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=PFL  Discriminative VS Generative

= Discriminative » Generative
* Model P(y|x) * Model P(x,y)
» Learn the boundary between classes * Model the distribution of classes
(in classifiers) « Usually needs more data
* Usually better performance in low-data « Can be used to generate new samples
regime

Generative Model “

Discriminant Model

B 02.12.24
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=P7L  Why generative models?

Model complex and high-dimensional distributions
Generate realistic synthetic samples

« Data augmentation

« Simulation scenarios for learning algorithms
Fill the blanks in the data

« Manipulate real samples

Learn a latent representation useful for other tasks

Image
generator

original enhanced

B 02.12.24
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=P7L  Recap: Autoencoders

neural network neural network

encoder decoder

X X =d(z)

loss = ||x-X|2= [|x-d() |2 = ||x-dex) |}

Source: https://towardsdatascience.com
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=P7L  Potential generation process

training ] encoder
process — e z

— encoded vector JLiiLE

L (in latent space)

P decoder -

input d

g:::;:st!on sampler decoded content
(reconstructed input /

generated content)
sampled vector

(from latent space)

Source: https://towardsdatascience.com
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=PrL  AE for data generation

B 02.12.24

O
JAN

“training” data for
the autoencoder

encoder

decoder

O
A

encoded data can be decoded
without loss if the autoencoder
has enough degrees of freedom

O

without explicit regularisation,
some points of the latent space
are “meaningless” once decoded

Source: https://towardsdatascience.com

Olga Fink

7



=PFL  Variational Autoencoders

= Definition: Variational Autoencoders are a type of generative model that
use machine learning to produce new data points that are statistically
similar to a given dataset.

= Key Concept: VAEs are based on the principles of probability and
statistics, aiming to model the underlying data distribution.

= Purpose of VAEs
« Data Generation: Generate new data instances that mimic the original data.

» Dimensionality Reduction: Compress data into a more manageable latent
space.

B 02.12.24
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=PFL  General structure of VAE

neural network 7
decoder -

1 neural network
- encoder

X x=d(z)

loss = ||x-x]| + KL N, )] = |[x-d(2)|]? + KL ,N(O, )]

Source: https://towardsdatascience.com

B 02.12.24
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=PFL  Objective function of VAE

Lyvae = By, (zx)[log po(x|2)] — Dxr(gs(2[x)[|p(2))

Reconstruction loss KL Divergence Loss

Olga Fink



=PrL

Simple AE vs. VAE

latent input
: input representation reconstruction
simple
autoencoders X z=e(x) d(z)
latent sampled latent input
.- input distribution representation reconstruction
variational
autoencoders X p(z|x) z~ plz|x) d(z)
N
g Source: https://towardsdatascience.com
o
.
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=PrL

B 02.12.24

Idea of dientanglement

= The concept of disentanglement is based on the hypothesis that real-
world data is generated by a few independent explanatory factors of
variation

= Can be sued for controlled data generation:
* learn a disentangled feature representation of the data

 use these disentangled features representing independent factors of
variation to generate data samples with desired characteristics in controlled

ways

Olga Fink
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Generative Adversanal
Networks (GANSs)




=PrL GANS

= 2014: a major milestone in generative models
= GAN: Generative Adversarial Network
= Take a look at http://thispersondoesnotexist.com by Style-GAN

B 02.12.24
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=L Adversarial Training

D: Detective

R: Real Data G: Generator (Forger)

Generative Adversarial Networks (GAN)

B 02.12.24

Figure 1 https://github.com/devnag/pytorch-generative-adversarial-networks

Olga Fink 17



=PrL

B 02.12.24

GANs

TXIXIXIXT

Real faces
v
Q.-
F 9
Generator
Random noise
O/o(_
P
/O\ 8
“\O/Q“\
o Generated faces

WebaPa®,

Discriminator Fake

Real

Source: https://medium.com/sigmoid/a-brief-introduction-to-gans-and-how-to-code-them-2620ee465c30

Olga Fink
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=PFL  GAN loss functions

Min-Max Loss:

E; [log(D(z))] + E.[log(1 — D(G(2)))]
Discriminator Loss:

a3 e () 10812 (6 (+9)))]

=1

Generator Loss:

Voo 2o (12 (6 ()

B 02.12.24
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=PFL  Different DA setups

