

Systèmes de soutènement et Méthodes de dimensionnement empiriques

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

■ Laboratoire de Mécanique des Roches – LEMR

Dr. F. SANDRONE

Systèmes de soutènement et Méthodes de dimensionnement empiriques

- 1. Effondrement du massif rocheux / du terrain autour des tunnels
- 2. Systèmes de soutènement des tunnels
 - 2.1. Soutènement temporaire et définitif
 - 2.2. Types de soutènement
- 3. Méthodes de dimensionnement des soutènements Vue d'ensemble
- 4. Méthodes empiriques: systèmes de classification des massif rocheux
 - 4.1. Bieniawski (système RMR)
 - 4.2. Barton (système Q)
 - 4.3. AFTES
 - 4.4. Hoek-Kaiser-Bawden (Système GSI)
 - 4.5. Terzaghi (+ modifié par Deere et al. 1970)

1. Examples d'effondrements des tunnels

1. Comportement du massif rocheux autour des tunnels

Sols /terrains de recouvrement et roches fortement altérées :

déformation rapide, déformation et écoulement du terrain

Blocs de roche et roches partiellement altérées :

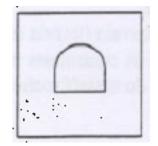
chutes de blocs par gravité

Roche massive avec peu de joints :

pas de problèmes de stabilité particuliers

Roche massive à grande profondeur :

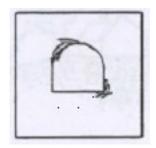
rupture induite par la contrainte, écaillage et éclatement avec possibilité d'éclatement de la roche


MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

1. Comportement du massif rocheux (1/3)

Dr F. SANDRONE

Faible niveau de contrainte :


Influence de la gravité

Roche massive soumise à de faibles niveaux de contrainte in situ. Réponse élastique linéaire avec peu ou pas de rupture de la roche

Haut niveau de contrainte:

Influence des conditions de contraintes

Roche massive soumise à de fortes contraintes in situ. L'écaillage, l'éboulement et l'écrasement commencent aux points de concentration de contraintes élevées au contour et se propagent dans la massif rocheux.

1. Comportement du massif rocheux (2/3)

Dr F. SANDRONE

Faible niveau de contrainte :

Influence de la gravité

Roche massive avec relativement peu de discontinuités, soumise à de faibles conditions de contrainte in situ. Des **blocs** ou des coins rocheux, isolés par l'intersection de discontinuités, **tombent ou glissent** sous l'effet de la gravité.

Haut niveau de contrainte:

Influence des conditions de contraintes

Roche massive présentant relativement peu de discontinuités, soumise à de fortes contraintes in situ. La rupture se produit par glissement sur les surfaces de discontinuité, ainsi que par écrasement et rupture des blocs de roche.

EPFL

1. Comportement du massif rocheux (3/3)

Faible niveau de contrainte :

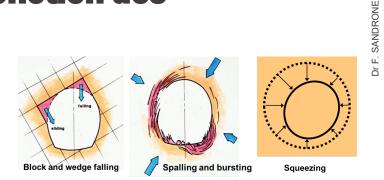
Influence de la gravité

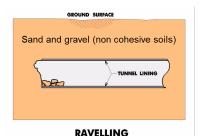
Roche fortement jointive soumise à de faibles contraintes in situ. Chute de petits blocs et coins imbriqués les uns dans les autres. La rupture peut se propager loin dans le massif rocheux si elle n'est pas contrôlée.

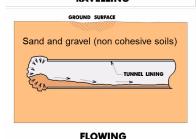
Haut niveau de contrainte:

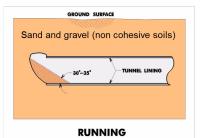
Influence des conditions de contraintes

Roche fortement jointive soumise à de fortes contraintes in situ. Rupture du massif rocheux entourant l'excavation par glissement sur les discontinuités et par écrasement des petits blocs. Le soulèvement du radier et la déformation par convergence des piédroits sont les résultats typiques de ce type de rupture.


1. Types d'effondrement en fonction des conditions géologiques


Tunnel en roche


- Roches en blocs : chute de blocs et de coins
- Roches à grande profondeur : écaillage et éclatement
- Roches faibles et pauvres : écrasement
- Roches fortement fracturées et concassées : déchaussement et ruissellement


Tunnels en terrains meubles

- Sols non cohésifs (sable et gravier) : déplacement, coulée, écoulement
- Sols cohésifs (argiles) : fluage, gonflement

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

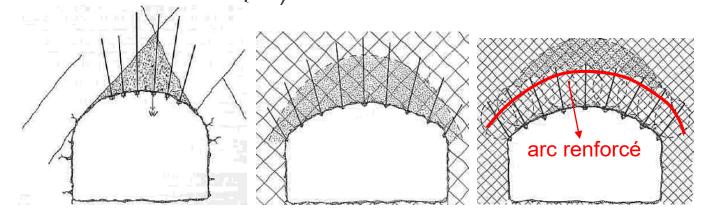
Systèmes de soutènement et Méthodes de dimensionnement empiriques

- 1. Effondrement du massif rocheux / du terrain autour des tunnels
- 2. Systèmes de soutènement des tunnels
 - 2.1. Soutènement temporaire et définitif
 - 2.2. Types de soutènement
- 3. Méthodes de dimensionnement des soutènements Vue d'ensemble
- 4. Méthodes empiriques: systèmes de classification des massif rocheux
 - 4.1. Bieniawski (système RMR)
 - 4.2. Barton (système Q)
 - 4.3. AFTES
 - 4.4. Hoek-Kaiser-Bawden (Système GSI)
 - 4.5. Terzaghi (+ modifié par Deere et al. 1970)

2.1 Soutènement temporaire et définitif

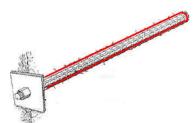
F. SANDROI

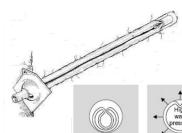
- Le soutènement temporaire est installé immédiatement après l'excavation. Il est conçu pour stabiliser à court terme les parois du tunnel et est souvent composé de :
 - Boulons / ancrages
 - Cintres métalliques
 - Béton projeté
- 2. Le revêtement permanent est réalisé après l'excavation en fonction de l'utilisation future du tunnel. Il est principalement conçu pour assurer la durabilité du tunnel et est souvent composé de :
 - Béton coulé sur place
 - Anneau de voussoirs préfabriqués
 - (Béton projeté)



EPFL

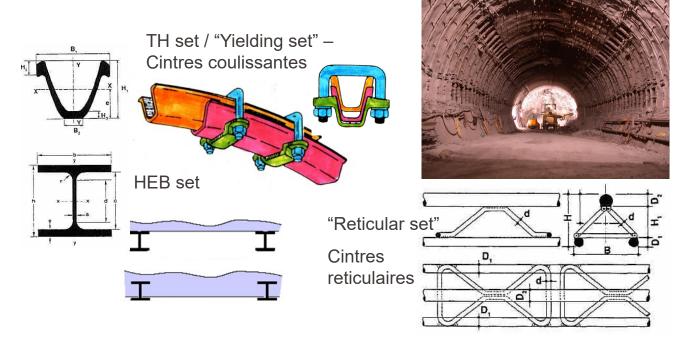
2.2 Support temporaire : Boulons de roche




Le **boulonnage** peut être localisé ou systématique (souvent couplé avec un treillis métallique).

1. Ancrage ponctuel

Ancrage scellé / reparti

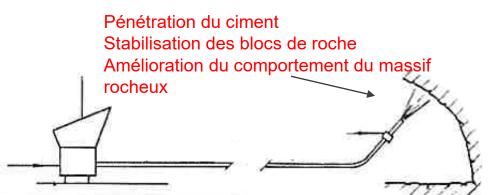


2.2 Support temporaire : Cintres métalliques

Les cintres métalliques sont une méthode de soutènement assez répandue et elles peuvent être utilisées avec plusieurs types de roches et de terrains. Ils sont souvent combinés avec du béton

projeté et des plaques

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS


2.2 Support temporaire : Béton projeté

Le **béton est projeté** sur les parois et la voûte du tunnel. Dans certains cas, le front de taille est également recouvert de béton projeté afin d'en assurer la stabilité

En général, ce type de soutènement est combiné avec des boulons ou des cintres.

Des fibres d'acier ou de polypropylène (2-6 cm) peuvent être ajoutées au mélange pour en augmenter la résistance et la ductilité.

2.2 Revêtement final : Béton coulé

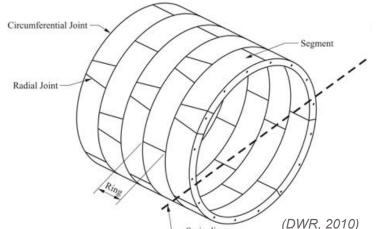
Dr F. SANDR

Les coffrages sont mis en place pour couler le revêtement final. Les systèmes de drainage et d'étanchéité sont généralement placés entre le soutènement temporaire et le revêtement en béton coulé.

La **membrane d'étanchéité** permet d'éviter les infiltrations d'eau souterraine à travers le revêtement final.

