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 Discriminative
• Model P(y|x)
• Learn the boundary between classes 

(in classifiers)
• Usually better performance in low-data 

regime

 Generative
• Model P(x,y)
• Model the distribution of classes
• Usually needs more data
• Can be used to generate new samples

Discriminative VS Generative
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 Model complex and high-dimensional distributions
 Generate realistic synthetic samples

• Data augmentation
• Simulation scenarios for learning algorithms

 Fill the blanks in the data
• Manipulate real samples

 Learn a latent representation useful for other tasks

Why generative models?
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Variational Autoencoders
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Recap: Autoencoders
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Source: https://towardsdatascience.com



Potential generation process
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Source: https://towardsdatascience.com



AE for data generation
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Source: https://towardsdatascience.com



 Definition: Variational Autoencoders are a type of generative model that 
use machine learning to produce new data points that are statistically 
similar to a given dataset.
 Key Concept: VAEs are based on the principles of probability and 

statistics, aiming to model the underlying data distribution.
 Purpose of VAEs

• Data Generation: Generate new data instances that mimic the original data.
• Dimensionality Reduction: Compress data into a more manageable latent 

space.

Variational Autoencoders
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General structure of VAE
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Source: https://towardsdatascience.com



Objective function of VAE
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Reconstruction loss KL Divergence Loss



Simple AE vs. VAE
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Source: https://towardsdatascience.com



VAE on MNIST
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 The concept of disentanglement is based on the hypothesis that real-
world data is generated by a few independent explanatory factors of 
variation
 Can be sued for controlled data generation:

• learn a disentangled feature representation of the data 
• use these disentangled features representing independent factors of 

variation to generate data samples with desired characteristics in controlled 
ways 

Idea of dientanglement
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Disentangled features: generation
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Denton, Emily L. "Unsupervised learning of disentangled representations from video." Advances 
in neural information processing systems 30 (2017).



Generative Adversarial 
Networks (GANs)
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 2014: a major milestone in generative models
 GAN: Generative Adversarial Network 
 Take a look at http://thispersondoesnotexist.com by Style-GAN

GANs
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Adversarial Training
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Figure 1 https://github.com/devnag/pytorch-generative-adversarial-networks

Generative Adversarial Networks (GAN)
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GANs
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Source: https://medium.com/sigmoid/a-brief-introduction-to-gans-and-how-to-code-them-2620ee465c30
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GAN loss functions
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Min-Max Loss:

Discriminator Loss:

Generator Loss:



Example
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Different DA setups
02

.1
2.

24

Olga Fink 21

Source
- Train
Healthy

Fault 1

Fault 2

----

----

Target
- Train
Healthy

---

---

Fault 3

Fault 4

Target
- Test
Healthy

Fault 1

Fault 2

Fault 3

Fault 4

Source
- Test
Healthy

Fault 1

Fault 2

Fault 3

Fault 4

Open-Partial DA for Fault DiagnosisPartial DA under
«extreme» setup

Source
- Train
Healthy

Fault 1

Fault 2

Fault 3

Fault x

Target
- Train
Unknown

Unknown

Unknown

Target
- Test
Healthy

Fault 1

Fault 2

Fault 3

Fault x

Target
- Train
Healthy



GAN Generated images
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Source: https://kcimc.medium.com/
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Challenges / requirements for synthetic faults

• Need to be physically plausible / interpretable

• Need to be specific to the considered system and 
specific to the operating conditions

• Usually, samples of all fault types in one system
cannot be assumed!

|
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Generate unseen Faults in a 
new domain (new unit or new 
operating condition) and 
“exchange fault patterns 
between different domains”
 Open-Partial Domain 
adaptation

Controlled Generation of Unseen Faults



 Hypothesis: faulty signal can be represented by combining
• domain-specific variations of the normal steady state operation (represented 

by healthy data)
• and a domain-independent signal representing solely the characteristic from 

a fault.
 Hypothesis in the Fourier domain: 

• Fourier spectrum of fault data can be expressed as the sum of 
1) the spectrum of a signal from normal operation and 
2) the spectrum of a signal representing the domain-independent faulty 
condition.

