CHAPTER

17

Basic Principles
of Intersection
Signalization

In Chapter 16, various options for intersection control
were presented and discussed. Warrants for implementa-
tion of traffic control signals at an intersection, present-
ed in the Manual on Uniform Traffic Control Devices
|71, provide general and specific criteria for selection of
an appropriate form of inte on control. At many in-
tersections, the combination of traffic volumes, poten-
tial conflicts, overall safety of operation, efficiency of
operation, and driver convenience will lead to a decision
to install traffic control signals.

The operation of signalized intersections is often
complex, involving competing vehicular and pedestri-
an movements. Appropriate methodologies for design
and timing of signals and for the operational analysis
of signalized intersections require that the behavior of
drivers and pedestrians at a signalized intersection be
modeled in a form that can be easily manipulated and
optimized. This chapter discusses some of the funda-
mental operational characteristics at a signalized inter-
section and the ways in which they may be effectively
modeled.

In Chapter I8, these principles are applied to a
signalized intersection design and timing process. In
Chapter 21, they are augmented and combined into an
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overall model of signalized intersection operations. The
particular model presented is that of the Highway
Capacity Manual [2].

This chapter focuses on four critical aspects of
signalized intersection operation:

T
2.
3.
4.
There are other aspects of signalized intersection opera-
tion that are also important, and the Highway Capacity-
Manual anal

four, however, are central to understanding traffic be-
havior at signalized intersections and are highlighted -

here.

17.1

Traffic signals are complex devices that can operate in d

“Discharge headways, saturation flow
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lefinitions should be understood before pursuing a more
tantive discussion.

el

tes, an

lost times
Allocation of time and the critical lane concept
The concept of left-turn equivalency

Delay as a measure of service quality

s model addresses many of them. These

Terms and Definitions

variety of different modes. A number of key terms and

1.

2

Components of a Signal Cycle

the-following terms describe portions and subportions
f a signal cycle. The most fundamental unit in signal
sign and timing is the cycle, as defined below.

Cycle. A signal cycle is one complete rotation
through all of the indications provided. In gen-
eral, every legal vehicular movement receives a
“green” indication during each cycle, although
there are some exceptions to this rule.

Cyele length. The cycle length is the time (in
seconds) that it takes to complete one full cycle
of indications. It is given the symbol “C.”
Interval. The interval is a period of time during
which no signal indication changes. It is the
smallest unit of time described within a signal
cycle. There are several types of intervals with-
in a signal cycle:

(a) Change interval. The change interval is the
“yellow™ indication for a given movement. It
is part of the transition from “green” to “red,”
in which movements about o lose ™™g
are given a “yellow” signal, while all other
movements have a “red” signal. It is timed to
allow a vehicle that cannot safely stop when
the “green” is withdrawn to enter the inter-
section legally. The change interval is given
the symbol “y;” for movement(s) i.

(by Clearance interval. The clearance interval is
also part of the transition from “green” to
“red” for a given set of movements. During the
clearance interval, all movements have a “red”
signal. It is timed to allow a vehicle that legal-
ly enters the intersection on “yellow™ to safely

ss the intersection before conflicting flows

are released. The clearance interval is given the

symbol “ar;” (for “all red”) for movement(s) i.

Green interval. Each movement has one
green interval during the signal cycle. During

(c

—

green’”

a green interval, the movements permitted
have a “green™ light, while all other move-
ments have a “red” light. The green interval
is given the symbol “G;” for movement(s) i.

(d) Red interval. Each movement has a red inter-
val during the signal cycle. All movements
not permitted have a “red” light, while those
permitted to move have a “green” light. In
general, the red interval overlaps the green
intervals for all other movements in the inter-
section. The red interval is given the symbol
“R;” for movement(s) i.

4. Phase. A signal phase consists of a green inter-
val, plus the change and clearance intervals that
follow it. It is a set of intervals that allows a
designated movement or set of movements to
flow and to be safely halted before release of a
conflicting set of movements.

17.1.2 Types of Signal Operation

Traffic signals can operate on a pretimed basis or may
be partially or fully actuated by arriving vehicles sensed
by detectors. In networks, or on arterials, signals may be
coordinated through computer control.

1. Pretimed operation. In pretimed operation, the
cycle length, phase sequence, and timing of
each interval are constant. Each cycle of the
signal follows the same predetermined plan.
“Multi-dial” controllers will allow different pre-
timed settings to be established. An internal
clock is used to activate the appropriate timing.
In such cases, it is typical to have at least an AM
peak, a PM peak, and an off-peak signal timing.

[

Semi-actuated operation. In semi-actuated op-
eration, detectors are placed on the minor ap-
proachi{es) to the intersection; there are no
detectors on the major street. The light is green
for the major street at all times except when a
“call” or actuation is noted on one of the minor
approaches. Then, subject to limitations such as
a minimum major-street green, the green is
transferred to the minor street. The green returns
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to the major street when the maximum minor-
street green is reached or when the detector
senses that there is no further demand on the
minor street. Semi-actuated operation is often
used where the primary reason for signalization
is “interruption of continuous traffic.” as dis-
cussed in Chapter 16.

3. Full actuated operation. In full actuated opera-
tion, every lane of every approach must be moni-
tored by a detector. Green time is allocated in
accordance with information from detectors and
programmed “rules” established in the controller
for capturing and retaining the green. In full actu-
ated operation, the cycle length, sequence of
phases, and green time split may vary from cycle
to cycle. Chapter 20 presents more detailed de-
scriptions of actuated signal operation, along
with a methodology for timing such si gnals.

4. Computer control. Computer control is a system
term. No individual signal is “computer con-
trolled,” unless the signal controller is consid-
ered to be a computer. In a computer-controlled
system, the computer acts as a master con-
troller, coordinating the timings of a large num-
ber (hundreds) of signals. The computer selects
or calculates an optimal coordination plan
based on input from detectors placed through-
out the system. In general, such selections are
made only once in advance of an AM or PM
peak period. The nature of a system transition

from_one timing plan 1o another-is-suf etenthy—-

disruptive to be avoided during peak-demand
pertods. Individual signals in 1 computer-con-
trolled system generally operate in the pretimed
mode. For coordination to be effective, all sig-
nals in the network must use the same cycle
length (or an even multiple thereof), and it is
therefore difficult to maintain a progressive pat-
tern where cycle length or phase splits are al-
lowed to vary.

17.1.3 Treatment of Left Turns

The modeling of signalized intersection operation
would be straightforward if left turns did not exist. Lefi

turns at a signalized intersection can be handled iy one

of three ways:

1. Permitied left turns. A “permitted” left tur
movement is one that is made across an Oppos-
ing flow of vehicles. The driver is permitted to
cross through the opposing flow, but must ge..

lect an appropriate gap in the opposing traffic .

stream through which to turn. This is the mos
common form of left-turn phasing at gnalized
intersections, used where left-turn volumes are
reasonable and where gaps in the Opposing
flow are adequate to accommodate left turng
safely.

2. Protected left turns. A “protected” left tum

movement is made without an opposing vehic-

ular flow. The signal plan protects left-turning
vehicles by stopping the opposing  through
movement. This requires that the left turns and
the opposing through flow be accommodated in
separate signal phases and leads to multiphase
(more than two) sign
left turns are “protected” by geometry or regula-
tion, Left turns from the stem of a T-intersection,
for example, face no opposing flow, as there is
no opposing approach to the intersection. Left
turns from a one-way street similarly do not
face an opposing flow.

3. Compound left turns. More complicated signal
timing can be designed in which left turns. are
protected for a portion of the signal cycle and
are permitted in another portion of the cycle.
Protected and permitted portions of the cycle
can be provided in any order. Such phasing is
also referred 1o as protected plus permitted or
permitted plus protected, depending upon the
order of the sequence.

The permitted left turn movement is very complex.
[tinvolves the conflict between a left turn and an oppos-
ing through movement. The operation is affected by the
left-turn flow rate and the opposing flow rate, the num-
ber of opposing lanes, whether left turns flow from an
exclusive left-turn lane or from a shared lane, and the
details of the signal timing. Modeling the interaction

alization. In some cases,

ong these elements is a complicated process, one that
en involves iterative elements.

. The terms protected and permitted may also be ap-
ied to right turns. In this case, however, the conflict is
tween the right-turn vehicular movement and the
Ehedestrian movement in the conflicting crosswalk. The
t majority of right wrns at signalized intersections
handled on a permitted basis. Protected right turns
nerally occur at locations where there are overpasses
underpasses provided for pedestrians. At these loca-
tons, pedestrians are prohibited from making surface
ings; barriers are often required to enforce such a

Saturation Flow, Lost Times,
and Capacity

e fundamental element of a signalized intersection is
he periodic stopping and restarting of the traffic stream.
ure 17.1 illustrates this process. When the light turns

“$E GREEN, there is a queue of stored vehicles that were

siopped during the preceding RED phase, waiting to be
“discharged. As the queue of vehicles moves, headway
measurements are taken as follows:

* The first headway is the time lapse between the
initiation of the GREEN signal and the time
that the front wheels of the first vehicle cross
the stop line. '

The second headway is the time lapse between
the time that the first vehicle’s front wheels cross
the stop line and the time that the second vehi-
cle’s front wheels cross the stop line.