EPFL

2.2 Anneau de voussoirs


Ce type de revêtement est typique des tunnels excavés avec un tunnelier à bouclier.

Le nombre et la forme des voussoirs ainsi que leur épaisseur peuvent varier en fonction des exigences de dimensionnement.

Ce type de revêtement peut également être utilisé comme soutènement temporaire et complété par un revêtement final en béton coulé.

Faciles à mettre en place et à transporter, ils nécessitent des endroits où ils peuvent être stockés après leur fabrication. Dans certains cas ils peuvent aussi être préfabriqués directement sur place.

Systèmes de soutènement et Méthodes de dimensionnement empiriques

- 1. Effondrement du massif rocheux / du terrain autour des tunnels
- 2. Systèmes de soutènement des tunnels
 - 2.1. Soutènement temporaire et définitif
 - 2.2. Types de soutènement
- 3. Méthodes de dimensionnement des soutènements Vue d'ensemble
- 4. Méthodes empiriques: systèmes de classification des massif rocheux
 - 4.1. Bieniawski (système RMR)
 - 4.2. Barton (système Q)
 - 4.3. AFTES
 - 4.4. Hoek-Kaiser-Bawden (Système GSI)
 - 4.5. Terzaghi (+ modifié par Deere et al. 1970)

3. Vue d'ensemble des méthodes de dimensionnement des systèmes de soutènements

- 1. Méthodes empiriques : Méthodes basées sur les systèmes de classification des massif rocheux
- 2. Méthodes analytiques : Interaction terrain-soutènement (milieu continu)
- 3. Méthode basée sur la pression du terrain (ex. réactions hyperstatiques principalement pour les tunnels à faible profondeur et pour la conception des anneaux de voussoirs)
- 4. Méthodes basées sur la modélisation numérique

Basés sur les systèmes de classification des massif rocheux les plus courants :

Bieniawski (système RMR), Barton (système Q), AFTES, Hoek-Kaiser-Bawden (système GSI)

Terzaghi (+ modifié par Deere et al. 1970)

Couramment utilisée pour estimer les soutènements des tunnels lors de la **phase** de dimensionnement/conception préliminaire.

ANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

Systèmes de soutènement et Méthodes de dimensionnement empiriques

- 1. Effondrement du massif rocheux / du terrain autour des tunnels
- 2. Systèmes de soutènement des tunnels
 - 2.1. Soutènement temporaire et définitif
 - 2.2. Types de soutènement
- 3. Méthodes de dimensionnement des soutènements Vue d'ensemble
- 4. Méthodes empiriques: systèmes de classification des massifs rocheux
 - 4.1. Bieniawski (système RMR)
 - 4.2. Barton (système Q)
 - 4.3. AFTES
 - 4.4. Hoek-Kaiser-Bawden (Système GSI)
 - 4.5. Terzaghi (+ modifié par Deere et al. 1970)

4. Massif rocheux

Blocs de roche intacte de différentes tailles

Massif rocheux = Roche intacte + discontinuités

Fractures, joints, failles

La roche à prendre en compte à l'échelle d'une excavation est donc le massif rocheux (taille de plusieurs dizaines de mètres). <u>Le massif rocheux in situ est constitué de blocs de roche intacte intercalés pas tous les types de discontinuités (joints, failles, etc.).</u>

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAIN

4. Méthodes de classification des massif rocheux

Les méthodes de classification des massif rocheux sont couramment utilisés comme outils de dimensionnement préliminaire

Leur principal objectif est de fournir à l'ingénieur une description qualitative et quantitative de la roche rencontrée avec l'excavation et d'en évaluer les propriétés mécaniques et hydrauliques à l'échelle du tunnel.

Les méthodes de classification des massif rocheux les plus utilisées sont les systèmes RMR (Rock Mass Rating System -Bieniawski, 1973), Q (Barton et al. 1974) et AFTES, 2003.

Ces méthodes de classification ont été développées principalement pour les ouvrages souterrains. Elles sont le plus souvent utilisés pour estimer les systèmes de soutènements nécessaires.

4. Avantages et limites

Avantages:

- Faciles et rapides à utiliser
- Accessibles sans grand dépenses (peu couteux)
- Possibilité de faire des comparaisons avec d'autres cas
- Peuvent aider à la conception finale du revêtement (simple identification des principales classes de soutènement → une analyse détaillée reste tout de même nécessaire)

Limites:

- Conception préliminaire de l'ouvrage
- Fonction de la qualité de la classification du massif rocheux :
 - 1. Les <u>paramètres</u> utilisés pour décrire le massif rocheux doivent définir correctement son comportement et ses caractéristiques.
 - 2. Le principal problème reste <u>l'objectivité</u> de l'estimation de ces paramètres
 - Difficultés à quantifier correctement tous les paramètres décrivant le comportement de chaque massif rocheux
 - 4. Il est possible de trouver de <u>grandes différences</u> en fonction de la méthode utilisée (car les méthodes ne se basent pas toutes sur les mêmes critères pour la classification).

4.1 Systèmes de classification du massif rocheux

Systèmes de classification utilisés pour le dimensionnement des ouvrages souterrains

S. No.	Classification System	Abbreviation	Applications	Year	Authors [References]
1	Rock load	-	Tunnels	1946	Terzaghi [5]
2	Stand-up time	-	Tunnels	1958	Lauffer [13]
3	Rock quality designation	RQD	General	1964	Deere [14,15]
4	Rock structure rating	RSR	Tunnels	1972	Wickham et al. [16]
5	Rock mass rating	RMR	tunnels	1973	Bieniawski [8]
6	Tunneling quality index	Q	Tunnels	1974	Barton et al. [9]
7	Geological strength Index	GSI	general	1995	Hoek et al. [12]
8	Rock mass Index	RMi	General	1995	Palmstrom [11]
9	Rock tunneling quality index by TBM excavation	Q_{TBM}	TBM tunnels	1999	Barton [17]
10	Continuous rock mass rating	CRMR	General	2003	Sen and Sadagah [18]
11	Rock mass excitability	RME	TBM tunnels	2006	Von Preinls et al. [19]
12	Rock mass quality rating	RMQR	General	2014	Aydan et al. [7]

4.1 Méthode RMR (Bieniawski)

F. SANDRON

Les **six paramètres** suivants sont utilisés pour choisir le système de soutènement à l'aide de la méthode RMR :

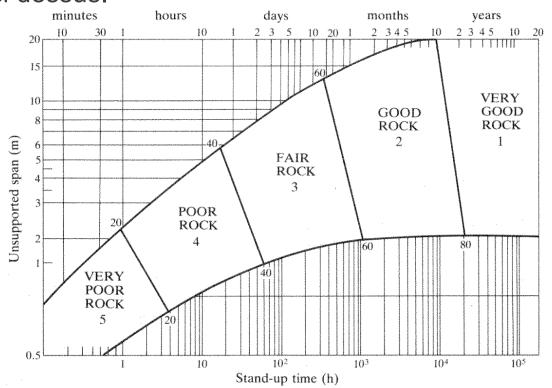
- 1. Résistance à la compression uniaxiale du massif rocheux
- 2. Désignation de la qualité de la roche (RQD)
- 3. Espacement des discontinuités
- 4. Conditions des discontinuités
- 5. Conditions des eaux souterraines
- 6. Orientation des discontinuités

RMR

MÉCANIOLIE DES BOCHES ET OLIVBAGES SOLITEBB

4.1 Système de soutènement selon RMR

RMR et qualité du massif rocheux


Notations RMR	81 – 100	61 – 80	41 – 60	21 – 40	< 20		
Classe du massif rocheux	А	В	С	D	E		
Description	Très bonne roche	Bonne roche	Moyenne roche	Mauvaise roche	Très mauvaise roche		
Durée moyenne excavation stable sans support	10 ans pour 15 m	6 mois pour 8 m	1 semaine pour 5 m	10 heures pour 2.5 m	30 minutes pour 0.5 m		
Cohésion du massif rocheux (kPa)	> 400	300 – 400	200 – 300	100 – 200	< 100		
Angle de frottement du massif rocheux	> 45°	35° – 45°	25° – 35°	15° – 25°	< 15°		

EPFL

4.1 Système de soutènement selon RMR

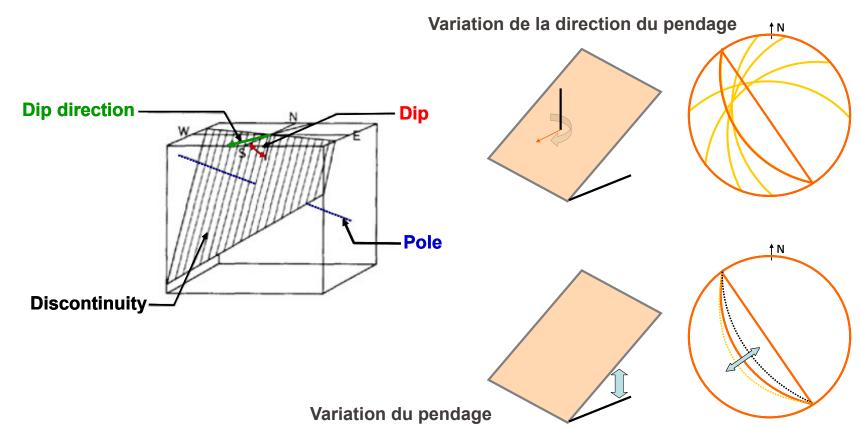
La portée maximale non soutenue et le temps d'attente avant la mise en place de soutènements peuvent être estimés à partir du tableau ci dessus.

