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£PFL  Maintenance

= Combinatoin of all technical administrative and managerial actions
during the life cycle of an item intended or restore it to, a
state in which it can perform the

Source: EN 13306
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Maintenance: Not too early!




=PFL  Different types of maintenance

Modification

Predictive
Maintenance

Improvem

Preventive Correktive
Maintenance Maintenance

Condition-
based Scheduled Deferred
Maintenance
Inspection Immediate
FUnCtionaI Souce: based on EN 13306
test JEN 60300 / DIN 31051
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=P7L  Predictive / Condition-Based Maintenance
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Artificial intelligence (Al) refers to the ability of a

computer or machine to perform tasks that would
normally require human intelligence, such as

! learning, problem solving, decision making, and
= language understanding.
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= Machine Iearnmg allows computers to act and make
ﬁdata -driven  decisions  without being directly
N programmed to carry out a specific task.
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What is Hie difference between Al and nj[ chir ( j{j;

Ty

Machine learning is considered as a part of Al
& Other methods for achieving Al include

#l ° rule-based systems,

& ° cvolutionary computation

* expert systems...




=PFL Examples of what Al can do today

Explain complex topics in | Translate between
a simple way languages

\S.
Generate ideas for party

Trade stocks Write music / film scripts themes, decoration, Write blog posts / articles
presents...

B 11.09.24
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=PrL

B 11.09.24

Machine Leaming Research

Machine learning research is part of research on artificial intelligence,
seeking to provide knowledge to computers through data, observations
and interacting with the world. That acquired knowledge allows
computers to correctly generalize to new settings.

Defintion by Yoshua Bengio, Université de Montréal

Olga Fink




=PFL Types of machine leaming

e

o ()
Supervised Unsupervised Reinforcement
Learning Learning Learning

B 11.09.24
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=PFL  Generative Al

Definition: Generative Al refers to artificial intelligence systems capable of creating
new content such as images, text, music, and more.
Key Techniques:

» Generative Adversarial Networks (GANs): Uses two neural networks, a generator and a
discriminator, that compete to produce realistic outputs.

« Transformer-Based Models (e.g., GPT): Uses deep learning to generate coherent and
contextually relevant text.
Applications:
« Art and Entertainment: Creating artwork, music, and creative writing.
« Data Augmentation: Generating synthetic data for training other Al models.
« Content Creation: Developing marketing copy, news articles, and social media posts.

Benefits:
* |Innovation: Enables the creation of novel and diverse content.
- Efficiency: Automates content creation, saving time and resources.

Challenges:
 Ethical Concerns: Issues related to copyright, plagiarism, and misinformation.
 Quality Control: Ensuring the generated content is accurate and high-quality.

B 11.09.24
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=P7L  What are Large Language Models (LLMs)

= Large Language Models are a type of artificial intelligence designed to understand and.
generate human-like text. Think of them as advanced chatbots that can hold conversations,
answer questions, write essays, and even create poetry. They are typically trained on vast
amounts of text data.

* How do they work?

* Training Data:
+ LLMs are trained on massive datasets containing text from books, articles, websites, and other written
sources. This helps them learn the structure, grammar, and nuances of human language.
» Learning Patterns:

+ During training, the model learns to predict the next word in a sentence. For example, if given the
phrase "The cat sat on the...", it might predict "mat" as the next word. By repeating this process billions
of times, the model learns to generate coherent and contextually appropriate text.

= Parameters:

* The "large" in LLM refers to the number of parameters ﬁfd{'ﬁustable components) the model has. For
instance, GPT-3, one of the well-known LLMs by OpenAl, has 175 billion parameters. More parameters
generally mean the model can understand and generate more complex and accurate text.

= What can they do?

+ Conversation: LLMs can chat with users in a natural and engaging way.

« Content Creation: They can write articles, stories, and even code.

+ Translation: LLMs can translate text between different languages.

« Summarization: They can summarize long documents into shorter, easy-to-understand versions.

B 11.09.24
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=PFL  What are foundational models

= Foundational models are large-scale machine learning models that are pre-trained on vast amounts of data and can
be fine-tuned for various downstream tasks. These models form the "foundation" upon which more specific
applications are built, allowing for efficient transfer learning and rapid deployment across different use cases.

= Large-Scale Pre-Training:

» Data: Foundational models are trained on extensive datasets, often comprising diverse and unstructured data such as text,
images, and audio.

» Architecture: These models typically use complex architectures like transformers, which can capture intricate patterns and
dependencies in the data.
* Transfer Learning:

» Fine-Tuning: Once a foundational model is pre-trained, it can be fine-tuned on smaller, task-specific datasets to perform
well on particular applications.

. Verstatiliity: This approach allows the model to adapt to a wide range of tasks without requiring training from scratch for each
new task.
= Scalability:

. P?rameter Count: Foundational models often have billions of parameters, making them highly capable but also resource-
intensive.

