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Advisory Generation(AG)

Prognostics Assessment(PA) 

Health Assessment(HA)

State Detection(SD)

Data Manipulation (DM)

DataAcquisition (DA)
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 Features may be expensive to obtain
• You evaluate a large number of features (sensors) in the test bed and select 

only a few for the final implementation
 You may want to extract meaningful rules from your classifier / 

regression algorithm
• When you project, the measurement units of your features (length, weight,  

etc.) are lost
 Features may not be numeric
 …

Why feature subset selection?
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 Aims to choose a small subset of the relevant features from the original 
features by removing 

• irrelevant, 
• redundant, 
• or noisy features. 

 Can usually lead to 
• better learning performance, 
• higher learning accuracy, 
• lower computational cost, 
• and better model interpretability.

Feature selection
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 Improved Model Performance
 Enhanced Interpretability
 Computational Efficiency
 Better Convergence
 Enhanced generalization by reducing overfitting

Obejctives of feature selection
19

.0
9.

24

Olga Fink 12



Underfitting vs overfitting
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 Relevance + Redundancy (concerning the goal)
 Relevance of the feature is measured based on the characteristics of the data not by 

its value
 Redundant features are those that are weakly relevant but can be completely 

replaced with a set of other features such that the target distribution is not disturbed
 Redundancy is always inspected in multivariate cases (when examining feature 

subset)  
 Relevance is established for individual features.
 Feature subsets can be classified as

• noisy and irrelevant
• redundant & weakly relevant
• weakly relevant and non-redundant
• strongly relevant

 The distortion of irrelevant and redundant features is not due to the presence of un-
useful information

 because the features did not have a statistical relationship with other features

Important criteria to consider for feature 
selection
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 Maximize relevance and minimize redundancy!!!

Aim of feature selection
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 Disentangling of causal factors
 Easy to model
 Works well with regularization strategies

What Makes Some Feature Representations Better 
Than Others?
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 The concept of disentanglement is based on the hypothesis that real-
world data is generated by a few independent explanatory factors of 
variation
 Can be sued for controlled data generation:

• learn a disentangled feature representation of the data 
• use these disentangled features representing independent factors of 

variation to generate data samples with desired characteristics in controlled 
ways 

Idea of disentanglement
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Disentangled features: generation
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Denton, Emily L. "Unsupervised learning of disentangled representations from video." Advances 
in neural information processing systems 30 (2017).
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Preliminaries
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x = (x1, . . . ,xN) ∈X - a vector of inputs
y ∈T - a target variable
𝑓𝑓𝜃𝜃(x) - a prediction model
ℒ(y, 𝑓𝑓𝜃𝜃(x)) - the loss function for measuring errors.  

Usual choices for regression:

squared error, L2-norm

absolute error, L1-norm

... and classiication:

Cross-entropy loss



 Given a feature space                  find a mapping
With M<N such that the transformed feature vector               preserves 
(most of) the information in structure in
 An optimal mapping 𝑦𝑦= 𝑓𝑓𝜃𝜃(𝑥𝑥) is one that does not increase 𝑃𝑃[𝑒𝑒𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟] 

 Two approaches: 
• Feature extraction: creating a subset of new features by combinations of the 

existing features
• Feature selection: choosing a subset of all the features

Basic principles of dimensionality reduction
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𝑥𝑥𝑖𝑖 ∈ ℜ𝑁𝑁 𝑦𝑦 = 𝑓𝑓𝜃𝜃 𝑥𝑥 :𝑅𝑅𝑁𝑁 → 𝑅𝑅𝑀𝑀

𝑦𝑦 ∈ 𝑅𝑅𝑀𝑀
𝑅𝑅𝑁𝑁



Different approaches to dimensionality
reduction
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 Given a feature set 𝑋𝑋 = 𝑥𝑥𝑖𝑖 𝑖𝑖 = 1 …𝑁𝑁 , find a subset 𝑌𝑌𝑀𝑀, with M<N, that
maximizes an objecive function 𝐽𝐽(𝑌𝑌), ideally P(correct)

Feature subset selection
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 Two inputs required: 
• A search strategy to select candidate subsets
• An objective function to evaluate these candidates

