Machine Learning for
Predictive Maintenance

plications:

S = Feature selection and dimensionality
Iz reduction methodology

o~ ]
==~ \ﬁ_}*\%

= Ecole
polytechnique
fédérale

de Lausanne 7 : ~V‘;l“ . 2 Dk ot September 2024



=PFL  PHM Process

DataAcquisition (DA)
Data Manipulation (DM)
|
State Detection(SD)

Health Assessment(HA)

Prognostics Assessment(PA)

Advisory Generation(AG)
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=P7L  Feature engineering

Feature

engineering
|

Feature Feature
extraction selection
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=PrL

B 19.09.24

Why feature subset selection?

= Features may be expensive to obtain

* You evaluate a large number of features (sensors) in the test bed and select
only a few for the final implementation

= You may want to extract meaningful rules from your classifier /
regression algorithm

* When you project, the measurement units of your features (length, weight,
etc.) are lost

= Features may not be numeric

Olga Fink 10



=PFL  Feature selection

= Aims to choose a small subset of the relevant features from the original

features by removing
* irrelevant,
* redundant,
 or noisy features.

= Can usually lead to
* better learning performance,
* higher learning accuracy,
* lower computational cost,

» and better model interpretability.

B 19.09.24
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=PFL  Obejctives of feature selection

= Improved Model Performance

= Enhanced Interpretability

= Computational Efficiency

= Better Convergence

= Enhanced generalization by reducing overfitting

B 19.09.24
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=PFL  Underfitting vs overfitting

Under fitting Over fitting
model structure residual variation
...included in the is included as if it were
residuals structural /

Bias?
Vanance

Many

Number of Parameters
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=PrL

B 19.09.24

Important criteria to consider for feature

selection

Relevance + Redundancy (concerning the goal)

Relevance of the feature is measured based on the characteristics of the data not by
its value

Redundant features are those that are weakly relevant but can be completely
replaced with a set of other features such that the target distribution is not disturbed

Redunc)jancy is always inspected in multivariate cases (when examining feature
subset

Relevance is established for individual features.

Feature subsets can be classified as
* noisy and irrelevant
« redundant & weakly relevant
* weakly relevant and non-redundant
 strongly relevant

The distortion of irrelevant and redundant features is not due to the presence of un-
useful information

- because the features did not have a statistical relationship with other features

Olga Fink 14



=PFL  Alm of feature selection

= Maximize relevance and minimize redundancy!!!

B 19.09.24

Olga Fink 15



=PFL  What Makes Some Feature Representations Better
Than Others?

= Disentangling of causal factors
= Easy to model

= Works well with regularization strategies

B 19.09.24
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=PrL

B 19.09.24

Idea of disentanglement

= The concept of disentanglement is based on the hypothesis that real-
world data is generated by a few independent explanatory factors of
variation

= Can be sued for controlled data generation:
* learn a disentangled feature representation of the data

 use these disentangled features representing independent factors of
variation to generate data samples with desired characteristics in controlled

ways

Olga Fink
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=PFL  Loss functions e

labels (ground truth)
input

/
£(w) = distance(fy(x), )

error parameters (weights, biases)
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=F*L Preliminaries

X= (X1,...,Xn) EX - a vector of inputs
y €T- atarget variable

fo(X) - a prediction model
L(y, fo(x)) - the loss function for measuring errors.

Usual choices for regression:

1 n
L= > (i — fo(:))?  squared error, Ly-norm
=1

n Z ly; — fo(x;)| absolute error, L;-norm

.. and classiication: labels (one hot)

L= Zyz log (fo(x;)))  Cross-entropy loss

Softmax

B 19.09.24
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=PrL

B 19.09.24

Basic principles of dimensionality reduction

» Given a feature space x; € RV find a mapping ¥ = fo(x):R" - RY

With M<N such that the transformed feature vector y € RM preserves
(most of) the information in structure in RN

= An optimal mapping y= fy(x) is one that does not increase P[error]

= Two approaches:

» Feature extraction: creating a subset of new features by combinations of the
existing features

