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=PFL  PHM Process

DataAcquisition (DA)

Data Manipulation (DM)

State Detection (SD)
|

Health Assessment (HA)
|

Prognostics Assessment(PA)

Advisory Generation(AG)
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Prognostics and health management (PHM)
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Fault detection / Fault segmentation / Fault rulf
diagnostics

Condition Monitoring Data

Detection h
Healthy or faulty LTHY

operation?

Segmentation v » 4
Are there different Type O Type 1

faults types? | "

Diagnostics Normal Fault of X* Fault of Y*
Root cause of the (" component, system,

faults? sensor, etc.)

Interpretability Level
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=P7L  Fault diagnostics

= Typically: Supervised learning

= Unsupervised (combined with fault segmenration+ partial supervision or
feedback still required)

= Semi-supervised
= Imbalance challenge needs to be taken into consideration
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Fault diagnostics

= Unique Signal Signatures:

« Different faults produce characteristic patterns in signals (e.g., vibration, acoustic,
electrical).

» These unique signatures help in identifying and differentiating fault types.

= Variations in Signal Amplitude:
» Faults can cause increases or decreases in signal amplitude.
« The magnitude of these changes often correlates with the severity and nature of
the fault.
= Frequency Content Changes:
 Faults introduce new frequencies or alter existing ones in the signal spectrum.
» Spectral analysis reveals these frequency components, aiding in fault detection.

= Time-Domain Pattern Changes:

« Faults may cause irregularities like spikes, transients, or repetitive patterns over
time.

» Time-domain analysis captures these anomalies for diagnostics.
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Different fault types impact captured signals in
distinct and detectable ways (1/3)

= Phase Shifts and Timing Differences:
» Faults can lead to shifts in the phase or timing of signals.
» Analyzing phase relationships helps localize and identify faults.

= Harmonics and Sidebands Generation:
» Fault-induced nonlinearities create harmonics or sidebands in signals.
» These features are indicative of specific fault conditions.

= Statistical Feature Alterations:
» Faults affect statistical properties like mean, variance, skewness, and kurtosis.
« Statistical analysis detects deviations from normal operating conditions.

= Energy Distribution Shifts:
 Faults redistribute signal energy across different frequency bands.
» Energy-based methods identify abnormal patterns associated with faults.

= Entropy and Complexity Changes:
 Faults increase the randomness or complexity of signals.
« Entropy measures help in detecting these changes.
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Different fault types impact captured signals in
distinct and detectable ways (2/3)

Signal Correlation and Coherence:
» Faults alter the relationships between signals from multiple sensors.
» Cross-correlation and coherence analysis pinpoint inconsistencies due to faults.

Dynamic System Response Alterations:
» Faults change system dynamics like stiffness or damping.
* Monitoring dynamic responses reveals these alterations.
= Stiffness Alterations: Cracks or material degradation reduce stiffness, resulting in larger deflections under load.
= Damping Changes: Damage can decrease damping, causing vibrations to persist longer after excitation.
= Natural Frequency Shifts: Structural damage may lower or raise the bridge’s natural frequencies, affecting resonance conditions.

Thermal Anomalies:
» Some faults generate excess heat detectable by temperature sensors or thermal imaging.
» Thermal monitoring identifies hotspots indicating faulty components.
= E.g. Elevated temperatures at a bridge’s expansion joint may indicate excessive friction due to wear or misalignment.

Acoustic Emission Patterns:
» Faults emit characteristic acoustic or ultrasonic signals.
» Acoustic sensors capture these emissions for early fault detection.
= Detecting high-frequency AE signals in a bridge’s truss members can indicate crack initiation or growth.

Electrical Parameter Variations:
» Electrical faults affect current, voltage, or impedance.
» Electrical measurements detect anomalies in circuits and components.
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Different fault types impact captured signals in
distinct and detectable ways (2/3)

= Chemical and Material Changes:

 Faults can cause material degradation or chemical reactions (e.g., gas
generation).

