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Advisory Generation(AG)

Prognostics Assessment(PA) 

Health Assessment (HA)

State Detection (SD)

Data Manipulation (DM)

DataAcquisition (DA)



Diagnostics
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Prognostics and health management (PHM)
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PrognosisDetection Diagnosis

Components, systems, processes

Measured signals

abnormal 
operating
conditions

ft1   ft2   ft3

Failure types
normal 

operating
conditoins

Prediction of the
remaining useful life

14

23
.0

9.
24

Olga Fink



Fault detection / Fault segmentation / Fault 
diagnostics
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 Typically: Supervised learning
 Unsupervised (combined with fault segmenration+ partial supervision or

feedback still required)
 Semi-supervised
 Imbalance challenge needs to be taken into consideration

Fault diagnostics
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 Unique Signal Signatures:
• Different faults produce characteristic patterns in signals (e.g., vibration, acoustic, 

electrical).
• These unique signatures help in identifying and differentiating fault types.

 Variations in Signal Amplitude:
• Faults can cause increases or decreases in signal amplitude.
• The magnitude of these changes often correlates with the severity and nature of 

the fault.
 Frequency Content Changes:

• Faults introduce new frequencies or alter existing ones in the signal spectrum.
• Spectral analysis reveals these frequency components, aiding in fault detection.

 Time-Domain Pattern Changes:
• Faults may cause irregularities like spikes, transients, or repetitive patterns over 

time.
• Time-domain analysis captures these anomalies for diagnostics.

Fault diagnostics
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 Phase Shifts and Timing Differences:
• Faults can lead to shifts in the phase or timing of signals.
• Analyzing phase relationships helps localize and identify faults.

 Harmonics and Sidebands Generation:
• Fault-induced nonlinearities create harmonics or sidebands in signals.
• These features are indicative of specific fault conditions.

 Statistical Feature Alterations:
• Faults affect statistical properties like mean, variance, skewness, and kurtosis.
• Statistical analysis detects deviations from normal operating conditions.

 Energy Distribution Shifts:
• Faults redistribute signal energy across different frequency bands.
• Energy-based methods identify abnormal patterns associated with faults.

 Entropy and Complexity Changes:
• Faults increase the randomness or complexity of signals.
• Entropy measures help in detecting these changes.

Different fault types impact captured signals in 
distinct and detectable ways (1/3)
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 Signal Correlation and Coherence:
• Faults alter the relationships between signals from multiple sensors.
• Cross-correlation and coherence analysis pinpoint inconsistencies due to faults.

 Dynamic System Response Alterations:
• Faults change system dynamics like stiffness or damping.
• Monitoring dynamic responses reveals these alterations.

 Stiffness Alterations: Cracks or material degradation reduce stiffness, resulting in larger deflections under load.
 Damping Changes: Damage can decrease damping, causing vibrations to persist longer after excitation.
 Natural Frequency Shifts: Structural damage may lower or raise the bridge’s natural frequencies, affecting resonance conditions.

 Thermal Anomalies:
• Some faults generate excess heat detectable by temperature sensors or thermal imaging.
• Thermal monitoring identifies hotspots indicating faulty components.

 E.g. Elevated temperatures at a bridge’s expansion joint may indicate excessive friction due to wear or misalignment.

 Acoustic Emission Patterns:
• Faults emit characteristic acoustic or ultrasonic signals.
• Acoustic sensors capture these emissions for early fault detection.

 Detecting high-frequency AE signals in a bridge’s truss members can indicate crack initiation or growth.

 Electrical Parameter Variations:
• Electrical faults affect current, voltage, or impedance.
• Electrical measurements detect anomalies in circuits and components.

Different fault types impact captured signals in 
distinct and detectable ways (2/3)
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 Chemical and Material Changes:
• Faults can cause material degradation or chemical reactions (e.g., gas

generation).
• Sensors detect these changes, indicating specific types of faults.

 Load and Operating Condition Dependencies:
• Fault effects vary with load, speed, or environmental conditions.
• Observing signal changes under different conditions aids fault identification.

 Control System Deviations:
• Faults in actuators or sensors cause deviations in control signals.
• Monitoring control loops helps detect and diagnose these faults.

