Add noise when training each of the layers
 Often with increasing amount of noise per layer
 0.1 for first, 0.2 for second, 0.3 for third

Source: L.P. Morency



Learning features with deep learning algorithms
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Source: A. NG
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Examples of learned object parts from object categories

Faces Cars Elephants Chairs
Trained on 4 classes

Source: A. NG



One-Class SVM /

Support Vector Data 
Description (SVDD)
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 Suppose that a dataset has a probability distribution P in the feature 
space. 
 Find a “simple” subset S of the feature space such that the probability 

that a test point from P lies outside S is bounded by some a priori 
specified value                  
 The solution for this problem is obtained by estimating a function f 

which is positive on S and negative on the complement ̅𝑆𝑆.

One-class SVM
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Source: Manevitz, 2001



 The algorithm can be summarized as mapping the data into a feature 
space H using an appropriate kernel function, and then trying to 
separate the mapped vectors from the origin with maximum margin

One-class SVM
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Source: Manevitz, 2001



One-class SVM
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Source: Manevitz, 2001



 In this formula it is the parameter 𝜈𝜈 that characterizes the solution;

 it sets an upper bound on the fraction of outliers (training examples 
regarded out-of-class)

 it is a lower bound on the number of training examples used as Support 
Vector

𝜈𝜈-parameter
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Source: Manevitz, 2001



If w and ρ solve this problem, then the decision function

will be positive for most examples xi contained in the training set.

Decision function
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Source: Manevitz, 2001



 Obtains a spherical boundary, in feature space, around the data. 
 The volume of this hypersphere is minimized minimizes the effect of 

incorporating outliers in the solution

Support Vector Data Description (SVDD)
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Source: Tax & Duin



 After solving this by introducing Lagrange multipliers αi, a new data 
point z can be tested to be in or out of class. 
 It is considered in-class when the distance to the center is smaller than 

or equal to the radius, by using the Gaussian kernel as a distance 
function over two data points:

Support Vector Data Description (SVDD)
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Source: Tax & Duin



Deep SVDD
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Ruff, Lukas, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Müller, and Marius 
Kloft. "Deep one-class classification." In International conference on machine learning, pp. 4393-4402. PMLR, 2018.

One-Class Deep SVDD objectiveSoft-boundary Deep SVDD objective



 Foundation: Support Vector Data Description (SVDD)
• Purpose: SVDD is primarily used for one-class classification, aiming to identify whether new data points belong to a predefined class or are anomalies.
• Mechanism: It constructs the smallest possible hypersphere in the feature space that encapsulates the majority of the data points from the target class.
• Limitations: Traditional SVDD operates in a fixed, often low-dimensional feature space, which can be insufficient for capturing complex data patterns.

 Integration with Deep Learning
• Deep Feature Learning: Deep SVDD leverages deep neural networks to automatically learn rich, high-dimensional feature representations from raw 

input data.
• End-to-End Training: Unlike traditional SVDD, Deep SVDD trains the feature extractor (neural network) and the data description simultaneously, 

enabling the model to capture intricate data structures.

 Objective Function
• Sphere Minimization: Similar to SVDD, the primary objective is to minimize the volume of the hypersphere that contains the data.
• Regularization Term: Deep SVDD incorporates regularization to prevent the network from mapping all inputs to a trivial point (collapse), ensuring 

meaningful feature learning.
• Loss Function: The loss typically combines the distance of data points from the center of the hypersphere with the regularization term, optimizing both 

the network weights and the sphere parameters.

 Representation Learning
• Layer-wise Feature Extraction: Deep SVDD uses multiple layers in the neural network to extract hierarchical features, allowing the model to understand 

data at various levels of abstraction.
• Non-Linear Mappings: The deep architecture facilitates non-linear transformations of the input data, making it possible to capture complex patterns that 

linear methods like traditional SVDD cannot.