Subsequent headways are similarly measured.

Only headways through the last vehicle in
queue (at the initiation of the GREEN light) are
considered to be operating under “saturated”
conditions.

If many quenes of vehicles are observed at a given
~ location and the average headway is plotted vs. the
' ueue position of the vehicle, a trend similar to that
“shown in Figure 17.1 (b) emerges.
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The first headway is relatively long. The first driver
must go through the full perception-reaction sequence,
move his or her foot from the brake to the accelerator,
and accelerate through the intersection. The second
headway is shorter, because the second driver can over-
lap the perception-reaction and acceleration process of
the first driver. Each successive headway is a little bit
smaller. Eventually, the headways tend to level out. This
generally occurs when queued vehicles have fully accel-
erated by the time they cross the stop line. At this point,
a stable moving queue has been established.

17.2.1 Saturation Headway and
Saturation Flow Rate

As noted, average headways will tend towards a constant
value. In general, this occurs from the fourth or fifth
headway position. The constant headway achieved is re-
ferred to as the saturation headway, as it is the average
headway that can be achieved by a saturated, stable
moving queue of vehicles passing through the signal. It
is given the symbol “A.” in units of seconds/vehicle.

It is convenient to model behavior at a signalized
intersection by assuming that every vehicle (in a given
lane) consumes an average of */” seconds of green time
to enter the intersection. If every vehicle consumes “f”
seconds of green time and if the signal were always
green, then “s” vehicles per hour could enter the inter-
section. This is referred to as the saturation flow rate:

3,600

(17-1
It ;

&
where: s = saturation flow rate, vehicles per hour
of green per lane (veh/hg/In)

i = saturation headway, seconds/vehicle (s/veh)

Saturation flow rate can be multiplied by the number of
lanes provided for a given set of movements to obiain a
saturation flow rate for a lane group or approach.

The saturation flow rate is, in effect, the capacity
of the approach lane or lanes if they were available for
usc all of the time (ie., if the signal were always
GREEN). The signal, of course, is not always GREEN
for any given movement. Thus, some mechanism (or
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‘ Figure 17.1: Flow From a Queue at a Signalized Intersection

model) for dealing with the cyclic starting and stopping
of movements must be developed.

17.2.2 Start-Up LostTime

The average headway per vehicle is actually greater
than “h" seconds. The first several headways are, in
fact, larger than “h"” seconds, as illustrated in Exhibit
17-1 (b). The first three or four headways involve addi-
tional time as drivers react to the GREEN signal and ac-
celerate. The additional time involved in each of these
initial headways (above and beyond “A” seconds) is
noted by the symbol A; (for headway ). These addi-
tional times are added, and are referred to as the stari-
up lost time:

(17-2)

t) = 2-31

where: €; = start-up lost time, s/phase
A; = incremental headway (above “h” seconds)
for vehicle i, s

Thus, it is possible to model the amount of GREEN
time required to discharge a queue of “n” vehicles as:
T,

=€, + nh (17-3)

where: T, = GREEN time required to move queue of “n’
vehicles through a signalized intersection,

start-up lost time, s/phase

number of vehicles in queue

h = saturation headway, s/veh

While this particular model is not of great use, it does
illustrate the basic concepts of saturation headway and
start-up lost times. The start-up lost time is thought of as a
period of time that is “lost” to vehicle use. Remaining
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REEN time, however, may be assumed to be usable at
S rate of hi s/veh.

7.2.3 Clearance LostTime

“The start-up lost time occurs every time a queue of vehi-
Cles starts moving on a GREEN signal. There is also a
bt time associated with stopping the queue at the end of
GREEN signal. This time is more difficult to observe
P the field, as it requires that the standing queue of vehi-
les be large enough to consume all of the GREEN time
srovided. In such a situation, the clearance lost time, €5,

1 is defined as the time interval between the last vehicle’s
“{& front wheels crossing the stop line, and the initiation of
- iz GREEN for the next phase. The clearance lost time

‘oecurs each time a flow of vehicles is stopped.

? 2 4 Total Lost Time and the Concept
of Effective GREEN Time

5 the start-up lost time oceurs each time a queue starts

: .n_:'movc and the clearance lost time occurs each time the
flow of vehicles stops, then for each GREEN phase:
ty =4+ & (17-4)

here: t; = total lost time per phase, s/phase

AII other variables are as previously defined.
~ The concept of lost times leads to the concept of

& ¢ffective green time. The actual signal goes through a

sequence of intervals for each signal phase:

b » Green

- * Yellow
* All-red
* Red

=
~ The “yellow” and “all-red” intervals are a transition be-
- tween GREEN and RED. This must be provided because
vehicles cannot stop instantaneously when the light
changes. The “all-red” is a period of time during which all
ii},hl\. in all directions are red. During the RED interval for
_.one set of movements, another set of movements goes

through the green, yellow, and all-red intervals. These in-
tervals are defined more precisely in Chapter 18.

In terms of modeling, there are really only two time
periods of interest: effective green time and effective red
time. For any given set of movements, effective green time
is the amount of time that vehicles are moving (at a rate of
one vehicle every h seconds). The effective red time is the
amount of time that they are not moving. Effective green
time is related to actual green time as follows:

g =G +Y -1, (17-5)
where: g; = effective green time for movement(s) i, s

G; = actual green time for movement(s) i, $

Y; = sum of yellow and all red intervals for
movement(s) i, s, (Y; = y; + ar;)
v; = yellow interval for movement(s) i, s

ar; = all-red interval for movement(s) i, s

t;; = total lost time for movement(s) i, s

This model results in an effective green time that may be
fully utilized by vehicles at the saturation flow rate (i.e.,
at an average headway of h s/veh).

17.2.5 Capacity of an Intersection Lane
or Lane Group

The saturation flow rate(s) represents the capacity of an
intersection lane or lane group assuming that the light is
always GREEN. The portion of real time that is effec-
tive green is defined by the “green ratio,” the ratio of the
effective green time to the cycle length of the signal
(g/C). The capacity of an intersection lane or lane group
may then be computed as:

capacity of lane or lane group i, veh/h

(17-6)

where: ¢; =
saturation flow rate for lane or lane group
i, veh/hg

5

g; = effective green time for lane or lane group

(A

oy
Il

signal cycle length, s
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A Sample Problem

These concepts are best illustrated using a sample prob-
lem. Consider a given movement at a signalized inter-
section with the following known characteristics:

* Cycle length, C = 60s

* Green time, G = 27 s

* Yellow plus all-red time, ¥ = 35

= Saturation headway, i = 2.4 s/veh
= Start-up lost time, €; = 2.0 5
* Clearance lost time, £; = 1.0 s

For these characteristics, what is the capacity (per lane)
for this movement?

The problem will be approached in two different
ways. In the first, a ledger of time within the hour is cre-
ated. Once the amount of time per hour used by vehicles
at the saturation flow rate is established, capacity can be
found by assuming that this time is used at a rate of one
vehicle every i seconds. Since the characteristics stated
are given on a per phase basis, these would have to be
converted to a per hour basis. This is easily done know-
ing the number of signal cycles that occur within an
hour. For a 60-s cycle, there are 3,600/60 = 60 cycles
within the hour. The subject movements will have one
GREEN phase in each of these cycles. Then:

* Time in hour: 3,600 s

RED time in hour:
=1,800s

Lost time in hour: {2+ 1) 3% 60 = 180s
Remaining time in hour: 3,600 — 1,800 — 180
=1,620s

(60 — 27 — 3) X 60

The 1,620 remaining seconds of time in the hour repre-
sent the amount of time that can be used at a rate of one
vehicle every h seconds, where h = 2.4 s/veh in this
case. This number was calculated by deducting the peri-
ods during which no vehicles (in the subject move-
ments) are effectively moving. These periods include
the RED time as well as the start-up and clearance lost
times in each signal cycle. The capacity of this move-
ment may then be computed as:

1620

S~ = 675 veh/h/In
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A second approach to this problem utilizes Equa- 3

tion 17-6, with the following values:

3,600 _ 3600
h 24
E=G+Y—-1;,=27+3-3=27s

5= - = 1,500 veh/hg/In

e~ _,,*(x__-{_) - r._i(m*(”m) = 675 veh/h/ln

The two results are, as expected, the same. Capacity i
found by isolating the effective green time available to
the subject movements and by assuming that this time ig
used at the saturation flow rate (or headway).

