

Solution - Exercise TE-02

Support Design: rock mass classifications based methods Soutènement : systèmes de classifications

Assistant: A. Guggisberg (EPFL-LEMR)

Ex. TE02.1

<u>a)</u> Using the data provided it is possible to evaluate the Q-value for the rock mass described, in particular:

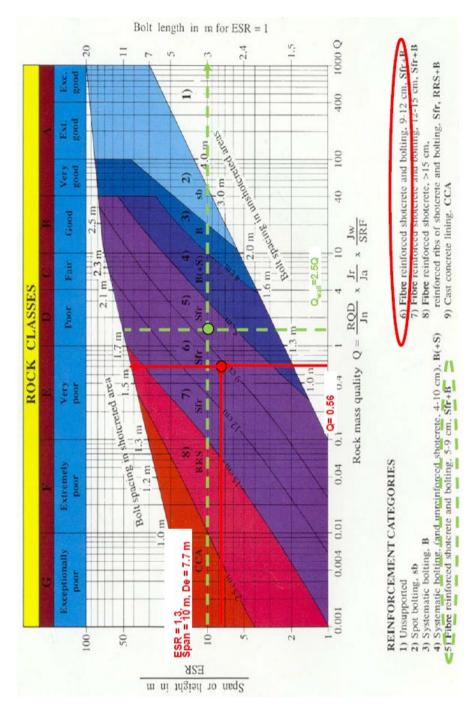
En utilisant les données fournies, il est possible d'évaluer la valeur Q pour le massif rocheux décrit, en particulier :

RQD	41%		41
Joint set number	2 sets plus random	J_n	6
Joint roughness number	Slicken-sided and undulating	J_{r}	1.5
Joint alteration number	highly weathered filled with 3-5 mm clay	Ja	6
Joint water factor	large inflow with considerable outwash	Jw	0.3
Stress reduction factor	$\sigma_{\rm o}/\sigma_{\rm 1}$ = 65/(220×0.0268) = 11	SRF	1
Q	(41/6) (1.5/6) (0.33/1)		0.56
Qwall	For $0.1 < Q < 10 \rightarrow Qwall = 2.5 Q$		1.4

Using the table here below it is possible to evaluate the ESR Value for the case described, in particular ESR = 1.3

Le tableau ci-dessous permet d'évaluer la valeur ESR pour le cas décrit, soit ESR = 1.3.

	Excavation Category		
Α	Temporary mine openings.	3 – 5	
В	Permanent mine openings, water tunnels for hydro-electric projects, pilot tunnels, drifts and headings for large excavations.	1.6	
С	Storage rooms, water treatment plants, minor road and railway tunnels, surge chambers and access tunnels in hydro-electric project.	1.3	
D	Underground power station caverns, major road and railway tunnels, civil defence chamber, tunnel portals and intersections.	1.0	
Е	Underground nuclear power stations, railway stations, sports and public facilities, underground factories.	0.8	


This allows evaluating the tunnel span to be used as input parameter for the Q-chart:

Cela permet d'évaluer la portée du tunnel à utiliser comme input pour le graphique Q :

Wall height / Hauteur des parois = 10 m

Using the Q-Chart it is possible to obtain the support system both for the crown (roof support) and the side-walls:

En utilisant le Q-Chart, il est possible d'obtenir le système de support à la fois pour la voûte et et pour les piédroits :

Roof support / Soutènement de la voûte:

Bolt spacing at ~1.6m / Boulons avec éspacement d'environ 1.6 m Bolt length of 3 m / Boulons de longueur de 3 m SFR shotcrete of ~9 cm / Béton projété avec fibres d'environ 9 cm d'épaisseur

Side wall support / Soutènement des piédroits:

Bolting at 1.8 m spacing / Boulons avec éspacement d'environ 1.8 m Bolt length of 3 m / Boulons de longueur de 3 m SFR shotcrete of 7 cm / Béton projété avec fibres d'environ 7 cm d'épaisseur **b)** Using the rock mass description provided it is possible to use the method proposed by Bieniawski to estimate the RMR-value, in particular:

En utilisant la description du massif fournie, il est possible d'utiliser la méthode proposée par Bieniawski pour estimer la valeur RMR, en particulier :

Rock material strength	65 MPa	Rating	7
RQD (%)	41%	Rating	8
Joint spacing (m)	0.05 m	Rating	5
Condition of joints	continuous, slicken-sided, separation 1-5mm	Rating	10
Groundwater	inflow = 50 l/min	Rating	4
		RMR	34

This value is the same for both crown and side-walls. / Cette valeur est la même pen voûte et piédroits.