 Objective Function
• The objective function evaluates candidate subsets and  returns a measure of their 

“goodness”, a feedback signal  used by the search strategy to select new candidates

 Search strategy
 Exhaustive evaluation of feature subsets involves 𝑁𝑁𝑀𝑀 combinations for a fixed value of 𝑀𝑀, and 2𝑁𝑁

combinations if 𝑀𝑀 must be optimized as well

Search strategy and objective function
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 Filters: evaluate subsets by their information content, e.g., interclass
distance, statistical dependence or information-theoretic measures

 Wrappers: use a classifier to evaluate subsets by their predictive  accuracy 
(on test data) by statistical resampling or cross-validation

Objective functions
19

.0
9.

24

Olga Fink 25

Source: Gutierrez-Osuna, 2013



 Distance or separability measures
• Distance between classes: Euclidean, Mahalanobis, etc.

 Correlation and information-theoretic measures
• are based on the rationale that good feature subsets  contain features highly 

correlated with (predictive of) the class, yet uncorrelated with (not predictive 
of) each other

• Linear relation measures
 Linear relationship between variables can be measured using the correlation 

coefficient

 Where 𝜌𝜌𝑖𝑖𝑐𝑐 is the correlation coefficient between feature 𝑖𝑖 and the class label 
and 𝜌𝜌𝑖𝑖𝑗𝑗 is the correlation coefficient between features 𝑖𝑖 and 𝑗𝑗

Filter types
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 Non-linear relation measures
• Correlation is only capable of measuring linear dependence
• A more powerful measure is the mutual information 𝐼𝐼(𝑌𝑌M; 𝐶𝐶)

• The mutual information between the feature vector and the class label 𝐼𝐼(𝑌𝑌𝑀𝑀; 
𝐶𝐶) measures the amount by which the uncertainty in the class 𝐻𝐻(𝐶𝐶)  is 
decreased by knowledge of the feature vector 𝐻𝐻(𝐶𝐶|𝑌𝑌𝑀𝑀), where 𝐻𝐻(·) is  the 
entropy function

• Note that mutual information requires the computation of the  multivariate 
densities 𝑝𝑝(𝑌𝑌𝑀𝑀) and 𝑝𝑝(𝑌𝑌𝑀𝑀 , 𝜔𝜔𝑐𝑐 ), which is ill-posed for high-dimensional 
spaces

Filter types
19

.0
9.

24

Olga Fink 27



Filter approaches
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 Correlation Coefficient: Evaluates the linear relationship between 
numerical features and the target variable. High absolute correlation 
values indicate strong relationships.
 Chi-Square Test: Assesses the independence between categorical 

features and the target variable. Features with low p-values are 
considered significant.
 ANOVA (Analysis of Variance): Determines whether there are 

statistically significant differences between the means of numerical 
features across different groups.
 Mutual Information: Measures the mutual dependence between 

features and the target variable, capturing any kind of relationship (not 
just linear).
 Low variance filter: Eliminates features with low variance, assuming 

they have little information content.

Basic ideas of the filter approaches (examples)
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 Order the features (individual feature ranking or nested subsets of 
features) based on either the correlation or the information theoretic 
measures
 Select M features
 Handling of redundant features

Filtering procedure
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 Standard approach only uses the maximum-relevance selection: 
features with the strongest correlation to the classification variable
 However, preference for features that are mutually far away from each 

other while still having "high" correlation to the classification variable
  Minimum Redundancy Maximum Relevance (mRMR) selection 
  found to be more powerful than the maximum relevance selection
 can use either mutual information, correlation, or distance/similarity 

scores to select features 
 The aim is to penalize a feature's relevancy by its redundancy in the 

presence of the other selected features. 

Minimum-redundancy-maximum-relevance
(mRMR) feature selection
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 The relevance of a feature set S for the class c is defined by the 
average value of all mutual information values between the individual 
feature fi and the class c :

mRMR criterion
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 The redundancy of all features in the set S is the average value of all 
mutual information values between the feature fi and the feature fj:



 The mRMR criterion is a combination of the two measures:

mRMR
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Peng, Hanchuan, Fuhui Long, and Chris Ding. "Feature selection based on mutual information criteria of max-dependency, max-relevance, 
and min-redundancy." IEEE Transactions on pattern analysis and machine intelligence 27.8 (2005): 1226-1238.