 Nonlinear Behavior Introduction:
• Faults introduce nonlinear characteristics into system responses.
• Nonlinear analysis techniques detect these behaviors.

 Multi-Sensor Data Fusion:
• Combining data from various sensors provides a comprehensive view.
• Faults impact different sensors uniquely, and data fusion enhances diagnostics.

Different fault types impact captured signals in 
distinct and detectable ways (2/3)
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 Inner Race Faults:
• Description: Defects or damage to the inner raceway surface where the rolling elements make 

contact.
• Causes: Excessive loads, misalignment, improper installation, or material fatigue.
• Effects: Can lead to increased vibration at specific frequencies associated with the inner race.

 Outer Race Faults:
• Description: Damage or wear on the outer raceway surface.
• Causes: Contamination, uneven loading, or improper mounting.
• Effects: Increased vibration and noise due to uneven load distribution, leading to accelerated wear, 

reduced operational efficiency
 Rolling Element Faults:

• Description: Defects on the balls or rollers themselves, such as pitting, spalling, or cracking.
• Causes: Material imperfections, contamination, inadequate lubrication, or overloading.
• Effects: Leads to erratic vibration patterns and potential seizure of the bearing.

 Cage (Separator) Faults:
• Description: Damage or deformation of the cage that holds and spaces the rolling elements.
• Causes: High speeds, excessive vibration, improper lubrication, or mechanical stress.
• Effects: Causes uneven spacing of rolling elements, leading to additional stress and potential failure.

Example: fault types of a bearing (particularly 
rolling element bearings)
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Bearing faults: stage 1
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Source: Reliabilityconnect.com

Enveloped Acceleration Spectrum (EAS) 



Bearing faults: stage 2
23

.0
9.

24

Olga Fink 23
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Enveloped Acceleration Spectrum (EAS) 



Bearing faults: stage 3
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Enveloped Acceleration Spectrum (EAS) 
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Bearing faults: stage 3

 BPFO (Ball Pass Frequency 
Outer race): Associated with
defects on the outer race.

 BPFI (Ball Pass Frequency Inner
race): Associated with defects on 
the inner race.

 BSF (Ball Spin Frequency): 
Associated with defects in the 
rolling elements (balls or rollers).

 FTF (Fundamental Train 
Frequency): Associated with
defects in the bearing cage itself. 

Source: Reliabilityconnect.com



Bearing faults: stage 4 
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Source: Reliabilityconnect.com

Enveloped Acceleration Spectrum (EAS) 



Fault diagnostics steps
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Condition
monitoring data

Feature 
extraction

Feature 
selection

Classification 
algorithm (target

required)

Condition
monitoring data

Classification algorithm End-to-end learning (incl. Feature 
learning) 

(target required)

Pre-processing

Pre-processing



Recap:
Selected supervised 
learning algorithms
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Recap: Logistic
Regression
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 Logistic regression is a statistical model used to predict the probability 
of a binary outcome (i.e., a "yes" or "no" answer) based on one or more 
predictor variables. 
 It is a type of regression analysis commonly used in machine learning 

and statistics to model the relationship between the input features and 
the binary target variable.

Logistic regression
23

.0
9.

24

Olga Fink 30



Linear regression vs. Logistic regression
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 Linearity in Log-Odds: Assumes a linear relationship between the 
independent variables and the log-odds of the dependent variable
 Independence of Observations: Assumes that the observations are 

independent of each other.
 No or Little Multicollinearity: Assumes that independent variables are 

not highly correlated.

Assumptions
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Recap: k-Nearest 
Neighbor algorithm
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 Most basic instance-based method
 Data are represented in a vector space 
 Supervised learning algorithm
 Distance measure required
 Requires 3 things:

• Feature Space (Training Data)
• Distance metric 
 to compute distance between records

• The value of k
 the number of nearest neighbors to retrieve from which to get majority class

k-Nearest Neighbor algorithm
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 Choose the Number of Neighbors (k):
• Decide the number of nearest neighbors (k) to consider for making 

predictions. The choice of k can significantly impact the algorithm's 
performance.

 Compute Distances:
• For a given input data point, calculate the distance between this point and all 

points in the training dataset using a chosen distance metric.
 Identify k Nearest Neighbors:

• Select the k training data points with the smallest distances to the input point.
 Make a Prediction:

• Classification: Assign the class that is most common among the k nearest 
neighbors (majority voting).