17.2.6 Notable Studies on Saturation
Headways, Flow Rates, and Lost
Times

For purposes of illustrating basic concepts, subsequent
sections of this chapter will assume that the value of sat-
uration flow rate (or headway) is known. In reality, the
saturation flow rate varies widely with a variety of pre-
vailing conditions, including lane widths, heavy-vehicle
presence, approach grades, parking conditions near the
intersection, transit bus presence, vehicular and pedes-
trian flow rates, and other conditions.

The first significant studies of saturation flow were
conducted by Bruce Greenshields in the 1940s [3]. His
studies resulted in an average saturation flow rate of 1,714

vehfhg/lnrand-arstareupfosttime of 3075, The study, Tow-

ever, covered a variety of intersections with varying under-
lying characteristics. A later study in 1978 [4] reexamined
the Greenshields hypothesis; it resulted in the same satura-
tion flow rate (1,714 veh/hg/In) but a lower start-up lost
time of 1.1 s. The latter study had data from 175 intersec-
tions, covering a wide range of underlying characteristics.

A comprehensive study of saturation flow rates at
intersections in five cities was conducted in 1987-1988
[5] to determine the effect of opposed left turns. It also
produced, however, a good deal of data on saturation
flow rates in general. Some of the results are summa-
rized in Table 17.1.

These results show generally lower saturation flow
rates (and higher saturation headways) than previous
studies. The data, however, reflect the impact of opposed

THE CRITICAL-LANE AND TIME-BUDGET CONCEPTS 477

+

Table 17.1: Saturation Flow Rates from a Nationwide Survey

Item Single-Lane Approaches -[ Two-Lane Approaches

Number of Approaches

14 _‘ 26

_Number of 15-Minute Pt:ri&?&_-_

101

156

Saturation Flow Rates
Average
Minimum
Maximum

1,280 veh/hg/ln
636 veh/hg/ln
1,705 veh/hg/In

748 veh/hg/In
1,969 veh/hg/ln

Saturation Headways
Average
Minimum
Maximum

2.81 s/veh |
2.11 s/veh
5.66 s/veh

|
J 1,337 veh/hg/In
|

2.69 s/veh
1.83 s/veh
4.81 s/veh

eft turns, truck presence, and a number of other “non-
+standard” conditions, all of which have a significant im-
“ peding effect. The most remarkable result of this study,
owever, was the wide variation in measured saturation
flow rates, both over time at the same site and from
ocation to location. Even when underlying conditions
“remained fairly constant, the variation in observed satu-
ration flow rates at a given location was as large as
0%—25%. In a doctoral dissertation using the same
data, Prassas demonstrated that saturation headways and
flow rates have a significant stochastic component,
making calibration of stable values difficult [6].

The study also isolated saturation flow rates for
“ideal” conditions, which include all passenger cars, no
turns, level grade, and 12-ft Tanes. Even under these condi-
ons, saturation flow rates varied from 1,240 pce/hg/ln to
2,092 pe/hg/in for single-lane approaches, and from
1,668 pe/hg/ln to 2,361 pe/hg/In for multilane approaches.
The difference between observed saturation flow rates at
single and multilane approaches is also interesting. Sin-
gle-lane approaches have a number of unique character-

=2
B istics that are addressed in the Highway Capacity Manual

~ model for analysis of signalized intersections (see
Chapters 21 and 22).

& Current standards in the Highway Capacity Manual

[1] use an ideal saturation flow rate of 1,900 pe/hg/In for
both single and multilane approaches. This ideal rate is
then adjusted for a variety of prevailing conditions. The

& manual also provides default values for lost times. The de-

fault value for start-up lost time (€;) is 2.0 s. For the

clearance lost time ({3), the default value varies with
the “yellow"” and “all-red” timings of the signal:
bh=ytar—e (17-7)

where: €5 = clearance lost time, s

v = length of yellow interval, s
ar = length of all-red interval, s
e = encroachment of vehicles into yellow

and all-red, s

A default value of 2.0 s is used for e.

17.3 The Critical-Lane and
Time-Budget Concepts

In signal analysis and design, the “critical-lane” and “time
budget” concepts are closely related. The time budget, in
its simplest form, is the allocation of time to various vehic-
ular and pedestrian movements at an intersection through
signal control. Time is a constant: there are always 3,600
seconds in an hour, and all of them must be allocated. In
any given hour, time is “budgeted” to legal vehicular and
pedestrian movements and to lost times.

The “critical-lane™ concept involves the identifica-
tion of specific lane movements that will control the
timing of a given signal phase. Consider the situation
illustrated in Figure 17.2. A simple two-phase signal
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- Chapter 20 contains a detailed discussion of how to
Fidentify critical lanes for any signal timing and design.

17.3.1 The Maximum Sum of Critical-Lane
Volumes: One View of Signalized
Intersection Capacity

| _—
|
i

|

1t is possible to consider the maximum possible sum of
fitical-lane volumes to be a general measure of the “ca-
sacity” of the intersection. This is not the same as the
i iraditional view of capacity presented in the Highway
~ Capacity Manual, but it is a useful concept to pursue.
By definition, each signal phase has one and only
ne critical lane. Except for lost times in the cycle, one

‘ Figure 17.2: Critical Lanes Hlustrated

controls the intersection. Thus, all E-W movements are
permitted during one phase, and all N-S movements are
permitted in another phase. During each of these phases,
there are four lanes of traffic (two in each direction)
moving simultaneously. Demand is not evenly distrib-
uted among them; one of these lanes will have the most
intense traffic demand. The signal must be timed to
accommodate traffic in this lane—the “critical lane™ for
the phase.

In the illustration of Figure 17.2, the signal timing
and design must accommodate the total demand flows
in lanes [ and 2. As these lanes have the most intense
demand, if the signal accommodates them, all other
lanes will be accommodated as well. Note that the criti-

cal lane is identified as the lane with the most intense

traffic demand, not the lane with the highest volume.
This is because there are many variables affecting traffic
flow. A lane with many left-turning vehicles, for exam-
ple. may require more time than an adjacent lane with
no turning vehicles, but a higher volume. Determining
the intensity of traffic demand in a lane involves ac-
counting for prevailing conditions that may affect flow
in that particular lane.

In establishing a time budget for the intersection
of Figure 17.2, time would have to be allocated to four
elements:

* Movement of vehicles in critical lane |

* Movement of vehicles in critical lane

ritical lane is always moving. Lost times occur for each
ignal phase and represent time during which no vehi-
cles in any lane are moving. The maximum sum of cr;
‘cal lane volumes may, therefore, be found by
& determining how much total lost time exists in the hour,
-Thc remaining time (total effective green time) may
[ then be divided by the saturation headway.

— To simplify this derivation, it is assumed that the
total lost time per phase (¢, ) is a constant for all phases.
" Then, the total lost time per signal cycle is:

* Start-up and clearance lost times for vehicles in
critical lane |

* Start-up and clearance lost times for vehicles in
critical lane 2

This can be thought of in the following way: lost times
are not used by any vehicle. When deducted from total
time, remaining time is effective green time and is allo-

cated u') critical-lane dcm:ujds_—ull this case, in lanes | L= N*t (17-8)
and 2. The total amount of effective green time, there-
fore, must be sufficient to accommodate the total de- L. = lost time per cycle, s/cycle

i 1, = total lost ime per phase (sum of €| + €5),
s/phase

mand in lanes 1 and 2 (the critical lanes). These critical
demands must be accommodated one vehicle at a time,

as they cannot move simultaneously. x N = number of phases in the cycle

- The total lost time in an hour depends upon the number
- of cycles oceurring in the hour:

Ly = L*(3%%) (17-9)

case. In general, the following rules apply to the identi-
fication of critical lanes:

(a) There is a critical lane and a critical-lane flow
for each discrete signal phase provided. where: Ly = lost time per hour, s/hr

(b) Except for lost times, when no vehicles move,
there must be one and only one critical lane
moving during every second of effective green
time in the signal cycle.

L = lost time per cycle, s/eycle

C = cycle length, s

; : The remaining time within the hour is devoted to effec-
(c) Where there are overlapping phases, the poten-

i i = . e i = tive green time for critical lane movements:
tial combination of lane flows yielding the high-

est sum of critical lane flows while preserving T =3600 - Ly (17-10)
the requirement of item (b) identifies critical :
lanes. - where: Tz = total effective green time in the hour, s
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This time may be used at a rate of one vehicle every h
seconds, where ki is the saturation headway:

Ve = (") (17-11)

where: V, = maximum sum of critical lane volumes,
veh/h

h = saturation headway, s/veh

Merging Equations 17-8 through 17-11, the following
relationship emerges:

) 1 3,600
Ve =3 |3600 = Nig[ =5 | (17-12)

4

where all variables are as previously defined.