4.1 Système de soutènement selon RMR

Ajustement du RMR pour l'excavation des tunnels

Pour utiliser le RMR pour la conception du soutènement d'un tunnel, la valeur du RMR doit être ajustée en fonction de l'alignement du tunnel par rapport à l'orientation des joints.

RMR ajusté = RMR original + ajustement


L'ajustement est compris entre 0 et -12.

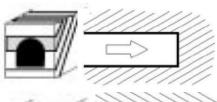
MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

4.1 Orientation des joints / discontinuités

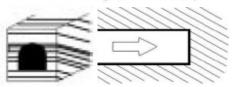
Dr F. SANDRONE

4.1 Discontinuités vs. Orientation excavation

Dr F. SANDRONE



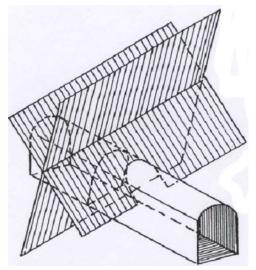
Discontinuités sub-horizontales



Discontinuités dans le sens du pendage

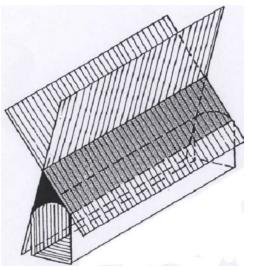
rupture de flexion et basculement

Discontinuités transversales excavation contre pendage



Discontinuités transversales excavation avec pendage

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS


4.1 Orientation de l'axe du tunnel par rapport aux discontinuités du massif rocheux

Les discontinuités structurelles majeures du massif rocheux influencent la formation de coins / blocs instables en fonction de l'orientation de l'axe du tunnel.

Petits blocs à soutenir

Plans perpendiculaires à l'axe du tunnel

Gros blocs à soutenir
Plans parallèles à l'axe du tunnel

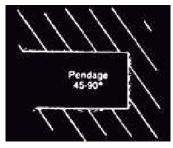
4.1 Méthode RMR Effets de l'orientation des joints / discontinuités

NDRONE

Strike \(\perp \) to tunnel axis

Direction perpendiculaire \(\hat{a}\) l'axe du tunnel

Drive with dip

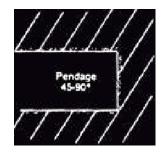

Creusement dans le sens du pendage
(avec)

Drive <u>against dip</u>

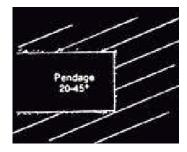
Creusement <u>dans le sens inverse du</u>

<u>pendage (contre)</u>

Pendage 45° - 90°



very favourable très favorable Pendage 20° - 45°



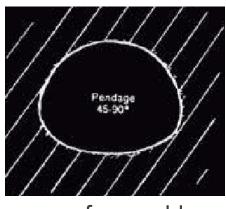
favourable favorable

Pendage 45° - 90°

fair moyen Pendage 20° – 45°

unfavourable défavorable

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

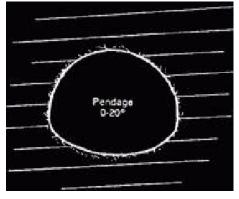

4.1 Méthode RMR Effets de l'orientation des joints / discontinuités

Strike // to tunnel axis

Direction parallèle à l'axe du tunnel

Sub-horizontal joints
Discontinuités
~horizontales

Pendage 45° – 90°


very unfavourable très défavorable

Pendage 20° – 45°

fair moyen

Pendage 0° – 20°

fair *moyen*

SANDRONE

4.1 Effets de l'orientation des joints/discontinuité

Ajustement selon l'orientation des joints								
Condition		Très avorable Favo		orable Moyer		Défavorable		Très défavorable
Correction	(0 –		2	- 5	- 10		– 12
Effets de l'orientation des joints pour l'excavation d'ouvrages souterrains								
Direction ⊥ à l'axe du tunnel, avancement <u>avec le pendage</u>				Direction ⊥ à l'axe du tunnel, avancement <u>contre</u> <u>le pendage</u>				
Pendage 45° – 90° Très favorable		Pendage 20° – 45° Favorable		Pe	Pendage 45° – 90° Moyen		Pendage 20° – 45° Défavorable	
Direction // à l'axe du tunnel			Joint sub-horizontal (Pendage 0° – 20°)					
Pendage 45° – 90° Très défavorable Pendage 20° – 45° Moyen		Indépendant du pendage Moyen						

SANDRONE

4.1 Systèmes de soutènement selon RMR

Notation ajustée = RMR initial - RA →

Ajustement : prend en compte l'orientation des familles des joints / discontinuités le plus significatives par rapport à la direction de creusement du tunnel

S'applique en général à des excavations de diamètre ~10 m et considère la mise en place d'un soutènement avec fonction permanente.

L'emploi de béton projeté fibré peut être considéré au lieu de l'utilisation d'un treillis métallique.

Rock mass class	Excavation	Rock bolts (20 mm diameter, fully grouted)	Shotcrete	Steel sets
I - Very good rock <i>RMR</i> : 81-100	Full face, 3 m advance.	Generally no support required except spot bolting.		
II - Good rock RMR: 61-80	Full face , 1-1.5 m advance. Complete support 20 m from face.	Locally, bolts in crown 3 m long, spaced 2.5 m with occasional wire mesh.	50 mm in crown where required.	None.
III - Fair rock RMR: 41-60	Top heading and bench 1.5-3 m advance in top heading. Commence support after each blast. Complete support 10 m from face.	Systematic bolts 4 m long, spaced 1.5 - 2 m in crown and walls with wire mesh in crown.	50-100 mm in crown and 30 mm in sides.	None.
IV - Poor rock RMR: 21-40	Top heading and bench 1.0-1.5 m advance in top heading. Install support concurrently with excavation, 10 m from face.	Systematic bolts 4-5 m long, spaced 1-1.5 m in crown and walls with wire mesh.	100-150 mm in crown and 100 mm in sides.	Light to medium ribs spaced 1.5 m where required.
V – Very poor rock RMR: < 20	Multiple drifts 0.5-1.5 m advance in top heading. Install support concurrently with excavation. Shotcrete as soon as possible after blasting.	Systematic bolts 5-6 m long, spaced 1-1.5 m in crown and walls with wire mesh. Bolt invert.	150-200 mm in crown, 150 mm in sides, and 50 mm on face.	Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required. Close invert.

(d'après Bieniawski 1989)

4.1 Systèmes de soutènement selon RMR

Limites du système RMR

Le système de classification et choix de soutènement RMR a été développé principalement pour **l'exploitation minière**, c'est-à-dire pour des tunnels de <u>taille limitée</u> (généralement entre 2 et 15 m).

Le choix de la méthode de soutènement <u>ne tient pas compte des effets de</u> taille de l'excavation.

La conception ne tient pas compte des exigences liées à l'exploitation et à l'utilisation de l'ouvrage (coefficient de sécurité).

4.1 Longueur et espacement des boulons selon la méthode RMR

F. SANDRONE

Il est recommandé de choisir la **longueur minimale des boulons** en tenant compte de **la plus grande des valeurs suivantes** :

- 1. deux fois l'espacement des boulons ;
- 2. trois fois l'espacement moyen des discontinuités pour les blocs rocheux critiques ;
- 3. 0.5B pour une taille d'excavation de B < 6m, ou 0.25B pour une taille d'excavation de B = 18 à 30m *

Pour les excavations *de plus de 18 m**, la longueur des boulons de paroi latérale doit être au moins égale à 1/5 de la hauteur de la paroi.

L'espacement maximal des boulons est recommandé à ½ longueur de boulon ou 1.5 fois l'espacement moyen des discontinuités.

Si le treillis métallique doit être ancré par les boulons, un espacement des boulons supérieur à 2 m rend la fixation du treillis pratiquement impossible.

*Attention ces valeurs vont au delà du range optimale d'application de la méthode – méthode empirique!

ÉCANIOLIE DES BOCHES ET OLIVBACES SOLITEBBAIN

4.1 Béton projeté selon la méthode RMR

- 1. L'épaisseur du béton projeté (en particulier si fibré) ne doit pas dépasser 20 cm en une fois ;
- 2. Des couches épaisses de béton projeté peuvent être appliquées occasionnellement sur de petites zones de roches de très mauvaise qualité.

En général, le boulonnage systématique avec du béton projeté armé de fibres devrait être utilisé pour le soutènement de la calotte du tunnel dans le cas où les tunnels soient utilisés par des personnes avec ou sans des machines (fonction définitive du soutènement).