Using the information given about the joint orientation is it possible to evaluate the correction of the RMR-value. According to the description two corrections are possible: fair and very unfavourable. The Adjusted RMR will consider the worst case, thus:

Les informations fournies sur l'orientation des joints permettent d'évaluer la correction de la valeur RMR. D'après la description, deux corrections sont possibles : moyenne et très défavorable. Le RMR ajusté prend en compte le cas le plus défavorable :

Adjustment = -12

Adjusted RMR = 22

The value obtained (i.e. Adjusted RMR) is the input values for the table of the RMR-System: La valeur obtenue (soit le RMR ajusté) constitue l'input du tableau du système RMR :

Rock mass class	Excavation	Rock bolts (20 mm diameter, fully grouted)	Shotcrete	Steel sets
I - Very good rock <i>RMR</i> : 81-100	Full face, 3 m advance.	Generally no support required except spot bolting.		ot bolting.
II - Good rock RMR: 61-80	Full face , 1-1.5 m advance. Complete support 20 m from face.	Locally, bolts in crown 3 m long, spaced 2.5 m with occasional wire mesh.	50 mm in crown where required.	None.
III - Fair rock RMR: 41-60	Top heading and bench 1.5-3 m advance in top heading. Commence support after each blast. Complete support 10 m from face	Systematic bolts 4 m long, spaced 1.5 - 2 m in crown and walls with wire mesh in crown.	50-100 mm in crown and 30 mm in sides.	None.
IV - Poor rock RMR: 21-40	Top heading and bench 1.0-1.5 m advance in top heading. Install support concurrently with excavation, 10 m from face.	Systematic bolts 4-5 m long, spaced 1-1.5 m in crown and walls with wire mesh.	100-150 mm in crown and 100 mm in sides.	Light to medium ribs spaced 1.5 m where required.
V – Very poor rock <i>RMR</i> : < 20	Multiple drifts 0.5-1.5 m advance in top heading. Install support concurrently with excavation. Shotcrete as soon as possible after blasting.	Systematic bolts 5-6 m long, spaced 1-1.5 m in crown and walls with wire mesh. Bolt invert.	150-200 mm in crown, 150 mm in sides, and 50 mm on face.	Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required. Close invert.

The required support is:

Systematic bolts 4-5 m long, spaced 1-1.5m, wire-mesh, and shotcrete 100-150 mm thick. Steel ribs might be required. Moreover, it is suggested to advance with top-heading and bench.

Le soutènement requis est le suivant :

Boulonnage systématique. Boulons de 4 à 5 m de long, espacés de 1 à 1.5 m, treillis métallique et béton projeté de 100 à 150 mm d'épaisseur. Des cintres en acier peuvent être nécessaires. En outre, il est suggéré d'avancer en section partielle.

Ex. TE02.2

<u>a)</u> Using the data provided it is possible to evaluate the Q-value for the rock mass described, in particular:

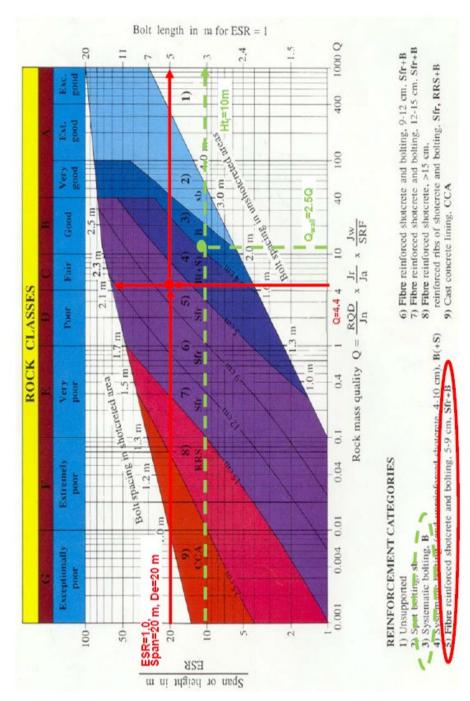
En utilisant les données fournies, il est possible d'évaluer la valeur Q pour le massif rocheux décrit, en particulier :