+ Compute Resources: Training and deFE)oning these models require significant computational power, often leveraging
specialized hardware like GPUs and TPUs.
= Different types of foundational models:
» Education
» Sciences
* Health
» Sustainability / climate
* Robotics

B 11.09.24
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=PrL  Key success factors for breakthroughs in
Artificial Intelligence

Advancement of hardware

Emergence of “big” data

</~ Advancements in machine
learning and deep learning

Olga Fink



=PrL  Key success factors for breakthroughs in
Artificial Intelligence

Advancement of hardware

Emergence of “big” data

/ n
Advancements in machine

learning and deep learning
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=PrL  Key success factors for breakthroughs in
Artificial Intelligence

Advancement of hardware

Emergence of “big” data

i P45

Advancements in machine
learning and deep learning
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=PFL Power of depth

Top-5 Error Rate on ImageNet (%)
30

B Deep Learning Revolution
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=PrL

11.09.24

Transformer architectures
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=PFL  Elements of Intelligent Maintenance

loT Robotics

Technology
Maintenance

‘ Strategy &
M

Processes

Artificial 3D Printing

Intelligence ﬂ

Equipment ‘

Cloud Augmented
Computing Reality Source: Deloitte
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=L Prognostics and health management (PHM)

Components, systems, processes
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=P7L  Detection, Diagnosis, Prognosis

From Effect to Cause:
Diagnosis

Current Status:

Detection _l

\

time

. From Cause to Effect:
time Prognosis

| Tl

time
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=PrL

B 11.09.24

Prognosis

= Prognosis: Prediction of the Remaining Useful Life of a component

= Remaining Useful Life (RUL) — The amount of time a component can
be expected to continue operating within its stated specifications.

= RUL is dependent on future operating conditions
* Input commands
* Environment
* Loads

= Time of Failure (TOF): the time a component is expected to fail (no
longer meet its design specifications)

Olga Fink 44



=P7L  Detect, Diagnose and Predict Faulty System
Conditions - monitor the health evolution

Non-roundness

B 11.09.24
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=F7L Fault detection / diagnostics / prognostics

Detection
Healthy or faulty operation? A .
v X a
Diagnostics Type O Type 1 Type 2
Are there different faults
types? v v v
What is the root cause of the Normal Faultof X* FaultofY"
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=P7L  From data acquisition to health management
Prognostics & Health Management (PHM)

Core PHM PHM Functional Model

Operational Processes |

Functional Block " Description

This function uses the information generated in the AG to
institute actions to return the system to a “healthy state”.

Act

A 4

Health Management (HM)

This function provides actionable information to operational
and maintenance personnel or external systems.

Advisory generation (AG)

-

This function provides future state of health, performance life

Prognostic Assessment (PA) remaining, or useful remaining life (usage) indicators.

This function provides information to determine the current

Health Assessment (HA) state of health of the system.

This function evaluates equipment state conditions against
State Detection (SD) normal operating profiles and generates normal or abnormal
condition indicators.

This function processes and transformsthe sensor data and

Data Manlpulatlon (DM) health state information collected by the DA.

This function the sensor data and health state information
Data Acquisition (DA) from the system’s internal monitors, the system data bus or
data recorder.

e {S) This involves physical sensors and any “soft” system
performance variables available within the system.

Source: P1856™/D31 Standard

11.09.24
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=PrL

11.09.24

PHM system operational view

Sensors

Data Capture
Data Processing
Data Storage
Data
Management
Communication

Core PHM Operational Process

Assessment

* Health State

State Data
Information
Display

Prognostics
* Health State

SD

Health Monitoring And Assessment Process

Act Fault Mitigation and Recovery
Fault / Failure Fault / Failure
Avoidance Fault Tolerance Repair
Operational Failure Preventive
Failure Recovery Maintenance or
Avoidance Repair
‘ Low Level Control ‘ ‘ Reconfigure ‘ ‘ Goal Change ‘
HM

Health Management Process

Source: P1856™/D31 Standard

Olga Fink
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=PFL  Predictive vs. Prescriptive Maintenance

Predict the remaining useful life
Anticipate the failure
Reduce the impact of the failure

Determine the optimal point in time
for maintenance intervention

What can we do to prolong the
remaining useful life?

How can we proactively adjust the
operating conditions?

How can we control the process
parameters?

