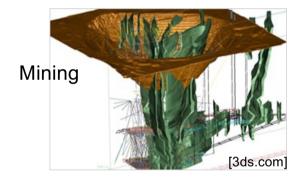
# **Civil-423 Computation geomechanics**

Introduction



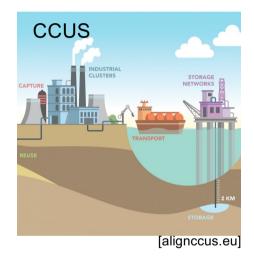


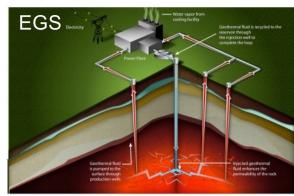

#### Natural hazards



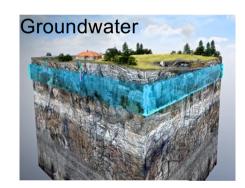
[blogs.agu.org/landslideblog/]

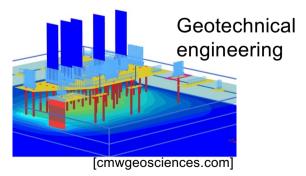



Nuclear waste storage




#### Oil & Gas





[pubs.spe.org/en/jpt]





[DOE, Geothermal Technologies Program]





#### Some assumptions throughout this course:

- Single phase flow in porous media (although we address unconfined problems – so we'll do an example of simplified multi-phase)
- Quasi-static deformation (no inertial effects / no waves)

#### Type of constitutive behavior

- Linear poroelasticity
- Rigid plasticity (Mohr-Coulomb)
- poro-Elastoplasticity (Mohr-Coulomb, Cam-Clay)
- Introduction to the coupling between soils & structural elements
- Introduction to Joint elements

## Agenda / exercises

- 1. Mesh, estimating derivatives at nodes from value at nodes via FEM
- 2. Steady-state Confined groundwater flow (Laplacian) (e.g. sheet pile wall)
- 3. Steady-State Unconfined flow (e.g. flow through an Earth dam)
- 4. Transient groundwater flow (e.g. in-situ injection test)
- Undrained poro-elasticity (e.g. building load / Boussinesq)
- Poroelasticity 1 (undrained to drained response / Boussinesq)
- 7. Poroelasticity 2 (deformation around a deep wellbore/ tunnel)
- 8. Non-linear behavior 1 / non-linearity at the element level 1
- 9. Drained / undrained test (Cam-Clay soil) / non-linearity at the element level 2
- 10. Rigid Plasticity for limit analysis 1 (e.g. slope stability / excavation)
- 11. Rigid Plasticity for limit analysis 2 (e.g. slope stability / excavation)
- 12. Poro-elastoplasticity 1 (E.g. Boussinesq / shallow foundation revisited)
- 13. Poro-elastoplasticity 2 (E.g. Phased excavation)

#### Numerical methods we will **NOT** address

- Boundary elements / boundary integral equations techniques
- Finite volume methods (although we will address the concepts)
- Discontinuous Galerkin FE methods, Mixed-hybrid FE discretization, Spectral FE methods
- Material point method, Smooth particle hydrodynamics
- Distinct elements methods, Peridynamics, Molecular dynamics
- •

### Using numerical codes require in-depth understanding

- Verifications (against known solutions) are mandatory
  - [note it is pre-requisite before validation (against experimental results)]
- One must check everything (Intuition is often not sufficient)
- One must always criticize his/her results obtained
- One must understand what controls the accuracy of a numerical method

## Think before you compute!

#### What we will not cover

- Other multi-physics coupling, notably:
  - Thermo-poro-elasticity (THM)
    - Thermal pressurization (heat induced pp increase), heat conduction / convection (hydrothermal problems) ...
    - Note that mechanics do not influence thermal effects (TH->M, but no M->T)
  - Chemo-poro...
    - Most of the time chemical reactions → change in mechanical respons: C-> M (not M-> C)
    - Notable exception: pressure solution
- Dynamics
  - Dynamic liquefaction, waves and poroelasticity (squirt flow) etc.
- Material rate dependent effects
  - Viscoplasticity etc.
- Fracture growth
  - Come & do semester projects with us

## Course organization

- Partly "Reverse" teaching! Partly usual lecturing.
- You have all the courses notes... we will go over them week by week
  - I strongly encourage you (i.e 'you must') to rederive things yourself (reading is usually not enough to properly understand)
- On Thursdays
  - Quizzes to check that you understood
  - I can re-derive things that you do not understand
  - I will not re-derive everything
- Take ownership of your learning
  - Use additional resources (textbooks)
- Expectations
  - That you understand the theory (no need to learn things by heart but understand how to eventually get it back with the help of textbooks, notes etc.)
  - That you understand your code
  - That you built know-how in modeling geomechanical problem
  - That you realize that complexity does not necessarily lead to better predictability