General Idea
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Rombach, K., G. Michau & O. Fink: Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation, Reliability
Engineering and System Safety 25



FaultSignatureGAN
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Training Phase: 
 Training the A) generative model to generate domain independent fault characteristics while 

imposing B) plausibility with the discriminator in the source domain and C) semantic consistency 
with the classifier. 

Execution Phase
 generation of unseen target data

Rombach, K., G. Michau & O. Fink: Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation, Reliability
Engineering and System Safety



Dataset: Paderborn Bearing
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Domain Rotational
speed [rpm]

Load Torque 
[Nm]

Radial Force [N]

0 1500 0.7 1000

1 900 0.7 1000

2 1500 0.1 1000

3 1500 0.7 400

 Six Classes
One healthy class, two OR fault severities and three IR fault severities

 Four Domains
 Generate faulty data in different domains
 Domain 1: differs significantly from the other conditions



Open-Partial Setup for the Paderborn Dataset
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Real datasets Real and generated
training datasets

Real test datasets

Rombach, K., G. Michau & O. Fink: Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation, Reliability
Engineering and System Safety



Transfer between OCs knowing the health + 1 OC in 
each of the datasets (without OC1)
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Baseline FaultSig
nature
GAN

Mean Accuracy 
(over all test 
datasets and 
transfer directions)

83.4% 96.0%

Paderborn Dataset

*The test datasets comprise the real missing fault data as well as of a 30% of known health conditions

Rombach, K., G. Michau & O. Fink: Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation, Reliability
Engineering and System Safety



Paderborn data visualization of the OR severity 1 fault 
comparing real fault data with generated fault data
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Rombach, K., G. Michau & O. Fink: Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation, Reliability
Engineering and System Safety



Diffusion models
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Diffusion Process

 Diffusion models are inspired by non-equilibrium
thermodynamics.

 For a small fraction of the time, it is difficult to determine
whether particles are moving in the direction of mixing or in the
opposite direction.
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Source: Jumin Lee
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 If we look at the movement of a single molecule on a very short time
scale, it follows a Gaussian distribution.

 Since the direction of mixing and the opposite direction are the same in a 
very short time, the opposite direction also follows a Gaussian
distribution.

Diffusion Process
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Source: Jumin Lee
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 Just as we viewed the molecule's motion as a Gaussian-
distributed noise, we add a Gaussian-distributed noise to the
pixel.

Diffusion Process

Molecule

Pixel Noise Pixel

Noise 
movement

Movement
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Source: Jumin Lee
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Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

Denoising Diffusion Models
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Denoising diffusion models consist of two processes:

 Forward diffusion process that gradually adds noise to input

 Reverse denoising process that learns to generate data by denoising
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Source: Jumin Lee



Forward Diffusion Process
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The formal definition of the forward process in T steps:

Markov 
Property ← Diffusion Kernel
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Source: Jumin Lee



Reverse Denoising
Process
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Formal definition of forward and reverse processes in T steps:

Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications, CVPR 2022

Model
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Source: Jumin Lee



Decision support
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PHM Process
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Advisory Generation(AG)

Prognostics Assessment(PA) 

Health Assessment(HA)

State Detection(SD)

Data Manipulation(DM)

DataAcquisition (DA)



 Up to now: 
• Generate an alarm in case of an anomaly
• Provide information which fault type has occurred (or at least which signals

have shown the largest deviation from normal behaviour)
• Provide a prediction of the remaining useful life
 Overcoming challenges of the lack of labels, diversity of operating
conditions, uncertain measurements…

 Predictions / detections at component / (sub-)system level

What we focused on up to now
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Reminder: PHM system operational view
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Source: P1856™/D31 Standard



Five levels of condition-based and predictive
maintenance
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 Required recommendation at system, fleet and enterprise level: 
• Optimal specific action (what needs to be done)
• Optimal point in time 
• Required ressource usage (including personel, tools and material)
• Under the given constraints from the ressource availability and operational 

requirements

Why decision support systems for PHM required?
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 Health management utilizes prognostic information to make decisions
related to safety, condition-based maintenance, ensuring adequate
inventory, and product life extension. 
 Health management goes beyond the predictions of failure times 
supports optimal maintenance and logistics decisions 
by considering the available resources +
the operating context +
the economic consequences of different faults. 
 Health management process of taking timely and optimal maintenance 

actions based on outputs from diagnostics and prognostics, available 
resources and operational demand