RQD	RQD 70%		70.0
Joint set number	2 sets plus random	Jn	6.0
Joint roughness number	slightly rough (⇒rough planar)	J _r	1.5
Joint alteration number	highly weathered only stain, (altered non- softening mineral coating)	Ja	2.0
Joint water factor	70 m water head = 7 kg/cm ² = 7 bars	J_{w}	0.5
Stress reduction factor $\sigma_c/\sigma_1 = 85/(80 \times 0.027) = 39.3$		SRF	1.0
Q (70/6) (1.5/2) (0.5/1)			4.4
Qwall	For 0.1 < Q < 10 → Qwall = 2.5 Q		11

Using the table here below it is possible to evaluate the ESR Value for the case described, in particular ESR = 1.0

Le tableau ci-dessous permet d'évaluer la valeur ESR pour le cas décrit, soit ESR = 1.0.

	Excavation Category	ESR
Α	Temporary mine openings.	3 – 5
В	Permanent mine openings, water tunnels for hydro-electric projects, pilot tunnels, drifts and headings for large excavations.	1.6
С	Storage rooms, water treatment plants, minor road and railway tunnels, surge chambers and access tunnels in hydro-electric project.	1.3
D	Underground power station caverns, major road and railway tunnels, civil defence chamber, tunnel portals and intersections.	1.0
Е	Underground nuclear power stations, railway stations, sports and public facilities, underground factories.	0.8


This allows evaluating the tunnel span to be used as input parameter for the Q-chart:

Cela permet d'évaluer la portée du tunnel à utiliser comme input pour le graphique Q :

Wall height / Hauteur des parois = 10 m

Using the Q-Chart it is possible to obtain the support system both for the crown (roof support) and the side-walls:

En utilisant le Q-Chart, il est possible d'obtenir le système de support à la fois pour la voûte et et pour les piédroits :

Roof support / Soutènement de la voûte:

Bolt spacing at ~2.1 m / Boulons avec éspacement d'environ 2.1 m Bolt length of 5 m / Boulons de longueur de 5 m SFR shotcrete of ~7 cm / Béton projété avec fibres d'environ 7 cm d'épaisseur

Side wall support / Soutènement des piédroits:

Bolting at ~2.3 m spacing / Boulons avec éspacement d'environ 2.3 m Bolt length of 3 m / Boulons de longueur de 3 m

Thin shotcrete to cover or no shotcrete / couche fine de béton projété ou pas de béton projété

b) Using the rock mass description provided it is possible to use the method proposed by Bieniawsky to estimate the RMR-value, in particular:

En utilisant la description du massif fournie, il est possible d'utiliser la méthode proposée par Bieniawski pour estimer la valeur RMR, en particulier :

Rock material strength	85 MPa	Rating	7
RQD (%)	70%	Rating	13
Joint spacing (m)	0.11 m	Rating	8
Condition of joints	slightly rough, highly weathered, separation < 1mm	Rating	20
Groundwater	water pressure/stress = 0.32	Rating	4
		RMR	52

This value is the same for both crown and side-walls. / Cette valeur est la même pen voûte et piédroits.

Using the information given about the joint orientation is it possible to evaluate the correction of the RMR-value. According to the description two corrections are possible: fair, fair to very favourable. The Adjusted RMR will consider the worst case, thus:

Les informations fournies sur l'orientation des joints permettent d'évaluer la correction de la valeur RMR. D'après la description, deux corrections sont possibles : moyenne et moyenne à très favorable. Le RMR ajusté prend en compte le cas le plus défavorable :

Adjustment = -5

Adjusted RMR = 47

The value obtained (i.e. Adjusted RMR) is the input values for the table of the RMR-System:

La valeur obtenue (soit le RMR ajusté) constitue l'input du tableau du système RMR :