4.1 Systèmes de soutènement selon RMR

Exemple: tunnel d'accès à une centrale hydroélectrique de 10 m de portée (~diamètre), hauteur des parois 5 m

Le massif rocheux granitique avec 3 familles de joints (1 subhorizontale, 1 sub-verticale et 1 sub-verticale // à l'axe du tunnel), RQD moyen de 88%, espacement moyen des joints de 0.24 m, surfaces des joints généralement en gradins (ondulés) et rugueuses, bien fermées et non altérées avec des taches d'altération occasionnelles observées, la surface d'excavation est mouillée mais sans égouttements, la résistance moyenne à la compression uniaxiale de la roche est de 160 MPa, le tunnel est excavé jusqu'à 150 m sous le niveau du terrain, où aucune contrainte anormale élevée in situ n'est attendue.

4.1 Soutènements rocheux utilisant le RMR

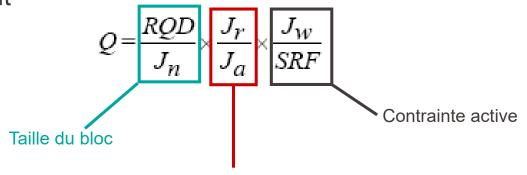
Résistance de la roche	160 MPa	Notation	12
RQD (%)	88%	Notation	17
Espacement des joints (m)	0.24 m	Notation	10
Condition de joints	en gradins, non altérés, bien jointifs / fermés	Notation	30
Eaux souterraines	humide / mouillé	Notation	7
		RMR	76

Condition d'orientation des discontinuités: moyenne, très favorable, très défavorable ⇒ très défavorable

Correction = -12; Valeur RMR ajustée = 64

EPFL

4.1 Soutènements rocheux utilisant le RMR


	1			7								
Rock mass class	Excavation	Rock bolts (20 mm diameter, fully grouted)	Shotcrete	Steel sets								
I - Very good rock PMP: 81-100	Full face, 3 m advance.	Generally no support re	Generally no support required except spot bolting.									
II - Good rock RMR: 61-80	Full face , 1-1.5 m advance. Complete support 20 m from face.	Locally, bolts in crown 3 m long, spaced 2.5 m with occasional wire mesh.	50 mm in crown where required.	None.								
III - Fair rock <i>RMR</i> : 41-60	l op heading and bench 1.5-3 m advance in top heading. Commence support after each blast. Complete support 10 m from face.	Systematic bolts 4 m long, spaced 1.5 - 2 m in crown and walls with wire mesh in crown.	50-100 mm in crown and 30 mm in sides.	None.								
IV - Poor rock RMR: 21-40	Top heading and bench 1.0-1.5 m advance in top heading. Install support concurrently with excavation, 10 m from face.	Systematic bolts 4-5 m long, spaced 1-1.5 m in crown and walls with wire mesh.	100-150 mm in crown and 100 mm in sides.	Light to medium ribs spaced 1.5 m where required.								
V – Very poor rock <i>RMR</i> : < 20	Multiple drifts 0.5-1.5 m advance in top heading. Install support concurrently with excavation. Shotcrete as soon as possible after blasting.	Systematic bolts 5-6 m long, spaced 1-1.5 m in crown and walls with wire mesh. Bolt invert.	150-200 mm in crown, 150 mm in sides, and 50 mm on face.	Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required. Close invert.								

Avancement en section complète, boulonnage ponctuel, espacement 2.5m, longueur 3m. 5 cm de béton projeté pourraient être nécessaires en voûte

Dr F. SANDRONE

4.2 Méthode de classification Q (Barton et al.)

La valeur numérique de l'indice Q varie sur une échelle logarithmique de 0.001 à un maximum de 1'000 et est définie comme suit

Résistance au cisaillement entre blocs

- RQD est la désignation de la qualité de la roche
- Jn est le nombre de familles de discontinuités
- Jr est l'index de rugosité du joint
- Ja est l'index d'altération du joint
- Jw est le facteur de réduction liés à la présence d'eau dans les joints
- SRF est le facteur de réduction des contraintes

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

4.2 Paramètres de la méthode de classification Q

La taille des blocs (RQD/Jn) représente la structure du massif rocheux, elle mesure la taille des blocs (valeurs extrêmes: 100/0.5 et 10/20).

La **résistance au cisaillement entre blocs (Jr/Ja)** représente la rugosité et les caractéristiques de frottement des surfaces du joint ou des matériaux de remplissage. Ce quotient est pondéré en faveur des joints rugueux, sains et fermés, favorables à la stabilité de l'excavation. Dans le cas de présence de remplissages argileux, la résistance est réduite de manière significative. Pour préserver l'excavation d'un collapse après de petits déplacements en cisaillement le contact du soutènement avec la paroi rocheuse doit être très serré.

Le facteur de **contrainte active (Jw/SRF)** se compose de deux paramètres liés aux contraintes:

- *SRF* est une mesure de la charge de dislocation (excavation à travers des zones de faille et des roches argileuses), de la contrainte de la roche (roche massive), des charges poussantes (roches plastiques déformables).
- Jw est une mesure de la pression de l'eau qui a un effet négatif sur la résistance au cisaillement des joints en raison d'une réduction de la contrainte normale effective, l'eau peut provoquer un ramollissement et un affaissement des joints avec remplissage argileux.

4.2 Systèmes de classification du massif Q

-
Ř
Z
⋖
S
Ľ.
_

Valeur Q	Classe	Qualité du massif rocheux
400 ~ 1000	А	Exceptionnellement bonne
100 ~ 400	А	Extrêmement bonne
40 ~ 100	А	Très bonne
10 ~ 40	В	Bonne
4 ~ 10	С	Moyenne
1 ~ 4	D	Mauvaise
0.1 ~ 1	E	Très mauvaise
0.01 ~ 0.1	F	Extrêmement mauvaise
0.001 ~ 0.01	G	Exceptionnellement mauvaise

Or F. SANDRONE

4.2 Dimension équivalente de l'excavation (De)

al., le

Ce paramètre relie la valeur de l'indice Q aux exigences de stabilité et de soutien des excavations souterraines (Barton et al., 1974). Il est obtenu en divisant le diamètre de l'excavation par le rapport de soutien de l'excavation (**Excavation Support Ratio**, **ESR**):

$$De = \frac{\text{Excavation dimension (m)}}{ESR}$$

Le facteur ESR est lié à l'utilisation prévue de l'excavation et il est associé à un facteur de sécurité pour le système de soutènement choisi pour garantir la stabilité de l'excavation.

4.2 Coefficient de soutènement de l'excavation (ESR)

Excavation support ratio

	Catégorie d'excavation	ESR
Α	Excavations temporaires de mines.	3 – 5
В	Excavations permanentes de mines, tunnels d'eau pour les projets hydroélectriques, tunnels pilotes, galeries et ouvertures partielles pour des grandes excavations.	1.6
С	Cavernes de stockage, stations de traitement des eaux, petits tunnels routiers et ferroviaires, chambres de compression et galéries d'accès dans un projet hydroélectrique.	1.3
D	Cavernes des centrales électriques souterraines, tunnels routiers et ferroviaires principaux, cavernes pour la protection civile, portails et intersections des tunnels.	1.0
Е	Centrales nucléaires souterraines, gares ferroviaires, installations sportives et publiques, usines souterraines.	0.8

4.2 Systèmes de soutènement selon Q

Dr F. SANDRONE

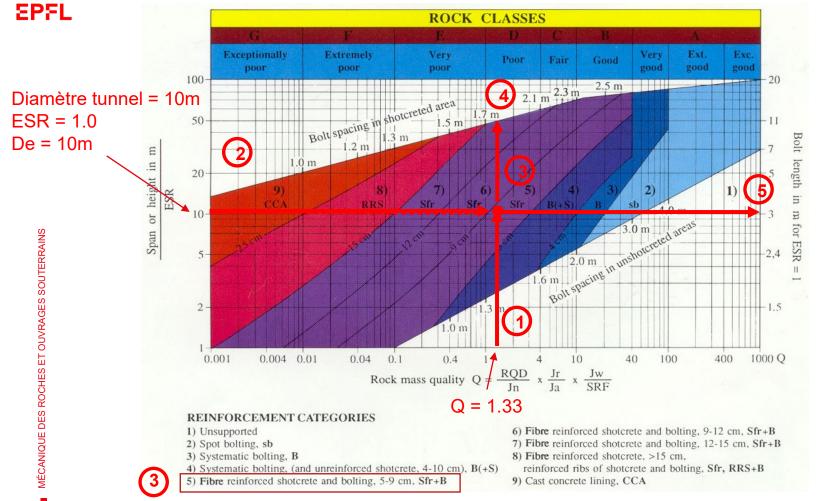
Méthodologie de conception du soutènement

Il s'agit d'une **conception empirique** basée sur des milliers de cas, qui permet de concevoir des systèmes de soutènement (permanents) en utilisant la valeur de l'index de classification Q.

Q est également une mesure de la stabilité de la roche par rapport à la taille de l'excavation.

Le choix du soutènement dépend de la taille effective de l'excavation (diamètre ou hauteur) ainsi que de l'usage prévu pour l'ouvrage (coefficient de sécurité).

4.2 Systèmes de soutènement selon Q : Voûte



Or F. SANDRONE

Diagramme Q

Le diagramme indique les exigences en termes de soutènement pour la voûte du tunnel (avec fonction permanente).