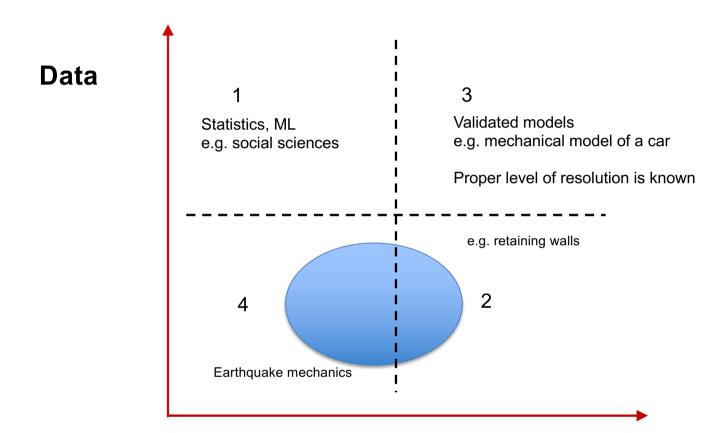
## **Assistant**



Antareep Sarma

## Modeling in geomechanics – an art form

Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 25, No. 3, pp. 99-106, 1988 Printed in Great Britain


0148-9062/88 \$3.00 + 0.00 Pergamon Press pic

# Towards a Methodology for Rock Mechanics Modelling

A. M. STARFIELD\*
P. A. CUNDALL\*

Rock mechanics models fall into the class of "data-limited problems"; one seldom knows enough about a rock mass to model it unambiguously. Modellers are beginning to realize that data-limited problems require a very different modelling approach from that developed in, for example, electrical or aerospace engineering.

It follows that one cannot use models in rock mechanics in a conventional way, and that there is a need to adopt a distinctive and appropriate methodology for rock mechanics modelling. Some guidelines and heuristics, which may be considered as the first steps towards developing such a methodology, are presented. Three case studies are then used to illustrate the application, in practice, of these ideas.



**Understanding** 

#### Model verification vs validation

#### Verification

- Ensure that the numerical tool correctly/accurately solve the equations it is supposed to solve
  - E.g. check a FEM elastic model against Boussinesq analytical solution for a circularly loaded area
  - Same for more complex equations...
  - If no reference solutions exist -> benchmarking between different numerical codes.

#### Validation

- Ensure that the numerical model correctly/accurately reproduce the physical phenomena observed
  - e.g. comparison between the prediction of a model and a lab experiment WITHOUT FITTING the model parameters
  - e.g comparison between the prediction of a model and a field experiment, allowing a reasonable adjustment of the model parameters

#### Validation without verification is the road to disaster

## Modeling in geomechanics

- "A model is a simplification of reality rather than an imitation of reality. It is an
  intellectual tool that has to be designed or chosen for a specific task."
- "The design of a model should be driven by the questions that the model is supposed to answer rather than the details of the system that is being modelled"
  - Over-complexification of models do not lead to better predictability
- "... appropriate to build a few very simple models rather than one complex model; the simple models would either relate to different aspects of the problem, or else address the same questions from different perspectives"
- "Instead of trying to validate a model, one should aim at gaining confidence in it and modify it as data arrives."
- "Purpose of modeling data limited problems is to gain confidence and explore potential trade-offs and alternative, rather than to make absolute predictions"

[Starfield & Cundall, 1998 – towards a methodology for rock mechanics modeling]

## In practice

- Why modeling ? What is/are the question/s ?
- Use a model early do not delay until receiving field data
- Look at the mechanics of the problem perform dimensional analysis and scaling
- Think of an experiment to decipher between possible mechanisms this can be numerical experiments
- Start simple, and complexify only when required (when the simple model is invalidated)
- If the model has weaknesses that can not be remedy, make a series of simulations to bracket the true case
- Once simple models have been mastered, complexify slowly to investigate the effects previously neglected

"There is a dialectic between geological detail and engineering understanding"

### Step by step

- Always start with a "toy" model
  - Keep the most important features to investigate
    - This is where experience & knowledge make the difference
  - Solve it rigorously
- Slowly complexify
  - e.g. add some geometrical effects, heterogeneous properties
- Model the "full monty" (if needed only!)
  - At this stage, we should already know the answers this is mostly to dot the Is and cross the Ts (e.g. please the client, show off...)
  - E.g. model in 3D with all the geometrical / layering details, etc.

#### Some Commercial Tools

- Itasca C.G.
  - FLAC 2D / 3D (THM) explicit FV code shine for very non-linear problems (elastoplastic)
  - DEM codes: Udec, PFC ...
  - Mining, nuclear waste, O&G
- Plaxis
  - 2D/3D (T)(H)M elasto-plastic
  - Geotech.
- RS2/RS3 (RocScience)
  - FE (H)M elasto plastic
- Optum
  - G2/G3 (H)M elasto-plastic, limit analysis
- ParaGeo
- ELFEN (RockField)
- Abaqus (DS), ANSYS .....

## Know your PDEs!

• On the black board.