» Sensors detect these changes, indicating specific types of faults.

= Load and Operating Condition Dependencies:
 Fault effects vary with load, speed, or environmental conditions.
« Observing signal changes under different conditions aids fault identification.

= Control System Deviations:
« Faults in actuators or sensors cause deviations in control signals.
» Monitoring control loops helps detect and diagnose these faults.

= Nonlinear Behavior Introduction:
 Faults introduce nonlinear characteristics into system responses.
* Nonlinear analysis techniques detect these behaviors.

= Multi-Sensor Data Fusion:
« Combining data from various sensors provides a comprehensive view.
 Faults impact different sensors uniquely, and data fusion enhances diagnostics.
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Example: fault types of a bearing (particularly
rolling element bearings)

* Inner Race Faults:
» Description: Defects or damage to the inner raceway surface where the rolling elements make
contact.
« Causes: Excessive loads, misalignment, improper installation, or material fatigue.
» Effects: Can lead to increased vibration at specific frequencies associated with the inner race.
= Outer Race Faults:
+ Description: Damage or wear on the outer raceway surface.
» Causes: Contamination, uneven loading, or improper mounting.
» Effects: Increased vibration and noise due to uneven load distribution, leading to accelerated wear,
reduced operational efficiency
* Rolling Element Faults:
» Description: Defects on the balls or rollers themselves, such as pitting, spalling, or cracking.
» Causes: Material imperfections, contamination, inadequate lubrication, or overloading.
» Effects: Leads to erratic vibration patterns and potential seizure of the bearing.
= Cage (Separator) Faults:
+ Description: Damage or deformation of the cage that holds and spaces the rolling elements.
» Causes: High speeds, excessive vibration, improper lubrication, or mechanical stress.
« Effects: Causes uneven spacing of rolling elements, leading to additional stress and potential failure.
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Bearing faults: stage 1

Zone C
Bearing Component
Natural Frequency
Region

Zone A Zone B
Bearing Defect
Frequency Region

Zone D

Ultrasonic Frequencies
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Enveloped Acceleration Spectrum (EAS)

Source: Reliabilityconnect.com
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=PFL  Bearing faults: stage 2

Stage 2

Bearing
Natural Freq

2X
3X
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Enveloped Acceleration Spectrum (EAS)

Source: Reliabilityconnect.com
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Bearing faults: stage 3 p- 8
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=rrL  Bearing faults: stage 3

Stage 3 ¥ £
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=PFL  Bearing faults: stage 4 RS
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=PFL  Fault diagnostics steps

Condition

monitoring data Pre-processing

Condition

monitoring data Pre-processing

B 23.09.24

Classification
algorithm (target
required)

Feature Feature
extraction selection

Classification algorithm - End-to-end learning (incl. Feature
learning)
(target required)
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Recap: Logistic
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=PFL  Logistic regression

= Logistic regression is a statistical model used to predict the probability
of a binary outcome (i.e., a "yes" or "no" answer) based on one or more
predictor variables.

= |t is a type of regression analysis commonly used in machine learning
and statistics to model the relationship between the input features and
the binary target variable.
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=P7L  Linear regression vs. Logistic regression

Linear Regression Logistic Regression

Y=1 1 ¥=1
o
b= @
= 3
o
Y=0 Y=01 y

X-Axis

Source: www.towardsdatascience.com
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=PrL  Assumptions

= Linearity in Log-Odds: Assumes a linear relationship between the
independent variables and the log-odds of the dependent variable

= |Independence of Observations: Assumes that the observations are
independent of each other.

= No or Little Multicollinearity: Assumes that independent variables are
not highly correlated.

B 23.09.24
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Recap: k-Nearest
Neighbor algorithm
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=P7L  k-Nearest Neighbor algorithm

= Most basic instance-based method / \
= Data are represented in a vector space
= Supervised learning algorithm

= Distance measure required @

= Requires 3 things:
» Feature Space (Training Data)
 Distance metric

= to compute distance between records k /

* The value of k
= the number of nearest neighbors to retrieve from which to get majority class

B 23.09.24
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How kNN Works

= Choose the Number of Neighbors (k):

» Decide the number of nearest neighbors (k) to consider for making
predictions. The choice of k can significantly impact the algorithm's
performance.