Different search strategies
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Sequential Forward Selection

Sequential Backward Selection

Plus-l Minus-r Selection

Bidirectional Search

Sequential Floating Selection

Exponential algorithms

Exhaustive Search

Branch and Bound

Beam Search

Randomized algorithms
Simulated Annealing

Genetic Algorithms



 Evaluating each individual  feature separately and select the best M 
features
does not account for feature dependence
Example

Naïve sequential feature selection
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Source: Gutierrez-Osuna, 2013



 Starting from the empty set, sequentially add the feature 𝑥𝑥+ that maximizes 
𝐽𝐽(𝑌𝑌𝑘𝑘 + 𝑥𝑥+) when combined with the features 𝑌𝑌𝑘𝑘 that have already been 
selected

 SFS performs best when the optimal subset is small
• When the search is near the empty set, a large number of states can be potentially                   

evaluated
• Towards the full set, the region examined by SFS is narrower since most features 

have already been selected
• The main disadvantage of SFS is that it is unable  to remove features that become 

obsolete after  the addition of other features

Sequential forward selection (SFS)
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Source: Gutierrez-Osuna, 2013



 Run SFS to completion for the following objective function
where 𝑥𝑥𝑘𝑘 are indicator variables, which indicate whether the 𝑘𝑘𝑡𝑡ℎ feature
has been selected        𝑥𝑥𝑘𝑘 = 1 or not 𝑥𝑥𝑘𝑘 = 0

Example
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Source: Gutierrez-Osuna, 2013



 Starting from the full set, sequentially remove the feature 𝑥𝑥− that least 
reduces the value of the objective function 𝐽𝐽(𝑌𝑌 − 𝑥𝑥−)

• Removing a feature may actually increase the objective function 𝐽𝐽(𝑌𝑌𝑘𝑘 − 𝑥𝑥−) > 
𝐽𝐽(𝑌𝑌𝑘𝑘); such functions are said to be non-monotonic

 SBS works best when the optimal feature subset  is large, since SBS 
spends most of its time visiting  large subsets
 The main limitation of SBS is its inability to reevaluate the usefulness of 

a feature after it has been discarded

Sequential backward selection (SBS)
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Source: Gutierrez-Osuna, 2013



 A generalization of SFS and 
SBS

• If L>R, LRS starts from the 
empty set  and repeatedly adds 
L features and removes R 
features

• If L<R, LRS starts from the full 
set and  repeatedly removes R 
features  followed by L 
additions

• LRS attempts to compensate 
for the  weaknesses of SFS and 
SBS with some  backtracking 
capabilities

• Its main limitation is the lack of 
a  theory to help predict the  
optimal values of L and R

Plus-L minus-R selection (LRS)
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Source: Gutierrez-Osuna, 2013



 BDS is a parallel implementation of SFS and SBS
• SFS is performed from the empty set
• SBS is performed from the full set
• To guarantee that SFS and SBS converge to the same solution

 Features already selected by SFS are not removed by SBS
 Features already removed by SBS are not selected by SFS

Bi-directional Search (BDS)
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Source: Gutierrez-Osuna, 2013



 Filters
• Fast execution (+): Filters generally 

involve a non-iterative computation on the  
dataset, which can execute much faster 
than a classifier training session

• Generality (+): Since filters evaluate the 
intrinsic properties of the data, rather than  
their interactions with a particular 
classifier, their results exhibit more 
generality:  the solution will be “good” for a 
larger family of classifiers

• Tendency to select large subsets (-): Since 
the filter objective functions are  generally 
monotonic, the filter tends to select the full 
feature set as the optimal  solution. This 
forces the user to select an arbitrary cutoff 
on the number of  features to be selected

 Wrappers
• Accuracy (+): wrappers generally achieve 

better recognition rates than filters since 
they are tuned to the specific interactions 
between the classifier and the dataset

• Ability to generalize (+): wrappers have a 
mechanism to avoid overfitting, since  they 
typically use cross-validation measures of 
predictive accuracy