Partial DA under Open-Partial DA for Fault Diagnosis
«extreme» setup

Target Source Target Source
- Train - Train - Train | - Test - Test

Source
- Train

Healthy [ Healthy § | Healthy Healthy Healthy Healthy  Healthy

Fault 1 Fault 1 Fault 1 Fault 1 Fault 1

-- Fault 2 Fault 2

Fault 2 Fault 2 Fault 2
Fault 3 Fault 3 Fault3  Fault3  Fault3

Fault x Fault x - Fault4 Fault4 Fault 4

B 02.12.24
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=P7L  GAN Generated Images

Source: https://kcimc.medium.com/
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Challenges / requirements fo} synthetic faults
* Need to be physically plausible / interpretable

* Need to be specific to the considered system and
specific to the operating conditions
 Usually, samples of all fault types in one system

cannot be assumed! A
VI
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Controlled Generatlon of Unseen Faults

=% Generate unseen Faults in a
£: new domain (new unit or new
§ operating condition) and
& “exchange fault patterns
& between different domains”

§ > Open-Partial Domain
&8 adaptation




=PFL  General Idea

= Hypothesis: faulty signal can be represented by combining

« domain-specific variations of the normal steady state operation (represented
by healthy data)

« and a domain-independent signal representing solely the characteristic from
a fault.
= Hypothesis in the Fourier domain:
» Fourier spectrum of fault data can be expressed as the sum of
1) the spectrum of a signal from normal operation and

2) the spectrum of a signal representing the domain-independent faulty
condition.

e, FFT _  FFT c.FFT
Tiguirx = X~ T WHT 0

B 02.12.24

Rombach, K., G. Michau & O. Fink: Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation, Reliability
Engineering and System Safety Olga Fink 25



=Pl FaultSignatureGAN

» Classifier 5::2 g
Fault tuaé Fault Class i
|

_—

@ B Z | Generator + Bz | Generator + -
L Discriminator or

anit. AT s Generated Tautt oEFT ggFET

1 3 1 3 . -

n
©
=

Categorical Categorical
Distribution f Distribution f
Sampling Sampling
Module Healthy ) Module
Source | .
Data

ST

Training Phase:

- Training the A) generative model to generate domain independent fault characteristics while
imposing B) plausibility with the discriminator in the source domain and C) semantic consistency
with the classifier.

Execution Phase

—> generation of unseen target data

Rombach, K., G. Michau & O. Fink: Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation, Reliability
Engineering and System Safety Olga Fink 26
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=PFL  Dataset: Paderbom Bearing

Rotational Load Torque Radial Force [N]
speed [rpm] [Nm]

1500 1000
1 900 0.7 1000
2 1500 0.1 1000
3 1500 0.7 400

Six Classes
One healthy class, two OR fault severities and three IR fault severities

Four Domains

Generate faulty data in different domains

Domain 1: differs significantly from the other conditions

B 02.12.24
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=PFL  Open-Partial Setup for the Paderbom Dataset

Real and generated
training datasets

Real test datasets

Real datasets

TARGET

H
TARGET

TARGET

B 02.12.24

Rombach, K., G. Michau & O. Fink: Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation, Reliability
Engineering and System Safety Olga Fink 29



=PFL  Transfer between OCs knowing the health+ 10
each of the datasets (without 0C1)

Baseline | FaultSig

nature
GAN

Mean Accuracy 83.4% 96.0%
(over all test

datasets and

transfer directions)

Paderborn Dataset

*The test datasets comprise the real missing fault data as well as of a 30% of known health conditions

B 02.12.24

Rombach, K., G. Michau & O. Fink: Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation, Reliability

Engineering and System Safety Olga Fink 30



=PFL  Paderborn data visualization of the OR severity 1 fault }
comparing real fault data with generated fault data

18 -
- | — | Target-Synthetic |
Synthetic 1.0 —— | Target-Source |

1.6 —— Target
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@
2 0.0

—— Real Source Faults

1.4 4
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FFT coefficient
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Rombach, K., G. Michau & O. Fink: Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation, Reliability
Engineering and System Safety Olga Fink
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Diffusion models
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=PrL

Diffusion Process

= Diffusion models are inspired by non-equilibrium
thermodynamics.

= For a small fraction of the time, it is difficult to determine
whether particles are moving in the direction of mixing or in the
opposite direction.
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Source: Jumin Lee
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=PrL

Diffusion Process

.\('WQ\;I Mer N
N

= |f we look at the movement of a single molecule on a very short time
scale, it follows a Gaussian distribution.