= Compute Distances:

« For a given input data point, calculate the distance between this point and all

points in the training dataset using a chosen distance metric.
= |dentify k Nearest Neighbors:
» Select the k training data points with the smallest distances to the input point.

= Make a Prediction:

 Classification: Assign the class that is most common among the k nearest
neighbors (majority voting).

» Regression: Compute the average (or weighted average) of the target
values of the k nearest neighbors.

Olga Fink 35



=PFL  Advantages / disadvantages of kNN

= Advantages of kNN
« Simplicity: Easy to understand and implement.
* Flexibility: Applicable to both classification and regression problems.

* No Training Phase: Since it's a lazy learner, there's no time-consuming training
process.

« Adaptable: Can handle multi-class problems and adapt to changes in the dataset
dynamically.

= Disadvantages of kNN

Computationally Intensive: Requires calculating distances to all training data
points during prediction, which can be slow for large datasets.

* Memory Usage: Needs to store the entire training dataset, which can be memory-
consuming.

» Choice of k: S_electin? the optimal k is crucial. A small k can make the model
sensitive to noise, while a large k can smooth out the decision boundaries
excessively.

« Curse of Dimensionality: Performance degrades with high-dimensional data
because the distance measures become less meaningful.

« Sensitive to Irrelevant Features: Including irrelevant or redundant features can
negatively impact the algorithm’s performance.

B 23.09.24
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Recap: Decislon Trees

<
N
@
<
%]
N
-

Olga Fink 37



=PFL  Decision Trees

Root Node

= Nodes are checked on a single feature

= Branches are feature values

= | eaves indicate class label

B 23.09.24
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Decision Trees

= |ntuitive and versatile supervised learning algorithms used for both classification and
regression tasks

» Model decisions and their possible consequences, including chance event outcomes,
resource costs, and utility.

= Favored for their simplicity, interpretability, and ability to handle both numerical and

= Structure: Composed of nodes and branches:
* Root Node: The topmost node representing the entire dataset.
* Internal Nodes: Represent features or attributes used to split the data.

. Lelaf S\lodes (Terminal Nodes): Represent the final output or decision (class label or continuous
value).

= Splitting Criteria:
» Classification:

» Gini Impurity: Measures the frequency at which any element of the dataset will be mislabeled
when it Is randomly labeled.

» Entropy (Information Gain): Measures the amount of information disorder or randomness.
* Information Gain (IG): The reduction in entropy after a dataset is split on an attribute.
* Regression:

* Mean Sguared Error (MSE): Measures the average of the squares of the errors between
predicted and actual values.

= Mean Absolute Error (IMAE): Measures the average of the absolute differences between
predicted and actual values.

Olga Fink 39



=PFL  Advantages / Limitations

B 23.09.24

= Advantages

Interpretability: Decision Trees are easy to visualize and understand, making them transparent
models where decisions can be traced and explained.

Handling Mixed Data Types: Capable of handling both numerical and categorical features without the
need for extensive preprocessing.

Non-parametric: No assumptions about the underlying data distribution, making them flexible in
modeling complex relationships.

Feature Importance: Naturally provides insights into feature importance, aiding in feature selection
and understanding data.

Robustness to Outliers: Less sensitive to outliers compared to some other algorithms, especially in
regression tasks.

= Limitations

Overfitting: Prone to creating overly complex trees that capture noise in the data, reducing
generalization performance.

Instability: Small changes in the data can lead to significantly different tree structures, affecting
consistency.

Bias Toward Dominant Classes: In classification tasks with imbalanced classes, trees may become
biased toward the majority class.

Greedy Algorithms: Standard tree-building algorithms make locally optimal choices at each node,
which may not lead to the globally optimal tree.