Rock mass	Excavation	Rock bolts	Shotcrete	Steel sets
class		(20 mm diameter, fully grouted)		
I - Very good rock <i>RMR</i> : 81-100	Full face, 3 m advance.	Generally no support re	quired except sp	ot bolting.
II - Good rock RMR: 61-80	Full face , 1-1.5 m advance. Complete support 20 m from face.	Locally, bolts in crown 3 m long, spaced 2.5 m with occasional wire mesh.	50 mm in crown where required.	None.
III - Fair rock <i>RMR</i> : 41-60	Top heading and bench 1.5-3 m advance in top heading. Commence support after each blast. Complete support 10 m from face.	Systematic bolts 4 m long, spaced 1.5 - 2 m in crown and walls with wire mesh in crown.	50-100 mm in crown and 30 mm in sides.	None.
IV - Poor rock RMR: 21-40	Top heading and bench 1.0-1.5 m advance in top heading. Install support concurrently with excavation, 10 m from face.	Systematic bolts 4-5 m long, spaced 1-1.5 m in crown and walls with wire mesh.	100-150 mm in crown and 100 mm in sides.	Light to medium ribs spaced 1.5 m where required.
V – Very poor rock <i>RMR</i> : < 20	Multiple drifts 0.5-1.5 m advance in top heading. Install support concurrently with excavation. Shotcrete as soon as possible after blasting.	Systematic bolts 5-6 m long, spaced 1-1.5 m in crown and walls with wire mesh. Bolt invert.	150-200 mm in crown, 150 mm in sides, and 50 mm on face.	Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required. Close invert.

The required support is:

Systematic bolts 4 m long, spaced 1.5-2 m, wire-mesh, and shotcrete 50-100 mm thick. Moreover, advance with top-heading and bench could be required.

Le soutènement requis est le suivant :

Boulonnage systématique. Boulons de 4 m de long, espacés de 1.5 à 2 m, treillis métallique et béton projeté de 50 à 100 mm d'épaisseur. En outre, un avancement en section partielle pourrait être nécessaire.

Ex. TE02.3

<u>a)</u> Using the data provided it is possible to evaluate the Q-value for the rock mass described, in particular:

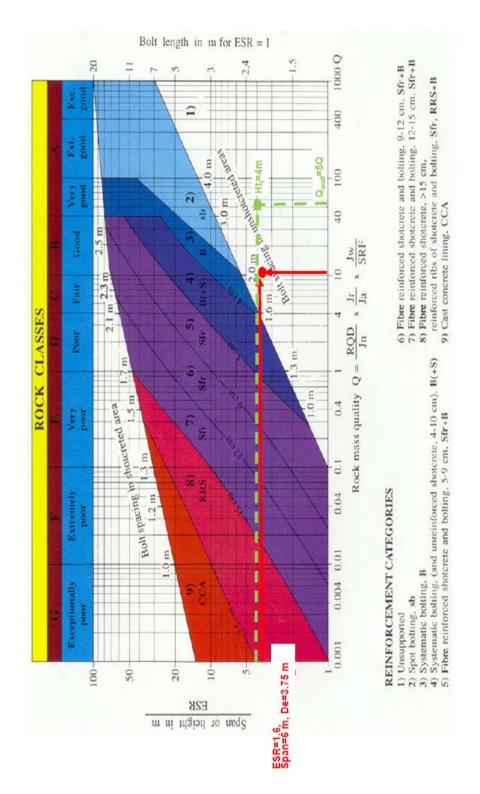
En utilisant les données fournies, il est possible d'évaluer la valeur Q pour le massif rocheux décrit, en particulier :

RQD	QD 80%		80.0
Joint set number	3 joint sets	Jn	9.0
Joint roughness number	Stepped and rough	J _r	3.0
Joint alteration number	Tightly closed, unweathered joints	Ja	1.0
Joint water factor Wet but not dripping (minor flo		Jw	0.7
Stress reduction factor $\sigma_c/\sigma_1 = 160/(800 \times 0.0275) = 7.3$		SRF	1.5
Q (80/9) (3/1) (1/1.5)			11.7
Qwall	For $Q > 10 \rightarrow Qwall = 5 Q$		58.7

Using the table here below it is possible to evaluate the ESR Value for the case described, in particular ESR = 1.6

Le tableau ci-dessous permet d'évaluer la valeur ESR pour le cas décrit, soit ESR = 1.6.