= Since the direction of mixing and the opposite direction are the samein a
very short time, the opposite direction also follows a Gaussian

distribution. S S S /"
: sl ho by poaebibiLleed o el
‘; :s:a;.:.:;::: ::: ‘..:.%: ::: ﬁ::: Source: Jumin Lee
. sy [mepRblesy  fieAseiiiny
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=PrL

Diffusion Process

= Just as we viewed the molecule's motion as a Gaussian-
distributed noise, we add a Gaussian-distributed noise to the

ixel.
P M o

NI/
o + O T

\/
Molecule Noise Movement
movement
o + ¢ = ©

B 02.12.24

Pixel Noise PiXEI Source: Jumin Lee

Olga Fink 35



= Denoising Diffusion Models

Denoising diffusion models consist of two processes:
= Forward diffusion process that gradually adds noise to input

= Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

Source: Jumin Lee

B 02.12.24
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=PrL

Forward Diffusion Process

The formal definition of the forward process in T steps:

=g X1 X9 X3 Xy XT
\ /
q(xt|xi—1) == N (x¢; /1 — Bexi—1, Be)
Markov C
Property q(z¢|zo) = N(z¢;Vauxo, (1 — a)I) € Diffusion Kernel

x; =+ X0+ /(1 —a¢) e where € ~N(0,I)

E — ~/ [ — t . H
a;=1— B, and ay; == Hs:O o Source: Jumin Lee

B 02.12.24
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=PrL

B 02.12.24

Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applicatiog

Reverse Denoising
Process

Formal definition of forward and reverse processes in T steps:

q(x¢—1]xt,%X0) = N (X¢—1; B (X, Xo0), BtI)

l Model
Po(ze-122) == N (@1i{po (@1, t), Do (w1, 1))

Source: Jumin Lee

Olga Fink 38
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=PFL  PHM Process

DataAcquisition (DA)

Data Manipulation(DM)
|

State Detection(SD)

Health Assessment(HA)
|

Prognostics Assessment(PA)

Advisory Generation(AG)

Olga Fink 40



=PFL  What we focused on up to now

= Up to now:
» Generate an alarm in case of an anomaly

» Provide information which fault type has occurred (or at least which signals
have shown the largest deviation from normal behaviour)

» Provide a prediction of the remaining useful life
- Overcoming challenges of the lack of labels, diversity of operating
conditions, uncertain measurements...

= Predictions / detections at component / (sub-)system level

B 02.12.24

Olga Fink 41



=PrL

B 02.12.24

Reminder: PHM system operational view

Sensors

Acquire ii Analyze i i Advise ii
Diagnostics

i} | * Detection o i

il | * Isolation ¥ o

Data Capture |1 | * Identffication | ||
Data Processing |!: | stateData |
Data Storage |l | Assessment || Information |
Data ' * Health State i Display i
Management | i
Communication Prognostics

* Health State
SD
DA || DM HA PA AG

Health Monitoring And Assessment Process

Core PHM Operational Process

Act Fault Mitigation and Recovery
Fault / Failure Fault / Failure
Avoidance Fault Tolerance Repair
Operational Failure Preventive
Failure Recovery Maintenance or
Avoidance Repair
‘ Low Level Control ‘ ‘ Reconfigure ‘ ‘ Goal Change ‘
HM

Health Management Process

Source: P1856™/D31 Standard

Olga Fink
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=PFL Five levels of condition-based and predictive
maintenance

P - +Prolong the component's lifetime
I " s Self configuration, optimization and adjustment

ti |
+Fleets of machines
*Cyber-physical systems
* Peer-to-peer Monitoring
«Components under different operating conditions

+Fault detection, diagnostics and
prediction of the remaining useful life

+Degradation and performance prediction

+Effective sensor selection
+Connection + data aggregation
+Internet of things infrastructure

+Prioritize and optimize maintenance decisions
*Remote visualization

B 02.12.24
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=P*L - Why decision support systems for PHM required? i

= Required recommendation at system, fleet and enterprise level:
» Optimal specific action (what needs to be done)
« Optimal point in time
» Required ressource usage (including personel, tools and material)

» Under the given constraints from the ressource availability and operational
requirements

B 02.12.24
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=PrL

B 02.12.24

(Prognostics and ) Health Management

= Health management utilizes prognostic information to make decisions
related to safety, condition-based maintenance, ensuring adequate
inventory, and product life extension.

= Health management goes beyond the predictions of failure times
—>supports optimal maintenance and logistics decisions

—>by considering the available resources +

—>the operating context +

—>the economic consequences of different faults.