Poor Performance on Certain Data T{pes: May struggle with capturing smooth relationships in
regression tasks compared to models like linear regression.
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=PFL  SupportVector Machines (SVM)

Optimal hyperplane separation

We obtain our constraints

BNegative example : -1

@®Positive example : 1

wix+b=—

The margin on either side of the
hyperplane satisfy

wix+b=+1

B 23.09.24
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=P7L  SVM: Optimal hyperplane separation

We obtain an optimization problem:

2
W™ objective

min
w,b

wix® + b >1when y® = +1 | O T ® 1 ) > 1 2. M C traint
. . w x\" + >1wheni=1,2,...,

This is hard-margin SVM, and it work only for separable data

B 23.09.24
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SVM: Dealing with non-separable data

What should we do ?

Constraints relaxed by
slack variables

yOwWIx® +p) >1—§s.t§ >
oOovi=12,...,N

M : number of examples in the margin
or misclassified

We need to add a penalty for
too large slack variable

2
I wi” B8 N

N Elfi)

C > 0 weight the influence of the penalty term

Find trade off between maximizing margin and minimizing the classification errors
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=PFL SVM: Dealing with non-linear classification
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=PrL  SVM Kemel Functions

= Linear

= Polynomial

= Radial basis function (RBF)
= Sigmoid

B 23.09.24
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Properties of SVM

= Flexibility in choosing a similarity function
= Sparseness of solution when dealing with large data sets
- only support vectors are used to specify the separating hyperplane
= Ability to handle large feature spaces
- complexity does not depend on the dimensionality of the feature space
= Overfitting can be controlled by soft margin approach

= Nice math property: a simple convex optimization problem which is guaranteed to
converge to a single global solution

= Feature Selection

Olga Fink 47



Recap: Random forest
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Random forest

= Random forest is used for both classification and regression tasks.

= |t is an ensemble learning method that combines multiple decision trees
to make predictions.

= The name "random forest" comes from the fact that the algorithm
creates a "forest" of decision trees that are constructed using a random
subset of the training data and a random subset of the features.

= Decision tree;

 goal is to create a model that predicts the value of a target variable by
learning simple decision rules inferred from the data features

« follows a set of if-else conditions to visualize the data and classify it
according to the conditions
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Basic principle of random forest

Training
Set

Test Set

Training Training Training
Data Data oee Data
1 2 n
Decision Decision Decision
Tree Tree Tree
Voting

T regression

v

Prediction

Voting

e Classification
(majority)

Source: www.towardsdatascience.com
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=PFL  Advantages of random forest

= Diversity: Not all attributes/variables/features are considered while
making an individual tree; each tree is different.

= Immune to the curse of dimensionality: Since each tree does not
consider all the features, the feature space is reduced.

= Parallelization: Each tree is created independently out of different data
and attributes.

= Stability/Robustness: Stability/Robustness arises because the result
is based on majority voting/ averaging.

= Interpretability: Easier to interpret the single decision trees.

B 23.09.24
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=PFL  Disadvantages of Random Forest

= Complexity and Interpretability

» Black Box Nature:
Unlike individual decision trees, which are easy to interpret, random forests consist of numerous trees. This ensemble
?pplroacg_ r?akes the overall model less transparent, hindering the ability to understand how specific features influence the
inal prediction.

* Feature Importance Ambiguity: ) ) ) ) )
Altho_u%h random forests provide feature importance scores, these can sometimes be misleading, especially when features
are highly correlated. It becomes challenging to discern the true impact of each feature on the model's deciSions.

= Overfitting
* Potential Overfitting:

Although random forests are generally robust against overfitting due to the averaging of multiple trees, they can still overfit if
the number of trees is excessively large or if individual trees are too deep, especially in the presence of noisy data.

= Handling Imbalanced Data

» Bias Toward Majority Class: ) o )
In classification tasks with imbalanced datasets, random forests may become biased toward the majority class, leading to
poor performance on minority classes.

