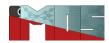


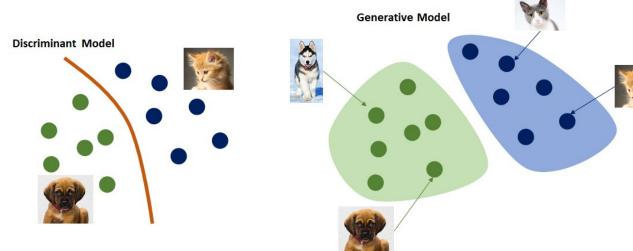
 École polytechnique fédérale
 de l'ausanne

Discriminative VS Generative

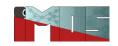


- Discriminative
 - Model P(y|x)
 - Learn the boundary between classes (in classifiers)
 - Usually better performance in low-data regime

- Generative
 - Model P(x,y)
 - Model the distribution of classes
 - Usually needs more data
 - Can be used to generate new samples



Why generative models?



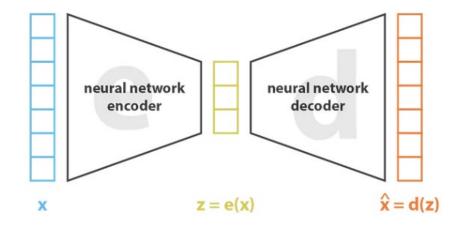
- Model complex and high-dimensional distributions
- Generate realistic synthetic samples
 - Data augmentation
 - Simulation scenarios for learning algorithms
- Fill the blanks in the data
 - Manipulate real samples
- Learn a latent representation useful for other tasks

Image generator

enhanced

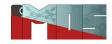
Variational Autoencoders

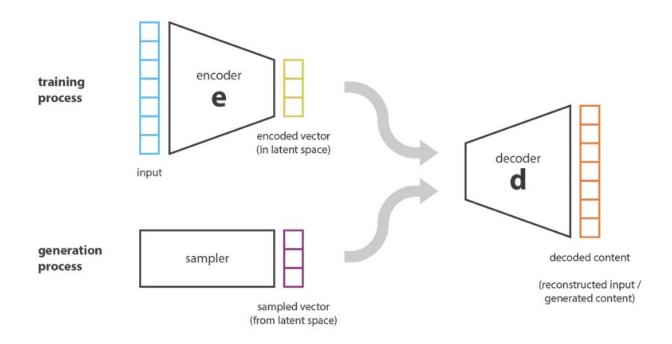
Recap: Autoencoders



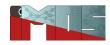
loss =
$$||\mathbf{x} - \hat{\mathbf{x}}||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x}))||^2$$

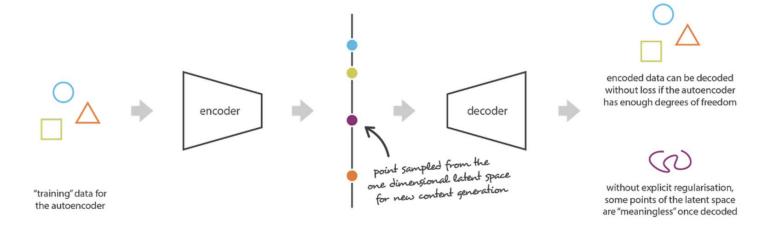
Potential generation process





AE for data generation



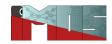


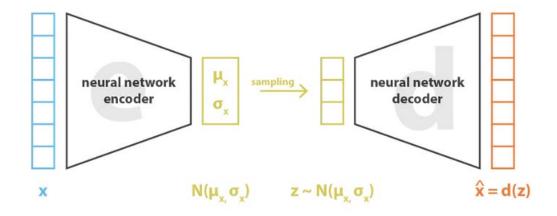
Variational Autoencoders



- Definition: Variational Autoencoders are a type of generative model that use machine learning to produce new data points that are statistically similar to a given dataset.
- Key Concept: VAEs are based on the principles of probability and statistics, aiming to model the underlying data distribution.
- Purpose of VAEs
 - Data Generation: Generate new data instances that mimic the original data.
 - Dimensionality Reduction: Compress data into a more manageable latent space.

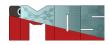
General structure of VAE





loss =
$$||x - \hat{x}||^2 + KL[N(\mu_x, \sigma_x), N(0, I)] = ||x - d(z)||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$$

Objective function of VAE



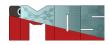
$$\mathcal{L}_{ ext{VAE}} = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{ heta}(\mathbf{x}|\mathbf{z})] - D_{ ext{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

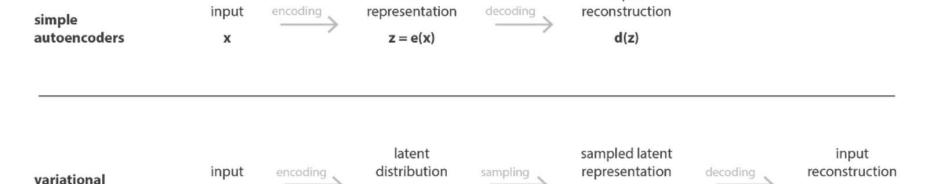
Reconstruction loss

KL Divergence Loss

Simple AE vs. VAE

х





input

 $z \sim p(z|x)$

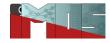
latent

p(z|x)

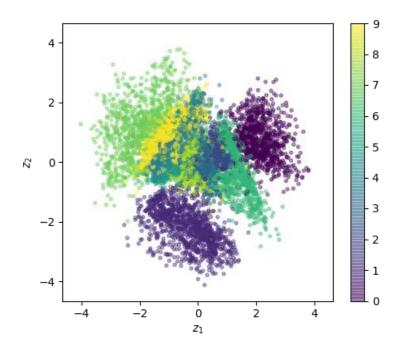
autoencoders

d(z)