Consider the example of Figure 17.2 again. If the
signal at this location has two phases, a cycle length of
60 seconds, total lost times of 4 s/phase, and a saturation
headway of 2.5 s/veh, the maximum sum of critical lane
flows (the sum of flows in lanes 1 and 2) is:

)J = 1,248 veh/h

I
V= {lﬁi)i] = 2"‘4*‘(
2.3

3,600
60

The equation indicates that there are 3,600/60

60 cycles in an hour. For each of th 2%4 = 8s of
lost time is experienced, for a total of 8*60 = 480 s in
the hour. The remaining 3,600 — 480 = 3,120 s may
be used at a rate of one vehicle every 2.5 s.

If Equation 17-12 is plotted, an interesting rela-
tionship between the maximum sum of critical lane vol-
umes (V_.), cycle length (C), and number of phases (N)
may be observed, as illustrated in Figure 17.3.

As the cycle length increases, the “capacity” of the
intersection also increases. This is because of lost times,
which are constant per cycle. The longer the cycle length,
the fewer cycles there are in an hour. This leads to less

lost time in the hour, more effective green time in the
hour, and a higher sum of critical-lane volumes. Note,
however, that the relationship gets flatter as cycle length
increases. As a general rule, increasing the cycle length
may result in small increases in capacity. On the other
hand, capacity can rarely be increased significantly by
only increasing the cycle length. Other measures, such
as adding lanes, are often also necessary.
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Capacity also decreases as the number of phases
increases. This is because for each phase, there is one
full set of lost times in the cycle. Thus, a two-phase sig-
nal has only two sets of lost times in the cycle, while a
three-phase signal has three.

These trends provide insight, but also raise an in-
teresting question: Given these trends, it appears that all
signals should have two phases and that the maximum
practical cycle length should be used in all cases. After
all, l!1i~i cs)mhinuliml wnuid :q)purcnlly, yield the high-
es —

U\mu the maximum wt.ic length is not meULJI
unless truly needed. Having a cycle length that is con-
siderably longer than what is desirable causes increases
in delay to drivers and passengers. The increase in delay
is because there will be times when vehicles on one ap-
proach are waiting for the green while there is no de-
mand on conflicting approaches. Shorter cycle lengths
yield less delay. Further, there is no incentive to maxi-
mize the cycle length. There will always be 3,600 sec-
onds in the hour, and increasing the cycle length to
accommodate increasing demand over time is quite sim-
ple, requiring only a resetting of the local signal con-
troller. The shortest cycle length consistent with a v/c
ratio in the range of 0.80-0.95 is generally used to pro-
duce optimal delays. Thus, the view of signal capacity is
quite different from that of pavement capacity. When

—

deciding on the number of lanes on a freeway (or on g
intersection approach), it is desirable to build excess ¢y
pacity (i.e., achieve a low w/c ratio). This is because
once built, it is unlikely that engineers will get an oppor-
tunity to expand the facility for 20 or more years, ang
adjacent land development may make such expansion
impossible. The 3,600 seconds in an hour, however, are
immutable, and retiming the signal to allocate more of
them to effective green time is a simple task requiring
no field construction.

17.3.2 Finding an Appropriate Cycle
Length

If it is assumed that the demands on an intersection are
known and that the critical lanes can be identified, then
Equation 17-12 could be solved using a known value of
V. to find a minimum acceptable cycle length:

Ny
1 - ( Ve )
3,600/
Thus, if in the example of Figure 17.2, the actual sum of

critical-lane volumes was determined to be 1,000 veh/h,
the minimum feasible cycle length would be:

(.min -

2+4 8
'( 1__{_@‘_) 0.3056

= 2625

—Cmin "

3,600/2.5

The cycle length could be reduced, in this case, from the
given 60 s to 30 5 (the effective minimum cycle length
used). This computation, however, assumes that the de-
mand (V) is uniformly distributed throughout the hour
and that every second of effective green time will be
used. Neither of these assumptions is very practical. In
general, signals would be timed for the flow rates occur-
ring in the peak 15 minutes of the hour. Equation 17-13
could be modified by dividing V', by a known peak-hour
factor (PHF) to estimate the flow rate in the worst
15-minute period of the hour. Similarly, most signals
would be timed to have somewhere between 80% and
95% of the available capacity actually used. Due to the

(17-13) =

.
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ormal stochastic variations in demand on a cycle-
y-cycle and daily basis, some excess capacity must be
rovided to avoid failure of individual cycles or peak pe-

“Hiods on a specific day. If demand, V.., is also divided by

ucpwied m1lmumn of l...lp.ll.,ll)’ (c‘cprew_d in da,u—

hese changcs transtorms Equaliun 17-13 to:

where: Cypy

B

2 (fﬁi - T -
A {(1 600/2.5)*0.95*0.90

Ny
[ v,
(3.600/k) * PHF * (vlc)

Cies = ——(17-14)

= desirable cycle length, s
PHF = peak hour factor
vle = desired volume to capacity ratio

~ All other variables are as previously defined.

Returning to the example, if the PHF is 0.95 and it
“is desired to use no more than 90% of available capacity

'durmg the peak 15-minute period of the hour, then:

2%4
1 {}[H]

= 4265

0.188

In practical terms, this would lead to the use of a 45-
The relationship between a desirable cycle length,
the sum of critical-lane volumes, and the target v/c ratio
is quite interesting and is illustrated in Figure 17.4.
Figure 17.4 illustrates a typical relationship for a
specified number of phases, saturation headway, lost
times, and peak-hour factor. If a vertical is drawn at any

~ second cycle length.

- specified value of V. (sum of critical lane volumes), it is
" tlear that the resulting cycle length is very sensitive to

the target v/c ratio. As the curves for each v/c ratio are
eventually asymptotic to the vertical, it is not always
_possible to achieve a specified v/c ratio.
Consider the case of a three-phase signal, with
1, = 4 s/phase, a saturation headway of 2.2 siveh, a
PHF of 0.90 and V. = 1,200 veh/h. Desirable cycle
lengths will be computed for a range of target v/c ratios
varying from 1.00 to 0.80.
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Desirable Cycle Length, Cy,,

| we=080 085 090 0.95

| Y

Sum of Critical-Lane Volumes, V,

Figure 17.4: Desirable Cycle Length vs. Sum of Critical
Lane Volumes

i - G4 _
des = [ 1200
(3.600/2.2) *0.90* 1.00 |
12
=—— = .8=65s
~ 0.1852
: i, S
(dp'x ' r I_.E{:}O 1
(3.600/2.2)*0.90*0.95
12
=—=_ = 8§43=>85s
0.1423
i o _3*4
(dr'.w = poe " __lg[!(l_ l
(3,600/2.2) *0.90* 0.90
12
2 = 1267=130s
= 0.0947
_ < i
Crh'.\' T { I‘E(_)(}_ N
T | (3.600/2.2) *0.90%0.85
12
- S = 289.9=5290s
0.0414
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3*4

(' y = - r—— =Y ey
des B r- ’2_{}0 -
.l(lﬁf}ﬂfl;' *0.90*(.80

12

= —— — = —648.68
—0.0185

For this case, reasonable cycle lengths can provide tar-
get v/e ratios of 1.00 or 0.95. Achieving v/c ratios of
0.90 or 0.85 would require long cycle lengths beyond
the practical limit of 120 s for pretimed signals. The 130
s cycle needed to achieve a /e ratio of 0.90 might be ac-
ceptable for an actuated signal location. However, a v/c
ratio of (.80 cannot be achieved under any circum-
stances. The negative cycle length that results signifies
that there is not enough time within the hour to accom-
modate the demand with the required green time plus
the 12 s of lost time per cycle. In effect, more than 3,600
s would have to be available to accomplish this.

A Sample Problem

Consider the intersection shown in Figure 17.5. The
critical directional demands for this two-phase signal
are shown with other key variables. Using the time-
budget and critical-lane concepts, determine the number
of lanes required for each of the eritical movements and
the minimum desirable cycle length that could be used.
Note that an initial cycle length is specified, but will be
modified as part of the analysis.

Assuming that the initial specification of a 60.¢

cycle is correct and given the other specified conditions
the maximum sum of critical lanes that can be accom.
modated is computed using Equation 17-12:

3.(){1{}')

I
Ve =—|3,600 — 2%4%* -
bl ( 60

] = 1,357 veh/h

The critical SB volume is 1,200 veh/h, and the critical
EB volume is 1,800 veh/h. The number of lanes each
must be divided into is now to be determined. What-
ever combination is used, the sum of the critical-lane
volumes for these two approaches must be below
1,357 veh/h. Figure 17.6 shows a number of possible
lane combinations and the resulting sum of critical
lane volumes. As can be seen from the scenarios of
Figure 17.6, in order to have a sum of critical-lane
volumes less than 1,357 veh/h, the SB approach must
have at least two lanes, and the EB approach must
have three lanes. Realizing that these demands proba-
bly reverse in the other peak hour (AM or PM), the
N=S artery would probably require four lanes, and the
E-W artery six lanes.