= Parameter Tuning

* Hyperparameter ComplexitP(: ) )
Random forests have several hyperparameters (e.g., number of trees, maximum tree depth, number of features to consider
at each split) that require careful tuning to achieve optimal performance. This tuning process can be time-consuming and
computationally demanding.

= Feature Scaling and Engineering

» Dependence on Feature Quality: ) ) ) o )
While random forests do not require feature scaling, the quality of the input features S||gn|f|cantly impacts model )
Pherfngance. Effective feature engineering remains essential fo ensure that the model captures the underlying patterns in
e data.

B 23.09.24
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=P7L  Supervised Leaming Algorithms

Logistic Regression
» Advantages: Outputs probabilistic interpretations, can be regularized to avoid overfitting.
+ Disadvantages: Not suitable for complex relationships with non-linear boundaries.
* When to Use: Binary classification problems such as spam detection or churn prediction.

Decision Trees
* Advantages: Easy to interpret, handles both numerical and categorical data, requires little data preprocessing.
» Disadvantages: Prone to overfitting, sensitive to small data changes.
* When to Use: Situations where interpretability is crucial, such as medical decision-making.

Random Forests
» Advantages: Reduces overfitting through ensemble learning, handles large datasets well.
+ Disadvantages: Computationally intensive, less interpretable than single decision trees.
* When to Use: High-dimensional data, when accuracy is more critical than interpretability, like in credit scoring.

Support Vector Machines (SVM)
+ Advantages: Effective in high-dimensional spaces, robust against overfitting.
+ Disadvantages: Memory-intensive, tricky to tune, doesn’t scale well with large datasets.
* When to Use: Text classification, image recognition tasks where the decision boundary is complex.

K-Nearest Neighbors (KNN)
* Advantages: Simple to understand and implement, no training phase.
» Disadvantages: High computational cost, sensitive to irrelevant features and the scale of data.
* When to Use: Recommendation systems, pattern recognition where computational efficiency is not a concern.

B 23.09.24
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=L Fault diagnosis (CWRU example)

Drive end Torque
bearing transducer
& encoder

Three Fault Types (B, IR, OR)
Three different severity levels

- Ten Classes
- One healthy class, Nine fault classes

12k Drive End Fault Data
48k Drive End Fault Data
Fan End Fault Data
Benchmark data

Class 0 1 2 3 4 5 6 7 8 9
Severity [mils] - 7 7 7 14 14 14 21 21 21
Type N B IR OR B IR OR B IR OR

B 23.09.24

http://csegroups.case.edu/bearingdatacenter/home
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=P"L  Feature set i e

Marginal
Time Time Frequency Entropy spectrum
energy
Mean T1 Std To CFF1 Power IMF1 El
Spectrum
H1
RMS T2 Shape MSF F2 Power IMF2 E2
factor T7 Spectrum
H2
Kurtosis Peaking RMSF F3 Singularity IMF3 E3
T3 factor T8 Spectrum
H3
Peak-to- Pulse VF F4 Singularity IMF4 E4
peak T4 factor T9 Spectrum
H4
Var T5 Margin RVF F5 Wavelet IMF5 E5
factor T10 Energy
HS
Bispectral IMF6 E6
entropy
H6

B 23.09.24
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Relief

= Instance: A single data point in the dataset.

= Hit: The nearest instance of the same class as the target
instance.

= Miss: The nearest instance of a different class than the target
instance.

= Feature Weight (W, ): A score representing the relevance of
feature 7 for classification.

0 ;value(A,I,) = value(A, )

diff(A, 11, L) = { 1 ;otherwise

for nominal attributes.