• Regression: Compute the average (or weighted average) of the target 
values of the k nearest neighbors.

How kNN Works
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 Advantages of kNN
• Simplicity: Easy to understand and implement.
• Flexibility: Applicable to both classification and regression problems.
• No Training Phase: Since it’s a lazy learner, there's no time-consuming training 

process.
• Adaptable: Can handle multi-class problems and adapt to changes in the dataset 

dynamically.
 Disadvantages of kNN

• Computationally Intensive: Requires calculating distances to all training data 
points during prediction, which can be slow for large datasets.

• Memory Usage: Needs to store the entire training dataset, which can be memory-
consuming.

• Choice of k: Selecting the optimal k is crucial. A small k can make the model 
sensitive to noise, while a large k can smooth out the decision boundaries 
excessively.

• Curse of Dimensionality: Performance degrades with high-dimensional data 
because the distance measures become less meaningful.

• Sensitive to Irrelevant Features: Including irrelevant or redundant features can 
negatively impact the algorithm’s performance.

Advantages / disadvantages of kNN
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Recap: Decision Trees
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Decision Trees

38

 Nodes are checked on a single feature

 Branches are feature values

 Leaves indicate class label

Root Node

Internal Node

Internal Node Internal Node

Internal Node

Leaf Node

Leaf Node

Leaf Node Leaf Node Leaf Node

Leaf Node
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 Intuitive and versatile supervised learning algorithms used for both classification and 
regression tasks

 Model decisions and their possible consequences, including chance event outcomes, 
resource costs, and utility. 

 Favored for their simplicity, interpretability, and ability to handle both numerical and
 Structure: Composed of nodes and branches:

• Root Node: The topmost node representing the entire dataset.
• Internal Nodes: Represent features or attributes used to split the data.
• Leaf Nodes (Terminal Nodes): Represent the final output or decision (class label or continuous

value).
 Splitting Criteria:

• Classification:
 Gini Impurity: Measures the frequency at which any element of the dataset will be mislabeled

when it is randomly labeled.
 Entropy (Information Gain): Measures the amount of information disorder or randomness.
 Information Gain (IG): The reduction in entropy after a dataset is split on an attribute.

• Regression:
 Mean Squared Error (MSE): Measures the average of the squares of the errors between

predicted and actual values.
 Mean Absolute Error (MAE): Measures the average of the absolute differences between

predicted and actual values.

Decision Trees
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 Advantages
• Interpretability: Decision Trees are easy to visualize and understand, making them transparent 

models where decisions can be traced and explained.
• Handling Mixed Data Types: Capable of handling both numerical and categorical features without the 

need for extensive preprocessing.
• Non-parametric: No assumptions about the underlying data distribution, making them flexible in 

modeling complex relationships.
• Feature Importance: Naturally provides insights into feature importance, aiding in feature selection 

and understanding data.
• Robustness to Outliers: Less sensitive to outliers compared to some other algorithms, especially in 

regression tasks.
 Limitations

• Overfitting: Prone to creating overly complex trees that capture noise in the data, reducing 
generalization performance.

• Instability: Small changes in the data can lead to significantly different tree structures, affecting 
consistency.

• Bias Toward Dominant Classes: In classification tasks with imbalanced classes, trees may become 
biased toward the majority class.

• Greedy Algorithms: Standard tree-building algorithms make locally optimal choices at each node, 
which may not lead to the globally optimal tree.

• Poor Performance on Certain Data Types: May struggle with capturing smooth relationships in 
regression tasks compared to models like linear regression.

Advantages / Limitations
23

.0
9.