This is a very basic analysis, and it would have to
be modified based on more specific information regard-
ing individual movements, pedestrians, parking needs,
and other factors.

If the final scenario is provided, V, is only 1,200
vel/h. It is possible that the original cycle length of 60 s

|

C=60s

t; = 4 siphase
2 phases |
PHEF =095
target wle = .90
h =23 siveh

‘ v

1,200
1 veh/h

[ Figure 17.5: Sample Problem Using the Time-Budget and Critical-Lane Concepts

> 1800 vehih

= (‘dﬂ ==

4 1,200

1,800

600 600

SO0
900

V., = 600 + 900 = 1,500 veh'h NG

Figure 17.6: Possible Lane Scenarios for Sample Problem

V.= 1,200 + 1,800 = 3,000 veh/h NG

1,200
f—— o)
— 900
V.= 1,200 + 900 = 2,100 veh/h NG
600 600
600
60
6N
V. = 600 + 600 = 1,200 veh/h OK

ould be reduced. A minimum desirable cycle length
may be computed from Equation 17-14:

| 1200 j
| (3,600/2.3) #0.95 *0.90

. - =T7717=80s

0.103
.\ The resulting cycle length is larger than the original 60 s
because the equation takes both the PHF and target v/c ra-
. tios into account. Equation 17-12 for computing the maxi-
=mmm vatue of ¥, does notand assumes fultuse of capacity
£ (v/c = 1.00) and no peaking within the hour. In essence,
w=-the 2 < 3 lane design proposal should be combined with
i an 80 s cycle length to achieve the desired results.

s This problem illustrates the critical relationship
" between number of lanes and cycle lengths. Clearly,
" there are other scenarios that would produce desirable

b results. Additional lanes could be provided in either di-

© rection, which would allow the use of a shorter cycle

b length. Unfortunately, for many cases, signal timing is

5 considered with a fixed design already in place. Only

where right-of-way is available or a new intersection is
|- being constructed can major changes in the number of
“ lanes be considered. Allocation of lanes to various
~ movements is also a consideration. Optimal solutions

are generally found more easily when the physical de-
sign and signalization can be treated in tandem.

If, in the problem of Figure 17.5, space limited
both the EB and SB approaches to two lanes, the result-
ing V.. would be 1,500 veh/h. Would it be possible to ac-
commodate this demand by lengthening the cycle
length? Again, Equation 17-14 is used:

Cd-'.w T
"~ [ (3.600/2.
8

= — = —66.1 s NG
=0.121

The negative result indicates that there is no cycle length
that can accommodate a V. of 1,500 veh/h at this location,

17.4 The Concept of Left-Turn
Equivalency

The most difficult process to model at a signalized inter-
section is the left turn. Left wmns are made in several dif-
ferent modes using different design elements. Left tums
may be made from a lane shared with through vehicles
(shared-lane operation) or from a lane dedicated to left-
turning vehicles (exclusive-lane operation). Traffic signals
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I I [] Through Veh

W Left-Tumn Veh

[ l'_‘iittc_l'.-".'f_: Sample Equive

I

:nce Observation on a Signalized Intersection Approach

may allow for permitted or protected left tums, or some
combination of the two.

Whatever the case, however, a left-turning vehicle
will consume more effective green time traversing the
intersection than will a similar through vehicle. The
most complex case is that of a permitted left turn made
across an opposing vehicular flow from a shared lane. A
left-turning vehicle in the shared lane must wait for an
acceptable gap in the opposing flow. While waiting, the
vehicle blocks the shared lane, and other vehicles (in-
cluding through vehicles) in the lune are delayed behind
it. Some vehicles will change lanes to avoid the delay.
while others are unable to and must wait until the left-
turner successfully completes the turn,

Many models of the signalized intersection ac-
count for this in terms of “through vehicle equivalents™
(i.e.. how many through vehicles would consume the
same amount of effective green time traversing the stop-
line as one left-turning vehicle?). Consider the situation
depicted in Figure 17.7. If both the left lane and the right
lane were observed, an equivalence

In the same amount of time, the left lane di
charges five through vehicles and two left-turning
vehicles, while the right lane discharges eleven
through vehicles.

In terms of effective green time consumed, this observa-
tion means that eleven through vehicles are equivalent
to five through vehicles plus two left turning vehicles. It
the left-turn equivalent is defined as £, -

11 =5+ ZL;;

tilar to the fol-

It should be noted that this computation holds only for
the prevailing characteristics of the approach during the
observation period. The left-turn equivalent depends upon
a number of factors, including how left turns are made
(protected, permitted, compound), the opposing traffic

flow, and the number of opposing lanes. Figure 17,8 -l

illustrates the general form of the relationship for through

vehicle equivalents of permitted left turns. B

The left-turn equivalent, £;;, increases as the
opposing flow increases. For any given opposing flow,
however, the equivalent decreases as the number of oppos-
ing lanes is increased from one to three. This latter rela-
tionship is not linear, as the task of selecting a gap through
multilane opposing traffic is more difficult than selecting a
gap through single-lane opposing traffic. Further, in a mul-
tilane traffic stream, vehicles do not pace each other side-
by-side, and the gap distribution does not improve as
much as the per-lane opposing flow decreases.

ECTIVENESS

DELAY AS A MEASURE OF E

To illustrate the vse of left-turn equivalents in
odeling, consider the following problem:

“An approach to a signalized intersection has two
_lanes, permitted left-turn phasing, 10% left-turning
vehicles, and a left-turn equivalent of 5.0. The sat-
" uration headway for through vehicles is 2.0 s/veh.
Determine the equivalent saturation flow rate and
headway for all vehicles on this approach.

The first way to interpret the left-turn equivalent is
hat each left-turning vehicle consumes 5.0 times the
eifective green time as a through vehicle. Thus, for the
situation described, 10% of the traffic stream has a satu-
ration headway of 2.0 X 5.0 = 10.0 s/veh, while the

- remainder (90%) have a saturation headway of 2.0

s/veh. The average saturation headway for all vehicles

is, therefore:
h = (0.10%10.0) + (0.90*2.0) = 2.80s/veh

This corresponds to a saturation flow rate of:
3,600

= 1,286 veh/hg/In
2.80

A number of models, including the Highway Ca-
pacity Manual approach, calibrate a multiplicative ad-
justment factor that converts an ideal (or through)
saturation flow rate to a saturation flow rate for prevail-
ing conditions:

Opposing Flow, V.,

|
|
|
|
|

Figure 17.8: Relationship Among Left-Turn Equiva-
I_Icnls, Opposing Flow, and Number of Opposing Lanes

Lo

Sprev = Sideat* ST
ST T, — (36000,
Frp = toref = VO e ot that)
= *":.fr.d.J (17-15)
et
where: s, = saturation flow rate under prevailing
conditions, veh/hg/In
Sigeat = Saturation flow rate under ideal condi-
tions, veh/hg/ln
frr = left-turn adjustment factor
Moy = saturation headway under ideal condi-
tions, s/veh
fprep = saturation headway under prevailing

conditions, s/veh

In effect, in the first solution, the prevailing headway,
N ypess was computed as follows:

Rprev = (Prr EppMigew) + [(1 = Prp)higea] (17-16)

Combining Equations 17-15 and 17-16:

hrnl'r'rn’
fur = G
(Prr Evr Bideat) + [{ Lr) ‘uh'u.f]
; 1 ) 1 )
i = PirEpr + (1= Pyy) 1+ Pp(Epp — 1)

(17-17)

The problem posed may now be solved using a lefi-
turn adjustment factor. Note that the saturation headway
under ideal conditions is 3,600/2.0 = 1,800 veh/hg/In.

Then:
— - ! ——
fir =17 0.10(5 - 1)
= 1800*0.714 = 1,286 veh/hg/In

= 0.714
Sprev

This, of course, is the same result.

It is important that the concept of left-turn equiva-
lence be understood. Its use in multiplicative adjust-
ment factors often obscures its intent and meaning. The
fundamental concept, however, is unchanged—the
equivalence is based on the fact that the effective green
time consumed by a left-turning vehicle is Epp times
the effective green time consumed by a similar through
vehicle:

Signalized intersection and other traffic models
use other types of equivalents that are similar. Heavy-
vehicle, local-bus, and right-turn equivalents have simi-
lar meanings and result in similar equations. Some of
these have been discussed in previous chapters, and oth-
ers will be discussed in subsequent chapters.