- Olga Fink 23.02.2021 49



=PFL Five levels of condition-based and predictive
maintenance

P - +Prolong the component's lifetime
t_ I 'I + Self configuration, optimization and adjustment

+Prioritize and optimize maintenance decisions
* Remote visualization

+Fleets of machines

+Cyber-physical systems

+ Peer-to-peer Monitoring

+*Components under different operating conditions

+Fault detection, diagnostics and
prediction of the remaining useful life

+Degradation and performance prediction

« Effective sensor selection
«Connection + data aggregation
«Internet of things infrastructure

11.09.24

Olga Fink 50



“The greatest challenge to any thinker is
B stating a problem in a way that will allow a
% solution”

: Betrand Russell




=PrL

B 11.09.24

Leaming goal

= Define the learning problem in a way that allows its solution based on
existing constrains such as lack of fault samples

= Design data-driven predictive maintenance applications for complex
engineered systems from raw condition monitoring data

= Assess / Evaluate the performance of the applied algorithms

= Choose machine learning algorithms for fault detection, diagnostics and
prognostics

= |Interpret the results of the algorithms

Olga Fink 52



=PFL  Performance Assessment

= Performance will be assessed during the semester based on

« 5 exercises, requiring the students to perform defined sub-tasks for designing a
predictive maintenance system (60% of the final grade in total)

= Feature engineering (12.5%)
= Fault detection (12.5 %)
= Prognostics (12.5 %)
= Domain adaptation (12.5 %)
= XAl (10%)

 Final project: Report (including the implementation) and presentation of a real case
study of designing a predictive maintenance system based on raw condition monitoring
signals of a complex engineered system (30%) (= presentation on 12.12.24 /16.12.24)

» 2 quizzes on the content of the course - 10% of the grade

B 11.09.24
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=PFL  (Preliminary) Course Schedule




=Pl Exercise team

Dr. Florent Dr. Zhan Ismail Vinay Raffael Mengjie
Forest Ma Nejjar Sharma Theiler Zhao

Leandro von Han Keivan Sergei Chenghao Zepeng
@nnichfeldt Sun Fagih Niresi Garmaev Xu Zhang

11
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£PFL  Typical steps to follow in a machine leaming (ML)
project(1/3)

1. Problem Definition and Understanding
+ Clearly articulate the problem you aim to solve.
+ Identify the objectives and success criteria.
» Ask the right questions: Identify the questions your data can answer to solve the business problem.
» Understand the data: Learn the context, limitations, and opportunities within the available data.

2. ldentify the Value:

» Determine the potential value and impact of solving the problem (both from business and from the scientific
perspective)

» Assess how the solution will benefit stakeholders and align with business goals.

3. Collect Data:
« Gather relevant data from various sources.

* Make sure that your data is representative for the test data (application data) > be aware of the variability of the
operating conditions (= domain shift)

» Ensure data quality and completeness.
* Acquire labels for your data if possible (ensure the quality of labels)

4. Explore and Understand the Data:
» Perform exploratory data analysis.
* Visualize data to understand patterns and relationships.
» Understand the data distribution (Explore the statistical properties, distributions, and trends in the data)
 |dentify data quality issues (Look for missing values, outliers, and inconsistencies that may affect analysis).
* Generate hypotheses (Form hypotheses based on patterns observed during data exploration).

B 11.09.24
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=PrL

B 11.09.24

Typical steps to follow in a machine leaming (ML)

P
5.

roject(2/3)

Prepare Data:

Clean the data (handle missing values, outliers).

Feature engineering (create meaningful features, transform existing ones).

Split data into training, validation, and test sets.

Scaling and normalization (Prepare the data for modeling by applying appropriate scaling techniques)

Address class imbalances: If needed, use techniques like oversampling, undersampling, or synthetic data
generation to balance the dataset.

Select and Train Models:

Select appropriate models (Choose models based on the problem type (regression, classification, clustering,
etc.) and data characteristics)

Split the dataset (Use train-test splits (or cross-validation) to ensure your model’s generalization to unseen data)

Baseline model (Start with a simple model as a baseline to compare more complex models).

Tune Hyperparameters (Optimize model hyperparameters for better performance).

Iterate and improve (Experiment with different models and tuning hyperparameters)

Av?i()j overfitting (Implement regularization techniques or apply cross-validation to avoid overfitting the training
ata).

Evaluate Models:

Choose appropriate metrics (]aelect evaluation metrics that are relevant to the problem (e.g., accuracy,
precision, recall, F1-score, RMSE))

Validate on unseen data (Always validate your model on a test set or through cross-validation to assess its
performance)

Compare models: Compare different models based on performance metrics and business value.

Olga Fink 57



=PrL

B 11.09.24

Typical steps to follow in a machine leaming (ML)

-

project (3/3)

10.

11.

12.

Model Interpretation
* What do the results mean?

» Explainability (Ensure that you understand how your model works, and use XAl
techniques such as SHAP values or feature importance to explain the results).

» Check assumptions (Ensure that the model's assumptions hold and are consistent with
the problem and data context)

Test Model:

 Evaluate the final model on the test dataset to gauge its real-world performance.

Deploy Model:
* Integrate the model into a production environment.

Monitor and Maintain:

 Continuously monitor model performance.