24

Olga Fink 40



Recap: Support Vector
Machines
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Support Vector Machines (SVM)

42

Optimal hyperplane separation

We obtain our constraints

Negative example : -1

Positive example :  1 𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑏𝑏 = 0

𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑏𝑏 = +1
𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑏𝑏 = −1

The margin on either side of the 
hyperplane satisfy
𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑏𝑏 = ±1
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SVM: Optimal hyperplane separation

43

We obtain an optimization problem:

𝑚𝑚𝑚𝑚𝑚𝑚
𝐰𝐰,𝑏𝑏

∥ 𝐰𝐰 ∥
2

2

𝐰𝐰𝑇𝑇𝐱𝐱(𝑖𝑖) + 𝑏𝑏 ≤ −1 when 𝑦𝑦(𝑖𝑖) = −1
𝐰𝐰𝑇𝑇𝐱𝐱(𝑖𝑖) + 𝑏𝑏 ≥ 1 when 𝑦𝑦(𝑖𝑖) = +1

𝑦𝑦(𝑖𝑖)(𝐰𝐰𝑇𝑇𝐱𝐱(𝑖𝑖) + 𝑏𝑏) ≥ 1 when 𝑖𝑖 = 1,2, . . . ,𝑀𝑀

Objective

Constraints

This is hard-margin SVM, and it work only for separable data
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SVM: Dealing with non-separable data

44

What should we do ?
Constraints relaxed by 
slack variables 𝜉𝜉𝑖𝑖

𝜉𝜉1

𝜉𝜉2

𝜉𝜉3

𝑦𝑦(𝑖𝑖)(𝐰𝐰𝑇𝑇𝐱𝐱(𝑖𝑖) + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖𝑠𝑠. 𝑡𝑡𝜉𝜉𝑖𝑖 ≥
0 ∀ 𝑖𝑖 = 1,2, . . . ,𝑁𝑁

We need to add a penalty for 
too large slack variable

𝑚𝑚𝑚𝑚𝑚𝑚
𝐰𝐰,𝑏𝑏

(
∥ 𝐰𝐰 ∥

2

2
+
𝐶𝐶
𝑁𝑁 ∑

𝑖𝑖=1

𝑁𝑁
𝜉𝜉𝑖𝑖)

C > 0 weight the influence of the penalty term

Find trade off  between maximizing margin and minimizing the classification errors

M : number of examples in the margin
or misclassified
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SVM: Dealing with non-linear classification
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 Linear
 Polynomial
 Radial basis function (RBF)
 Sigmoid
 …

SVM Kernel Functions
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 Flexibility in choosing a similarity function
 Sparseness of solution when dealing with large data sets

- only support vectors are used to specify the separating hyperplane 
 Ability to handle large feature spaces

- complexity does not depend on the dimensionality of the feature space
 Overfitting can be controlled by soft margin approach
 Nice math property: a simple convex optimization problem which is guaranteed to 

converge to a single global solution
 Feature Selection

Properties of SVM
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Recap: Random forest
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 Random forest is used for both classification and regression tasks. 
 It is an ensemble learning method that combines multiple decision trees 

to make predictions. 
 The name "random forest" comes from the fact that the algorithm 

creates a "forest" of decision trees that are constructed using a random 
subset of the training data and a random subset of the features.
 Decision tree: 

• goal is to create a model that predicts the value of a target variable by 
learning simple decision rules inferred from the data features

• follows a set of if-else conditions to visualize the data and classify it 
according to the conditions

Random forest
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Basic principle of random forest
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Voting 
(majority)regression Classification

Source: www.towardsdatascience.com



 Diversity: Not all attributes/variables/features are considered while 
making an individual tree; each tree is different.
 Immune to the curse of dimensionality: Since each tree does not 

consider all the features, the feature space is reduced.
 Parallelization: Each tree is created independently out of different data 

and attributes. 
 Stability/Robustness: Stability/Robustness arises because the result 

is based on majority voting/ averaging.
 Interpretability: Easier to interpret the single decision trees.

Advantages of random forest
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 Complexity and Interpretability
• Black Box Nature:

Unlike individual decision trees, which are easy to interpret, random forests consist of numerous trees. This ensemble 
approach makes the overall model less transparent, hindering the ability to understand how specific features influence the 
final prediction.

• Feature Importance Ambiguity:
Although random forests provide feature importance scores, these can sometimes be misleading, especially when features 
are highly correlated. It becomes challenging to discern the true impact of each feature on the model's decisions.

 Overfitting
• Potential Overfitting:

Although random forests are generally robust against overfitting due to the averaging of multiple trees, they can still overfit if 
the number of trees is excessively large or if individual trees are too deep, especially in the presence of noisy data.