= Health management process of taking timely and optimal maintenance
actions based on outputs from diagnostics and prognostics, available
resources and operational demand

Olga Fink 45



=PFL Types of decisions

Aggregate information at the system level (taking boundary conditions into consideration)

Health-aware control - operation

Adjustment of operations with respect to the equipment’s health state

Optimization of maintenance scheduling

Take decision at fleet level (e.g. mission scheduling)

B 02.12.24
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=PrL

B 02.12.24

Declision-Making Tools

= Optimization Algorithms: Determining the most cost-effective
maintenance schedules and resource allocations.

= Scenario Analysis: Evaluating the impact of different maintenance
strategies or operational changes.

= Risk Assessment: Assessing the likelihood and consequences of
potential failures to prioritize actions.

Olga Fink 47



=PrL

B 02.12.24

Health management

hazard- faults symptoms features ~ f
operator classes \ \ super-
- decisi \ fault fault fault feature vision
ecision au au au | € e |
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=PrL Decision making in complex systems

‘ \ 4 1é A
_ Distributed systems
Distributed Y
coordination
System
S g Re)Planni
e)Plannin
p N (Re) g
: . _ Maintenance
Equipment Operation (Re)Routing .
N planning
A Navigation
. J
r ~ Control / Re-
Calibration
Component
\ /| \L y, \ /
L ms S min hour day long

term

Olga Fink
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=PrL

B 02.12.24

Steps to perform

= Establish objectives (e.g. availability, reliability, safety, performance and
energy consumption), constraints (e.g. ressources), decision variables

= [ncorporate operational and maintenance requirements on single
system and on the fleet level (plus possible flexibility)

= Establish priorities and decision variables
= Quantify critical metrics
= Perform trade-off study incl. risk

Olga Fink 50



=PFL  Elements of decision support systems

Fleets of different assets (being

composed of different components) incl. Missions / operational

their criticality requirements Operational schedules
Health indicators or RULs, detection Maintenance planning + schedule (grouping of
alarms (ideally including the uncertainty several components / systems)

level) .
Personnel planning

Scheduled maintenance + inspections
(e.g. due to safety requirements)

Requirements for spare parts /logistics

Decision support system ] ) )
Occupation of maintenance infrastructure

Maintenance ressources (maintenance o ]
infrastructure, tools, spare parts, logistics) Perforrr)gnce |rl1c.i|cators (costs, ope'ratlonall
availability, efficiency, product quality, quality of

Human ressources (incl. qualification) f service, etc.)

Performance objectives
(availability, cost targets,
efficiency ...)

B 02.12.24
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=PFL Multi-agent predictive maintenance scheduling
In an electricity market

Operation
Condition 1

Predicted RUL1
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Rokhforoz, P., Gjorgiev, B., Sansavini, G., & Fink, O. (2021). Multi-agent maintenance scheduling based on the coordination between central operator and
decentralized producers in an electricity market. Reliability Engineering & System Safety, 210, 107495.
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Decision support for
optimal operation
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EPFL

s A omm HEER (G =
Tasks with incomplete observations / high uncertainty

L- Y L/L=K 1|

How can we leverage the the experience and
expertise of domain experts?

Under the condition that we don’t know how
good the decisions / actions are

By only observing the data that their
decisions generate




=PFL  Mechanized tunneling: Tunnel construction using
Tunnel Boring Machines (TBMs)

= Massive machines employed to build
critical infrastructure for modern life

= Large number of sensors installed on a
TBM (torque, rotational speed, thrust, ...)

= Geology affects sensor values

B 02.12.24
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Imaage credit: https://www.theb1m.com/video/first-tbm-for-grand-paris-express-launched



=P7L  Geological conditions

Source: Bushati S. et al. , «Gophysical outlook on structure of the Albanides»

<
N
o
N
o
o
-

Olga Fink 59



"

...,. 'l | A

Dlgitallzatlon in tunnel bormg projects

Can we collect sufficient data to learn
= from (including geological conditions)?

l + need at least to know how good the
performance is
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| experienced?




=PFL  Declsion support system for an intelligent operator of -k
utility tunnel boring machines - resembles imitation

leaming

Compute

B
Credibility Score

e o | M

acopP,’ " ’dcoPy

%N e ‘
A/ yal - '
%" =

Scor, -

g Optimality Learning & Recommendations to Improve Optimality

Current Ground Class | Optimality and Credibility Score

| Ilm

Sensor Recordings SS Recommendation

D!
R

.