« Update the model as needed based on new data and changing conditions.
* Monitor how your model is actually used

Documentation and Communication

+ Document thoroughly &Keep detailed notes on every step, including data sources, preprocessing steps,
model choices, evaluation, and deployment procedures)

« Communicate results (Present findings to stakeholders in a clear, actionable manner. Tailor
communication based on the audience (e.g., technical team vs. business executives).)

Olga Fink 58



=PrL

B 11.09.24

Most importantly:

= KEEP IT AS SIMPLE AS POSSIBLE!

= |f a linear regression model solves your problem, don’t opt for more
complex models.

= Evaluate whether applying rules or thresholds is enough to make the
decision.

= Keep the decision maker in mind, and focus on how to present model
outputs clearly.

Olga Fink 59



=PFL  PHM Process

DataAcquisition (DA)
|
Data Manipulation(DM)

State Detection(SD)

Health Assessment(HA)

Prognostics Assessment(PA)

Advisory Generation(AG)

B 11.09.24
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=PFL  Possible means of condition monitoring

= Thermography

= Measurement of compressed air consumption
= Ultrasonic testing technology

= Qil quality monitoring

= Current consumption measurement

= Vibration diagnosis

= Acoustic emission monitoring

= Computer vision

B 11.09.24
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=PFL  Video Inspection: example SBB (Swiss Fede

Source: J. Bisang, SBB

B 11.09.24
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=PFL  Defect detection of track: example SBB
(Swiss Federal Railways)

Welding Plastic Surface Chewing Squat
Particle Defect Gum

Source: J. Casutt, SBB

B 11.09.24
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=PFL  Defect detection of track: example SBB

ition: 560.544768

Source: J. Casutt, SBB

11.09.24
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=P7L " Inspection by robots

ANYmal Robots Inspecting
PETRONAS'’ Offshore Platform

Source: Anybotics

B 11.09.24
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=P7L " Drone monitoring

Source: www.dtu.dk

B 11.09.24
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=PFL  Infrared thermography for condition
monitoring

Various condition monitoring applications of infrared
thermography: (a) Monitoring of machineries where abnormal
surface temperature distribution is an indication of a probable
flaw. (b) Inspection of liquid levels in industrial components.
(c) Inspection of printed circuit boards. Localized defects like
short circuits or current leakages produce hot-spots which can
be easily detected by infrared thermography. (d) Typical
thermal images of a transformer circuit breaker where the
faulty regions can be clearly seen as hot-spots. (e) Inspection
of shaft belt where the thermal anomaly is due to over-
tightening of a belt. (f) Condition monitoring of three phase
electrical panel where local hot spots are developed due to
load imbalance.

11.09.24

Source: Infrared thermography for condition monitoring — A review

Olga Fink 68



=PFL  Distributed Acoustic Sensing (fibre optic cable

sensing) for detecting defects in switching
mechanisms

e
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Track km
Vidovic, I., & Landgraf, M. (2019). Fibre Optic Sensing as Innovative Tool for Evaluating Railway Track Condition?. In International Conference on Smart
Infrastructure and Construction 2019 (ICSIC) Driving data-informed decision-making (pp. 107-114). ICE Publishing.

B 11.09.24

Olga Fink 69



=PrL
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Acoustic emission monitoring

Asset condition
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Source: Semiotic labs
Kistler
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=PFL  Laservibrometer

Laser Vibrometer Fixed Camera
Mounted on PanTilt-System

§ Source: SPIE digital library

=} Dynamics of Civil Structures, Volume 2
= Polytec

|

Olga Fink



=PFL  Pavement laser measurements

Collection method

Laser scanner ™~
Detection range: 0~5m

20
yeaxisi= 00T P e

Source: Yishun Li

11.09.24
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=PFL  Detection of Subsurface Distress via Ground
Penetratmg Radar

= m - B X
GPR data collection

S

g PRAT -
Object detection mode i
SCALE 3

Intelligent detection based on deep learning

Source: Yishun Li

N
)
S
<
s
-
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=P7L  Wayside monitoring devices at SBB

Legend

== Network SBB
Network licensed transport operators

/\ Hot box and brake- @ Fire and chemical . Profile clearance and & Dragging Equipment ) RFID [ Operative
locking detection detection aerial detection Detection
< . Pantographen Monitoring {“; Wheel load L7 Natural hazard Interference field #& Natural hazard "% Under
N checkpoint alert systems measurement pilotsystems construction
3
-
- Y - Source: SBB
ETH:ziirich EPFL mxmssscrrerrs Olga Fink 74



=PrL

Wheel load checkpoints +RFID
Wheelt 4 Sensors\

Sleepers i i l l’

RLC_OL4

Accelerometers

B 11.09.24

Olga Fink

75



=PrL

New NVH Microphones

(Distributed) Acoustic sensors

Engine Noise
Microphone

Versatile NVH
Microphone

B 11.09.24

Wheelhouse Brake
Noise Microphone
-

m\\z :)
(7 "@
8
?4W GRAS ..