» Feature selection: choosing a subset of all the features

Olga Fink 21



=PFL  Different approaches to dimensionality
reduction

Filter
approaches

Feature B Wrapper
selection approaches

Embedded
approaches

reduction

Linear

Feature dimensionality

B Featurelow- H
dim. Projection

= Non-Linear

B 19.09.24
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=PFL  Feature subset selection

= Given a feature set X = {x;|i = 1...N}, find a subset Y,,;, with M<N, that
maximizes an objecive function J(Y), ideally P(correct)

Yy = {x;1, Xj9, o, Xjp } = ar%max]{xd i =1..N}
M

B 19.09.24
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=PrL

B 19.09.24

Search strategy and objective function

= Two inputs required:
» A search strategy to select candidate subsets
* An objective function to evaluate these candidates

= Objective Function

* The objective function evaluates candidate subsets and returns a measure of their
“goodness”, a feedback signal used by the search strategy to select new candidates

= Search strategy

= Exhaustive evaluation of feature subsets involves (N) combinations for a fixed value of M, and 2N
combinations if M must be optimized as well

Olga Fink 24



=PFL  Objective functions

= Filters: evaluate subsets by their information content, e.g., interclass
distance, statistical dependence or information-theoretic measures

= Wrappers: use a classifier to evaluate subsets by their predictive accuracy
(on test data) by statistical resampling or cross-validation

Training data Training data

Com plete feature set

Com plete feature set

A 4

A
( \ WrapperApproach

Filter Approach

Search Search

Featur
subse

Predictive
subset content accuracy

Y
Objective ML
function / \ algorithm /

set

€
t
b

Final feature subse Finalfeature su

1
v v
ML ML
algorithm algorithm
Source: Gutierrez-Osuna, 2013
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=PFL Filter types

= Distance or separability measures
* Distance between classes: Euclidean, Mahalanobis, etc.

= Correlation and information-theoretic measures

 are based on the rationale that good feature subsets contain features highly
correlated with (predictive of) the class, yet uncorrelated with (not predictive
of) each other

* Linear relation measures

= Linear relationship between variables can be measured using the correlation
coefficient

Zjiw=1 Pic

M _yM
i=12j=i+1Pij

](YM) =

= Where p,. is the correlation coefficient between feature i and the class label
and p;; is the correlation coefficient between features i and j

B 19.09.24
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=PFL Filter types

= Non-linear relation measures
 Correlation is only capable of measuring linear dependence
« A more powerful measure is the mutual information I(Y,,; C)

¢ /

o _ Pl 0d) a(x
J (o) = 1(¥y; €) = H(C) — H(C|Yyy) = ;LMP(YM’%NOQ ()P (w,) N

» The mutual information between the feature vector and the class label I(Y,;
C) measures the amount by which the uncertainty in the class H(C) is
decreased by knowledge of the feature vector H(C|Y,,), where H(:) is the
entropy function

* Note that mutual information requires the computation of the multivariate
densities p(Y,,) and p(Y,, , w, ), which is ill-posed for high-dimensional
spaces

B 19.09.24
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=PrL

B 19.09.24

Filter approaches
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Correlation
coefficient

= Mutual information

m |nformation gain

Mean absolute
difference

B Permuation
feature importance

— ANOVA

= Fisher’s score

= | ow variance filter

m Chi-square test
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=PrL

B 19.09.24

Basic ideas of the filter approaches (examples)

= Correlation Coefficient: Evaluates the linear relationship between
numerical features and the target variable. High absolute correlation
values indicate strong relationships.

= Chi-Square Test: Assesses the independence between categorical
features and the target variable. Features with low p-values are
considered significant.

= ANOVA (Analysis of Variance): Determines whether there are
statistically significant differences between the means of numerical
features across different groups.

= Mutual Information: Measures the mutual dependence between
features and the target variable, capturing any kind of relationship (not
just linear).

= Low variance filter: Eliminates features with low variance, assuming
they have little information content.