	Excavation Category		
Α	Temporary mine openings.	3 – 5	
В	Permanent mine openings, water tunnels for hydro-electric projects, pilot tunnels, drifts and headings for large excavations.	1.6	
С	Storage rooms, water treatment plants, minor road and railway tunnels, surge chambers and access tunnels in hydro-electric project.	1.3	
D	Underground power station caverns, major road and railway tunnels, civil defence chamber, tunnel portals and intersections.	1.0	
Е	Underground nuclear power stations, railway stations, sports and public facilities, underground factories.	0.8	


This allows evaluating the tunnel span to be used as input parameter for the Q-chart:

Cela permet d'évaluer la portée du tunnel à utiliser comme input pour le graphique Q :

Wall height / Hauteur des parois = 4 m

Using the Q-Chart it is possible to obtain the support system both for the crown (roof support) and the side-walls:

En utilisant le Q-Chart, il est possible d'obtenir le système de support à la fois pour la voûte et et pour les piédroits :

Roof support / Soutènement de la voûte :

Unsupported / pas de soutènement nécessaire

Side wall support / Soutènement des piédroits :

Unsupported / pas de soutènement nécessaire

b) Using the rock mass description provided it is possible to use the method proposed by Bieniawsky to estimate the RMR-value, in particular:

En utilisant les données fournies, il est possible d'évaluer la valeur Q pour le massif rocheux décrit, en particulier :

Rock material strength	160 MPa	Rating	12
RQD (%)	80%	Rating	17
Joint spacing (m)	0.4 m	Rating	10
Condition of joints	Stepped and rough, tightly closed, unweathered	Rating	30
Groundwater	Wet but not dripping	Rating	7
		RMR	76

This value is the same for both crown and side-walls. / Cette valeur est la même pen voûte et piédroits.

Using the information given about the joint orientation is it possible to evaluate the correction of the RMR-value. According to the description two corrections are possible: very unfavourable. The Adjusted RMR is:

Les informations fournies sur l'orientation des joints permettent d'évaluer la correction de la valeur RMR. Selon la description, les deux corrections sont idéntiques : très défavorable. Le RMR ajusté est :

Adjustment = -12

Adjusted RMR = 64

The value obtained (i.e. Adjusted RMR) is the input values for the table of the RMR-System:

La valeur obtenue (soit le RMR ajusté) constitue l'input du tableau du système RMR :

Rock mass	Excavation	Rock bolts	Shotcrete	Steel sets
class		(20 mm diameter, fully grouted)		
I - Very good rock <i>RMR</i> : 81-100	Full face, 3 m advance.	Generally no support required except spot bolting.		ot bolting.
II - Good rock RMR: 61-80	Full face , 1-1.5 m advance. Complete support 20 m from face.	Locally, bolts in crown 3 m long, spaced 2.5 m with occasional wire mesh.	50 mm in crown where required.	None.
III - Fair rock RMR: 41-60	Top heading and bench 1.5-3 m advance in top heading. Commence support after each blast. Complete support 10 m from face.	Systematic bolts 4 m long, spaced 1.5 - 2 m in crown and walls with wire mesh in crown.	50-100 mm in crown and 30 mm in sides.	None.
IV - Poor rock RMR: 21-40	Top heading and bench 1.0-1.5 m advance in top heading. Install support concurrently with excavation, 10 m from face.	Systematic bolts 4-5 m long, spaced 1-1.5 m in crown and walls with wire mesh.	100-150 mm in crown and 100 mm in sides.	Light to medium ribs spaced 1.5 m where required.
V – Very poor rock RMR: < 20	Multiple drifts 0.5-1.5 m advance in top heading. Install support concurrently with excavation. Shotcrete as soon as possible after blasting.	Systematic bolts 5-6 m long, spaced 1-1.5 m in crown and walls with wire mesh. Bolt invert.	150-200 mm in crown, 150 mm in sides, and 50 mm on face.	Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required. Close invert.

The required support is:

Full face advancement. Local bolting in crown 3m long, spacing 2.5m. Shotcrete 50mm where required.

Le soutènement requis est :

Avancement en pleine section. Boulonnage local en voûte. Boulons de 3 m de long, avec un espacement de 2.5 m. Béton projeté de 50 mm là où c'est nécessaire.