17.5 Delay as a Measure
of Effectiveness

Signalized intersections represent point locations within a
surface street network. As point locations, the measures
of operational quality or effectiveness used for highway
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sections are not relevant. Speed has no meaning at a
point, and density requires a section of some length for
measurement. A number of measures have been used to
characterized the operational quality of a signalized
intersection, the most common of which are:

= Delay
* Queuing
* Stops

These are all related. Delay refers to the amount of time
consumed in traversing the intersection—the difference
between the arrival time and the departure time, where
these may be defined in a number of different ways.
Queuing refers to the number of vehicles forced to
queue behind the stop-line during a RED signal phase:
common measures include the average queue length or a
percentile queue length, Stops refer to the percentage or
number of vehicles that must stop at the signal.

17.5.1 Types of Delay

The most common measure used is delay, with queuing
often used as a secondary measure of operational quali-
ty. While it is possible to measure delay in the field, it is
a difficult process, and different observers may make
judgments that could yield different results. For many
purposes, it is, therefore, convenient to have a predictive
model for the estimate of delay. Delay, however, can be
quantified in many different ways. The most frequently
used forms of delay are defined as follows:

L. Stopped-time-detay—Stopped-time detay s de=
fined as the time a vehicle is stopped in queue
while waiting to pass through the intersection;
average stopped-time delay is the average for
all vehicles during a specified time period.

¥

Approach delay. Approach delay includes
stopped-time delay but adds the time loss due to
deceleration from the approach speed to a stop
and the time loss due to reacceleration back to
the desired speed. Average approach delay is the
average for all vehicles during a specified time
period.

3. Time-in-queue delay. Time-in-queue delay is the
total time from a vehicle joining an intersection
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queue 1o its discharge across the STOP Jine on i
departure. Again, average time-in-queue delay

is the average for all vehicles during a specifieg
time period.

4. Travel time delay. This is a more conceptug}
value. It is the difference between the driver's
cxpected travel time through the intersectiop
(or any roadway segment) and the actual time
taken. Given the difficulty in establishing 4
“desired” travel time to traverse an intersection
this value is rarely used, other than as a philo-
sophic concept.

5. Control delay. The concept of control delay wag
developed in the 1994 Highway Capacity Man.
ual, and is included in the HCM 2000. It is the
delay caused by a control device, either a traffic
signal or a STOP-sign. It is approximately
equal to time-in-queue delay plus the :u:culcru.-
tion-deceleration delay component,

Figure 17.9 illustrates three of these delay types for a
single vehicle approaching a RED signal.

Stopped-time delay for this vehicle includes only
the time spent stopped at the signal. It begins when the
vehicle is fully stopped and ends when the vehicle be-
gins to accelerate. Approach delay includes additional
time losses due to deceleration and acceleration. It is
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und by extending the velocity slope of the approach-
g vehicle as if no signal existed; the approach delay is
the horizontal (time) difference between the hypotheti-
al extension of the approaching velocity slope and the
departure slope after full acceleration is achieved. Trayv-
¢l time delay is the difference in time between a hypo-
hetical desired velocity line and the actual vehicle path.
ime-in-queue delay cannot be effectively shown using
e vehicle, as it involves joining and departing a queue
several vehicles.
$ Delay measures can be stated for a single vehicle,
a5 an average for all vehicles over a specified time peri-
od, or as an aggregate total value for all vehicles over a
pecified time period. Aggregate delay is measured in
otal vehicle-seconds, vehicle-minutes, or vehicle-hours
or all vehicles in the specified time interval. Average in-
vidual delay is generally stated in terms of s/veh for a
specified time interval.

Basic Theoretical Models

- 17.5.2
i of Delay

& Virtually all analytic models of delay begin with a plot
& of cumulative vehicles arriving and departing vs. time at

~a given signal location. The time axis is divided into pe-

I riods of effective green and effective red as illustrated in
|8 Figure 17.10.
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ssumed o armve at a uniform rate of

Vehicles are ¢
flow of v vehicles per unit time, seconds in this case.
This is shown by the constant slope of the arrival curve.
Uniform arrivals assume that the inter-vehicle arrival
time between vehicles is a constant. Thus, il the arrival
flow rate, v, is 1,800 vehs/h, then one vehicle arrives
every 3,600/1,800 = 2.0 s.

Assuming no preexisting queue, vehicles arriving
when the light is GREEN continue through the intersec-
tion, (i.e., the departure curve is the same as the arrival
curve). When the light turns RED, however, vehicles
continue to arrive, but none depart. Thus, the departure
curve is parallel to the x-axis during the RED interval,
When the next effective GREEN begins, vehicles queued
during the RED interval depart from the intersection,
now at the saturation flow rate, s, in veh/s. For stable op-
erations, depicted here, the departure curve “catches up”
with the arrival curve before the next RED interval be-
gins (i.e., there is no residual or unserved queue left at
the end of the effective GREEN).

This simple depiction of arrivals and departures
at a signal allows the estimation of three critical
parameters:

= The total time that any vehicle i spends waiting
in the queue, W(i), is given by the horizontal
time-scale difference between the time of arrival
and the time of departure.

Actual Path

Distance

= stopped-time delay
approach delay
= travel time delay

D1
Time

‘ Figure 17.9: Ilustration of Delay Measures

Cumulative
Vel 5

Vehi =f===—===

L figure 17.10: Delay, Wai

Slope

ing Time, and Queue Length Ilustrated

(veh-secs)

Time
(secs)

Time t




* The total number of vehicles queued at any time
1, (1), is the vertical vehicle-scale difference be-
tween the number of vehicles that have arrived
and the number of vehicles that have departed.

* The aggregate delay for all vehicles passing
through the signal is the area between the arrival
and departure curves (vehicles X time).

Note that since the plot illustrates vehicles arriving in
queue and departing from queue, this model most closely
represents what has been defined as time-in-queue delay.
There are many simplifications that have been assumed,
however. in constructing this simple depiction of delay. It is
important to understand the two major simplifications:

* The assumption of a uniform arrival rate is a
simplification. Even at a completely isolated
location, actual arrivals would be random (i.e.,
would have an average rate over time), but inter-
vehicle arrival times would vary around an aver-
age rather than being constant. Within coordinated
signal systems, however, vehicle arrivals are in
platoons.

[tis assumed that the queue is building at a point
location (as if vehicles were stacked on top of
one another). In reality, as the queue grows, the
rate at which vehicles arrive at its end is the ar-
rival rate of vehicles (at a point), plus a compo-
nent representing the backward growth of the
queue in space.

Both of-these-ean-have a-significant effectonactus
al results. Modern models account for the former in
ways that will be discussed subsequently. The assump-
tion of a “point queue,” however is imbedded in many
modern applications, )

Figure 17.11 expands the range of Figure 17.10 to
show a series of GREEN phases and depicts three differ-
ent types of operation. It also allows for an arrival func-
tion, a(r), that varies, while maintaining the departure
function, d(r), described previously.

Figure 17.11 (a) shows stable flow throughout
the period depicted. No signal cycle “fails” (i.e., ends
with some vehicles queved during the preceding RED
unserved). During every GREEN phase, the departure
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arrival functio ] 1
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e
"[ Time, ¢
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{a) Stable Flow
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les
capacity function, c(f}
‘ arrival function, air) g
it
ity
e departure function, d{i)
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I (b) Individual Cycle Failures
Within a Stable Period
|
‘ arrival function, a{s}
I slope = ¢ =7
- - -
‘ - slope =5 slope =¢
e
I| =~/ departure functic m‘u
I |R]_ RIGIRIG[R] ‘oo
Capacity for
I Significant Period
‘ Figure 17.11: Three Delay Scenarios (Adapted with
permission of Transportation Research Board, National
Research Council, Washington DC, from V.F. Hurdle,
“Signalized Intersection Delay ,'\«Iud;.l. A Primer for the

Uninitiated,” Transportation Research Record 971, pes.
97, 98, 1984.)

with the arrival function. Total
aggregate delay during this period is the total of all the
triangular areas between the arrival and departure

function “catches up”
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forrn :Jr:l.x)f 2
ln FlL,l!lt. i? 11 (hj some n! the signal pha\m *fail”

“GREEN interval to depart the intersection). By the time
ﬂae entire period ends, however, the departure function has
ught up” with the arrival function and there is no resid-
al queue left unserved. This case represents a situation in
hich the overall period of analysis is stable (i.e., total de-
and does not exceed total capacity). Individual cycle fail-
tres within the period, however, have occurred. For these
“periods, there is a second component of delay in addition
to uniform delay. It consists of the area between the arrival
function and the dashed line, which represents the capacity

= of the intersection to discharge vehicles, and has the slope

. This type of delay is referred to as “overflow delay.”
Figure 17.11 (c) shows the worst possible case:
Every GREEN interval “fails” for a significant period of

" time, and the residual, or unserved, queue of vehicles

- continues to grow throughout the analysis period. In this
case, the overflow delay component grows over time,
- quickly dwarfing the uniform delay component.