Olga Fink 29



=P7L  Flitering procedure

= Order the features (individual feature ranking or nested subsets of
features) based on either the correlation or the information theoretic
measures

= Select M features
= Handling of redundant features

B 19.09.24
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=PrL

B 19.09.24

Minimum-redundancy-maximum-relevance
(mRMR) feature selection

= Standard approach only uses the maximum-relevance selection:
features with the strongest correlation to the classification variable

= However, preference for features that are mutually far away from each
other while still having "high" correlation to the classification variable

= 2> Minimum Redundancy Maximum Relevance (MRMR) selection
= - found to be more powerful than the maximum relevance selection

= can use either mutual information, correlation, or distance/similarity
scores to select features

= The aim is to penalize a feature's relevancy by its redundancy in the
presence of the other selected features.

Olga Fink 31



=PFL mRMR criterion

= The relevance of a feature set S for the class c is defined by the
average value of all mutual information values between the individual
feature f; and the class c:

=75 =3 I(fise)

fies

D(S,c

= The redundancy of all features in the set S is the average value of all
mutual information values between the feature f; and the feature f:

R(S) = ﬁ S I £;)

firfj€8

B 19.09.24
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=PrL mRMR

= The mRMR criterion is a combination of the two measures:

1 1
mRMR = max | 7= > I(fise) = — > I(fii f;)
S| £=% S| f7es

Peng, Hanchuan, Fuhui Long, and Chris Ding. "Feature selection based on mutual information criteria of max-dependency, max-relevance,
and min-redundancy." IEEE Transactions on pattern analysis and machine intelligence 27.8 (2005): 1226-1238.
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=P7L  Different search strategies

Sequential Forward Selection

Sequential Backward Selection

Sequential algorithms Plus-lI Minus-r Selection

Bidirectional Search

Sequential Floating Selection

Exhaustive Search

Exponential algorithms Branch and Bound

0
Q0
o
()
=
©
=S
7
<
O
—
®
<))
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Beam Search

Simulated Annealing
Randomized algorithms

Genetic Algorithms

B 19.09.24
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=PFL  Naive sequential feature selection

= Evaluating each individual feature separately and select the best M
features

—>does not account for feature dependence
->Example

B 19.09.24
x
X

Source: Gutierrez-Osuna, 2013
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=L Sequential forward selection (SFS)

= Starting from the empty set, sequentially add the feature x* that maximizes
J(Y,, + x*) when combined with the features Y, that have already been ey sesue e
selected

1. Start with the empty set Y, = {0}

2. Select the next best feature x™ = arg max J(¥;, + x)
XEY

3.Update Vo =V +xt k=k+1

4.Goto2

= SFS performs best when the optimal subset is small

* When the search is near the empty set, a large number of states can be pot_.._._.
evaluated

* Towards the full set, the region examined by SFS is narrower since most features
have already been selected

* The main disadvantage of SFS is that it is unable to remove features that become
obsolete after the addition of other features

t7

Source: Gutierrez-Osuna, 2013

B 19.09.24
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=PrL

B 19.09.24

Example

= Run SFS to completion for the following objective function
where xJ, are indicator variables, which indicate whether the kt" feature
has been selected xr =1 ornot x,=0

J(X) = —2x1x9 + 3x1 + 5x5 — 2x1x9x3 + 7x3 + 4x4 — 2X1X2X3X,

Source: Gutierrez-Osuna, 2013
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=PrL

B 19.09.24

Sequential backward selection (SBS)

= Starting from the full set, sequentially remove the feature x~ that least
reduces the value of the objective function J(Y — x7)

* Removing a feature may actually increase the objective function J(Y, — x7) >
J(Y,); such functions are said to be non-monotonic

Empty feature set

1. Start with the full set ¥y = X

2. Remove the worst feature x~ = arg max J(¥, — x)
XEY

3.Update Yy =Y —x"; k=k+1
4.Goto2

= SBS works best when the optimal feature subset is large, sir
spends most of its time visiting large subsets

= The main limitation of SBS is its inability to reevaluate the us:
a feature after it has been discarded

Full feature set

Source: Gutierrez-Osuna, 2013
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=PFL  Plus-L minus-R selection (LRS)

= A generalization of SFS and

SBS

* If L>R, LRS starts from the
empty set and repeatedly adds Empty feature set
L features and removes R LIfL>R  thenY, = {0}
features else Yo = X; go to step 3