 Advantages Over Traditional SVDD
• Enhanced Feature Representation: By learning deep features, Deep SVDD can model more complex data distributions, improving anomaly detection 

accuracy.
• Scalability: Deep SVDD can handle large and high-dimensional datasets more effectively due to the scalability of neural networks.
• Flexibility: The deep architecture allows for integration with various types of data (e.g., images, text, time-series) by customizing the neural network 

structure accordingly.

Deep SVDD
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Isolation Forest
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Isolation Forest – overview

 Aim: provide a ranking that reflects the degree of “anomaly” for each data point
 Sort data points according to their path lengths or anomaly scores
 Outliers are the points with the biggest anomaly scores

 Isolation Tree (iTree): binary tree where each node in the tree has exactly zero or
two daughter nodes

 Isolation Forest (iForest) algorithm: Unsupervised Machine Learning algorithm
inspired by random forests
 Unsupervised: observations in the dataset are unlabeled
 No need to profile normal instances and to calculate point-based distances
 Builds an ensemble of random trees based on a mechanism called “isolation”,

an iterative (random) partitioning process to separate outliers from normal points
 Uses the observation that outliers are more likely to be isolated with fewer

steps, compared to normal points

 Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining, pages 413-422.
IEEE. Source: Alexandre Boumezoued Olga Fink 78



• Example of an Isolation Tree, two-dimensional case (𝑑𝑑 = 2)
• Point 𝐻𝐻 (outlier) is isolated with only 1 step
• More steps are needed to isolate the other points

𝑥𝑥(2)

Isolation Forest – example of iTree

𝑥𝑥 1

𝐻𝐻

𝐴𝐴

𝐷𝐷

𝐶𝐶

𝐵𝐵

𝐸𝐸
𝐹𝐹

𝐺𝐺

300

𝑥𝑥 1 > 30

𝐻𝐻

𝐹𝐹 𝑇𝑇

Source: Alexandre Boumezoued
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• Example of an Isolation Tree, two-dimensional case (𝑑𝑑 = 2)
• Point 𝐻𝐻 (outlier) is isolated with only 1 step
• More steps are needed to isolate the other points

𝑥𝑥(2)

Isolation Forest – example of iTree

𝑥𝑥 1

𝐻𝐻

𝐴𝐴

𝐷𝐷

𝐶𝐶

𝐵𝐵

𝐸𝐸
𝐹𝐹

𝐺𝐺

30

29

0

𝑥𝑥 1 > 30

𝑥𝑥 2 > 29 𝐻𝐻

𝐹𝐹 𝑇𝑇

𝑇𝑇𝐹𝐹

Source: Alexandre Boumezoued
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• Example of an Isolation Tree, two-dimensional case (𝑑𝑑 = 2)
• Point 𝐻𝐻 (outlier) is isolated with only 1 step
• More steps are needed to isolate the other points

Isolation Forest – example of iTree

𝑥𝑥 1

𝑥𝑥(2)

𝐻𝐻

𝐴𝐴

𝐶𝐶

𝐵𝐵

𝐸𝐸
𝐹𝐹

𝐺𝐺
22

𝐷𝐷

30

29

0

𝑥𝑥 1 > 30

𝑥𝑥 2 > 29

𝑥𝑥 2 > 22 𝑥𝑥 1 > 10

𝐻𝐻

𝐴𝐴𝐷𝐷

𝐹𝐹 𝑇𝑇

𝑇𝑇𝐹𝐹

𝐹𝐹
𝐹𝐹 𝑇𝑇𝑇𝑇

10

Source: Alexandre Boumezoued
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• Example of an Isolation Tree, two-dimensional case (𝑑𝑑 = 2)
• Point 𝐻𝐻 (outlier) is isolated with only 1 step
• More steps are needed to isolate the other points

Isolation Forest – example of iTree

𝑥𝑥 1

𝑥𝑥(2)