 Handling Imbalanced Data
• Bias Toward Majority Class:

In classification tasks with imbalanced datasets, random forests may become biased toward the majority class, leading to 
poor performance on minority classes.

 Parameter Tuning
• Hyperparameter Complexity:

Random forests have several hyperparameters (e.g., number of trees, maximum tree depth, number of features to consider 
at each split) that require careful tuning to achieve optimal performance. This tuning process can be time-consuming and 
computationally demanding.

 Feature Scaling and Engineering
• Dependence on Feature Quality:

While random forests do not require feature scaling, the quality of the input features significantly impacts model 
performance. Effective feature engineering remains essential to ensure that the model captures the underlying patterns in 
the data.

Disadvantages of Random Forest
23

.0
9.

24

Olga Fink 52



Summary
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 Logistic Regression
• Advantages: Outputs probabilistic interpretations, can be regularized to avoid overfitting.
• Disadvantages: Not suitable for complex relationships with non-linear boundaries.
• When to Use: Binary classification problems such as spam detection or churn prediction.

 Decision Trees
• Advantages: Easy to interpret, handles both numerical and categorical data, requires little data preprocessing.
• Disadvantages: Prone to overfitting, sensitive to small data changes.
• When to Use: Situations where interpretability is crucial, such as medical decision-making.

 Random Forests
• Advantages: Reduces overfitting through ensemble learning, handles large datasets well.
• Disadvantages: Computationally intensive, less interpretable than single decision trees.
• When to Use: High-dimensional data, when accuracy is more critical than interpretability, like in credit scoring.

 Support Vector Machines (SVM)
• Advantages: Effective in high-dimensional spaces, robust against overfitting.
• Disadvantages: Memory-intensive, tricky to tune, doesn’t scale well with large datasets.
• When to Use: Text classification, image recognition tasks where the decision boundary is complex.

 K-Nearest Neighbors (KNN)
• Advantages: Simple to understand and implement, no training phase.
• Disadvantages: High computational cost, sensitive to irrelevant features and the scale of data.
• When to Use: Recommendation systems, pattern recognition where computational efficiency is not a concern.

Supervised Learning Algorithms
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Fault diagnostics: 
Example
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Fault diagnosis (CWRU example)
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Three Fault Types (B, IR, OR)
Three different severity levels
Ten Classes
 One healthy class, Nine fault classes

12k Drive End Fault Data
48k Drive End Fault Data
Fan End Fault Data
Benchmark data

http://csegroups.case.edu/bearingdatacenter/home

http://csegroups.case.edu/bearingdatacenter/home


Feature set
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Zhang, Xiao, Boyang Zhao, and Yun Lin. "Machine learning based bearing fault diagnosis using the case western 
reserve university data: a review." IEEE Access 9 (2021): 155598-155608.



 Instance: A single data point in the dataset.
 Hit: The nearest instance of the same class as the target 

instance.
 Miss: The nearest instance of a different class than the target 

instance.
 Feature Weight (𝑊𝑊𝑖𝑖 ​ ): A score representing the relevance of 

feature 𝑖𝑖 for classification.

Relief
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 Initialize Feature Weights:
• Set the weight           for all features i
• Iterate Through a Sample of Instances:
• For each instance R in a randomly selected subset of the dataset:
• a. Find Nearest Hit and Miss:

 Nearest Hit (H): The closest instance to R that belongs to the same class.
 Nearest Miss (M): The closest instance to R that belongs to a different class.

• b. Update Feature Weights:
 For each feature i: 

 Difference Function (diff): Measures the difference between feature values 
(binary, absolute difference, squared difference)

 Normalize Feature Weights:
• After processing all sampled instances, normalize the weights    ​  to ensure they 

are comparable across features.
 Rank Features:

• Features with higher weights are considered more relevant for classification and 
are ranked accordingly.

Step-by-Step Process
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Relief feature selection
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Feature selection (1/3)
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Zhang, Xiao, Boyang Zhao, and Yun Lin. "Machine learning based bearing fault diagnosis using the case western 
reserve university data: a review." IEEE Access 9 (2021): 155598-155608.



Feature selection (2/3)
23

.0
9.

24

Olga Fink 62

Zhang, Xiao, Boyang Zhao, and Yun Lin. "Machine learning based bearing fault diagnosis using the case western 
reserve university data: a review." IEEE Access 9 (2021): 155598-155608.