* If L<R, LRS starts from the full & Repeet L;Tﬂfarg max J (¥, + x)
set and repeatedly removes R xeVe
features followed by L Vipr = Yee b x5 k=k+1
additions 3. Repeat Rtl_mes

« LRS attempts to compensate X" = arg max/ (¥ = x)
for the weaknesses of SFS and Y1 =Ye—x3 k=k+1
SBS with some backtracking 4.Goto2
Capabllltles Full feature set

* Its main limitation is the lack of
a theory to help predict the
optimal values of L and R

B 19.09.24

Source: Gutierrez-Osuna, 2013
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=PrL

B 19.09.24

Bi-directional Search (BDS)

= BDS is a parallel implementation of SFS and SBS
« SFS is performed from the empty set
« SBS is performed from the full set
» To guarantee that SFS and SBS converge to the same Empty feature set
= Features already selected by SFS are not removed by
= Features already removed by SBS are not selected by

1. Start SFS with Yz = {@}
2. Start SBS with Yg = X
3. Select the best feature
xt =arg max](YFk =F x)
xEka
xEFBk
YFk+1 = YFk +ox* Full feature set

4. Remove the worst feature

xT = ary‘cga;g:X](Ysk —x)

XEYV P,y
Yoo =Ya,—x; k=k+1 Source: Gutierrez-Osuna, 2013

5.Goto2
Olga Fink 41



=PFL  Fiters vs. wrappers

= Filters = Wrappers
» Fast execution (+): Filters generally » Accuracy (+): wrappers generally achieve

B 19.09.24

involve a non-iterative computation on the
dataset, which can execute much faster
than a classifier training session

* Generality (+): Since filters evaluate the
intrinsic properties of the data, rather than
their interactions with a particular
classifier, their results exhibit more
generality: the solution will be “good” for a
larger family of classifiers

» Tendency to select large subsets (-): Since
the filter objective functions are generally
monotonic, the filter tends to select the full
feature set as the optimal solution. This
forces the user to select an arbitrary cutoff
on the number of features to be selected

better recognition rates than filters since
they are tuned to the specific interactions
between the classifier and the dataset

+ Ability to generalize (+): wrappers have a

mechanism to avoid overfitting, since they
typically use cross-validation measures of
predictive accuracy

Slow execution (-): since the wrapper must
train a classifier for each feature subset
(or several classifiers if cross-validation is
used), the method can become unfeasible
for computationally intensive methods

Lack of generality (-): the solution lacks
generality since it is tied to the bias of the
classifier used in the evaluation function.
The “optimal” feature subset will be
specific to the classifier under
consideration

Source: Gutierrez-Osuna, 2013
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=PrL
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Embedded Approaches

= Embedded methods perform feature selection and function estimation
simultaneously — feature selection is embedded within the machine
learning algorithm

= There are several approaches to embedded methods, one of which is
the Lasso: (lest absolute shrinkage and selection operator)

= Lasso is a method for linear regression that solves:

n

d
min 1 (y; —wlz; —b)2 + N|wl|; With |wll = Z |U-'(J)| as L, norm
) im1

And more generally for, 1 <p <o, |, _ (Zd: W@ Py forp =1
j=1
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=PrL  Embedded methods cont.

= Key observation about the L, —penalized least square solution is that w
is sparse, meaning that the method automatically selects the relevant
features

B 19.09.24
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=PFL  Feature Importance from Models

= Many machine learning models offer built-in mechanisms to assess feature
importance, which can be used for feature selection.

= Tree-Based Models: Algorithms like Random Forests, Gradient Boosting
Machines (e.g., XGBoost, LightGBM, CatBoost), and Decision Trees compute
fe?_’gture |r|T_][portance based on how much each feature decreases impurity or improves
split quality.
« Gini Importance (Mean Decrease in Impurity): Measures the total reduction of
impurity brought by each feature across all trees in the model.

« Permutation Importance: Evaluates the decrease in model performance when a
feacHEe'St valu?s are randomly shuffled, breaking the relationship between the feature
and the target.