Laser Source

Interegator

Source: GRAS
Olga Fink
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=PFL  Maintenance reports / manuals /
event recordings

B 11.09.24



=PrL

B 11.09.24

Natural Language Processing (NLP) in
maintenance

= NLP can process maintenance logs, manuals, and other unstructured text data.

Predictive Maintenance Insights:

. %A\rjlalyzing unstructured text from maintenance logs and work orders to predict potential equipment
ailures.

» Detecting patterns in historical records to forecast breakdowns.

Automated Reporting & Documentation:
+ Automatically generating maintenance reports by summarizing complex work orders or logs using NLP.
* NLP-based transcription for voice notes or technician inputs.

Fault Detection from Logs:
« Scanning equipment error messages and sensor logs to identify and classify common faults.
* NLP can interpret error codes, anomaly reports, and operational data in natural language.

Knowledge Management:

» Extracting, organizing, and summarizing information from vast amounts of maintenance manuals,
technical documentation, and historical repair records.

* Providing quick searchability of solutions through conversational Al or chatbot assistance.

Chatbots and Virtual Assistants:

* NLP-powered chatbots to assist maintenance technicians with real-time troubleshooting, guiding them
through steps or providing manual references.

Source: H. Canaday

Olga Fink 78



=PFL  PHM Process

DataAcquisition (DA)
l

Data Manipulation(DM)
1

State Detection(SD)
l

Health Assessment(HA)
l

Prognostics Assessment(PA)
l

Advisory Generation(AG)

B 11.09.24
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=PFL  Data properties

 Transaction/event (push)
« Sensor (pull)

* Evenly sampled

* Unevenly sampled

* Time variant

* Time invariant (meta
datasuch as asset
ID, system
configuration)

Sampling (time

Time dependency discretization)

» Temperature
* Scalar

* Pressure _ _
« Current : Sample dimension) * Vector
* Voltage Physics nature (not counting time) / + Matrix
* Speed .

» Acceleration

» Stationary * Binary

» Cyclic (non periodic) Dynamics (relative Types of * Nominal
» Waveform (periodic) to sampling) data * Ordinal
« Stochastic (noncyclic) * Discrete

* Continuous (real number)

Source: Wang, 2012

B 11.09.24
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=P7L  Data Sampling

= Transaction/event (data are “pushed” by data originator)
» Data records occur only at the specified event / transaction / time stamp
» Data between the time stamps / events are undefined.

= Sensor (data are “pulled” from data originator)
» Data samples are acquired only at the specified time stamp
« Data between the time stamps are just not observed.
« Sampling rate
= Evenly sampled — controlled (e.g. 100 Hz)
= Unevenly sampled - triggered

Source: Wang, 2012

B 11.09.24
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=PrL

Examples:

B 11.09.24

Categorical vs. Numerical Data

[

Categorical
Data

[

\

Numerical
Data
[
[ |

Nominal Ordinal Discrete Continuous
Operating mode, :Deﬁlc?rmangf Numbgr of Temperature,
Event code, asset ID  €Vel; severity occurring pressure,

level; friction level  diagnostic events, acceleration ( most
(Low-Medium-High > number of sensors)

ranked levels)

occurring faults /
interruptions OlgaFink 82



=L Binary data

= A type of categorical data in which there are only two categories
= Binary data can either be nominal or ordinal

= Examples: event status, on/off sensor

B 11.09.24
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=PFL Numerical Data:
Discrete vs. Continuous

Discrete Data

Continuous Data

A

Olga Fink
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=PrL  Categorical Data:
Representations

Frequency Tables Pie Charts Bar Charts

Failure by Categories

40
Cause of Error Number of Occurence Percentage Low
Temperature 35
Friction 28 25.2% Friction
30
Obstacle 7 6.3%
25
0,
Screws Loose 27 24.3% 20
. High
High Temperature 37 33.3% Temperature Obstacle 15
Low Temperature 12 10.8% 10
5
Screws Loose
0
Friction Obstacle Screws Loose High Low
Temperature Temperature
<
N
[}
<
]
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=PrL

B 11.09.24

Handling of categorical data

= Replacing values
* Freely assign numbers to the categories according to the use case / expert
knowledge
= Encoding labels
» convert each categorical value in a column to a number between 0 and
n_categories-1
= One-hot encoding
» convert each category value into a new column and assigna 1 or 0
(True/False) value to the column
= Binary encoding
« first the categories are encoded as ordinal, then those integers are

converted into binary code, then the digits from that binary string are split into
separate columns
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=PFL Example of one-hot encoding

Red

. :> 1 0 0
Yellow ! ° ’
Green 0 1 ’
Yellow 0 0 1

B 11.09.24
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=P7L  Binary Encoding