— The latter case illustrates an important practical
operational characteristic. When demand exceeds ca-
pacity (v/c = 1.00), the delay depends upon the length
of time that the condition exists. In Figure 17.11 (b), the
condition exists for only two phases. Thus, the queue
and the resulting overflow delay is limited. In Figure 17.11
(c). the condition exists for a long time, and the delay
continues to grow throughout the oversaturated period.

= Components of De“!éy

In analytic models for predicting delay, there are three
distinct components of delay that may be identified:

» Uniform delay is the delay based on an assump-
tion of uniform arrivals and stable flow with no
individual cycle failures.

Random delay is the additional delay, above
and beyond uniform delay, because flow is ran-
domly distributed rather than uniform at isolated
intersections.

Overflow delay is the additional delay that oc-
curs when the capacity of an individual phase or

.

series of phases is less than the demand or arrival

flow rate.
In addition, the delay impacts of platoon flow (rather
than uniform or random) is treated as an adjustment to
uniform delay. Many modern models combine the ran-
dom and overflow delays into a single function, which is
referred to as “overflow delay,” even though it contains
both components.

The differences between uniform,
platooned arrivals are illustrated in Figure 17.12. As
noted, the analytic basis for most delay models is the
assumption of uniform arrivals, which are depicted in
Figure 17.12 (a). Even at isolated intersections, however,
arrivals would be random, as shown in Figure 17.12 (b).
With random arrivals, the underlying rate of arrivals is a
constant, but the inter-arrival times are exponentially
distributed around an average. In most urban and subur-
ban cases, where a signalized intersection is likely to be
part of a coordinated signal system, arrivals will be in
organized platoons that move down the arterial in a
cohesive group. The exact time that a platoon arrives at
a downstream signal has an enormous potential effect on
delay. A platoon of vehicles arriving at the beginning of
the RED forces most vehicles to stop for the entire
length of the RED phase. The same platoon of vehicles
arriving at the beginning of the GREEN phase may flow
through the intersection without any vehicles stopping.
In both cases, the arrival flow, v, and the capacity of the
intersection, ¢, are the same. The resulting delay, how-
ever, wuu!d vary significantly. The existence of platoon

T
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Random Arrivals

random, and

—

(b}
| L1 111§ —
(i L1l 11—
l = Platooned Arrivals—No Theoretical
Solution Availahle
(eh
Figure 17.12: Arrival Patterns Compared
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arrivals, therefore, necessitates a significant adjustment
to models based on theoretically uniform or random
flow.

Webster’s Uniform Delay Model

Virtually every model of delay starts with Webster's
model of uniform delay. Initially published in 1958 [7],
this model begins with the simple illustration of delay de-
picted in Figure 17.10, with its assumptions of stable flow
and a simple uniform arrival function. As noted previous-
ly, aggregate delay can be estimated as the area between
the arrival and departure curves in the figure. Thus, Web-
ster’s model for uniform delay is the area of the triangle
formed by the arrival and departure functions. For clarity,
this triangle is shown again in Figure 17.13.

The area of the aggregate delay triangle is simply
one-half the base times the height, or:

|
UD, = =R
SRV

where: /D, = aggregate uniform delay, veh-secs
R =length of the RED phase, s
V = total vehicles in queue, vehs

By convention, traffic models are not developed in
terms of RED time. Rather, they focus on GREEN time.

Thus, Webster substitutes the following equivalence for
the length of the RED phase:

r-cl-(5)

where: C = cycle length, s
g = effective green time, s

In words, the RED time is the portion of the cycle length
that is not effectively green. :

The height of the triangle, V, is the total number of ;

vehicles in the queue. In effect, it includes vehicles arriv-
ing during the RED phase, R, plus those that join the end
of the queue while it is moving out of the intersection
(i.e., during time ¢, in Figure 17.13). Thus, determining
the time it takes for the queue to clear, 7., is an important
part of the model. This is done by setting the number of
vehicles arriving during the period R + 1, equal to the
number of vehicles departing during the period ., or:

v(R + 1) = st,

=

I

=

-
|=
|

|

o A

Then, aggregate delay can be stated as:

e i .4 B[ ws
= UD,=_-RV = —-(_"-[1 — 5’-‘ [—2—] (17-18)
ad z 2 s —v

c|

‘where all variables are as previously defined.
: Equation 17-18 estimates aggregate uniform delay
“in vehicle-seconds for one signal cycle. To get an esti-

= mate of average uniform delay per vehicle, the aggre-

gate is divided by the number of vehicles arriving during

(17-19)

Cumulative
Vehicles

ptmmm e ————

Slope =

Aggregate Delay

Figure 17.13: Webster's Uniform Delay Model [lustrated

h-secs)

Time
(secs)

Another form of the equation uses the capacity, ¢,
rather than the saturation flow rate, s. Noting that

- § = ¢/(g/C), the following form emerges:

| 1 - 4.2 0.50C[1 —
1 — {":.'L-)X
{17-20)

where: /D = average uniform delay per vehicles, s/veh
C = cycle length, s
g = effective green time, s
v = arrival flow rate, veh/h
¢ = capacity of intersection approach, veh/h
X = wlc ratio, or degree of saturation

This average includes the vehicles that arrive and depart
on green, accruing no delay. This is appropriate. One of
the objectives in signalizations is to minimize the num-
ber or proportion of vehicles that must stop. Any meaning-
ful quality measure would have to include the positive
impact of vehicles that are not delayed.

In Equation 17-20, it must be noted that the maxi-
mum value of X (the v/c ratio) is 1.00. As the uniform
delay model assumes no overflow, the /c ratio cannot
be more than 1.00.

Modeling Random Delay

The uniform delay model assumes that arrivals are uni-
form and that no signal phases fail (i.e., that arrival flow
is less than capacity during every signal cycle of the
analysis period).

At isolated intersections, vehicle arrivals are more
likely to be random. A number of stochastic models have
been developed for this case, including those by Newall
(8], Miller [9,10], and Webster [7]. Such models assume
that inter-vehicle arrival times are distributed according
to the Poisson distribution, with an underlying average
arrival rate of v vehicles/unit time. The models account
for both the underlying randomness of arrivals and the
fact that some individual cycles within a demand period
with /e < 1.00 could fail due to this randomness. This
additional delay is often referred to as “overflow delay,”
but it does not address situations in which v/c = 1.00
for the entire analysis period. This text refers to addi-
tional-delay due to randomness as “random delay,” RD,
to distinguish it from true overflow delay when
we = 1.00. The most frequently used model for ran-
dom delay is Webster’s formulation:

5

.. w— 17-21
20(1 — X) Aeme

RD

where: RD = average random delay per vehicle, s/veh
X = vlc ratio

This formulation was found to somewhat overestimate

delay, and Webster proposed that total delay (the sum of

uniform and random delay) be estimated as:
D = 090(UD + RD) (17-22)

where: D = sum of uniform and random delay
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: In Equations 17-24, the average overflow delay is
hained by dividing the aggregate delay by the number
vehicles discharged within time T, ¢T. Unlike the for-

o

tischarged within time T. The delay triangle, therefore,

includes only the delay accrued by vehicles through time

4 7, and excludes additional delay that vehicles still
& stiick” in the queue will experience after time 7.

Modeling Overflow Delay

“Oversaturation™ is used to describe extended time peri-
ods during which arriving vehicles exceed the capacity
of the intersection approach to discharge vehicles. In
such cases, queues grow, and overflow delay, in addition
to uniform delay, accrues. As overflow delay accounts
for the failure of an extended series of pi'l;t.‘ic.‘i: it encom-
passes a portion of random delay as well.

Figure 17.14 illustrates a time period for which
vle = 1.00. Again, as in the uniform delay model, it is
assumed that the arrival function is uniform.

During the period of oversaturation, delay consists
of both uniform delay (in the triangles between the
capacity and departure curves) and overflow delay (in the
growing triangle between the arrival and eapaeity-curves):
The formula for the uniform delay component may be
simplified in this case, as the v/e ratio (X) is the maximum
value of 1.00 for the uniform delay component. Then:

0s0c(1 ~ & 050C[1 - ¢

l',"),,."_'__ TCOR i S - — DRSNS S
g g
; - 4t X =1 L. o}

((‘) : ((')“m

r

el §
0.50C|1 — 8] (17-23)
To this, the overflow delay must be added. Figure 17.15
illustrates how the overflow delay is estimated. The ag-
gregate and average overflow delay can be estimated as:

Equations 17-24 may use any unit of time for “T.”
The resulting overflow delay, OD, will have the same
units as specified for T, on a per-vehicle basis.