. |value(A,I) — value(A, )|
b)) =
dlff(A,h, 2) (A) — min(A)

for numerical attributes.
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Step-by-Step Process

= |Initialize Feature Weights:
« Set the weight Wi =0 for all features i
* Iterate Through a Sample of Instances:
» For each instance R in a randomly selected subset of the dataset:
* a. Find Nearest Hit and Miss:
= Nearest Hit (H): The closest instance to R that belongs to the same class.
= Nearest Miss (M): The closest instance to R that belongs to a different class.
* b. Update Feature Weights:

* For each feature i: VVZ _ W@ _ dlff(Rz, Hz) + dlff(Rz, Mz)

» Difference Function (diff): Measures the difference between feature values
(binary, absolute difference, squared difference)

= Normalize Feature Weights:

 After processing all sampled instances, normalize the weights W, to ensure they
are comparable across features.

= Rank Features:

» Features with higher weights are considered more relevant for classification and
are ranked accordingly.
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Relief feature selection

Relief

X @
o x @
‘. X X
X ® * o
® X*.
X
¢ o
X %
® X o X
X o
XX
® X O
PY o
X X x X

% Target Instance (e.g. Class ‘()’)

® Instance with Class ‘O’
(Zero instance weight)

» Instance with Class ‘X’
(Zero instance weight)

® Instance with Class ‘O’
Nearest Neighbor(s) (Near)

X Instance with Class ‘X’
Nearest Neighbor(s) (Near)

p - dimensional space

Olga Fink
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=PFL  Feature selection (1/3)

12k Drive weights
{J.Q T T T T
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0.1
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0 5 10 15 20 25 30

Zhang, Xiao, Boyang Zhao, and Yun Lin. "Machine learning based bearing fault diagnosis using the case western
reserve university data: a review." IEEE Access 9 (2021): 155598-155608. Olga Fink 61
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=PFL  Feature selection (2/3)

48k Drive weights

D.2 T T T T T
0.18 - 1
016 - .

0.14 - .

0.12

0.1

0.08

0.06

0.04

0.02

Zhang, Xiao, Boyang Zhao, and Yun Lin. "Machine learning based bearing fault diagnosis using the case western
reserve university data: a review." IEEE Access 9 (2021): 155598-155608. Olga Fink 62
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=PFL  Feature selection (3/3)

12k Fan weights

0.1 T T T

0.09 .

0.08 .

0.07 - .

0.08 T
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0.04

0.03

0.02

0.01
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Zhang, Xiao, Boyang Zhao, and Yun Lin. "Machine learning based bearing fault diagnosis using the case western
reserve university data: a review." IEEE Access 9 (2021): 155598-155608. Olga Fink 63
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=PFL  Performance of different ML algorithms

CWRU Selection

I 1 2k Drive ReliefF
I 1 2k Drive

[ 48k DriveReliefF
I /8K Drive
[ 12k Fan Relieff

112k Fan
100 .

80 .
B0 ‘ 4
. \
20 ‘

0

Adaboost  Bagging GDBT

ACC

Zhang, Xiao, Boyang Zhao, and Yun Lin. "Machine learning based bearing fault diagnosis using the case western
reserve university data: a review." IEEE Access 9 (2021): 155598-155608. Olga Fink 64
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=P L Performance metrics (selected)

Performance
metrics
[
[ [ [ |
Precision / Decision Rostigg;tlril[e/ss/ Complexity /
accuracy support sen sitiv)i/ty cost
| | Rateofmissed |[ | Detection || |Robustness to Computing
faults delay noise etc. || time
Ratael aOrH?SG — Confidence |4 Sensitivity || | Algorithm
complexity
Accuracy rate (average
- —  +onsingle failure ||
> modes) Cost
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Detection delay

- Detection delay:

> Time span between the
initiation and the detection of a
fault (failure) event

Measured

signal

ﬂ/\/V\

\ ) detected abnormality
detection

delay

True abnormality

Olga Fink
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=PFL  Confusion matrix: missed alarms/ false alarms

Fault No fault )
True class — = Rate of missed alarms:
Predicted class l

FN/(TP+FN)
Positive (detected) | TP FP
Negative (not FN ™ = Rate of false alarms:
detected)
FP/(FP+TN)
P=TP+FN N=FP+TN