"

Temperature Order Tary- Temperature_0 [Temperature_1 [femperature_2
Hot 1 001 0 o 1
Cold 2 010 0 1 0

Very Hot 3 011 0 1 1
Warm 4 100 1 0 0
Hot 1 001 0 0 1
Warm 4 100 1 0 0
Warm 4 100 1 0 0
Hot 1 001 0 0 1
Hot 1 001 0 0 1
Cold 2 Tw{//o 1 ! 0

B 11.09.24
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=PrL

B 11.09.24

Handling of categorical data

= Some categorical indicators can be used to split the problem in sub-
problems (e.g. indicator of the operating conditions for base and part
load - developing two models for the two types of operating
conditions)
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=PrL

Signal dynamics (relative to sampling)

Stationary (constant + white noise)

 Power, speed, temperature in steady state
of, gas turbines, etc.

Stochastic (non-cyclic) ?
«  Power, torque, speed :

Cyclic (consider each period individually)
» Power, speed, pressure in manufacturing process, :

gas turbine startup,take-off of airplanes

) w0 w00 w0 400 sm

Waveform (consider multiple periods together)

Vibration sensors, acoustic sensors

A e B B i Source: Wang, 2012

B 11.0924 o
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=P7L  Why data pre-processing?

= Data in the real world is “dirty”

« incomplete: lacking attribute values, lacking certain attributes of interest, or
containing only aggregate data

* noisy: containing errors or outliers
* inconsistent: containing discrepancies in codes or names

B 11.09.24
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=PFL  Main tasks In data pre-processing

Data profiling
* examining, analyzing and reviewing data
 collect statistics about its quality.

= Data cleaning
+ Fill in missing values, smooth noisy data,
* identify or remove outliers, and resolve inconsistencies

= Data integration (if needed)
* Integration of multiple databases, data cubes, or files

= Data transformation
* Normalization and aggregation
+ Structuring unstructured data

= Data reduction
» Obtains reduced representation in volume but produces the same or similar analytical results

= Data discretization (if required)

» Data enrichment
* Feature engineering

= Data validation
» Assessing the dataset for quality assurance

B 11.09.24
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=P7L  Missing Data Problem

« Times series observed with 15% missing data

100 100 1 W‘ﬂl (]l
A A o

[¥] 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Samples Samples

B 11.09.2°
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=PFL Missing, noisy, inconsistent data

= Missing data
« Data imputation approaches (next slide)

= Noisy data
* Binning
* Filtering
 Clustering
 Remove manually
* Apply denoising algorithms

» |[nconsistent data
» External references
« Knowledge engineering tools

B 11.09.24
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=PrL

B 11.09.24

Data imputation

= Complete case analysis: Delete any record that has missing values from the
data set.

= Nearest neighbors: to impute variable x average the value x of the k closest
data points with no missing values.

= Average method: Average the value of x for the non-missing values.
= Hot deck: pick a “similar” record at random and use its value of x.

= Predictive: Fit a model to the data with variable x as the target and use it to
predict the value (e.g. kernel regression)

= Single imputation: Draw a value at random from the conditional distribution of
X given the other variables

= Multiple imputation: Repeatedly draw values at random from the conditional
distribution of x given the other variables (e.g. as above), creating new data
sets. Make the predictions with these now complete datasets and average the
predictions.
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=PrL

B 11.09.24

Caution with the different imputation
approaches

= Complete case analysis: can result in a bias

= Nearest neighbors: The definition of the “close points” and the value of
k required

= Average method: Easy to implement but crude
= Hot deck: A definition of “similar” is required

= Predictive: Better suitable but understates the uncertainty in the
imputation process.

= Single imputation: Better suitable, respects the uncertainty. However,
just a single value is sampled.

= Multiple imputation: generally regarded as the best method (a sample is
better than a single observation)
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=PFL  Data normalization / Standardization

= Feature scaling e X — Xouin
(= also referred to as min-max  Xonaz — Xonin

Nomalization)

= Standard score

(particularly suitable for normally
distributed data) . )

(- also referred to as Z-Score o
Standardization)

B 11.09.24
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=PFL  Altematives (particularly for data with
outliers)

= Quantile Transformation

= Power Transformation (non-linear transformation)

B 11.09.24
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=PFL  Data Discretization

= Create bins (e.g. equal depth, equal size) - e.g. different categories of
part-load conditions of a gas turbine

= Additional smoothing possible = replace the values in a bin by their
mean

B 11.09.24
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=PrL

What are Features and Why do we need them? |

= Transform raw signals into more informative signatures (or fingerprints)
of a system

= Reduce size / complexity of the dataset

= Provide a physical description / representation

= Reduce resources necessary for further processing

= Achieve intended objectives

= Features are often to be the most crucial point for PHM applications

B 11.09.24
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=PFL Univariate versus multivariate feature
engineering