= Linear Models: In models like linear or logistic regression, the absolute values of the
coefficients indicate feature importance.
* Regularization Techniques: AppI%/ing L1 refcfzularization Lasso Re?ression) can shrink
less important feature coefficients o zero, effectively performing feature selection.
= Usage in Feature Selection:
» Rank Features: Order features based on their importance scores from the model.
» Select Top Features: Choose a subset of features with the highest importance scores.

+ Iterative Refinement: Retrain the model using the selected features and reassess
feature importance.

B 19.09.24
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=PrL

B 19.09.24

Partial Dependence Plots (PDPs) and Individual
Conditional Expectation (ICE) Plots

= These plots help visualize the relationship between features and the
predicted outcome.

= Usage in Feature Selection:

« Analyze Feature Impact: Use PDPs to assess the average effect of a
feature on predictions.

» Detect Non-Linear Relationships: |dentify features with strong, consistent
effects.

» Select Features: Choose features that show significant influence in the
plots.

Olga Fink 46



=PrL

B 19.09.24

Partial Dependence Plot (PDP)

Fasla) = =3 F(as,ab)

o Wherefis the model prediction function, 93igare actual feature values
(not in S) and n is the number points.

= The partial function tells us for given value(s) of features S what the
average marginal effect on the prediction is.

= An assumption of the PDP is that the features in C are not correlated
with the features in S.

= |f this assumption is violated, the averages calculated for the partial
dependence plot will include data points that are very unlikely or even
impossible
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=PrL
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Predicted number of bikes

Example PDP plots

4000 ~
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Source: interpretable-ml-book
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=PrL

B 19.09.24

Example ICE (left)/PDP (right) plot
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=PrL Feature selection based on explainability methodsA

= Train an Initial Model: Use all available features to train a baseline
model.

= Compute Explainability Metrics: Apply methods like SHAP values,
permutation importance, or feature importance from models.

= Rank Features: Order features based on their importance scores.

= Select Top Features: Decide on a threshold (e.g., top 10 features) or
use domain knowledge to select features.

= Retrain the Model: Build a new model using only the selected features.

= Evaluate Performance: Compare the new model's performance
against the baseline using metrics like accuracy, precision, recall, or
AUC.

= lterate if Necessary: Adjust the feature set based on performance and
explainability insights.

B 19.09.24
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Different approaches to dimensionality reduction

Filter

Feature dimensionality

reduction

B Feature B
selection

approaches

Wrapper
approaches

Embedded
approaches

Linear

Non-Linear




=PFL  Feature selection vs. Feature low-dim.
Projection

= Removing features - Equivalent to projecting data onto lower-
dimensional linear subspace perpendicular to the feature removed

B 19.09.24
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=P7L  Principal component analysis

= PCA seeks preserve as much of the randomness (variance) in the
high-dimensional space as possible

= Projection of the dataset onto a lower dimensional space
= |In the direction of maximum variance

B 19.09.24
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=PrL

B 19.09.24

Key concepts of PCA

= Dimensionality Reduction: PCA reduces the number of variables
(features) in a dataset while preserving as much variability (information)
as possible.

= Principal Components: New uncorrelated variables that are linear
combinations of the original variables. Each principal component
captures a portion of the total variance in the data.

= Variance Maximization: The first principal component captures the
maximum variance, the second captures the next highest variance
orthogonal to the first, and so on.

= Orthogonality: Principal components are orthogonal (uncorrelated) to
each other, which eliminates redundancy.

Olga Fink 54



=PrL  How PCA works

Standardization:
* Purpose: Ensures that each feature contributes equally to the analysis.
* Method: Subtract the mean and divide by the standard deviation for each feature.

Covariance Matrix Computation:
* Purpose: Measures how variables change together.
* Method: Calculate the covariance matrix of the standardized data.

Eigenvalue and Eigenvector Calculation:
» Eigenvalues: Indicate the amount of variance captured by each principal component.
» Eigenvectors: Define the direction of the principal components.

Selecting Principal Components:
+ Criteria: Choose components with the highest eigenvalues.
* Methods:
= Scree Plot: Visualize the eigenvalues to determine the "elbow point.“
» Explained Variance Ratio: Select components that cumulatively explain a desired amount of total
variance (e.g., 95%).
Transforming the Data:
» Projection: Multiply the original data by the selected eigenvectors to obtain the principal components.
* Result: A reduced dataset with uncorrelated features.