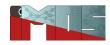
VAE on MNIST





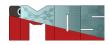


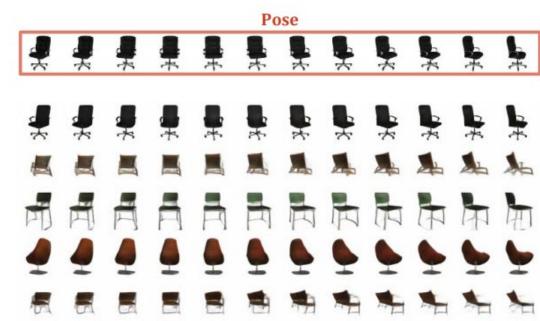
Idea of dientanglement



- The concept of disentanglement is based on the hypothesis that realworld data is generated by a few independent explanatory factors of variation
- Can be sued for controlled data generation:
 - learn a disentangled feature representation of the data
 - use these disentangled features representing independent factors of variation to generate data samples with desired characteristics in controlled ways

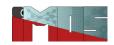
Disentangled features: generation





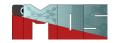
Generative Adversarial Networks (GANs)

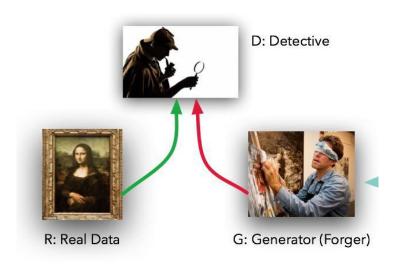
GANs



- 2014: a major milestone in generative models
- GAN: Generative Adversarial Network
- Take a look at http://thispersondoesnotexist.com by Style-GAN

EPFL Adversarial Training

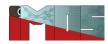


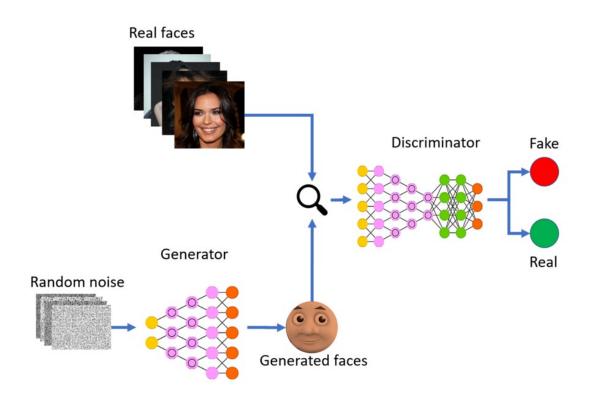


Generative Adversarial Networks (GAN)

EPFL

GANs





18

GAN loss functions

Min-Max Loss:

$$E_x[log(D(x))] + E_z[log(1-D(G(z)))]$$

Discriminator Loss:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right]$$

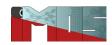
Generator Loss:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right)$$

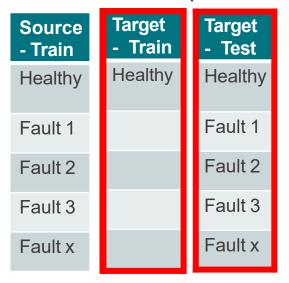
Example

02.12.24

Different DA setups



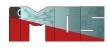
Partial DA under «extreme» setup

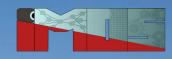


Open-Partial DA for Fault Diagnosis

Source - Train	Target - Train	Target - Test	Source - Test
Healthy	Healthy	Healthy	Healthy
Fault 1		Fault 1	Fault 1
Fault 2		Fault 2	Fault 2
	Fault 3	Fault 3	Fault 3
	Fault 4	Fault 4	Fault 4

GAN Generated images

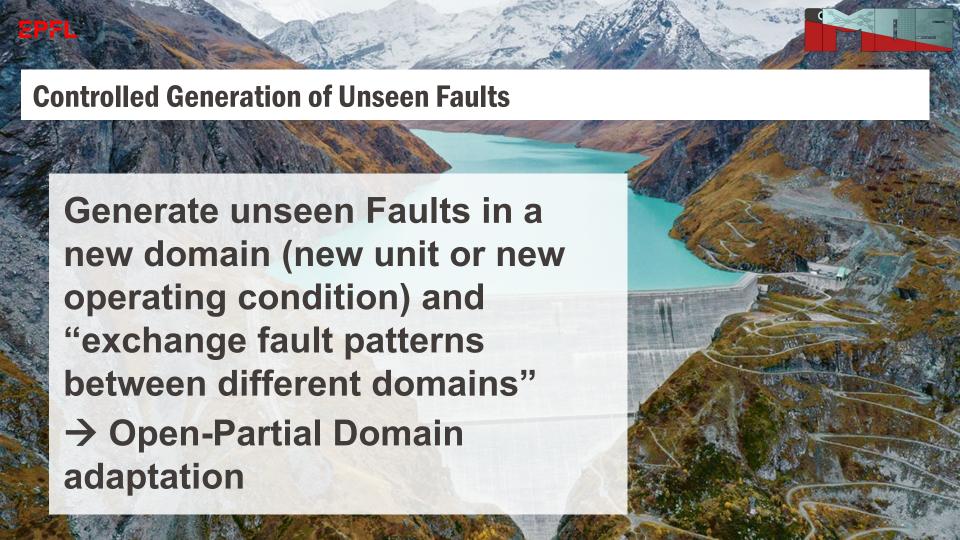




Challenges / requirements for synthetic faults

- Need to be physically plausible / interpretable
- Need to be specific to the considered system and specific to the operating conditions
- Usually, samples of all fault types in one system cannot be assumed!