(Prognostics and ) Health Management
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Types of decisions
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Aggregate information at the system level (taking boundary conditions into consideration)

Health-aware control  operation

Adjustment of operations with respect to the equipment’s health state

Optimization of maintenance scheduling

Take decision at fleet level (e.g. mission scheduling)

…



 Optimization Algorithms: Determining the most cost-effective 
maintenance schedules and resource allocations.
 Scenario Analysis: Evaluating the impact of different maintenance 

strategies or operational changes.
 Risk Assessment: Assessing the likelihood and consequences of 

potential failures to prioritize actions.

Decision-Making Tools
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Health management
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Decision making in complex systems
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TIMEsms

Operation

min hour day

(Re)Planning

(Re)Routing  
Navigation

Maintenance
planning

Component

Equipment

Distributed  
System

Control / Re-
Calibration

long
term

Distributed systems
coordination



 Establish objectives (e.g. availability, reliability, safety, performance and 
energy consumption), constraints (e.g. ressources), decision variables
 Incorporate operational and maintenance requirements on single

system and on the fleet level (plus possible flexibility)
 Establish priorities and decision variables
 Quantify critical metrics
 Perform trade-off study incl. risk

Steps to perform
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Elements of decision support systems
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Decision support system

Fleets of different assets (being
composed of different components) incl. 
their criticality

Health indicators or RULs, detection
alarms (ideally including the uncertainty
level)

Scheduled maintenance + inspections
(e.g. due to safety requirements)

Maintenance ressources (maintenance
infrastructure, tools, spare parts, logistics)

Human ressources (incl. qualification)

Performance objectives
(availability, cost targets, 

efficiency …)

Missions / operational 
requirements Operational schedules

Maintenance planning + schedule (grouping of
several components / systems)

Personnel planning

Requirements for spare parts /logistics

Occupation of maintenance infrastructure

Performance indicators (costs, operational 
availability, efficiency, product quality, quality of
service, etc.)



Multi-agent predictive maintenance scheduling
in an electricity market
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Rokhforoz, P., Gjorgiev, B., Sansavini, G., & Fink, O. (2021). Multi-agent maintenance scheduling based on the coordination between central operator and 
decentralized producers in an electricity market. Reliability Engineering & System Safety, 210, 107495.



Decision support for
optimal operation
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Consequences of uncertainty?

High uncertainty + high 
complexity  often cost 
and time overruns 
(+safety critical risks) Risk

Safety
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Importance of experienced and skilled operators

Drilling efficiency differs
between different operators
and often depends on the level
of expertise and experience
difficult to train novices
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Consequences of uncertainty?

High uncertainty in tunnel 
construction projects 
often cost and time 
overruns

Tasks with incomplete observations / high uncertainty

How can we leverage the the experience and 
expertise of domain experts?
Under the condition that we don’t know how 
good the decisions / actions are 
By only observing the data that their 
decisions generate
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Mechanized tunneling: Tunnel construction using 
Tunnel Boring Machines (TBMs)
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 Massive machines employed to build 
critical infrastructure for modern life
 Large number of sensors installed on a 

TBM (torque, rotational speed, thrust, ...)
 Geology affects sensor values

Image credit: https://www.theb1m.com/video/first-tbm-for-grand-paris-express-launched



Geological conditions
02

.1
2.

24

Olga Fink 59

Source: Bushati S. et al. , «Gophysical outlook on structure of the Albanides»



Digitalization in tunnel boring projects

Can we collect sufficient data to learn
from (including geological conditions)?
+ need at least to know how good the 
performance is
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Humans – AI - Humans

Learning from observing 
the decision of domain 
experts  support 
novices
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Learn from experienced operators

How can we imitate experienced operators 
and provide decision support to less 
experienced?