B 19.09.24
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=PrL
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Scree test for determining the number of PCs

Explained variance ratio

10°¢

PCA Scree Plot Signal

10E
107 ¢

107}

105}

20 40 60 80 100
Principal component index axis ()

Source: Hyperspy 2011

Olga Fink

56



=PFL  Summary of the most important assumptions
and limitations of a PCA

= Linearity of the problem: data set is a linear combination of a certain base —
Problem solution by means of linear algebra

= PCA uses the eigenvectors of the covariance matrix and finds only
independent base vectors assuming a Gaussian probability distribution.

= Assumption that large variances reflect important dynamics. PCA essentially
only performs a rotation of the coordinate system in the direction of maximum
variance.

= Large variance principal components represent interesting dynamics; small
variance components represent noise.

= Role of SNR (Signal to Noise Ratio)

= Main components are orthogonal - Simplification that makes PCA solvable by
means of linear algebra.

B 19.09.24
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=PFL  Applications of PCA

= Data Visualization: Reducing dimensions to 2D or 3D for plotting.

= Noise Reduction: Eliminating less significant components to reduce
noise.

= Feature Extraction: Creating new features for machine learning models.

= Data Compression: Reducing storage requirements while retaining
essential information.

= Preprocessing Step: Simplifying data before applying other algorithms.

B 19.09.24
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=PrL

B 19.09.24

Importance of Q and T2 Statistics in PCA

= In Principal Component Analysis (PCA), the Q-statistic (also known
as the Squared Prediction Error (SPE)) and Hotelling's T? statistic
are essential metrics used for assessing the fit of observations within
the PCA model. They play a crucial role in:

» Outlier Detection

* Process Monitoring
* Fault Detection

« Quality Control

= These statistics help identify observations that deviate significantly from
the modeled behavior, enabling analysts to take corrective actions or
investigate anomalies.
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=rrL  Calculation of the Q and T>-Statistics

B 19.09.24

2 - ffg 1T _1nT T " Hotelling's T2 statistic measures the
I; = Zk_ =tiA" 15 =x;PAT P x, variation of an observation within the
=177 principal component (score) space defined

by the PCA model.

tSI' — xl'P Projection of the sample x; on the principal component |t quantiﬁes hOW far an Observation's
scores are from the center (mean) of the
model, considering the variability captured
by the selected principal components.

~ ~T ™ T = The Q-statistic measures the residual
Qi =xx; = xf(l — PP )xi variation of an observation not explained
by the PCA model.

x~. Projection of the sample x; on the residuals w |t .qqantiﬁes the C_"Stance .between the .
! original observation and its reconstruction
from the retained principal components.

X i Sample vector representing all the measurements at the point i
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Variable 3

Q and T2-Statistic

Sample with larger Q First PC
(unusual variation
outside the model)

Sample with larger T2
(unusual variation
inside the model)

Variable 2
Variable 1

Olga Fink
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=PFL  Different approaches to dimensionality
reduction

Filter

approaches

B Feature BB \WWrapper
selection approaches

Embedded
approaches

reduction

Linear

Feature dimensionality

= Non-Linear

B 19.09.24
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=PrL
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Other dimensionality reduction approaches

= Nonlinear PCA (NLPCA)
= Kernel PCA

= Exploratory Projection Pursuit (EPP)

« EPP seeks an M-dimensional (M=2,3 typically) linear projection of the data
that maximizes a measure of «interestingness»

* Interestingness is measured as departure from multivariate normality

= This measure is not the variance and is commonly scale-free. In most
implementations, it is also affine invariant, so it does not depend on the
correlations between features

= Kernel LDA

= T-distributed Stochastic Neighbor Embedding (t-SNE) (for visualization
purposes)
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=PFL  Autoencoder (will be considered later)

B 19.09.24

Input =

Ideally they are identical.
x ~ x’

ottleneck!

Y

Reconstructed
input

B
Encoder Decoder
96 .—' fo

An compressed low dimensional
representation of the input.

Olga Fink
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