M



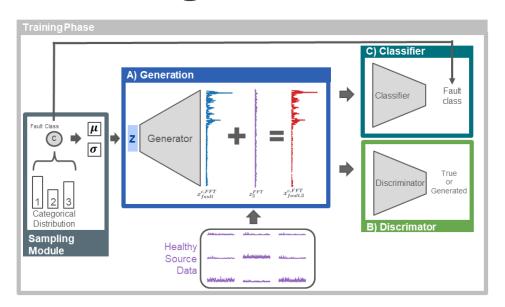
General Idea

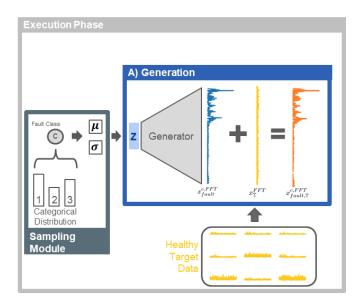


- Hypothesis: faulty signal can be represented by combining
 - domain-specific variations of the normal steady state operation (represented by healthy data)
 - and a domain-independent signal representing solely the characteristic from a fault.
- Hypothesis in the Fourier domain:
 - Fourier spectrum of fault data can be expressed as the sum of
 - 1) the spectrum of a signal from normal operation and
 - 2) the spectrum of a signal representing the domain-independent faulty condition.

$$x_{fault,\mathbb{X}}^{c,FFT} = x_{\mathbb{X}}^{FFT} + w * x_{fault}^{c,FFT}$$

FaultSignatureGAN





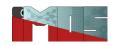
Training Phase:

→ Training the A) generative model to generate domain independent fault characteristics while imposing B) plausibility with the discriminator in the source domain and C) semantic consistency with the classifier.

Execution Phase

→ generation of unseen target data

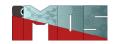
Dataset: Paderborn Bearing

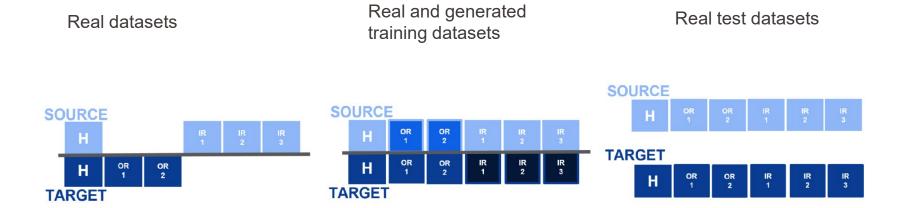


Domain	Rotational speed [rpm]	Load Torque [Nm]	Radial Force [N]
0	1500	0.7	1000
1	900	0.7	1000
2	1500	0.1	1000
3	1500	0.7	400

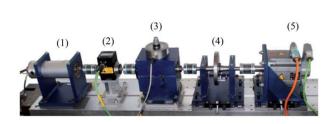
- Six Classes
 One healthy class, two OR fault severities and three IR fault severities
- Four Domains
- Generate faulty data in different domains
- Domain 1: differs significantly from the other conditions

Open-Partial Setup for the Paderborn Dataset





Transfer between OCs knowing the health + 1 OCin_____ each of the datasets (without OC1)

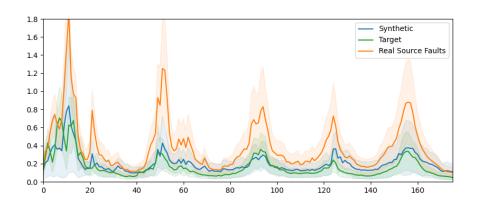


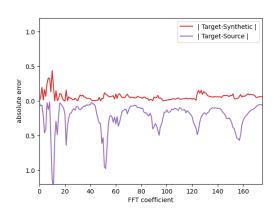
Paderborn Dataset

	Baseline	FaultSig nature GAN
Mean Accuracy (over all test datasets and transfer directions)	83.4%	96.0%

*The test datasets comprise the real missing fault data as well as of a 30% of known health conditions

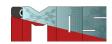
Paderborn data visualization of the OR severity 1 fault comparing real fault data with generated fault data



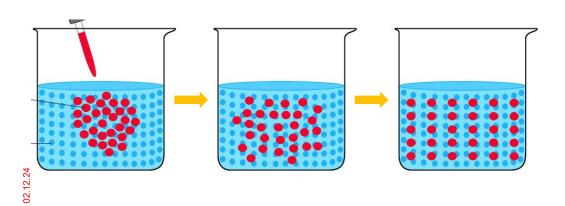


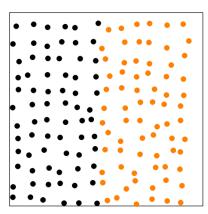
Diffusion models

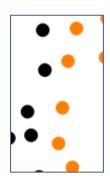
Diffusion Process



- Diffusion models are inspired by non-equilibrium thermodynamics.
- For a small fraction of the time, it is difficult to determine whether particles are moving in the direction of mixing or in the opposite direction.