Equations 17-24 are time-dependent (i.e., the

oD,

0D

where: 0D, = aggregate overflow delay, veh-secs

OD = average overflow delay per vehicle, s/veh

Other

Vehicles

|
?
;

(e

Cumulative -

T

onger the period of oversaturation exists, the larger
delay becomes). The predicted delay per vehicle is aver-
£ aged over the entire period of oversaturation, 7. This
& masks, however, a significant issue: vehicles arriving
garly during time T experience far less delay than vehi-
les arriving later during time T. A model for average
overflow delay during a time period 7; through 75 may
- be developed, as illustrated in Figure 17.16. Note that
ithe delay area formed is a trapezoid, not a triangle.

The resulting model for average delay per vehicle
_during the time period T} through 75 is:

T
=~{X=1]

2

(17-24)

parameters as previously defined T T
T+ 19
Op=="——2(Xx~ 1) (17-25)
E— = AN i
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l‘jigum 17.15: Derivation of the Overflow Delay [ : Figure 17.16: A Model for Overflow Delay Between
Formula [ |_ Times Ty and T3

where all terms are as previously defined. Note that the
trapezoidal shape of the delay area results inthe Ty + T,
formulation, emphasizing the growth of delay as the
oversaturated condition continues over time. Also, this
formulation predicts the average delay per vehicle that
occurs during the specified interval, 77 through T5. Thus,
delays to vehicles arriving before time 7} but discharg-
ing after 7} are included only to the extent of their delay
within the specified times, not any delay they may have
experienced in queue before T7. Similarly, vehicles dis-
charging after 75 do have a delay component after T
that is not included in the formulation.

The three varieties of delay—uniform, random,
and overflow delay—can be modeled in relatively sim-
ple terms as long as simplifying assumptions are made
in terms of arrival and discharge flows, and in the nature
of the queuing that occurs, particularly during periods of
oversaturation. The next section begins to consider
some of the complications that arise from the direct use
of these simplified models.

Inconsistencies in Random
and Overflow Delay

17.5.3

Figure 17.17 illustrates a basic inconsistency in the
random and overflow delay models previously discussed.

Average | 1/
Overflow ',"‘
Delay 1/
/
Webster's "J,"
Random ';.-'f

Delay Model

/,
| ;’ Theoretical

7/ Overflow Delay

/ Maodel
==——"

|
T == /15

0.50 0.90 1.00

vie

10 R:‘Jlirr
Figure 17.17: Random and Overflow Delay Models
Compared (Adapted with permission of Transportation
Research Board, National Research Council, Washing-
ton DC, from Hurdle, V.E. “Signalized Intersection Delay
Maodel: A Primer for the Uninitiated, Transportation Re-
search Record 971, pg. 101, 1984.)
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The inconsistency oceurs when the /¢ ratio (X) is in the
vicinity of 1.00. When the v/c ratio is below 1.00, a ran-
dom delay model is used, as there is no “overflow™
delay in this case. Webster's random delay model
(Equation 17-22), however, contains the term (1-X) in
the denominator. Thus, as X approaches a value of 1.00,
rundom delay increases asymptotically to an infinite
value. When the w/e ratio (X) is greater than 1.00, an
overflow delay model is applied. The overflow delay
model of Equation 17-24, however, has an overflow
delay of 0 when X = 1.00, and increases uniformly
with increasing values of X thereafter.

Neither model is accurate in the immediate vicini-
ty of w/c = 1.00. Delay does not become infinite at
vic = 1.00. There is no true “overflow” at v/e = 1.00,
although individual cycle failures due to random arrivals
do occur. Similarly, the overflow model, with overflow
delay = 0.0 s/veh at w/c = 1.00 is also unrealistic. The
additional delay of individual cycle failures due to the
randomness of arrivals is not reflected in this model.

In practical terms, most studies confirm that the uni-
form delay model is a sufficiently predictive tool {except
for the issue of platooned arrivals) when the v/c ratio is
0.85 or less. In this range, the true value of random delay is
minuscule, and there is no overflow delay. Similarly, the
simple theoretical overflow delay model (when added to
uniform delay) is a reasonable predictor when v/c = 1.15
or s0. The problem is that the most interesting cases fall in
the intermediate range (0.85 < w/c < 1.15), for which
neither model is adequate. Much of the more recent work
in delay modeling involves attempts to bridge this gap, cre-
ating a model that closely follows the uniform delay model
at low v/e ratios, and-approaches-the-theoretical-overflow
delay model at high v/c ratios (=1.15), producing “rea-
sonable” delay estimates in between. Figure 17.17 illus-
trates this as the dashed line.

The most commonly used model for bridging this
gap was developed by Akcelik for the Australian Road
Research Board’s signalized intersection analysis proce-
dure [11, 12]:

el [

oD =
41

(x—1)

5g
X, =067 + ( )
600

0D = 00s/vehforX = X, (17-26)
where: T = analysis period, h
X = vlc ratio

¢ = capacity, veh/h

s = saturation flow rate, veh/sg, (vehs per second
of green)
g = effective green time, s

The only relatively recent study resulting in large
amounts of delay measurements in the field was con-
ducted by Reilly, et al. [13] in the early 1980s to cali-
brate a model for use in the 1985 edition of the Highway
Capacity Manual. The study concluded that Equation
17-26 substantially overestimated field-measured values
of delay and recommended that a factor of 0.50 be in-
cluded in the model to adjust for this. The version of the
delay equation that was included in the 1985 Highway
Capacity Manual ultimately did not follow this recom-
mendation, and included other empiric adjustments to
the theoretical equation.

17.5.4 Delay Models in the HCM 2000

The delay model incorporated into the HCM 2000 [2]
includes the uniform delay model, a version of Akce-
lik’s overflow delay model, and a term covering delay
from an existing or residual queue at the beginning of
the analysis period. The model is:

d = d\PF + d,

- (3)

9= Q(H}T[{X = L}t

F dy
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=

i.'! o 5 p ]l
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(17-27)
where: d = control delay, s/veh
dy = uniform delay component, s/veh

PF = progression adjustment factor

dy = overflow delay component, s/veh
dy = delay due to pre-existing queue, s/veh

T = analysis period, h

X = wlc ratio

C = cycle length, s

= incremental delay factor for actuated
controller settings; 0.50 for all pre-timed
controllers

upstream filtering/metering adjustment
factor; 1.00 for all individual intersection
analyses

—
]

¢ = capacity, veh/h

17.5.5 Examples in Delay Estimation

Ljﬁxa__mple 17-1:

“has an approach flow rate of 1,000 veh/h, a saturation flow
rate of 2,800 veh/hg, a cycle length of 90 s, and a g/C ratio of
B ).55. What average delay per vehicle is expected under these

=Solution:

To begin, the capacity and v/c ratio for the intersection ap-
proach must be computed. This will determine what model(s)
are most appropriate for application in this case:

—taken into account.

The progression factor is an empiri
ed adjustment to uniform delay that accounts for the
effect of platooned arrival patterns. This adjustment is
detailed in Chapter 21. The delay due to preexisting
queues, ds, is found using a relatively complex model.
(see Chapter 21).

In the final analysis, all delay modeling is based on
the determination of the area between an arrival curve
and a departure curve on a plot of cumulative vehicles
vs. time. As the arrival and departure functions are per-
mitted to become more complex and as rates are permit-
ted to vary for various sub-parts of the signal cycle, the
models become more complex as well.

As this is a relatively low value, the uniform delay equa-
tion (Equation 17-19) may be applied directly. There is little
random delay at such a v/e ratio and no overflow delay 1o con-

sider. Thus:

1
: = 14.2 s/veh
i

(w) (1 — 0.55)

= = * = |

= (I I E T )
— 2,800

Note that this solution assumes that arrivals at the subject
intersection approach are random. Platooning effects are not

1,000
e e - = (.649
= vl X = TSa0—— =
o3 T
B
~ Example 17-2:

L.

How would the above result change if the demand flow rate
increased to 1,600 veh/h?

Solution:

In this case, the »/e ratio now changes to 1,600/1,540 =
© 1.039. This is in the difficult range of 0.85-1.15 for which
3 nple over-

neither the simple random flow model nor the
flow delay model are accurate. The Akcelik model of
Equation 17-26 will be used. Total delay, however, includes

both uniform delay and overflow delay. The uniform delay
component when v/e = 100 is given by Equation 17-23:

up = 0.50 ("(I L7 (-) = 0.50*%90*(1 — 0.55)
= 20.3 s/veh

Use of Akcelik’s overflow delay model requires that the

analysis period be selected or arbitrarily set. If a one-hour