5.0 - -
-
454 ° 0.8 -
N °
4.0 4 *
°
E -
- : 0.6 - -
35 -
* *'
°
*
3.0 1 0.4
*
[ ]
*
2.5 1
- 0.2
2.0 1 °
* T T T - T T T
L5 ‘ ‘ ‘ : : . : 0.0 0.2 0.4 0.6 0.8 10

0.00 0.25 0.50 0.75 100 125 150 175 2.00 -

— =~
0.4 . L o .
* * °
- LI L]
* PN ]
* * *
0.2 1 * J
< - « Y . ?. * L
N
3 - * * * PO ) °
=) * W
- 0.0 4 * Q L ®
- T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
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=PFL  Example of feature engineering

Option 1: good feature engineering

F t s Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
eatures 000,000 0.03 -~ Tam -~ None — - Classffication =

. v.'
Batch size: 10 .
= -« 8 -
o

REGENERATE

V sin(X,)

Output model sin(¥,)

Colors shows
| —

data, neuronand !
weight values

Traditional
Learning
. o
Algonthm |:| DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Testloss 0.507
Input Data X D youwani o uso? youwant o feedin? m o aa S
1 neuron 1 neuron
o | | ‘.
Feature X
. . N z X1X2 Ratio of training to ) D
Engineering 2 = e T
=
XX, B Noise: 0 2 4
Y =gX) — . : 9(X’)

[ Show testdata  [] Discretize output

11.09.24
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=PFL  Example feature extraction in images

ML algorithm Prediction

(e.g. classifier) (label)

B 11.09.24
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=PrL

Example

007
006

- FT Transform
o
% o0 2 o00e
= =
s ) ;oo
1.0 ooz
ool
=15
: 0.00 ; :.'L b .
o 1o o £ 4 50 & 0 100 200 00 00 500

Time [s] Frequency [Hz]

Features: Magnitude of 3 carefully chosen frequency bands

In the future, we can compare these features for any measurements

B 11.09.24
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=PrL

Feature Extraction Process:

= Raw Data: Can be of different type and
[ Raw Data ] nature and size
= Generation: exhaustive, ad-hoc,

Feature Generation
(eg FT frequency) = prior knowledge (domain,

[ ; ] physics), modify variable type
Feature Set

(cat. to numeric)

Feature Selection / = Feature Set: Various representation and
Transformation

= size (dimensionality change)

Relevant . . . . .
[ Feature Set ] = Dimensionality reduction:

= select best subset

= transform in space of lower
dimensions

B 11.09.24
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=PrL

What matters for the process

% =
| K|nd Of data (B 'mﬁ‘ereﬂt Technologies leferent PHM uppllcutlons

gtutlsltthl analysis : ¥:Jbrf;;l:l;1|: T:?-.Iﬁ:;:

- available type of features - Imoge processng + lectricol systems

+ Time-series analysis )

+ Control theory +  Batteries

+ Information theory *  SHM .
= Aim of the application and domain P &
- (eg. monitoring, detecting, predictin | Different data types | T

+ Continuous

+ Time independent (stationary)

- (vibration, turbines, electrical,...) y I
= Kind of methods that will be used | ifferent data

multivariate sampling rate

- To extract feature,
—> To use the features for the application

B 11.09.24
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™" Alms and properties of features

= Explainability

= Parsimony

= Robustness (eg. to missing data)
= Uncertainty handling

= Link to knowledge and physics...

In fact, many features come from domain know-how

= Domain: Mechanical, structural, thermal, electrical, ...
= Kind of system: vehicle, turbine, machinery, ...

= Components gearbox, motor, pump, battery,...

B 11.09.24
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=PrL

Feature Variability

K Factors of variability \

Desired undesired
target category / \
known unknown
Controlable Uncontrolable
experiment design /
Observable Unob-servable
- calibration normalisation
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=PrL

Feature extraction

= For fault detection:
» Features should be dependent on the failure (and failure type)

= Feature tuned to operating conditions
« feature relevance depends on the OC

= Feature designed based on knowledge:
* Known relationships
* known behavior of components

B 11.09.24
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""" Some feature extraction approaches

= Descriptive statistical features:
* For regularly sampled data: moments, correlation, RMS, ...
» For event based data: count, rate, duration, delay, ...

= Descriptive models:
« Distribution/histogram
* Information based (mutual information)
» Regression models, curve fitting
« Classification, clustering (class label as a feature), sequence matching

= Mathematical Transformation:

« derivative, cumulative sum, power, log, .... (eg. log if noise depends on
amplitude, log normal)

* Principal/Independent Component Analysis, etc...