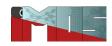


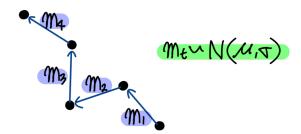




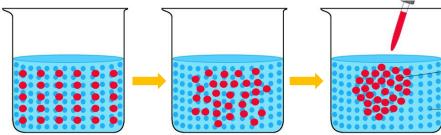
Source: Jumin Lee

Diffusion Process

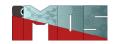




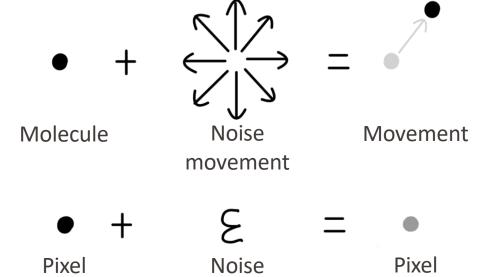
- If we look at the movement of a single molecule on a very short time scale, it follows a Gaussian distribution.
- Since the direction of mixing and the opposite direction are the same in a very short time, the opposite direction also follows a Gaussian distribution.



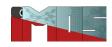
Diffusion Process



Just as we viewed the molecule's motion as a Gaussiandistributed noise, we add a Gaussian-distributed noise to the pixel.

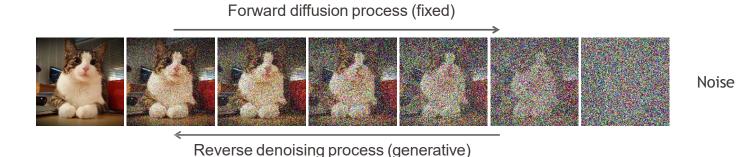


Denoising Diffusion Models



Denoising diffusion models consist of two processes:

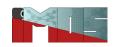
- Forward diffusion process that gradually adds noise to input
- Reverse denoising process that learns to generate data by denoising



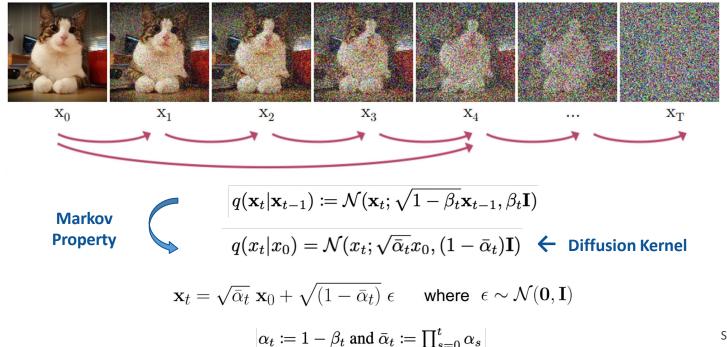
Source: Jumin Lee

Data

Forward Diffusion Process



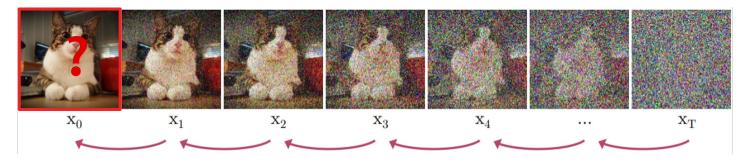
The formal definition of the forward process in T steps:



Source: Jumin Lee

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:



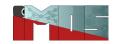
$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0),\tilde{\beta}_t\mathbf{I})$$

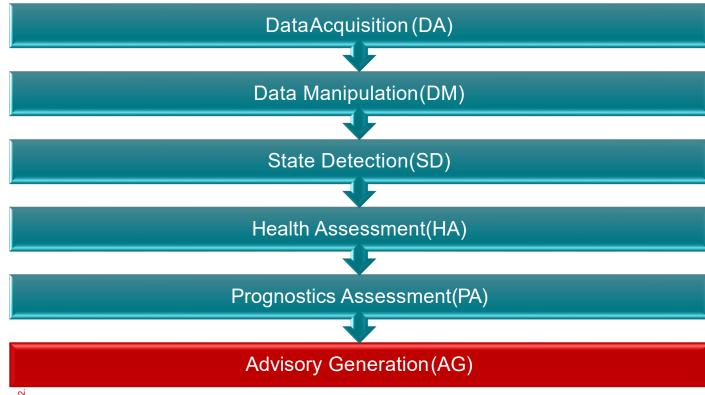
$$p_{\theta}(x_{t-1}|x_t) \coloneqq \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

Source: Jumin Lee

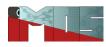
Decision support

PHM Process



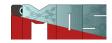


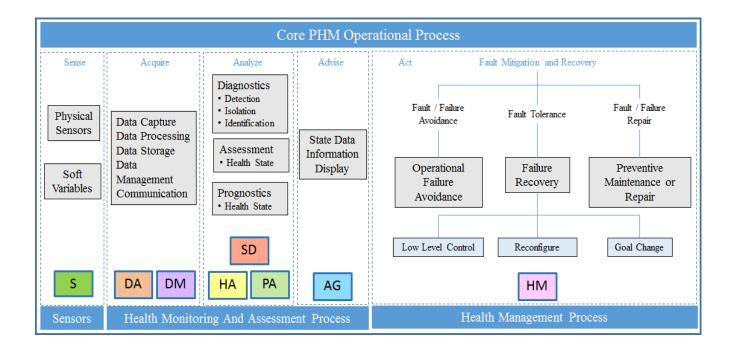
What we focused on up to now



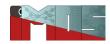
- Up to now:
 - Generate an alarm in case of an anomaly
 - Provide information which fault type has occurred (or at least which signals have shown the largest deviation from normal behaviour)
 - Provide a prediction of the remaining useful life
 - → Overcoming challenges of the lack of labels, diversity of operating conditions, uncertain measurements...
- Predictions / detections at component / (sub-)system level