e Real Time Decision Support

| \rhysical System: Operational and Geology
Data Collection & Preprocessing

B 02.12.24
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=PFL  Framework

Ground Class 2

Ground Class 1

Pre-processed Data

6’hysical System: Operational and Geology

> Data Collection & Preprocessing

B 02.12.24
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=PrL  Use Case

Collectrawsensordata 6

Cutting Feed pump (o]1]
Wheel Rot Pressure Temperature
Speed

20.1012 1.29482 . 50.1232

21.0333 1.22112 50.21999

B 02.12.24
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=PrL

B 02.12.24

Use Case: Utility tunnels

Geology Profiles
[] Highly weathered schist (HWS) GC, = Homogeneous HWS
] Moderately weathered schist (MWS) GC, = Homogeneous MWS
I Slightly weathered Schist (SWS) GC; = Homogeneous SWS
[] ' Quartzite
Il 'on (hydr-)oxide
No Material
A I
o [NIRTNET -1 L

HK internal "rock class":
(<10%

22200t 414y 2222

20 291°302°2 39

Garcia, G. R., Michau, G., Einstein, H. H., & Fink, O. (2021). Decision support system for an intelligent operator of utility tunnel boring

machines. Automation in Construction, 131, 103880.

Olga Fink
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B 02.12.24

Data Preprocessing
Sensor 1
Sensor 2
Remove Transient Sections Sensor X

D
é Smooth Data
g
: X
-
>
=
D
p-‘ A ., y _

) —— >

Samples (0.1 Hz

\

Olga Fink
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=PrL

B 02.12.24

List of selected parameters

Parameter Name

Unit

Context Parameters (CxP)

Steering cylinder 1 pressure

Steering cylinder 2 pressure

Steering cylinder 3 pressure

Steering cylinder 3 pressure (3-B)
Feed line pressure (on TBM)

Feed line pressure (on pump)
Suction line pressure

High pressure pump pressure (on pump)
Bentonite pump pressure

Feed line flow rate

Drive line flow rate

High pressure nozzle flow rate

High pressure pump rotational speed
Bentonite pump rotational speed
Steering cylinder 1 extension
Steering cylinder 2 extension
Steering cylinder 3 extension
Machine oil temperature

TBM axial rotation

bar
bar
bar

bar
bar
bar

bar
/s
m*/s
m?/s
rpm
rpm
mm
mm
mm
celsius
degrees

Control Parameters (CoP)

Cutter head rotational speed (CoP,)
High pressure water nozzle speed (CoP3)
Drive line pressure (CoP3)

Jacking frame thrust (CoP,)

Feed pump rotational speed (CoPs)

rpm
bar

kN
rpm

Target Parameters (TP)

Working pressure
Penetration rate
(Optimality)

bar
mm/min
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=PrL Use Case

Define Optimality

W,
B g if WP, < MB,,
() MAR, UB
o AR, MB; WP, — MB; _
W) —— — Wy ————— otherwise.
MAR, UB UB

e AR, is the advance rate [mm/min] at time t
100 e WP, is the working pressure [bar] at time t
. e UB is the upper bound of the working pressure (safety threshold
‘l before automatic shutdown)
e MB; is the working pressure margin bound [bar] defined as the
f observed 90th percentile for the i-th ground class
e MAR; is the observed maximum advance rate within i-th ground
50 class
e W, is the negative penalizing weight on the working pressure when
the working pressure is below the margin bound MB;.
| [ e W, is the negative penalizing weight on the working pressure when
the working pressure is above the margin bound MB;. Typically we
0 have ws > wy.
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=PFL Use Case i e

Predict Optimality

Predicted Optimality

Optimality, HWS
3

—— Original
—— Predicted

0 50 500 750 1000 1250 1500 1750

Samples (0.1 Hz)
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=PFL - Use Case e

Traln the Neural Network
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=PrL  Use Case

Make recommendations and assess Credibility

ol o) e Predicted
. 3 (@) e
.-{f(} \ - A T A Optimality
. y S g e 4
X 2y X 3 v :f (
N Y v 8% ( m
M Y \/ : 2 d
¥, s o a
Pre- 7 -\ -
processed f S X
Test Da ta [nput Layer Hidden Layer Hidden Layer Output Layer
v L 4
Gradients Credibility

\ \

Recommendation for each
control parameter

Credibility for each recommendation

A 4 A

%
E.g. Increase Rotat!ll.):rzlsipeed and Decrease Eg. 83% credible _e_, ® A III-
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=PrL
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Framework

Current Ground Class

Optimality and Credibility Score

Cpimaiiy JEON

Sensor Recordings

D_SS Recommendation

py

o Real Time Decision Support
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=P7L  Possible business models In predictive
maintenance

Sensors a service
Subscription
Performance based contracting

Olga Fink 76
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