𝐻𝐻

𝐴𝐴

𝐸𝐸
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𝐶𝐶 𝐺𝐺

𝐷𝐷
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45

0
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𝑥𝑥 2 > 29

𝑥𝑥 2 > 22 𝑥𝑥 1 > 10

𝐻𝐻

𝑥𝑥 2 > 45𝐴𝐴

𝐸𝐸

𝑥𝑥 1 > 17𝐷𝐷

𝐶𝐶 𝐺𝐺

𝐹𝐹 𝑇𝑇

𝑇𝑇𝐹𝐹

𝐹𝐹

𝐹𝐹

𝐹𝐹

𝑇𝑇 𝑇𝑇

𝑇𝑇

𝐹𝐹

𝑇𝑇
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10

Source: Alexandre Boumezoued
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• Example of an Isolation Tree, two-dimensional case (𝑑𝑑 = 2)
• Point 𝐻𝐻 (outlier) is isolated with only 1 step
• More steps are needed to isolate the other points

Isolation Forest – example of iTree

𝑥𝑥 1

𝑥𝑥(2)

𝐻𝐻

𝐴𝐴
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𝑥𝑥 2 > 45𝐴𝐴

𝐸𝐸

𝑥𝑥 1 > 17𝐷𝐷

𝐶𝐶 𝐺𝐺

𝐹𝐹 𝑇𝑇
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Source: Alexandre Boumezoued
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 Ensemble method: generates multiple iTrees → iForest
 Path length of an observation obtained as the sum of:

 total number of splits needed to isolate it
 adjustment term to add if observation terminates at an external node. (Accounts for an unbuilt 

subtree beyond some tree height limit ℓ → saves computational time)
 Compute the average path lengths ℎ 𝑋𝑋𝑖𝑖 for each observation 𝑋𝑋𝑖𝑖

 Calculation of the anomaly scores
 Normalization by the average (universal) path length 𝐿𝐿 in a binary tree

ℎ 𝑋𝑋𝑖𝑖−
𝐿𝐿 Anomaly score: 𝑠𝑠 𝑋𝑋𝑖𝑖 = 2 ∈ 0, 1 ⇒ small average path length = high anomaly score

𝐢𝐢𝐅𝐅𝐨𝐨𝐫𝐫𝐞𝐞𝐬𝐬𝐭𝐭

Isolation Forest – from iTree to iForest

i𝐓𝐓𝐫𝐫𝐞𝐞𝐞𝐞𝟏𝟏 i𝐓𝐓𝐫𝐫𝐞𝐞𝐞𝐞𝟐𝟐 i𝐓𝐓𝐫𝐫𝐞𝐞𝐞𝐞𝑲𝑲

…

Anomaly 
score

Outliers

Normal uncommon points

Normal common points

0.5

0

1

Source: Alexandre Boumezoued
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1 𝑛𝑛 𝑖𝑖 𝑖𝑖 𝑖𝑖• Dataset: 𝑋𝑋 = 𝑋𝑋 , … , 𝑋𝑋 , with 𝑋𝑋 = 𝑥𝑥 1 , … , 𝑥𝑥 𝑑𝑑 ∈ ℝ𝑑𝑑 where:
• 𝑛𝑛 is the number of instances
• 𝑑𝑑 is the number of covariates

• Sub-sampling: An iTree 𝑗𝑗 is obtained by selecting a random
𝑋𝑋′

𝑗𝑗 𝑗𝑗 𝜓𝜓subset 𝑋𝑋′ ⊂ 𝑋𝑋, where = 𝜓𝜓 < 𝑛𝑛, 𝑋𝑋′ = 𝑋𝑋𝜎𝜎 1 , … , 𝑋𝑋𝜎𝜎 ,
and 𝜎𝜎𝑗𝑗 ∶ 1, 𝜓𝜓 → 1, 𝑛𝑛 is a (random) injective function.