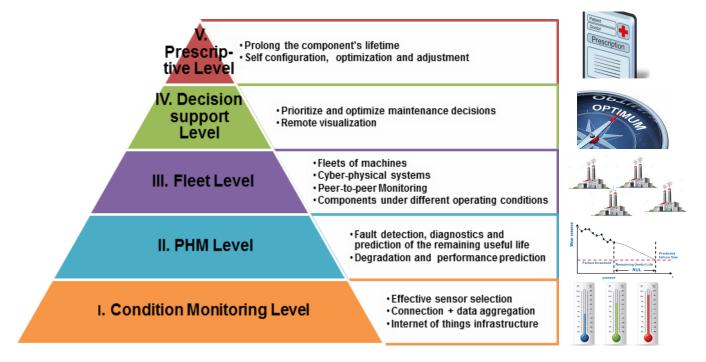
Reminder: PHM system operational view



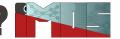


Five levels of condition-based and predictive maintenance



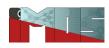


Why decision support systems for PHM required?



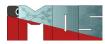
- Required recommendation at system, fleet and enterprise level:
 - Optimal specific action (what needs to be done)
 - Optimal point in time
 - Required ressource usage (including personel, tools and material)
 - Under the given constraints from the ressource availability and operational requirements

(Prognostics and) Health Management



- Health management utilizes prognostic information to make decisions related to safety, condition-based maintenance, ensuring adequate inventory, and product life extension.
- Health management goes beyond the predictions of failure times
- →supports optimal maintenance and logistics decisions
- →by considering the available resources +
- →the operating context +
- →the economic consequences of different faults.
- Health management process of taking timely and optimal maintenance actions based on outputs from diagnostics and prognostics, available resources and operational demand

Types of decisions



Aggregate information at the system level (taking boundary conditions into consideration)

Health-aware control → operation

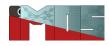
Adjustment of operations with respect to the equipment's health state

Optimization of maintenance scheduling

Take decision at fleet level (e.g. mission scheduling)

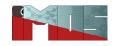
...

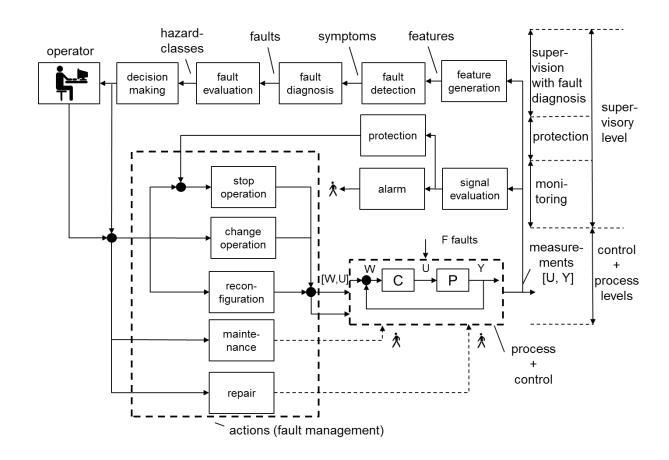
Decision-Making Tools



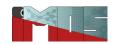
- Optimization Algorithms: Determining the most cost-effective maintenance schedules and resource allocations.
- Scenario Analysis: Evaluating the impact of different maintenance strategies or operational changes.
- Risk Assessment: Assessing the likelihood and consequences of potential failures to prioritize actions.

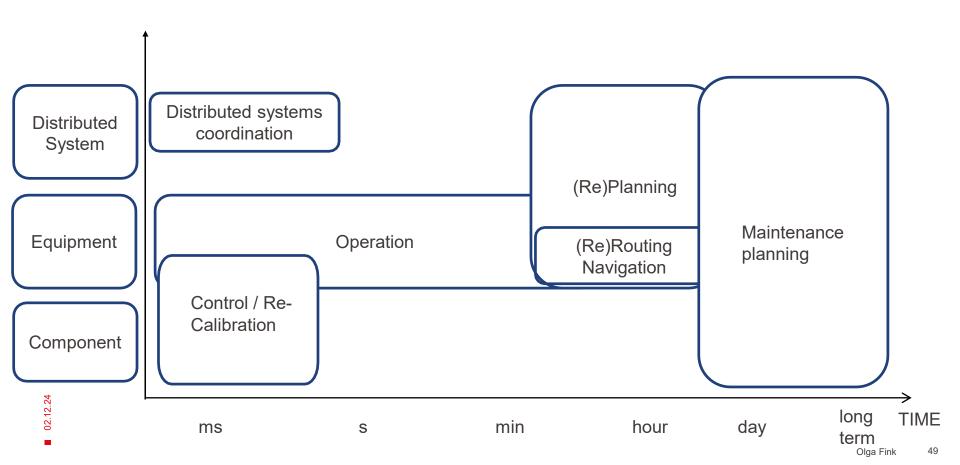
Health management





Decision making in complex systems



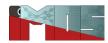


Steps to perform



- Establish objectives (e.g. availability, reliability, safety, performance and energy consumption), constraints (e.g. ressources), decision variables
- Incorporate operational and maintenance requirements on single system and on the fleet level (plus possible flexibility)
- Establish priorities and decision variables
- Quantify critical metrics
- Perform trade-off study incl. risk