- L'axe horizontal représente la valeur Q du massif rocheux
- L'axe vertical gauche est la dimension équivalente (De) de l'excavation.
- Le point d'intersection définit la « zone d'exigence pour le système de soutènement », qui indique le type de soutènement ainsi que l'épaisseur du béton projeté (le cas échéant).
- En prolongeant le point d'intersection verticalement vers le haut (avec bp) / ou vers le bas (sans bp) on obtient l'espacement des boulons.
- En prolongeant le point d'intersection horizontalement vers la droite on obtient la longueur des boulons -> NB il faut considérer ici la taille réelle de l'excavation et non pas la taille équivalente (De).

Dr F. SANDRONE

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

4.2 Méthode Q: Longueur et espacement des boulons

Le **boulonnage ponctuel / localisé** est utilisé pour fixer des blocs de roche isolés.

L'espacement dépend de la taille du bloc, qui peut être estimée à partir des caractéristiques des joints.

Les boulons doivent être suffisamment longs pour obtenir un ancrage adéquat dans la roche stable au-delà du bloc (1~2 m dans la roche stable).

Pour le **boulonnage systématique**, l'espacement des boulons (fonction de l'espacement des joints) ainsi que leurs longueur doivent être estimés à partir du **graphique Q**.

Or F. SANDRONE

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

4.2 Méthode Q: Longueur et espacement des boulons

Notes sur le graphique Q

La longueur des boulons est déterminée en fonction de taille réelle (c'est-à-dire ESR=1). Elle peut aussi être estimée par l'équation suivante :

L = 1.4 + 0.184 * taille de l'excavation.

L'espacement des boulons est déterminé par la valeur Q, les valeurs sont différentes si la zone dans laquelle on se trouve prévoit ou pas du béton projeté.

4.2 Systèmes de soutènement selon Q

Or F. SANDRONE

Portée maximale non soutenue

Pour un massif rocheux d'assez bonne qualité, il est possible de laisser le contour de l'excavation sans soutènement pendant une certaine période (voir à long terme).

Il est possible de déterminer la portée maximale non soutenue en tenant compte de la valeur de Q et de l'utilisation prévue de l'excavation:

2 ESR Q^{0,4}

Exemple:

Q = 10, ESR = 1 -> portée maximale non soutenue = 5 m

4.2 Systèmes de soutènement selon Q : Parois

Conception du soutènement des parois

La hauteur des parois / piédroits doit être utilisée comme "dimension équivalente".

Les valeurs Q obtenues pour le massif peuvent être modifiées (améliorées) lors de la conception du soutènement des parois selon les règles suivantes:

Pour Q > 10,
$$Q_{wall} = 5 Q$$

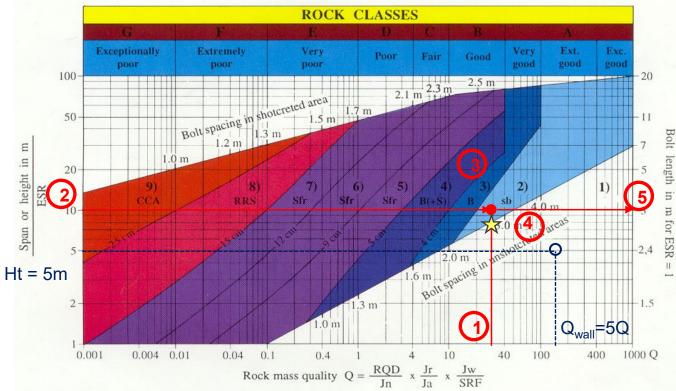
Pour 0.1 < Q < 10, $Q_{wall} = 2.5 Q$
Pour Q < 0.1, $Q_{wall} = Q$

4.2 Systèmes de soutènement selon Q

Exemple: tunnel d'accès à une centrale hydroélectrique de 10 m de portée (~diamètre), hauteur des parois 5 m

Le massif rocheux granitique avec 3 familles de joints (1 subhorizontale, 1 sub-verticale et 1 sub-verticale // à l'axe du tunnel), RQD moyen de 88%, espacement moyen des joints de 0.24 m, surfaces des joints généralement en gradins (ondulés) et rugueuses, bien fermées et non altérées avec des taches d'altération occasionnelles observées, la surface d'excavation est mouillée mais sans égouttements, la résistance moyenne à la compression uniaxiale de la roche est de 160 MPa, le tunnel est excavé jusqu'à 150 m sous le niveau du terrain, où aucune contrainte anormale élevée in situ n'est attendue.

4.2 Soutènements rocheux utilisant le système Q



r F. SANDRONE

	_		
RQD	88%	RQD	88
Nombre d'ensemble de joints	3 familles	J_n	6
Indice de rugosité des joints	en gradins (⇒ ondulé)	J_r	3
Nombre d'alteration des joints	inaltéré, quelques taches	J_{a}	1
Facteur d'humidity des joints	humide uniquement (excavation sèche ou afflux mineur)	$J_{\rm w}$	1
Facteur de reduction de contraintes	$\sigma_{\rm c}/\sigma_{\rm 1}$ = 160/(150×0.027) = 39.5	SRF	1
Q	(88/9) (3/1) (1/1)		29

EPFL

REINFORCEMENT CATEGORIES

- 1) Unsupported
 2) Spot bolting, sb
 - 3) Systematic bolting, B
 - 4) Systematic bolting, (and unreinforced shotcrete, 4-10 cm), B(+S)
 - 5) Fibre reinforced shotcrete and bolting, 5-9 cm, Sfr+B

- 6) Fibre reinforced shotcrete and bolting, 9-12 cm, Sfr+B
- 7) Fibre reinforced shotcrete and bolting, 12-15 cm, Sfr+B
- 8) Fibre reinforced shotcrete, >15 cm, reinforced ribs of shotcrete and bolting, Sfr, RRS+B
- 9) Cast concrete lining, CCA

4.2 Soutènements rocheux utilisant le système Q

Dr F. SANDF

Exigences en matière de **soutènement de la voûte** à partir du graphique Q:

- ✓ Boulonnage localisé
- ✓ (Espacement des boulons à 2.7 m)
- ✓ Longueur des boulons de 3 m
- ✓ Pas de béton projeté

Exigences en matière de soutènement de parois / piédroits:

✓ En général, aucun système de soutènement n'est nécessaire

4.2 Comparaison des méthodes Q et RMR

Dr F. SANDRONE

RMR (cf. Slide 37-39)	Avancement en section complète, boulonnage ponctuel, espacement 2.5m, longueur 3m. 5 cm de béton projeté en voûte (si besoin)
Q (cf. Slide 53-56)	Voûte: boulonnage ponctuel, espacement 2.7m, longueur 3m.
	Piédroits: pas de soutènement

4.2 Comparaison des méthodes Q et RMR

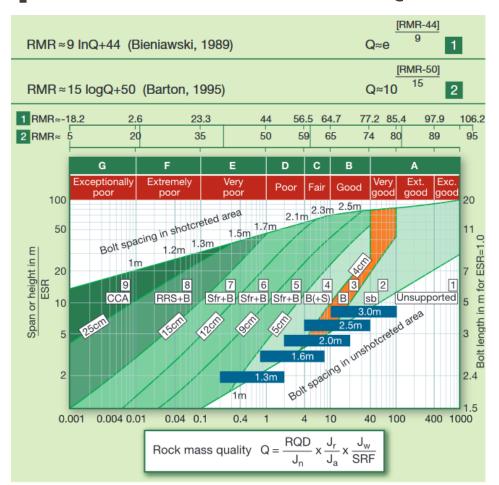
Dr F. SANDRONE

La méthode **RMR** ne prend pas en compte la taille de l'excavation, elle est généralement bien adaptée aux excavation de taille limitée (2 - 15m).

La RMR ne fait pas de distinction entre le soutènement de la voûte et celui des parois/piédroits.

Le caractère empirique des méthodes peut parfois donner lieu à des différences dans les résultats. En particulier:

Pour un massif rocheux de **qualité moyenne à très bonne**, les deux méthodes donnent des **résultats similaires**. Pour un massif rocheux de **très mauvaise qualité**, **la différence peut parfois être importante**:


- Le système Q n'est pas initialement conçu pour des roches des mauvaise qualité (méthode norvégienne).
- Le système RMR est plus adapté aux massif rocheux de qualité médiocre ou inférieure (orientation des joints).

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

4.2 Comparaison des méthodes Q et RMR

Dr F. SANDRONE

Or F. SANDRONE

EPFL

4.3 Recommandations de l'AFTES (GT 7)

Type de soutènement choisi en fonction des caractéristiques du massif rocheux, du type d'excavation et de l'environnement.