• Slow execution (-): since the wrapper must 
train a classifier for each feature subset  
(or several classifiers if cross-validation is 
used), the method can become  unfeasible 
for computationally intensive methods

• Lack of generality (-): the solution lacks 
generality since it is tied to the bias of the  
classifier used in the evaluation function. 
The “optimal” feature subset will be  
specific to the classifier under 
consideration

Filters vs. wrappers
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Source: Gutierrez-Osuna, 2013



 Embedded methods perform feature selection and function estimation
simultaneously – feature selection is embedded within the machine
learning algorithm
 There are several approaches to embedded methods, one of which is

the Lasso: (lest absolute shrinkage and selection operator)
 Lasso is a method for linear regression that solves: 

• With as L1 norm

And more generally for, 1 < 𝑝𝑝 < ∞ , for 𝑝𝑝 ≥ 1

Embedded Approaches
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 Key observation about the L1 –penalized least square solution is that �𝑤𝑤
is sparse, meaning that the method automatically selects the relevant 
features

Embedded methods cont. 
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 Many machine learning models offer built-in mechanisms to assess feature 
importance, which can be used for feature selection.

 Tree-Based Models: Algorithms like Random Forests, Gradient Boosting 
Machines (e.g., XGBoost, LightGBM, CatBoost), and Decision Trees compute 
feature importance based on how much each feature decreases impurity or improves 
split quality.

• Gini Importance (Mean Decrease in Impurity): Measures the total reduction of 
impurity brought by each feature across all trees in the model.

• Permutation Importance: Evaluates the decrease in model performance when a 
feature's values are randomly shuffled, breaking the relationship between the feature 
and the target.

 Linear Models: In models like linear or logistic regression, the absolute values of the 
coefficients indicate feature importance.

• Regularization Techniques: Applying L1 regularization (Lasso Regression) can shrink 
less important feature coefficients to zero, effectively performing feature selection.

 Usage in Feature Selection:
• Rank Features: Order features based on their importance scores from the model.
• Select Top Features: Choose a subset of features with the highest importance scores.
• Iterative Refinement: Retrain the model using the selected features and reassess 

feature importance.

Feature Importance from Models
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 These plots help visualize the relationship between features and the 
predicted outcome.
 Usage in Feature Selection:

• Analyze Feature Impact: Use PDPs to assess the average effect of a 
feature on predictions.

• Detect Non-Linear Relationships: Identify features with strong, consistent 
effects.

• Select Features: Choose features that show significant influence in the 
plots.

Partial Dependence Plots (PDPs) and Individual 
Conditional Expectation (ICE) Plots
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 Where is the model prediction function, are actual feature values 
(not in S) and n is the number points. 
 The partial function tells us for given value(s) of features S what the 

average marginal effect on the prediction is.
 An assumption of the PDP is that the features in C are not correlated 

with the features in S. 
 If this assumption is violated, the averages calculated for the partial 

dependence plot will include data points that are very unlikely or even 
impossible

Partial Dependence Plot (PDP)
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Example PDP plots
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Source: interpretable-ml-book



Example ICE (left)/PDP (right) plot
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Source: interpretable-ml-book



 Train an Initial Model: Use all available features to train a baseline 
model.
 Compute Explainability Metrics: Apply methods like SHAP values, 

permutation importance, or feature importance from models.
 Rank Features: Order features based on their importance scores.
 Select Top Features: Decide on a threshold (e.g., top 10 features) or 

use domain knowledge to select features.
 Retrain the Model: Build a new model using only the selected features.
 Evaluate Performance: Compare the new model's performance 

against the baseline using metrics like accuracy, precision, recall, or 
AUC.
 Iterate if Necessary: Adjust the feature set based on performance and 

explainability insights.

Feature selection based on explainability methods
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 Removing features  Equivalent to projecting data onto lower-
dimensional linear subspace perpendicular to the feature removed

Feature selection vs. Feature low-dim. 
Projection
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 PCA seeks preserve as much of the randomness (variance) in  the 
high-dimensional space as possible
 Projection of the dataset onto a lower dimensional space
 In the direction of maximum variance

Principal component analysis
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 Dimensionality Reduction: PCA reduces the number of variables 
(features) in a dataset while preserving as much variability (information) 
as possible.
 Principal Components: New uncorrelated variables that are linear 

combinations of the original variables. Each principal component 
captures a portion of the total variance in the data.
 Variance Maximization: The first principal component captures the 

maximum variance, the second captures the next highest variance 
orthogonal to the first, and so on.
 Orthogonality: Principal components are orthogonal (uncorrelated) to 

each other, which eliminates redundancy.