Elements of decision support systems



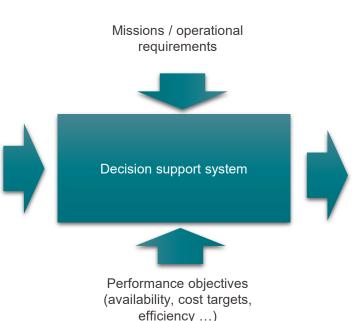
Fleets of different assets (being composed of different components) incl. their criticality

Health indicators or RULs, detection alarms (ideally including the uncertainty level)

Scheduled maintenance + inspections (e.g. due to safety requirements)

Maintenance ressources (maintenance infrastructure, tools, spare parts, logistics)

Human ressources (incl. qualification)



Operational schedules

Maintenance planning + schedule (grouping of several components / systems)

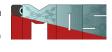
Personnel planning

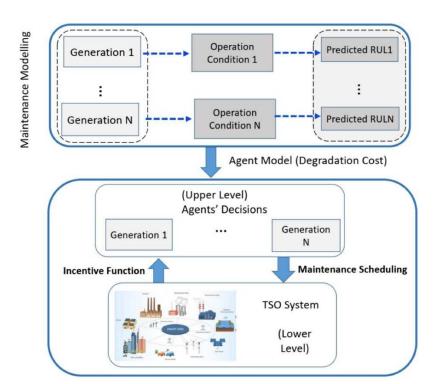
Requirements for spare parts /logistics

Occupation of maintenance infrastructure

Performance indicators (costs, operational availability, efficiency, product quality, quality of service, etc.)

Multi-agent predictive maintenance scheduling in an electricity market

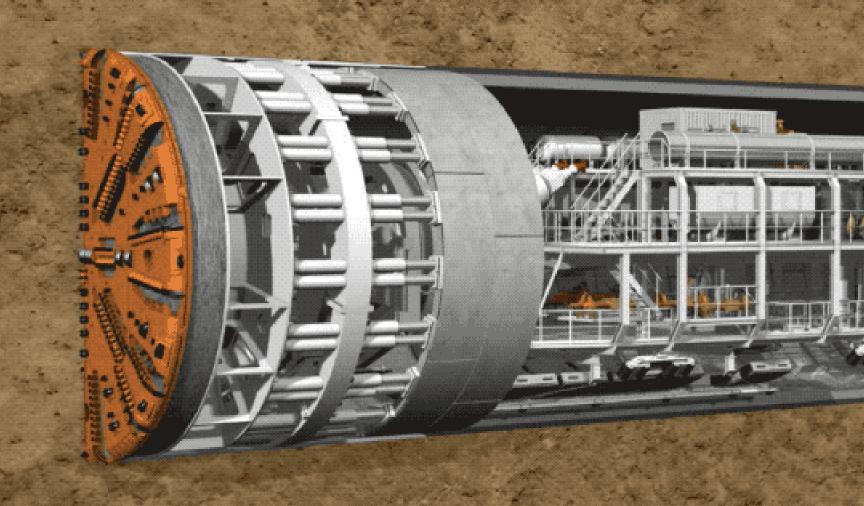


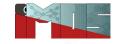


02.12.24

Rokhforoz, P., Gjorgiev, B., Sansavini, G., & Fink, O. (2021). Multi-agent maintenance scheduling based on the coordination between central operator and decentralized producers in an electricity market, Reliability Engineering & System Safety, 210, 107495,

Decision support for optimal operation



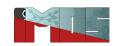


Tasks with incomplete observations / high uncertainty

How can we leverage the the experience and expertise of domain experts?

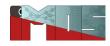
Under the condition that we don't know how good the decisions / actions are
By only observing the data that their decisions generate

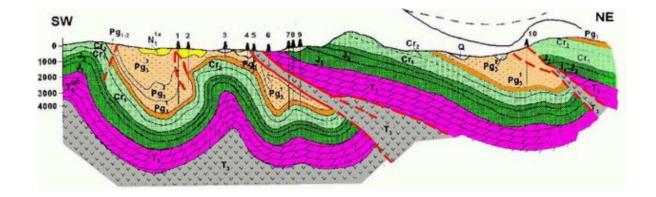
Mechanized tunneling: Tunnel construction using Tunnel Boring Machines (TBMs)

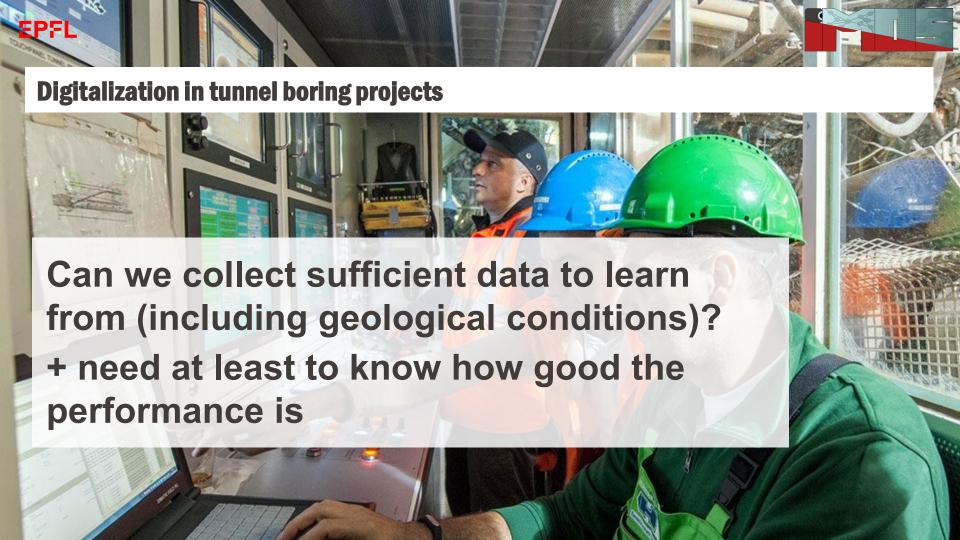


- Massive machines employed to build critical infrastructure for modern life
- Large number of sensors installed on a TBM (torque, rotational speed, thrust, ...)
- Geology affects sensor values