1. Critères relatifs au terrain :

- Résistance de la roche
- Discontinuités (nombre de familles, orientation, espacement)
- Potentiel d'altération
- Hydrogéologie (pression d'eau et perméabilité)
- Conditions de contraintes (contraintes naturelles et couverture)

2. Critères relatifs au type d'excavation :

- Forme et dimensions (géométrie)
- Méthode de construction

3. Critères environnementaux :

- Tassements
- Impact sur le système hydrogéologique
- Emploi de techniques de consolidation du terrain

4.3 Recommandations de l'AFTES (GT 7)

Non soutenu	Béton projeté	Boulons non scellés	Boulons scellés	Ancrages	Cintres lourdes en acier	Cintres en acier coulissantes	Voussoirs en acier	Voussoirs en béton	Voûte parapluie					
				M					و المادة الم					
Bouclier – pousse tube	Injections	Air comprimé	Congélation	En fonction des différents paramètres caractérisant critères, plusieurs tableaux ont été élaborés pour déterminer le type de soutènement le plus adapté : recommandé (bon) favorable (moyen)										
	H			×		orable (<mark>ma</mark> ble (très r	,							

4.3 Propriétés mécaniques du terrain : Tableau 0 (1/2)

Dr F. SANDRONE

Roche

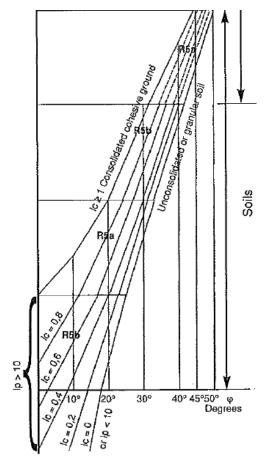
Sol

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

Catégorie	Description	Exemples	σ _c (MPa)
R1	Roche très résistante	Quartzite et basalte compétents	> 200
R2a		Granite, porphyre, grès et calcaire compétents	200 - 120
R2b	Roche résistante	Granites, calcaires et grès résistants, marbres, dolomies, conglomérats compacts	120 - 160
R3a	Roche modérément	Grès ordinaire, schiste siliceux et grès schisteux, gneiss	60 - 40
R3b	résistante	Schiste argileux modérément résistants, calcaire, marne compacte, conglomérats de faible consistance	40 - 20
R4	Roche peu résistante	Schiste tendre et bien fracturé, calcaire, gypse, marne et grès, poudingue, craie	20 - 6
R5a	Roche très faible	Marnes sableuses ou argileuses, sables marneuses, gypse altéré et craie	6 – 0.5
R5b	Sol cohésif consolidé	sables argileuses non consolidées, graviers	< 0.5
R6a	Sol plastique ou faiblement	Marnes altérées, argiles, sables argileuses, limons fins	
R6b	consolidé	Tourbe peu consolidée, limon, boue et sable fin sans cohésion	

4.3 Propriétés mécaniques du terrain : Tableau 0

(2/2)


Sol

 I_p = Indice plastique $\rightarrow W_L - W_p$

 W_L , W_p = Limites d'Atterberg

 I_c = Indice de consistence $\rightarrow \frac{W_L - W}{l_p}$

W = taux d'humidité naturelle

4.3 Tableau 1

	T		Shotcrate	R	ock bol	ts	Steel ribs		Segments			pipe		Special	
Mechanical behavour	Unsupported			Ungrowted	Grouted	Jacked barrs	Heavy	Light, ylekting	Steel	Concrete	Perforated tubes	Shield or jacked pipe	Grouting	Сопр. аёг	Freezing
				X	M	M			0	0	2°°		/ 14/	中	<u>/ / </u>
R1				۰		X			×	X	×	X		×	×
R2a	•			۰		X			×	×	×	X		×	X
R2b			0		9	X			×	×	×	\boxtimes		×	×
R3a			•	0	е	\boxtimes		6	×	×	×	\boxtimes		×	
R3b			•		•	\boxtimes		9		×	×	×			
R4	×		•	×			6	9							
R5a	X		•	X			0	8							
R5b	\boxtimes			\boxtimes	×		۰	•	•	•	•	0	•		
R6a	\boxtimes		\times	X	\times	×	Enf	Enf	ent ent	Bd		•	•		
R6b	\times		\times	X	\boxtimes	\times	3	i	e Ent Bit	Bcl Bif	Bit	Bif.	•		0

Legend

Enf : with forepoling

Bif: face lined

Bol : shield

4.3 Tableau 2

Die	scontinuiti	00		-		R	ock bol	ts	Stee	l ribs	Segn	nents		edjd		Special	I
(tunnel driven with explosives, with smooth-blasting) 1 — Rock (R1 to R4)		Unsupported		Shotzrete	Ungrouted	Grouted	Jacked bars	Недиу	Light, yielding	Stael	Concrete	Perforated tubes	Shield or jacked	Grouting	Comp. air	Freezing	
Number of sets	Orientation	Spacing (1)				\square	(2)	\Box			0	0	? <u>``</u>		JH.	力	
N1	. 1							X			×	X	X	X	\boxtimes	X	\bowtie
N2	Or2 or Or3	S1 to S3	0					X			×	X	X	X	×	X	\boxtimes
110		·S1				0		X			×	X	X	\boxtimes	×	X	\bowtie
N2		S2				0	9	X			×	×	X	X	×	X	\bowtie
N3 or	Random	S3			9	Gr	Gr 8	X				×	X	X		X	×
N4		S4	×		0	Gr a Bp	e Gr∞Bp	X	Blee Bp	o BleaBo				X		X	X
		S5	\boxtimes		•	×	Вр	∇		o Bl∞rBp				×		X	X
N5			X		•	X	Вр	X		e Bl _{ov} Bp	•			×	9	\boxtimes	×

2 - Soil (R5 and R6) Not applicable

Table 2

Nota

1 - For densest set

2 - Mortar grout preferred to resin when joints are open

Legend

Gr = with continuous mesh

Bp = with shotcrete

Bl = with timber or steel lagging

EPFL

4.3 Tableau 2a

Die	Discontinuities				R	ock bol	ts	Stee	ribs	Segn	ajnen		pipe		Special	
(tunnel driven with explore without smooth-blastin		losives, sting)	Unsupported	Shotcrete	Ungrouted	Grouted	Jacked bars	Heavy	Light, yielding	Steel	Concrete	Perforated tubes	Shield or jacked pipe	Grouting	Comp. air	Freezing
Number of sets	Orientation	Spacing (1)			X	(2)	M			0	0	2 ⁶⁻³ 6	I	144	中	
Dandam		S1			•	•	\times		0	×	×	\times	X	×	\times	\bowtie
Random N1	Random	S2			Gr	Gr •	X		•	×	×	X	\boxtimes	X	X	\bowtie
	Handon	S3	×		Gr	Gr •	X	Bi.	Bi		×	\boxtimes	\boxtimes		\times	\times
to N4		S4 or S5	X	•	\times	Вр	\boxtimes	⊕ Bl∝uBp	φ BlωBρ				\boxtimes		\times	\times
N5			X	9	\boxtimes	Во	X	Bl su Bo	e Bi∞Bp	•			×		\boxtimes	\times

Table 2 a

2 - Soil (R5 and R6)

Not applicable

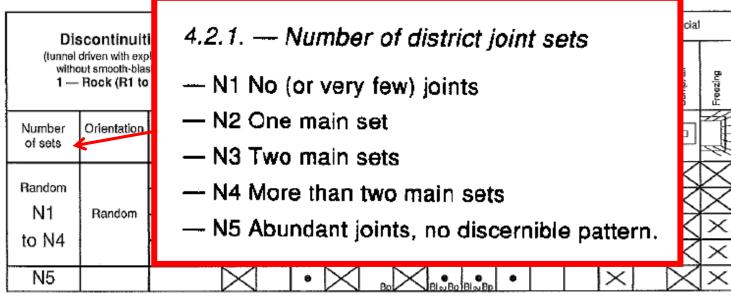
Nota

For densest set

2 — Mortar grout preferred to resin when joints are open

Legend

Gr = with continuous mesh


Bp = with shotcrete

BI = with timber or steel lagging

EPFL

4.3 Tableau 2a

2 — Soil (R5 and R6) Not applicable

Table 2 a

Nota

- For densest set

2 — Mortar grout preferred to resin when joints are open

Legend

Gr = with continuous mesh

Bp = with shotcrete

Bl = with timber or steel lagging.

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

4.3 Tableau 2a

Special

Freezing

Shield or Jacked pipe

Grouting

direction

Shotcrete

- OR1 Subhorizontal joints
- OR2 Tunnel perpendicular to strike

Rock bolts

Jacked bars

4.2.2. — Joint set orientation with respect to tunnel

Steel ribs

Segments

OR3 Intermediate

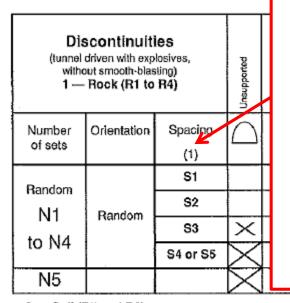
Unsupported

Spacing

OR4 Tunnel parallel to strike.

Not applicable

Nota


- For 2 — Mor Gr = with

Legend

EPFL

4.3 Tableau 2a

— S1 Very wide spacing : ___

S > 200 cm or RQD > 90 %

— S2 Wide spacing :

60 cm < S < 200 cm or 75 % < RQD < 90 %

— S3 Moderate spacing :

20 cm < S < 60 cm or 50 % < RQD < 75 %

— S4 Close spacing :

6 cm < S < 20 cm or 25 % < RQD < 50%

— S5 Very close spacing :

S < 6 cm or RQD < 25 %

2 — Soil (R5 and R6) Not applicable

Table 2 a

Nota

For densest set

2 — Mortar grout preferred to resin when joints are open

Legend

Gr = with continuous mesh

Bp = with shotcrete

Bl = with timber or steel lagging.

