Traffic Engineering (CIVIL-349) Nikolas Geroliminis Exercise 1 - Solution Queueing systems

Author: Caio Vitor Beojone (adapted from Reinaldo Morabito) Fall 2024

Problem 1: Note that $\lambda=10$ cars per hour, and $\mu=\frac{60}{4}=15$ cars per hour. Therefore, $\rho=\frac{\lambda}{\mu}=\frac{10}{15}\approx 0.67$.

a

This system can be described as an M/M/1 queueing system.

b.

The probability of the system being empty is $P_0 = 1 - \rho \approx 0.33$.

C.

The average number of cars in the system is $L = \frac{\rho}{1-\rho} = 2$ cars.

The average number of cars in the queue is $L_Q = \frac{\rho^2}{1-\rho} \approx 1.33$ cars.

d.

The average time spent in the system is $W = \frac{L}{\lambda} = 0.2$ hours (or 12 minutes).

The average time spent in the queue is $W_Q = W - \frac{1}{\mu} \approx 0.13$ hours (or 8 minutes).

e.

The probability of having 2 or more cars in the system is:

$$P(L \ge 2) = \rho^2 \approx 0.44$$

Problem 2:

a.

Note that, here, $\lambda=10$ cars per hour, and $\mu=\frac{60}{2}=30$ cars per hour. Therefore, $\rho=\frac{10}{30}\approx 0.33$.

The probability that the system is empty becomes $P_0 = 1 - \rho \approx 0.67$.

The average number of cars in the system is $L = \frac{\rho}{1-\rho} = 0.5$ cars.

The average number of cars in the queue is $L_Q = \frac{\rho^2}{1-\rho} = 0.17$ cars.

The average time spent in the system is $W = \frac{L}{\lambda} = 0.05$ hours (or 3 minutes).

The average time spent in the queue is $W_Q = W - \frac{1}{\mu} \approx 0.017$ hours (or 1 minute).

b.

Note that, here, we have two identical M/M/1 systems with $\lambda=5$

École Polytechnique Fédérale de Lausanne

School of Architecture, Civil & Environmental Engineering

cars per hour, and $\mu=\frac{60}{4}=15$ cars per hour. Therefore, $\rho=\frac{5}{15}=0.33$.

The probability that the system is empty becomes $P_0 = 1 - \rho \approx 0.67$.

The average number of cars in the system is $L = \frac{\rho}{1-\rho} = 0.5$ cars.

The average number of cars in the queue is $L_Q = \frac{\rho^2}{1-\rho} = 0.17$ cars.

The average time spent in the system is $W = \frac{L}{\lambda} = 0.1$ hours (or 6 minutes).

The average time spent in the queue is $W_Q = W - \frac{1}{\mu} \approx 0.033$ hours (or 2 minutes).

Problem 3:

a.

The probability of losing customers is $P_{loss}=P_5$, where $P_5=\frac{\rho^5(1-\rho)}{1-\rho^6}\approx 0.048$. Therefore, the rate in which the restaurant loses customers is $P_5\cdot\lambda\approx 0.481$ cars per hour.

The average utilization rate is $\rho = \frac{\lambda_e}{\mu} = \frac{\lambda \cdot (1 - P_5)}{\mu} \approx 0.635$.

b.

The number of cars in the queue is $L_Q = \sum_{i=2}^{5} (i-1)P_i \approx 0.788$ cars

The waiting time is $W_Q = \frac{L_Q}{\lambda_e} \approx 0.083$ hours (or 4.967 minutes).

Problem 4:

Note that, in this case, the queueing system can be described as M/M/2.

The utilization rate becomes $\rho = \frac{\lambda}{2\mu} \approx 0.33$.

Therefore, the probability of the system being empty becomes:

$$P_{0} = \frac{1}{\sum_{n=0}^{2-1} \frac{(2\rho)^{n}}{n!} + \frac{(2\rho)^{2}}{2!} \left(\frac{1}{1-\rho}\right)}$$

$$= \frac{1}{1+2\rho+2\rho^{2} \left(\frac{1}{1-\rho}\right)}$$

$$= \frac{1}{2} = 0.5$$

The average number of cars in the system is $L=2\rho+\frac{(2\rho)^2\rho}{2!(1-\rho)^2}P_0=\frac{2}{3}+\frac{(2/3)^2\cdot(1/3)}{2(1-1/3)^2}\cdot 0.5=0.75$ cars.

The average number of cars in the queue is $\frac{(2\rho)^2\rho}{2!(1-\rho)^2}P_0 \approx 0.083$ cars.

The average time spent in the system is $W = \frac{L}{\lambda} = 0.075$ hours (or 4.5 minutes).

The average time spent in the queue is $W_Q = \frac{L_Q}{\lambda} \approx 0.008$ (or 0.5 minutes).

Problem 5:

This system can be described as an M/D/1 queueing system.

We still have the same values of $\lambda = 10$ and $\mu = 15$. However,

Therefore, we have that the probability that the system is empty as $P_0 = 1 - \rho = 1 - \frac{10}{15} \approx 0.33.$

The number of cars in the system is $L=\rho+\frac{\rho^2(1+\sigma^2\mu^2)}{2(1-\rho)}\approx 1.33$ cars. The number of cars in the queue is $L_Q=\frac{\rho^2(1+\sigma^2\mu^2)}{2(1-\rho)}\approx 0.67$ cars. The average time spent in the system is $W=\frac{L}{\lambda}\approx 0.133$ hours (or 8

minutes).

The average time spent in the queue is $W_Q = \frac{L_Q}{\lambda} \approx 0.067$ hours (or