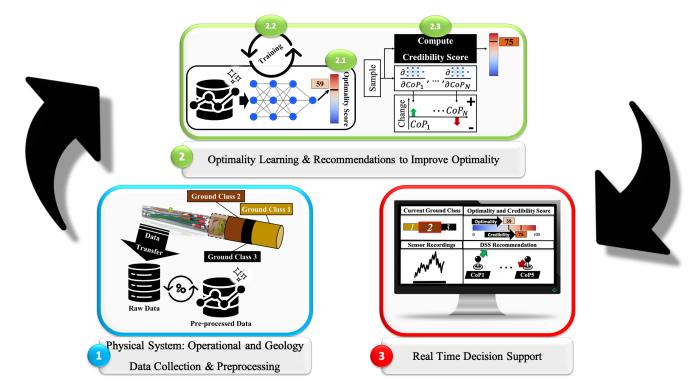
Geological conditions



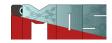


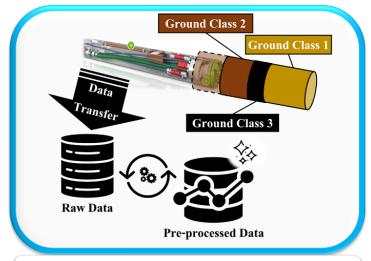


Decision support system for an intelligent operator of \rightarrow utility tunnel boring machines \rightarrow resembles imitation learning



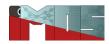
Framework



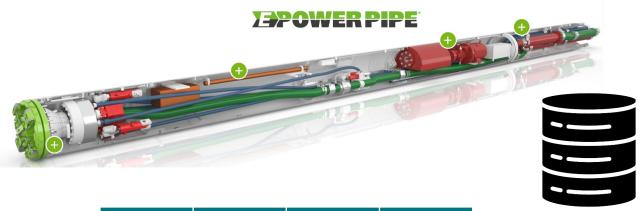


Physical System: Operational and Geology Data Collection & Preprocessing

Use Case Collect raw sensor data

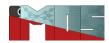


1



Cutting Wheel Rot Speed	Feed pump Pressure	 Oil Temperature
20.1012	1.29482	 50.1232
21.0333	1.22112	 50.21999

Use Case: Utility tunnels



Geology Profiles

1

Highly weathered schist (HWS)

Moderately weathered schist (MWS)

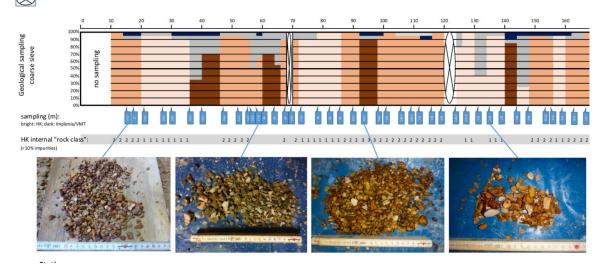
Slightly weathered Schist (SWS)

Quartzite

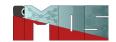
Iron (hydr-)oxide

No Material

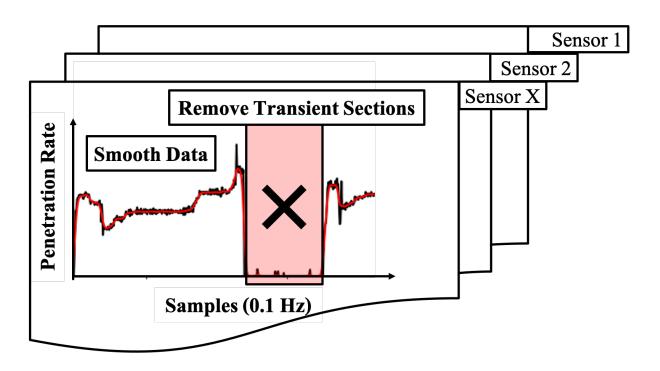
 $GC_1 = Homogeneous\ HWS$ $GC_2 = Homogeneous\ MWS$ $GC_3 = Homogeneous\ SWS$



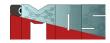
Use Case Data Preprocessing



1

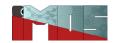


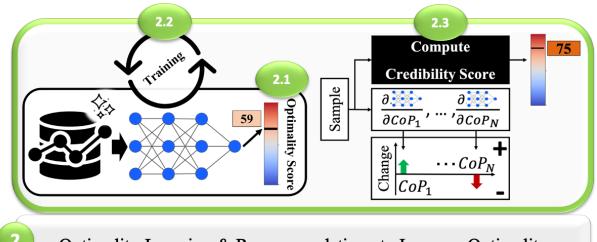
List of selected parameters



Parameter Name	Unit
Context Parameters (CxP)	
Steering cylinder 1 pressure	bar
Steering cylinder 2 pressure	bar
Steering cylinder 3 pressure	bar
Steering cylinder 3 pressure (3-B)	
Feed line pressure (on TBM)	bar
Feed line pressure (on pump)	bar
Suction line pressure	bar
High pressure pump pressure (on pump)	
Bentonite pump pressure	bar
Feed line flow rate	m ³ /s
Drive line flow rate	m^3/s
High pressure nozzle flow rate	m^3/s
High pressure pump rotational speed	rpm
Bentonite pump rotational speed	rpm
Steering cylinder 1 extension	mm
Steering cylinder 2 extension	mm
Steering cylinder 3 extension	mm
Machine oil temperature	celsius
TBM axial rotation	degrees
Control Parameters (CoP)	
Cutter head rotational speed (CoP ₁)	rpm
High pressure water nozzle speed (CoP2)	bar
Drive line pressure (CoP_3)	bar
Jacking frame thrust (CoP ₄)	kN
Feed pump rotational speed (CoP ₅)	rpm
Target Parameters (TP)	
Working pressure	bar
Penetration rate	mm/mir
(Optimality)	_