B 11.09.24
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=PrL

Some examples of features

Power / Energy Magnitude
Root mean squared (RMS) Peak to peak
Signal to noise ratio. Root mean squared (RMS)
Power Loss Efficiency Peak to average ratio (PAR)
(Pout/Pin) o
Statistical measures (moments)
AC signatures Mean
Frequency Variance Skewness
Wavelength Kurtosis
Crest Factor Hyperskewness
Hyperflatness
Curve shape
Curve length Multi-variables
Curvature Correlation
Eccentricity Principal Components

Distance to centroid (Silhouette, Mahalanobis)
0.5 * (Tmaz — Tmin)

RMS

Crest Factor =

B 11.09.24
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=PrL

Example: Feature extraction for vibration
analysis

Stationary signals

Non-stationary signals

B 11.09.24

|
v

.

|
.

!

Time domain

Frequency domain

Time-frequency

Wavelets

» Statistical-based
- RMS

s Spectral analysis
* Envelope analysis

s Short-time Fourier
Transform (STFT)

+ Continuous wavelet
transform (CWT)

- Variation : igner-Vill « Discrete wavelet
* Cepstrum analysis * Wigner-Ville :
- Skewness i P Y distribution (WVD) transform (DWT)
- Kurtosis  Higher order spectrum i
I s Empirical mode + Wavelet packet
decomposition (EMD) transform
* Model-based ; .
o « Basis pursuit * Morlet wavelet
- AR model . ;
- HMM model e Spectral kurtosis » Hilbert-Huang
» Signal processing * Cyclostationary transform
_TSA analysis
- Correlation
- Convolution

- Fractal analysis
- Correlation dimension

feature engineering is a research field

Yan, W. et al, 2008
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=PrL

Some feature extraction Approaches

domain know-how

= Physics based :
» expected input-output relations, etc.
« comparison to expected output (model)

= Special procedures for data processing:
« operational regime segmentations, envelop analysis, etc...
« Time synchronous averaging

B 11.09.24
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=PrL

= [ @0 fwyao= [
_B((X - o7

= ¢ =0 : raw moment
= ¢ = average(X): central moment

= Normalized (central) moment:

pn _ E[(X —p)"]

B 11.09.24

Statistical Features: Moments

(x —c)"dF(x)

n Raw Moment Central M Normalised M

Mean 0

Variance

0

1

Skewness
kurtosis
Hyperskewness

Hypertailedness
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=PrL

B 11.09.24

4

Y

Skewness and Kurtosis

negative skew

positive skew

Kurtosis

asNZErng

f
/)

Olga Fink
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""" Take away

= Procedure:
» feature extraction + dimension reduction

= What to extract:
 data property vs. application domain vs. algorithm requirements

= Feature extraction vs. signal processing

= Feature goodness:
» Relevance and redundancy

= Feature selection:
« wrapper approach vs. filter approach vs. embedding

= Feature consistency and sensitivity issues

B 11.09.24
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=PFL  From feature extraction to end-to-end / deep
leaming

ML algorithm Prediction
(e.g. classifier) (label)

Prediction
(label)

End-to-end learning

B 11.09.24

Olga Fink 124



=PrL

Option 2: feature learning

Q-

Deep Learning

Algorithm
DATA
Which dataset do
you want to use?
Input Data

Ratio of training to
test data: 50%

—e

Y =f(X)

Noise: 0

Batch size: 10

—e

REGENERATE

Output model

11.09.24

Feature leaming: Deep

Epoch

000,000

FEATURES

Which properties do
you want to feed in?

aming

Learning rate Activation
003 - Tanh - None
+ — 3 HIDDEN LAYERS
rX= =
3 neurons 3 neurons

[}
i

f(X)

Regularization

=1 =

3 neurons

leading performance with abundant data

Regularization rate

Problem type

- Classification -

OUTPUT

Test loss 0.506
Training loss 0.510

Colors shows
data, neuronand ' i
weight values ! ° !

[ Showtestdata [] Discretize output

Olga Fink
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=P*L Feature engineeringvs. Feature leaming

Feature

Engineering Feature Learning

Shallow feature learning

* Supervised

Feature extraction « Unsupervised

Feature dimensionality
reduction

* Feature selection
* Feature low-dim. Projection

Deep feature learning

* Supervised
* Unsupervised

Knowedge based Data driven
Manuel, labor intensive Automated
S Domain/problem specific Generic
& Not sclable Scalable
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=F7L Fault detection / diagnostics / prognostics

Detection

Healthy or faulty operation?

Diagnostics
Are there different faults
types?
What is the root cause of the

Normal

Type 1 Type 2
v v

Fault of X* Faultof Y*

faults? (* component, system, sensor,
etc.)
, RULy
1.0 !
08 Normal “‘\-\.\
Prognostics % o6 "
= L)
How long the system can = 04 %
continue operating i.e., L . '~.
remaining useful lifetime? 0.2 T
0073 20 40 60 80 Time
t RULy
present

11.09.2
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