• 𝑋𝑋′ is then
covariate 𝑞𝑞 ∈ {1, … , 𝑑𝑑} and a split value ∗𝑥𝑥 𝑞𝑞

divided recursively by randomly selecting a
∈

1≤𝑖𝑖≤𝜓𝜓 1≤𝑖𝑖≤𝜓𝜓𝜎𝜎𝑗𝑗(𝑖𝑖) 𝜎𝜎𝑗𝑗(𝑖𝑖)[ min 𝑥𝑥(𝑞𝑞) , max 𝑥𝑥(𝑞𝑞) ] until:

• Either the tree reaches the height limit ℓ , which is 
approximately the average tree height

• Or 𝑋𝑋′ = 1, i.e. there is only one unique point remaining

Isolation Forest – details
Dataset 𝑋𝑋

Sub-sample 𝑋𝑋′ ⊂ 𝑋𝑋

∗

 Covariate 𝑞𝑞 is selected
 Split value 𝑥𝑥 𝑞𝑞 is selected

𝑙𝑙𝑒𝑒𝑓𝑓𝑡𝑡𝑋𝑋′



= {𝑋𝑋𝜎𝜎 𝑗𝑗 𝑖𝑖 𝜎𝜎𝑗𝑗 𝑖𝑖 ∗| 𝑥𝑥 𝑞𝑞 < 𝑥𝑥 𝑞𝑞 }

𝑟𝑟𝑖𝑖𝑔𝑔ℎ𝑡𝑡𝑋𝑋′ = {𝑋𝑋𝜎𝜎 𝑗𝑗 𝑖𝑖 𝜎𝜎𝑗𝑗 𝑖𝑖 ∗| 𝑥𝑥 𝑞𝑞 ≥ 𝑥𝑥 𝑞𝑞 }

The process is repeated until 
every point is isolated or the 

height limit ℓ is reached
Source: Alexandre Boumezoued
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 Swamping & masking are standard issues in outlier detection problems
 Swamping: wrong identification of normal instances as outliers in the case where many

variables are non informative on the “outlier” nature (the split based on these variables is not
appropriate)

 Masking: when too many outliers coexist in the dataset, the splitting rules are not efficient to
isolate data points since many iterations are needed

 Both problems are consequences of too many data for the purpose of outlier detection
 Solution of iForest algorithm: Sub-sampling

 Controls data size, which helps to better isolate examples of outliers
 Each iTree can be specialized, each sub-sample including a different set of outliers

 It has been shown that iForest's outlier detection ability is superior when sub-sampling is used

Isolation Forest – about swamping and masking

Source: Alexandre Boumezoued
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Isolation Forest – pros and challenges
 Pros

 Unsupervised method: does not require labels of outliers provided by expert judgements
 No model needed (the aim is not to model normal instances)
 Provides a hierarchy by assigning an anomaly score to each observation
 Does not require examples of outliers in the training set
 Requires relatively small samples from large datasets to derive an outlier detection function
 The algorithm can be trained once and reused without computational cost
 Achieves a linear time complexity with low memory requirement

 by using sub-sampling
 by avoiding building trees after reaching a height limit ℓ

 Overcomes the problem of swamping/masking by using sub-sampling
 Challenges

 Requires working on the data to provide appropriate format of the covariates
 Tuning parameters need to be set
 To avoid the black-box syndrome, it benefits from a pre-selection of covariates in line with

the problem to be tackled

Source: Alexandre Boumezoued
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Example
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Single Layer Feedforward Neural Networks
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Single Layer Feedforward Neural Networks: 
Sparse Autoencoder
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𝛽𝛽 is solved by FISTA (Fast Iterative 
Shrinkage-Thresholding Algorithm)



Single Layer Feedforward Neural Networks: one-
class classifier

30
.0

9.
24

Olga Fink 91

Residual

https://github.com/MichauGabriel/HELM



Machine Learning – One Class for Failure Detection 

Olga Fink 92

• Neural network learns healthy 
data 
 i.e training  with healthy data

• Detection threshold defined 
with validation set

• Neural network computes 
similarity index 
 i.e during testing

Evidence of malfunction indicated by 
rise of similarity indicator

1 = Healthy

Training

Features

Test

1

3

Validation2

Anomaly

Healthy?
ThresholdThrd= 𝛾𝛾 � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝( 1 − 𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉 )
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Analysing the reconstruction residuals for fault 
isolation
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Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017

