Computational Geomechanics

Week #6 - Axisymmetric Elasticity: Boussinesq problem

The topic of this week’s exercice is the elastic resolution of displacement and stresses beneath an uniformly
loaded circular foundation (radius Ry). This problem has a known analytical solution, derived by Boussinesq,
directly below the center of the foundation and is tabulated with charts anywhere else. We concentrate on
the undrained response and solve the problem of from the initial state of the medium at rest (before the
applicaiton of the load). For this exercice, we solely concentrate on the resolution of the elastic system, which
after finite element discretization reduce to:

Ku=f

where f is the vector of total forces (i.e nodal, surface and body forces, with the later two lumped into the
first), K the stiffness matrix and u the displacement vector.

Consider the problem shown in figure 1. In the first part of the file boussinesq plate_ axisymmetric.ipynb
we create a mesh. Additionally, a so-called “mesh fan” is introduced using the tanh (z) function. The aim is
to increase the number of elements in a circular structure around the end point of the foundation (to resolve
better the singularity there). Try to play around with the different parameters of the mesh refinement
function to understand its precise mechanism.

1 Calculation of the surface traction

In the second part, we need to introduce the boundary conditions which can either be on displacement or
force. The displacement boundary conditions are such that we restrict movement on the lower and the right
boundary (far-field), as well as the horizontal displacement on the axis of symmetry (left boundary). Note
that due to the axisymmetric problem the displacement boundary condition on the axis of symmetry is
automatically verified (derive by your own why). The surface force, however, cannot simply be distributed
onto the nodes but we need to lump it correctly: we need to perform a line integral on the edge where the
force is applied. This line integral naturally depends on the order of the shape functions of the element. We
performed this by adding linear elements to the setup and performed a numerical Gauss integration on the
edge.

e Set the boundary conditions properly and perform the force check before going to the second step.

2 System assembly and solving

As this specific configuration fits to axissymmetric conditions we need to adapt the assembly of the stiffness
matrix. Recall that the weak form of the stiffnes matrix is given by the integral:

/ B'DB dV = K° (1)

where additionally we need to account for the axissymmetric case. This means that we need to transform
the volume integral into a 2D integral accounting for the axisymmetry. Equation 1 changes thus to:

27r/ B’DBr dr dz =K (2)

Professor: Brice Lecampion 1



Computational Geomechanics

Figure 1: Sketch of the radial cut of the circular foundation. With soil properties and linear force (weight of
the foundation included).

We already coded up the assembly of the stiffness matrix but encourage you to study the procedure. Re-
member that we use Gauss-integration upon the discretized domain and thus need to include the radius of
the corresponding gauss point.

e In the next step, we will let you code up the solution of the system. Remenber to transform non-zero
displacements into nodal forces. Even though we’re not having such within this example code it up for
the generality of the problem solution.

Next you can compare your numerical results to the theoretical solutions. The comparison is performed for
a point load P solution derived by Boussinesq in 1878. These analytical solutions used as approximation are
given by the following formulas:
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where R = v/r2 + 22 is the distance to the point load. This approximation is only a far field solution and
will feel the boundary effects of our finite domain. Note that you must adapt P as we simulate the case of a
finite footing.

e We will let you extract the corresponding DOF’s for the plots as to familiaries you with the set up of
the system.

Then also perform a comparisons with the solution of the displacement for the case of a circular footing (of
radius R ;) with an uniform pressure (which corresponds to the actual case simulated here). The displacement
at two points r = 0, Ry for z = 0 are given by
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Compute the relative error of the numerical results for this two points.
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3 Stress calculations

We would like to do the projection of the stresses from the gauss points to the nodes as this is the most
precise way of doing it. This is basically the same procedure as you’ve done in session 1.

e We've coded up the projection on the element level but will let you perform the assembly of the system.
We have positioned the head of the function project stress() within the file MatrizAssembl.py.

As a verification we will compare this results to the analytical solution along z for r = 0 (Boussinesq, 1878).
Note that there exist charts to compare the results at other locations as well which you can find normally in
any soil mechanics textbook you like (see for example Fig. 12.9 of the TGC 18). The analytical solution for
the vertical stress (which is the one we are mostly interested in) is given as:
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where Ry is the radius of the foundation. Finally, we ask you to do the simulation with either linear and
quadratic triangular elements. We’'ll let you observe how the change of the interpolation order (as well as
the mesh refinement) influences your solution. If you like, try even to solve the system without the mesh fan
and observe what happens.
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