4.3 Tableau 2b

Discontinuities				Rock bolts			Steel ribs		Segments			pig	Special			
(machine-driven tunnel) 1 —Rock (R1 to R4)			Unsupported	Shotcrete	Ungrouted	Grouted	Jacked bars	Неачу	Light, yielding	Stoel	Concrete	Perforated tubes	Shield or Jacked pipe	Gugnous	Comp. sir	Freezing
Number of sets	Orientation	Spacing (1)		\triangle	M	(2)	M			\bigcirc	0	چ <u>ة</u> فو	Ţ	H	中	
N1							∇					∇	\times	\bigvee	×	\bigvee
N2	Or2 or Or3	S1 to S3	•			İ	$\backslash \! \setminus$					Λ		\triangle		\triangle
N2		S1 S2			6		X					\times	×	×	×	\boxtimes
N3		S3			0		X		6			\boxtimes	×		×	×
or		84		•	Gray Bo	Grau Bo	X		•				×		×	\times
N4		\$5	×	6		Gres Bo	∇	e Bl∞Bp	e Bl∝Bp	0						
N5			×	0	×	6 Gr∞Bo	$\overline{}$		e Bi _{or} Bo							

2 — Soil (R5 and R6) Not applicable

Table 2 b

Nota

For densest set
 Mortar grout preferred to resin when joints are open
 Gr = with continuous mesh
 Bp = with shotcrete

Legend

Bl = with timber or steel lagging

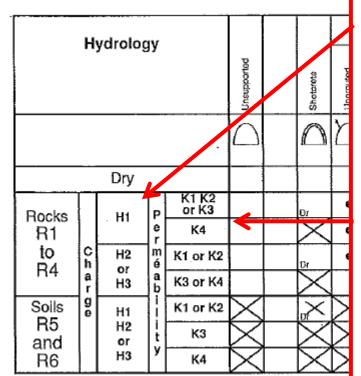
4.3 Tableau 3

Weathering potential			Shotzrete	Rock bolts			Steel ribs		Segments			edid	Special		
& swelling	Unsupported			Ungrouted	Grauted	Jacked bars	Hesvy	Light, yielding	Steel	Concrete	Perforated tubes	Shield or Jacked	Grouting	Comp. air	Freezing
			\bigcap	\boxtimes	M	M			0	0	2º2°%		HH	PA	
Exfoliation potential	×		•	Gree Bo	Gr ₀₀ Bp	Bi ov Bp	Blou Bp	Bl _{cu} Bp	0	•					
Dissolution potential (1)	×		•	X	×	×		в	•	•					0
Swelling potential	×		•(2)	×	Вр	Во	BleuBp	BlauBp							
Others													<u> </u>		

Table 3

Nota

If risk effectively exists (flowing water)
 Concrete only recommended if there is no flowing water in ground


Gr = with continuous mesh Legend

Bp = with shotcrete

Bl -- with timber or steel lagging

Dr F. SANDRONE

4.3 Tableau 4

Nota

Legend

- Mortar grout, or special wet-curing resins

 Or bentonite (preferable with very high permeable Dr = with drainage

Enf= with forepoling

H1 < 10 m

Low

H2 10 m - 100 m

Moderate

H3 > 100 m

High

Mass permeability

K1 $< 10^{-8} \text{ m/s}$

Very low to low

K2

10⁻⁸ to 10⁻⁶

Low to moderate

K3

10⁻⁶ to 10⁻⁴

Moderate to high

K4

 $> 10^{-4} \text{ m/s}$

High to very high

4.3 Tableau 5

Rock/ Soil cover				Rock bolts	Steel rib	s Seg	ments		pipe		Special	
		Unsupported				8		d tubes	jacked		.	
			CN1		σ _c / c	5 ₀ >	4	Perforated	Shield or jacked	Grouting	Comp. alr	Freezing
			CN2	2 <	σ _c / σ	5 ₀ < 4	4	يوم _ه		14	刺	
Rocks	Cover < D	\boxtimes	CNIO				2		X		\boxtimes	
R1	CN1		CN3		σ _c / σ	0 <	< 2		×			
to R4	CN2	×			VI			<u> </u>	×			
K4	CN3	\boxtimes	×	• _{SI} • _{SI}	$\triangleleft \times \mathbb{L}$	SI	SI SI	Sf	\times			
Soils	Cover < 1,5 D	X			< -	• •	9	0	6			
R5 and	o∘ moderate	X		\bowtie								
R6	σº > 10 MPa	\boxtimes		Si	S1 S1	St .	Sf •	Sí	• Sf	•		

Table 5

Sf = face support if necessary Legend

Facteur limitant → Couverture minimale (profondeur) nécessaire pour développer un effet de voûte au-dessus du tunnel, assurant ainsi la stabilité. Cette valeur minimale est d'environ 1 à 2 fois la largeur (diamètre) du tunnel.

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

4.3 Tableau 6

Tunnel size				Rock bolts			Steel ribs		Segments			ədid	Special		
	Unsupported	Unsupported	Shotorele	Ungrauted	Grouted	Jacked bars	Keavy	Light, yielding	Steel	Concrete	Perforated tubes	Shield or Jacked	Grouting	Comp. alr	Freezing
			\triangle	M	\square	M			0	0	7	IJ	H	中	W W W
D < 2,50 m			×	×	×	×			0			•			
2,5 m < D < 10 m										,		(1)			
D > 10 m			Bo		0		×	BoaFlev				\times			

Table 6

Nota 1 — Pipe jacking usually unsuitable for D greater than 4 m

Bo = bolting always necessary Legend

Rev= permanent lining follows close behind

4.3 Tableau 7

F			R	ock bol	s	Stee	rios	Segn	ients	45	adid		Special	1
Environment	Unsupported	Shotorete	Ungrouted	Grouted	Jacked bars	Heavy	Light, yielding	Steel	Concrate	Perforated tubes	Shield or Jacked	Grouting	Comp. air	Freezing
		\triangle	M	M	Ŋ	\triangle		0	0	Š		H	互	
Sensitivity to settlement (nearby buildings)	\boxtimes	G∞Pm	Вр	8p	Вр	Act	×	Enf	Bci		In!			

Table 7

Legend

Cl = with ribs (and bolts if necessary) for R4a, R4b, R4c rocks

Bo - with shotcrete

Act= active ribs (with jacks) (and if necessary expanding checks)

Inj = gaps grouted immediately, or expanding rings

Bcl= shield

Enf⊶ with forepoling

Pm= mechanical pre-splitting (for R2b to R5a ground)

4.3 Recommandations de l'AFTES (GT 7)

Le tableau final résume les 8 critères en prenant en considération que les systèmes de soutènement pertinentes pour chaque critère examiné.

Si l'une des colonnes présente une évaluation <u>faible à très faible</u> → elle sera considérée comme inappropriée pour le reste de l'analyse.

Le choix final est fait en considérant les bonnes évaluations en fonction de l'importance relative des critères selon lesquels la méthode choisie et considérée comme favorable.

EXEMPLE:

Tunnel de 12 m de diamètre → Tableau 6

Schiste jointoyé → Tableaux 0, 1, 2, 3

Couverture rocheuse <u>profonde</u>: $\frac{\sigma_c}{\sigma_0} < 2 \rightarrow$ Tableau 5 (<u>pas de tassement</u>, donc pas de tableau 7)

Pas d'eau souterraine → Tableau 4

4.3 Recommandations de l'AFTES (GT 7): Exemple

Example n° 1					Rock bolts		Stee	l ribs	s Segments			edid		Special		
12 m diameter tunr deep rock cov no grou	Unsupported	Shotcrete	Ungrouted	Grouted	Jacked bars	Heavy	Light, yielding	Steel	Concrete	Perforated	Shield or jacked pipe	Grouting	Comp. air	Freezing		
Criterla	Categ	jories			Ï	Ĭ	\Box			\bigcirc	0			HH		MHN MHN
1 Mecha. behaviour	R3a			0	0	9	X		0	×	×	×	X		X	
2 Discontinuities	N3	S4	×	6	Greu Bø	დ Gr∞8ე	X	e Bl∞Bp	⊚ BlouBp				X		X	×
3 Weathering	Exfolia	tion	×	la	1		1		⊜ Bl∝Bp	l a	9					
4 Hydrology	Dry															
5 Cover	CN3		X	×	9	6	X	×			-		X			
6 Size D > 10			Ø Bo	9	0		×	Bo ou Rev				×				
								I	124 1.75 1	<u> </u>			<u> </u>			
Synt	X	×	⊚ Gr∝uBo	e Gr∞ Bo	\boxtimes	×	Bo e Bp	×	×	X	X		\boxtimes	×		

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

4.4 Hoek-Kaiser-Bawden - Méthode GSI

Dr F. SANDRONE

GSI Geological Strength Index

Ce paramètre est *principalement* une *combinaison des systèmes de classification RMR et Q* (combine l'expérience des trois auteurs).