“Health Indicator”



Decoder for Failure Isolation

Training

Test

Validation

Reconstructed
Input (�𝒙𝒙)Input (x)

1

3

Residual = 𝐚𝐚𝐚𝐚𝐚𝐚(𝐱𝐱𝐢𝐢 − �𝒙𝒙𝒊𝒊)~ 𝟎𝟎

If  𝐚𝐚𝐚𝐚𝐚𝐚(𝐱𝐱𝐢𝐢 − �𝒙𝒙𝒊𝒊) ≫ 𝟎𝟎 then signal 𝒊𝒊 faulty

Residual threshold defined with 
healthy data

2

Residual =  𝐱𝐱 − �𝒙𝒙

Threshold
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Generator Health Monitoring
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320 monitoring sensors:
 Partial discharge
 Rotor shaft voltage
 Rotor flux
 Stator end winding vibration
 Stator Water Temperature

275 days of recorded operation, 
60 000 observations
1 faultCan only use Healthy data for training!

Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017



Generator Health Monitoring
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HealthyAbnormal behavior 100 days before!
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Combined Architecture
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Water Temperature Shaft Voltage Rotor Flux Rotor Flux

Integrated fault diagnostics: Generator case study
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At no additional cost!

Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017

Integrated!



Self-Supervision
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Why not use construction?
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 Why may autoencoders not be sufficient?
• Use pixel-wise loss, no structural loss incorporated
• Reconstruction can hardly represent semantic information



 A form of unsupervised learning where the data provides the 
supervision
 Use naturally existing supervision signals for training.
 (Almost) no human intervention
 In general, define an auxiliary (supervised) learning task with the labels 

derived from the data
 The task defines a proxy loss, and the network is forced to learn what 

we really  care about, e.g. a semantic representation, in order to solve it
 Many self-supervised tasks for images
 Often complementary, and combining improves performance

What is Self-Supervision?
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Source: Naiyan Wang 2018



 Pretext task  important strategy for learning data representations 
under self-supervised mode
 Self-defined pseudo-labels
 Pseudo-labels automatically generated based on the attributes found in 

the unlabeled data

Self-supervised learning
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 color transformations
 geometric transformations
 context-based tasks
 cross-modal-based tasks

Important pretext tasks (for computer vision)
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Basic idea of self-supervised learning

Encoder 
Network

Pretext
task

Feature 
Represen-

tation

Raw
Condition
Monitoring 

Signals

Down-stream 
task: e.g. fault 

detection
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Relative position?
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Source: Zisserman 2018



Semantics from a non-semantic task
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Unsupervised visual representation learning by context prediction,  
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV2015



 Solving the Jigsaw
• Predict relative positions of patches
• You have to understand the object to solve this problem!
• Be aware of trivial solution! CNN is especially good at it

Context
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Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised Visual 
Representation Learning by Context Prediction. In ICCV 2015



Avoiding Trivial Shortcuts
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Include a  
gap

Jitter the patch  
locations

Source: Zisserman 2018



 Colorization
• You have to know what the object is before you predict its color
• E.g. Apple is red/green, sky is blue, etc.

Context
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Zhang, R., Isola, P., & Efros, A. A. Colorful image colorization. In ECCV 2016



 Colorization
• It is important how to interpret your work!
• Example colorization of Ansel Adams’s B&W photos

Context
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Zhang, R., Isola, P., & Efros, A. A. Colorful image colorization. In ECCV 2016

http://richzhang.github.io/colorization/resources/images/exs_sel_aa.jpg


Context
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 Colorization
• Stronger supervision, cross-supervision of different parts of data

Zhang, R., Isola, P., & Efros, A. A. Split-Brain Autoencoders: Unsupervised Learning 
by Cross-Channel Prediction. In CVPR 2017



Which image has the correct rotation?

Unsupervised representation learning by predicting image rotations,
Spyros Gidaris, Praveer Singh, Nikos Komodakis,  ICLR 2018

Image Transformations
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