Decision support system for an intelligent operator of 
utility tunnel boring machines  resembles imitation 
learning
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Framework
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Use Case
Collect raw sensor data
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Cutting 
Wheel Rot 
Speed

Feed pump 
Pressure

… Oil 
Temperature

20.1012 1.29482 … 50.1232

21.0333 1.22112 … 50.21999

1



Use Case: Utility tunnels
Geology Profiles
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Highly weathered schist (HWS)
Moderately weathered schist (MWS)
Slightly weathered Schist (SWS)
Quartzite
Iron (hydr-)oxide
No Material

𝐺𝐺𝐶𝐶1 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻
𝐺𝐺𝐶𝐶2 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝑀𝑀𝑀𝑀
𝐺𝐺𝐶𝐶3 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆

1

Garcia, G. R., Michau, G., Einstein, H. H., & Fink, O. (2021). Decision support system for an intelligent operator of utility tunnel boring 
machines. Automation in Construction, 131, 103880.



Use Case
Data Preprocessing
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List of selected parameters
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Framework
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Use Case
Define Optimality
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2.1

Garcia, G. R., Michau, G., Einstein, H. H., & Fink, O. (2021). Decision support system for an intelligent operator of utility tunnel boring 
machines. Automation in Construction, 131, 103880.



Use Case
Predict Optimality
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2.2

Predicted Optimality



Use Case
Train the Neural Network
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2.2

Predicted 
Optimality



Use Case
Make recommendations and assess Credibility
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2.3

Pre-
processed 
Test Data

Gradients

Recommendation for each 
control parameter

Credibility

Credibility for each recommendation

E.g. Increase Rotational Speed and Decrease 
Thrust Eg. 83% credible 3



Framework
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Business models
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Possible business models in predictive
maintenance
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Sensors a service

Subscription

Performance based contracting

Pay per use

Guaranteed availability

Freemium

Add-on

Solution provider


	Machine Learning for Predictive Maintenance Applications:�Generative models /�Decision support systems
	Discriminative VS Generative
	Why generative models?
	Variational Autoencoders
	Recap: Autoencoders
	Potential generation process
	AE for data generation
	Variational Autoencoders
	General structure of VAE
	Objective function of VAE
	Simple AE vs. VAE
	VAE on MNIST
	Idea of dientanglement
	Disentangled features: generation
	Generative Adversarial Networks (GANs)
	GANs
	Adversarial Training
	GANs
	GAN loss functions
	Example
	Different DA setups
	GAN Generated images
	Slide Number 23
	Slide Number 24
	General Idea
	FaultSignatureGAN 
	Dataset: Paderborn Bearing
	Open-Partial Setup for the Paderborn Dataset
	Transfer between OCs knowing the health + 1 OC in each of the datasets (without OC1)
	Paderborn data visualization of the OR severity 1 fault comparing real fault data with generated fault data
	Diffusion models
	Diffusion Process	
	Diffusion Process	
	Diffusion Process	
	Denoising Diffusion Models	
	Forward Diffusion Process	
	Reverse Denoising Process	
	Decision support
	PHM Process
	What we focused on up to now
	Reminder: PHM system operational view
	Five levels of condition-based and predictive maintenance
	Why decision support systems for PHM required?
	(Prognostics and ) Health Management
	Types of decisions 
	Decision-Making Tools
	Health management
	Decision making in complex systems
	Steps to perform
	Elements of decision support systems
	Multi-agent predictive maintenance scheduling in an electricity market
	Decision support for optimal operation
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Mechanized tunneling: Tunnel construction using �Tunnel Boring Machines (TBMs)
	Geological conditions
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Decision support system for an intelligent operator of utility tunnel boring machines  resembles imitation learning
	Framework�
	Use Case�Collect raw sensor data
	Use Case: Utility tunnels�Geology Profiles
	Use Case�Data Preprocessing
	List of selected parameters
	Framework
	Use Case�Define Optimality
	Use Case�Predict Optimality�
	Use Case�Train the Neural Network
	Use Case�Make recommendations and assess Credibility�
	Framework
	Business models
	Possible business models in predictive maintenance