- Olga Fink 19.03.2019 68



=PFL  Classification performance

True Positive

Precision =
reciston True Postitive + False Positive
True class —> Fault No fault
Predicted class
Svecificity = True Negative l
pecificity = True Negative + False Postitive
Positive (detected) | TP FP
Recall(Sensitivity) = True Positive Negative (not FN TN
ecall(Sensitivity) = True Postitive + False Negative detected)
Recall Specificity
True Positive + True Negative
Accuracy =
Total
F _ 2 . (Recall . Precesion) Fﬁ _ (1 n ‘82) Recall . PreCGSiOTl
= '™ Recall + Precesion Recall + B*Precesion
2
&
.
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=PFL  ROC= Recelver Operating Charactenstic
AUC = Area under the curve

TP | FP
- FN | TN
|FP
TN

PN/

A
100%

TPR

- -
0% FPR 100%

Source: Wikimedia



=PFL  Regression Metrics

= Mean Absolute Error (MAE)

» Definition: The average of the absolute differences between predicted and
actual values.

* Formula:

» Use Case: Provides a straightforward interpretation of average error in the
same units as the target variable.

B 23.09.24
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=PFL  Regression Metrics

= Mean Squared Error (MSE)

» Definition: The average of the squared differences between predicted and
actual values.

* Formula:
T

1 .
MSE = — Z(yz — i)

n -
1—1

» Use Case: Penalizes larger errors more than MAE, useful when large errors
are particularly undesirable.
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=PFL  Regression Metrics

= Root Mean Squared Error (RMSE)

 Definition: The square root of the MSE, bringing the metric back to the
original units of the target variable.

* Formula:

T

1
RMSE =4 | — Z(ﬁz —Yi)?

n <
i—1

» Use Case: Easier to interpret than MSE, while still penalizing larger errors.
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=PFL  Regression Metrics

= R-squared (Coefficient of Determination)

» Definition: Measures the proportion of variance in the dependent variable
that is predictable from the independent variables.

* Formula:

R2_1_ > i1 (G — i)’
> iy —9)?

» Use Case: Indicates the goodness of fit of the model; values closer to 1
signify a better fit.
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=PFL Clustering Metrics

» Silhouette Score

» Definition: Measures how similar an object is to its own cluster compared to
other clusters.

* Range: -1 to 1, where higher values indicate better clustering.
* Use Case: Evaluates the consistency within clusters of data.
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=P7L  Choosing the Right Metric

= Data Characteristics:

« Balanced vs. Imbalanced Classes: Metrics like precision, recall, F1 score,
and ROC AUC are more informative for imbalanced datasets.

* Presence of Noise and Outliers: Robust metrics like MAE are less
sensitive to outliers compared to MSE.
= Business Objectives:

» Cost of Errors: If false positives are more costly, prioritize precision; if false
negatives are more costly, prioritize recall.

* Interpretability: Choose metrics that stakeholders can easily understand
and relate to business outcomes.

B 23.09.24
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=PrL  Example

= For the detection of malfunctions of critical components of a railway
infrastructure asset, you are developing an algorithm that is correct in 95% of
cases if a fault is present (true positive (TP)) and correct in 90% of cases if no
fault is present (true negative (TN)). The faults occur very rarely. Of the 1,000
components installed in the entire fleet, on average one fault occurs per year.
Their detection algorithm shows a positive detection result. What is the actual
probability of a malfunction?
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=PFL  Example from a publication

Repair Event Repair Event
(category A) (category B)

wh

@

o

E Ignored lgnored

or Data Data

4] L . — L

ke « Prediction HOI’I:ZW « Prediction Hefrizon

T : .

or : :

E False Positive : True Positive :False Negative

2 (all categories)s (category A) : (category B)

sr :

ke

=>

(V]

a

True Positive
(category B)

True Negative
(all categories)

Trde Neggfi've )
(allfcategories b Nyt

Time
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=PFL  Example of a ROC curve
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=PrL

B 23.09.24

Linear separability in high dimensional spaces
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