Feature selection (3/3)
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Zhang, Xiao, Boyang Zhao, and Yun Lin. "Machine learning based bearing fault diagnosis using the case western 
reserve university data: a review." IEEE Access 9 (2021): 155598-155608.



Performance of different ML algorithms
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Zhang, Xiao, Boyang Zhao, and Yun Lin. "Machine learning based bearing fault diagnosis using the case western 
reserve university data: a review." IEEE Access 9 (2021): 155598-155608.



Performance Evaluation
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Performance metrics (selected)
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Performance 
metrics

Precision / 
accuracy

Rate of missed
faults

Rate of false
alarms

Accuracy rate (average
+ on single failure

modes)

Decision
support

Detection
delay

Confidence

Robustness/      
stability/ 

sensitivity

Robustness to
noise etc.

Sensitivity

Complexity /        
cost

Computing 
time

Algorithm
complexity

Cost
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Detection delay
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 Detection delay: 
 Time span between the 

initiation and the detection of a 
fault (failure) event 

19.03.2019Olga Fink 67
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Confusion matrix: missed alarms/ false alarms
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 Rate of missed alarms:
FN/(TP+FN)

 Rate of false alarms:  
FP/(FP+TN)

True class→
Predicted class ↓

Fault No fault

Positive (detected) TP FP

Negative (not 
detected)

FN TN

P=TP+FN N=FP+TN

19.03.2019Olga Fink 68



Classification performance
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

True class→
Predicted class
↓

Fault No fault

Positive (detected) TP FP

Negative (not 
detected)

FN TN
Precision

Recall Specificity

𝐹𝐹1 =
2 � (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 � 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝐹𝐹𝛽𝛽 = (1 + 𝛽𝛽2)
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 � 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃



ROC = Receiver Operating Characteristic
AUC = Area under the curve
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Source: Wikimedia



 Mean Absolute Error (MAE)
• Definition: The average of the absolute differences between predicted and 

actual values.
• Formula:

• Use Case: Provides a straightforward interpretation of average error in the 
same units as the target variable.

Regression Metrics
23

.0
9.

24

Olga Fink 71



 Mean Squared Error (MSE)
• Definition: The average of the squared differences between predicted and 

actual values.
• Formula:

• Use Case: Penalizes larger errors more than MAE, useful when large errors
are particularly undesirable.

Regression Metrics
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 Root Mean Squared Error (RMSE)
• Definition: The square root of the MSE, bringing the metric back to the 

original units of the target variable.
• Formula:

• Use Case: Easier to interpret than MSE, while still penalizing larger errors.

Regression Metrics
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 R-squared (Coefficient of Determination)
• Definition: Measures the proportion of variance in the dependent variable 

that is predictable from the independent variables.
• Formula:

• Use Case: Indicates the goodness of fit of the model; values closer to 1 
signify a better fit.

Regression Metrics
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 Silhouette Score
• Definition: Measures how similar an object is to its own cluster compared to 

other clusters.
• Range: -1 to 1, where higher values indicate better clustering.
• Use Case: Evaluates the consistency within clusters of data.

Clustering Metrics
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 Data Characteristics:
• Balanced vs. Imbalanced Classes: Metrics like precision, recall, F1 score, 

and ROC AUC are more informative for imbalanced datasets.
• Presence of Noise and Outliers: Robust metrics like MAE are less 

sensitive to outliers compared to MSE.
 Business Objectives:

• Cost of Errors: If false positives are more costly, prioritize precision; if false 
negatives are more costly, prioritize recall.

• Interpretability: Choose metrics that stakeholders can easily understand 
and relate to business outcomes.

Choosing the Right Metric
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Example
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 For the detection of malfunctions of critical components of a railway 
infrastructure asset, you are developing an algorithm that is correct in 95% of 
cases if a fault is present (true positive (TP)) and correct in 90% of cases if no 
fault is present (true negative (TN)). The faults occur very rarely. Of the 1,000 
components installed in the entire fleet, on average one fault occurs per year. 
Their detection algorithm shows a positive detection result. What is the actual 
probability of a malfunction?



Example from a publication
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Example of a ROC curve
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Linear separability in high dimensional spaces
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