Champ d'application :

- Cette méthode s'adapte aux massif rocheux discontinues
- Le champ de contraintes n'est pas défini
- **Tout** type de **géométrie** de tunnel (principalement adapté pour des soutènements en béton projeté)
- Tout type de comportement de la massif rocheux
- Pas de limitations en termes de couverture

Limites:

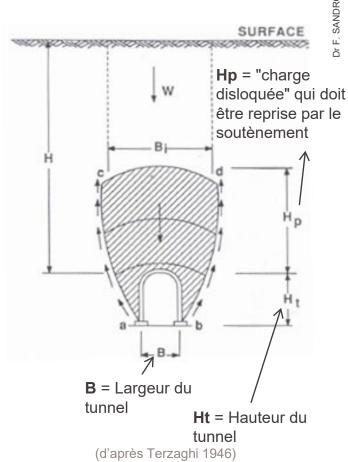
- Cette méthode se focalise sur l'emploi de **béton projeté en indiquant** le type et l'épaisseur du revêtement en béton projeté à mettre en place dans chaque cas.
- Il est important ne pas oublier qu'il s'agit d'une méthode empirique qui donne une **estimation** de dimensionnement du système de soutènement qui doit par la suite faire l'objet d'une vérification (p. ex. analyses numériques).

4.5 Classification du massif par Terzaghi (1946)

Classification des massif rocheux pour la conception des soutènements de tunnels introduite par Terzaghi en 1946 (1ère fois)

Le **POIDS DE LA ROCHE** doit être soutenu par des cintres en acier en fonction du type de massif en considérant l'action de la **gravité** comme force dominante tout en examinant le comportement du massif rocheux.

Hp : Hauteur de la zone détendue au-dessus de la calotte du tunnel développant la charge (donnée en pieds).


 p_v : pression verticale de soutènement = $\gamma \cdot Hp$

Limitation:

B de préférence ≤ 6m;

Profondeur > 1,5(B+Ht)

Voûte du tunnel située au-dessus de la nappe phréatique (si ce n'est pas le cas, les classes IV, V et VI peuvent être réduites de 50 %).

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

Classe de roche	Définition	Facteur de charge des roches Hp (m)	Remarque soutènement		
I. Dure et intacte	La roche dure et intacte ne contient pas de joints ni de fractures. Après l'excavation, la roche peut présenter des éclatements et des épaufrures au niveau du front d'excavation.	0	Un revêtement léger n'est nécessaire qu'en cas d'écaillage ou d'éclatement.		
II. Dure, Stratifiée et schisteuse	Les roches dures sont constituées de strates et de couches épaisses. L'interface entre les couches est cimentée. L'éclatement et l'écaillage au niveau au niveau du front d'excavation sont fréquents.	0 à 0.5 B	Support léger pour la protection contre l'écaillage. La charge peut varier d'une couche à l'autre.		

	Classe de roche	Définition	Facteur de charge des roches Hp (m)	Remarque soutènement
	III. Massive, avec un nombre modéré de discontinuités	Les roches massives contiennent des joints et des fractures très espacés. La taille des blocs est importante. Les joints sont imbriqués les uns dans les autres. Les piédroits verticaux n'ont pas besoin d'être soutenus. Des écaillages peuvent se produire.	0 à 0.25 B	Support léger pour la protection contre l'écaillage.
	IV. Modérément en blocs et fissurée	La roche contient des joints modérément espacés. La roche n'est pas altérée chimiquement. Les joints ne sont pas bien imbriqués et présentent de petites ouvertures. Les piédroits verticaux n'ont pas besoin d'être soutenus. Des écaillages peuvent se produire.	0.25 B à 0.35 (B + H _t)	Pas de pression latérale.

	Classe de roche	Définition	Facteur de charge des roches Hp (m)	Remarque soutènement
SOUTERRAINS	V. Très fissure et en blocs	La roche n'est pas altérée chimiquement et contient des joints très rapprochés. Les joints sont ouverts et séparés. Les piédroits verticaux ont besoin d'être soutenus.	(0.35 à 1.1) (B + H _t)	Pression latérale faible ou nulle.
MECANIQUE DES ROCHES EI OUVRAGES	VI. Complètement broyée mais chimiquement intacte	La roche n'est pas altérée chimiquement mais elle est très fracturée avec de petits fragments. Les fragments sont lâches et ne sont pas imbriqués les uns dans les autres. Le front d'excavation dans ce matériau nécessite d'être soutenu.	1.1 (B + H _t)	Pression latérale considérable. Perte de résistance causé par l'eau à la base du tunnel. Utiliser des cintres circulaires ou prévoir un soutènement des pieds des cintres.

	Classe de roche	Définition	Facteur de charge des roches Hp (m)	Remarque soutènement	
	VII. Roche poussante à profondeur modérée	La roche converge lentement sans augmentation perceptible du volume. La profondeur modérée est considérée comme étant comprise entre 150 et 1000 m.	(1.1 à 2.1)(B + H _t)	Forte pression latérale. Un radier	
	VIII. Roche poussante à grande profondeur	La roche converge lentement sans augmentation perceptible du volume. Une grande profondeur est considérée comme supérieure à 1000 m.	(2.1 à 4.5)(B + H _t)	voûté est nécessaire. Cintres circulaires recommandées.	
	IX. Roche gonflante	Le volume de la roche se dilate (convergence) en raison du gonflement des minéraux argileux de la roche en présence d'humidité.	Jusqu'à 75 m (= 250 pieds), indépendamment de B et de H _t	Cintres circulaires requises. Dans les cas extrêmes, utiliser un soutènement coulissant.	

Dr F. SANDRONE

4.5 Méthode de Terzaghi modifiée par Deere et al. (1970)

- Deere et al. 1970 ont considéré le massif rocheux comme partie intégrante du système de soutènement
- Cette hypothèse n'est manifestement pas applicable aux massif rocheux détendus (disloqués) et fortement broyés.
- Une autre hypothèse importante concerne la méthode d'excavation :
 - l'excavation à la machine réduit la charge de la roche d'environ 20-25%.

4.5 Méthode Terzaghi modifiée par Deere et al. (1970)

SANDRONE

	Condition de la roche	RQD	Hp (m)	Observations
	Dure et intacte	95-100	0	= Terzaghi 1946
MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS	Dure, Stratifiée et schisteuse	90-99	0-0.5B	= Terzaghi 1946
	Massive, avec un nombre modéré de discontinuités	85-95	0-0.25B	= Terzaghi 1946
	Modérément en blocs et fissurée	75-85	0.25B-0.35(B+Ht)	Réduit de ~50% par rapport à la valeur de Terzaghi en
	Très fissure et en blocs	30-75	(0.2-0.6)(B+Ht)	raison du fait que la nappe phréatique a une faible
OUVRAG	Complètement broyée mais chimiquement intacte	3-30	(0.6-1.1)(B+Ht)	influence sur la charge de la roche (Terzaghi, 1946 ;
ES ET (Sable et gravier	0-3	(1.1-1.4)(B+Ht)	Brekke, 1968).
S ROCH	Roche poussante à profondeur modérée	NA	(1.1-2.1)(B+Ht)	= Terzaghi 1946
IQUE DE	Roche poussante à grande profondeur	NA	(2.1-4.5)(B+Ht)	= Terzaghi 1946
■ MÉCANI	Roche gonflante	NA	Jusqu'à 80 m indépend. de (B+Ht)	= Terzaghi 1946

4.5 Soutènements pour tunnels de 6 à 12 m de diamètre en roche par Deere et al. (1970)

	8

		Cintres en acier				Boulons	Béton	projeté	مَ	
	RQD	Méthode constr.	Poids	Espacement	Maillage	Exigences additionnelles	Voûte	Piédroits	Soutènem ents addition.	
	>90	TBM	Léger	Aucun à occasionnel	Aucun à local	Rare	Aucun à local	Aucun	Aucun	
JTERRAIN(D&B	Léger	Aucun à occasionnel	Aucun à local	Rare	Aucun à local	Aucun	Aucun	
OUVRAGES SOUTERRAINS	75-90	ТВМ	Léger	Occasionnel à 1.5-1.8 m	Local à 1.5-1.8 m	Mailles ou sangles occasion.	Local 5-7.5 cm	Aucun	Aucun	
SET		D&B	Léger	1.5-1.8 m	1.5-1.8 m	Mailles ou sangles occasion	Local 5-7.5 cm	Aucun	Aucun	
DES ROCHES	50-75	TBM	Léger - Moyen	1.2-1.5 m	1.2-1.8 m	Mailles et sangles	5-10 cm	Aucun	Boulons	
MÉCANIQUE D		D&B	Léger – Moyen	0.6-1.2 m	0.9-1.5 m	Mailles et sangles	> 10 cm	> 10 cm	Boulons	
■ MÉC	25-50	TBM	Moyen. fermé	0.9-1.5 m	0.9-1.5 m	Mailles et sangles	10-15 cm	10-15 cm	Boulons 1.2-1.8 m	