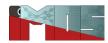
Framework



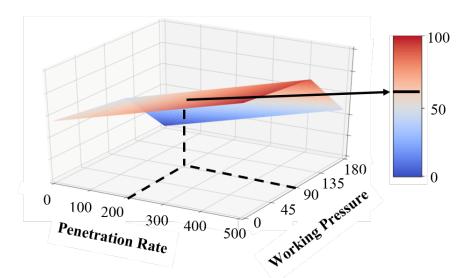


Optimality Learning & Recommendations to Improve Optimality

Use CaseDefine Optimality

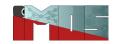


$$f_{GC_i}^{opt}(t) = \begin{cases} \frac{AR_t}{MAR_i} - w_1 \frac{WP_t}{UB} & \text{if } WP_t \leq MB_i, \\ \frac{AR_t}{MAR_i} - w_1 \frac{MB_i}{UB} - w_2 \frac{WP_t - MB_i}{UB} & \text{otherwise.} \end{cases}$$

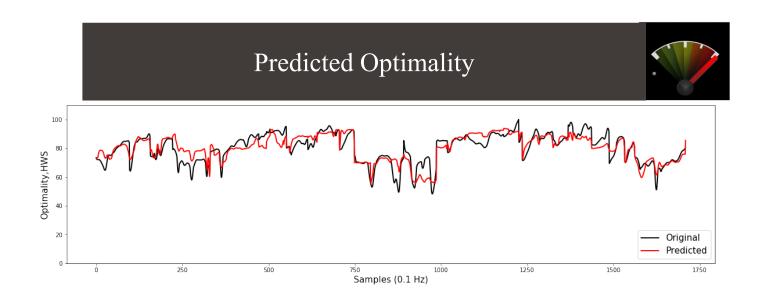


- ARt is the advance rate [mm/min] at time t
- WPt is the working pressure [bar] at time t
- UB is the upper bound of the working pressure (safety threshold before automatic shutdown)
- MB_i is the working pressure margin bound [bar] defined as the observed 90th percentile for the i-th ground class
- $\bullet \quad \text{MAR}_{\hat{t}} \text{ is the observed maximum advance rate within i-th ground class}$
- w₁ is the negative penalizing weight on the working pressure when the working pressure is below the margin bound MB_i.
- w₂ is the negative penalizing weight on the working pressure when the working pressure is above the margin bound MB_t. Typically we have w₂ ≫ w₁.

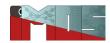
Use Case Predict Optimality



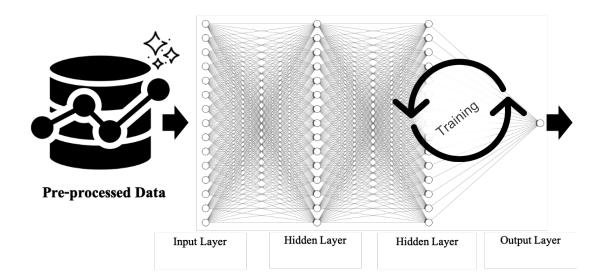
2.2



Use Case Train the Neural Network

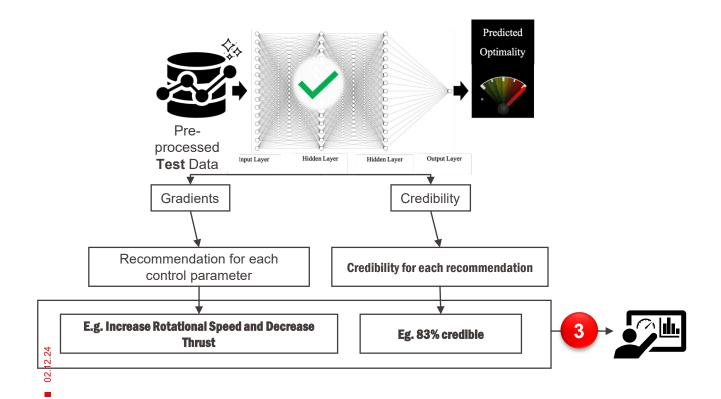


2.2



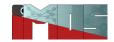
Use Case

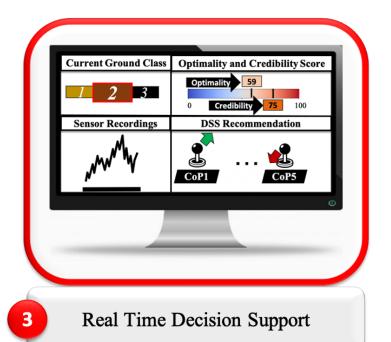
Make recommendations and assess Credibility



73

Framework

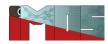




02.12.24

Business models

Possible business models in predictive maintenance



Sensors a service

Subscription

Performance based contracting

Pay per use

Guaranteed availability

Freemium

Add-on

Solution provider