Key concepts of PCA
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 Standardization:
• Purpose: Ensures that each feature contributes equally to the analysis.
• Method: Subtract the mean and divide by the standard deviation for each feature.

 Covariance Matrix Computation:
• Purpose: Measures how variables change together.
• Method: Calculate the covariance matrix of the standardized data.

 Eigenvalue and Eigenvector Calculation:
• Eigenvalues: Indicate the amount of variance captured by each principal component.
• Eigenvectors: Define the direction of the principal components.

 Selecting Principal Components:
• Criteria: Choose components with the highest eigenvalues.
• Methods:

 Scree Plot: Visualize the eigenvalues to determine the "elbow point.“
 Explained Variance Ratio: Select components that cumulatively explain a desired amount of total 

variance (e.g., 95%).
 Transforming the Data:

• Projection: Multiply the original data by the selected eigenvectors to obtain the principal components.
• Result: A reduced dataset with uncorrelated features.

How PCA works
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Scree test for determining the number of PCs
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Source: Hyperspy 2011



 Linearity of the problem: data set is a linear combination of a certain base → 
Problem solution by means of linear algebra 

 PCA uses the eigenvectors of the covariance matrix and finds only 
independent base vectors assuming a Gaussian probability distribution.

 Assumption that large variances reflect important dynamics. PCA essentially 
only performs a rotation of the coordinate system in the direction of maximum 
variance.

 Large variance principal components represent interesting dynamics; small 
variance components represent noise.

 Role of SNR (Signal to Noise Ratio)
 Main components are orthogonal  Simplification that makes PCA solvable by 

means of linear algebra.

Summary of the most important assumptions 
and limitations of a PCA
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 Data Visualization: Reducing dimensions to 2D or 3D for plotting.
 Noise Reduction: Eliminating less significant components to reduce

noise.
 Feature Extraction: Creating new features for machine learning models.
 Data Compression: Reducing storage requirements while retaining

essential information.
 Preprocessing Step: Simplifying data before applying other algorithms.

Applications of PCA
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 In Principal Component Analysis (PCA), the Q-statistic (also known 
as the Squared Prediction Error (SPE)) and Hotelling's T² statistic
are essential metrics used for assessing the fit of observations within 
the PCA model. They play a crucial role in:

• Outlier Detection
• Process Monitoring
• Fault Detection
• Quality Control

 These statistics help identify observations that deviate significantly from 
the modeled behavior, enabling analysts to take corrective actions or 
investigate anomalies.

Importance of Q and T² Statistics in PCA
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Calculation of the Q and T2-Statistics

Sample vector representing all the measurements at the point i

Projection of the sample xi on the principal component

Projection of the sample xi on the residuals

 Hotelling's T² statistic measures the 
variation of an observation within the 
principal component (score) space defined 
by the PCA model.
 It quantifies how far an observation's 

scores are from the center (mean) of the 
model, considering the variability captured 
by the selected principal components.
 The Q-statistic measures the residual 

variation of an observation not explained 
by the PCA model.
 It quantifies the distance between the 

original observation and its reconstruction 
from the retained principal components.



Q and T2-Statistic
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Different approaches to dimensionality
reduction
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 Nonlinear PCA (NLPCA)
 Kernel PCA
 Exploratory Projection Pursuit (EPP)

• EPP seeks an M-dimensional (M=2,3 typically) linear projection of the data
that maximizes a measure of «interestingness»

• Interestingness is measured as departure from multivariate normality
 This measure is not the variance and is commonly scale-free. In most

implementations, it is also affine invariant, so it does not depend on the
correlations between features

 Kernel LDA
 T-distributed Stochastic Neighbor Embedding (t-SNE) (for visualization 

purposes)

Other dimensionality reduction approaches
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Autoencoder (will be considered later)

64
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